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Estimation of Gaussian graphs by model selection

Introduction

Let us consider a Gaussian law P C in R p with mean 0 and positive definite covariance matrix C. We write θ for the matrix of the regression coefficients associated to the law P C , more precisely θ = θ (j) i i,j=1,...,p is the p × p matrix such that θ (j) j = 0 for j = 1, . . . , p and

E X (j) X (k) , k = j = k =j θ (j)
k X (k) , j ∈ {1, . . . , p} , a.s.

for any random vector X = X (1) , . . . , X (p) T of law P C . Our aim is to estimate the matrix θ by model selection from a n-sample X 1 , . . . , X n of the law P C . We will focus on the disadvantageous case where the sample size n is smaller than the dimension p.

The shape of θ is usually represented by a graph G with p vertices {1, . . . , p} by setting an edge between the vertices i and j when θ (j) i = 0. This graph is well-defined since θ (j) i = 0 if and only if θ (i) j = 0; the latter property may be seen e.g. on the formula θ (j) i = -(C -1 ) i,j /(C -1 ) j,j for all i = j. The objective in Gaussian graphs estimation is usually to detect the graph G. Even if the purpose of our procedure is to estimate θ and not G, we propose to estimate G by the way as follows. We associate to our estimator θ of θ, the graph Ĝ where we set an edge between the vertices i and j when either θ(j) i or θ(i) j is non-zero. Estimation of Gaussian graphs with n ≪ p is currently an active field of research motivated by applications to microarray analysis. The challenge is to infer from a small sample of microarrays the regulation network of a large family of genes. A possible way is to model the gene expression levels in the microarray by a (high-dimensional) Gaussian law (as proposed in Kishino and Waddell [START_REF] Kishino | Correspondence analysis of genes and tissue types and finding genetic links from microarray data[END_REF]) and then to detect the underlying graph G of conditional dependences from the sample. This modeling has the nice property to be simple, but one of its drawback is that it does not model retroaction loops, which is a common feature in biological processes.

Various procedure have been proposed to perform graph estimation. Many are based on multiple testing, see for instance the papers of Schäfer and Strimmer [START_REF] Schäfer | An empirical bayes approach to inferring large-scale gene association networks[END_REF], Drton and Perlman [START_REF] Drton | A sinful approach to Gaussian graphical model selection[END_REF][START_REF] Drton | Multiple testing and error control in Gaussian Graphical model selection[END_REF] or Wille and Bühlmann [START_REF] Wille | Low-order conditional independence graphs for inferring genetic networks[END_REF]. We also mention the work of Verzelen and Villers [START_REF] Verzelen | Test of neighborhood for Gaussian graphical models[END_REF] for testing in a non-asymptotic framework whether there are (or not) missing edges in a given graph. Recently, several authors advocate to take advantage of the nice computational properties of the l 1 -penalization to either estimate the graph G or the concentration matrix C -1 . Meinshausen and Bühlmann [START_REF] Meinshausen | High dimensional graphs and variable selection with the lasso[END_REF] propose to learn the graph G by regressing with Lasso each variable against the others. Huang et al. [START_REF] Huang | Covariance matrix selection and estimation via penalised normal likelihood[END_REF] or Yuan and Lin [START_REF] Yuan | Lin Model selection and estimation in the Gaussian graphical model[END_REF] (see also Banerjee et al. [START_REF] Banerjee | Model selection through sparse maximum likelihood estimation. To appear[END_REF] and Friedman et al. [START_REF] Friedman | Sparse inverse covariance estimation with the lasso[END_REF]) suggest in turn to rather estimate C -1 by minimizing the log-likelihood for the concentration matrix penalized by the l 1 -norm.

Our aim in this work is to investigate Gaussian graph estimation from a theoretical and nonasymptotic point of view. First, we propose a procedure to estimate θ and asses its performance in a non-asymptotic setting, which is important for biological data where typical values of n are a few tens. Then, we discuss on the maximum degree of the graphs that we can accurately estimate. Our work is theoretic and from a practical point of view the procedure we propose suffers of a very high computational cost. In a future work, we will suggest various strategies to reduce this cost and we will compare its performance to the performance of other procedures in a numerical study.

To estimate the matrix θ, we introduce a collection of candidate graphs (possibly directed graphs) on {1, . . . , p}. To each graph, we associate an estimator of θ by minimizing some empirical risk over the space of the matrices in R p×p with shape given by the graph at hand, see Section 2 for the details. Then, we select one of these estimators by minimizing a penalized criterion. We evaluate the performance of the procedure through the Mean Square Error of Prediction (MSEP) of the resulting estimator θ. To define this quantity, we introduce a few notations. For any k, q ∈ N, we denote by A (1) , . . . , A (q) the q columns of a matrix A ∈ R k×q . We also write • k×q for the Euclidean norm in R k×q , namely

A 2 k×q = k i=1 q j=1 A (j) i 2 = q j=1 A (j) 2 k×1 , for any A ∈ R k×q .
The MSEP of the estimator θ is then

MSEP( θ) = E C 1/2 ( θ -θ) 2 p×p = p j=1 E X T new ( θ(j) -θ (j) ) 2 1×p ,
where C 1/2 is the positive square root of C and X new is a random vector, independent of the sample X 1 , . . . , X n , with distribution P C . Our main result roughly states that if the candidate graphs have a degree small compared to n/(2 log p), then a slight variation of the estimator θ performs almost as well as the best of the estimators in the collection in terms of the MSEP. Next, we emphasize that it is hopeless to try to estimate accurately graphs with degree D large compared to n/(1 + log(p/n)). To conclude, we prove that the size of the penalty involved in the selection procedure is minimal in some sense.

The remaining of the paper is organized as follows. We describe the estimation procedure in Section 2, we state our main results in Section 3 and Section 4 is devoted to the proofs.

Estimation procedure

In this section, we explain our procedure to estimate θ. We first introduce a collection of graphs / models, then we associate to each model an estimator and finally we give a procedure to select one of them.

2.1. Collection of models. We write ∆ = {(j, j) : j = 1, . . . , p} and M * for the set of all the subset of {1, . . . , p} 2 \ ∆. The set M * is in bijection with the set of directed graphs on {1, . . . , p}. Indeed, to a set m in M * we can associate a directed graph on {1, . . . , p} by setting for each (i, j) ∈ m a directed edge from i to j. To any m in M * , we associate the linear space Θ m (we call henceforth model) of those matrices θ in R p×p such that θ (j) i = 0 when (i, j) / ∈ m. To estimate θ, we will consider a collection of models {Θ m , m ∈ M} indexed by some suitable subset M of M * .

We give below some possible choices for the set M. In the sequel, M * ,s denotes the set of those m in M * that are symmetric with respect to ∆, which means that (i, j) ∈ m if and only if (j, i) ∈ m. The set M * ,s is in bijection with the set of graphs on {1, . . . , p}: to a set m in M * ,s we associate the graph with an edge between i and j if and only if (i, j) ∈ m. As mentioned before, we known that θ (j) i = 0 if and only if θ (i) j = 0, so it seems irrelevant to (possibly) introduce directed graphs instead of graphs. Nevertheless, we must keep in mind that our aim is to estimate θ at best in terms of the MSEP. In some cases, the results can be improved when using directed graphs instead of graphs, typically when for some i, j ∈ {1, . . . , p} the variance of θ (j) i X i is large compared to the conditional variance Var(X (j) |X (k) , k = j), where as the variance of θ

(i) j X j is small compared to Var(X (i) |X (k) , k = i).
Henceforth, we write m j = {i : (i, j) ∈ m} for any j ∈ {1, . . . , p} and m ∈ M * . We also denote by |m j | the cardinality of m j and call degree of m (or of the graph associated to m) the integer deg(m) = max {|m j | : j = 1, . . . , p}. Some collections of interest.

M c D : We write M c D (respectively M c,s D ) for those m in M * (resp. M * ,s
) such that |m j | ≤ D for all j ∈ {1, . . . , p}. We note that the set M c D (resp. M c,s D ) is in bijection with the set of directed graphs (resp. graphs) with p vertices and degree at most D.

M b D : We write M b D ⊂ M c D (respectively M b,s D )
for the set of the m in M * (resp. M * ,s ) with cardinality at most D (resp. 2D). The set M b D (resp. M b,s D ) is in bijection with the set of directed graphs (resp. graphs) with p vertices and at most D edges. M D,q : For 1 ≤ D ≤ q we write M D,q ⊂ M c D (respectively M s D,q ) for the set of the m in M * (resp. M * ,s ) with cardinality at most q (resp. 2q) and such that |m j | ≤ D for all j ∈ {1, . . . , p}. As before, the set M D,q (resp. M s D,q ) is in bijection with the set of directed graphs (resp. graphs) with p vertices, degree bounded by D and at most q edges.

We note that all the graphs in the above collections have a degree bounded by D.

Collection of estimators.

We start with n observations X 1 , . . . , X n i.i.d. with law P C . We denote by X the n × p matrix X = [X 1 , . . . , X n ] T and we remind that X (1) , . . . , X (p) stand for the p columns of the matrix X.

We assume henceforth that 3 ≤ n < p and that M ⊂ M c D for some D ∈ {1, . . . , n -2}. To any m ∈ M we associate an estimator θm of θ by minimizing the squares ( 1)

X( θm -I) 2 n×p = min θ∈Θm X( θ -I) 2 n×p .
We note that the p × p matrix θm then fulfills the equalities

X θ(j) m = Proj XΘ (j) m X (j) , for j = 1, . . . , p, where Θ (j) 
m is the linear space Θ

(j) m = θ (j) : θ ∈ Θ m ⊂ R p and Proj XΘ (j) m is the orthogonal projector onto XΘ (j)
m in R n (for the usual scalar product). Hence, since the covariance matrix C is positive definite and D is less than n, the minimizer of ( 1) is unique a.s.

2.3.

Selection procedure. We estimate θ by θ = θ m where m is any minimizer on M of the criterion

(2) Crit(m) = p j=1 X (j) -X θ(j) m 2 × 1 + pen(|m j |) n -|m j | ,
with the penalty function pen : N → R + computed as follows. As in Baraud et al. [START_REF] Baraud | Gaussian model selection with unknown variance[END_REF], we define for any integers d and N the Dkhi function by

Dkhi(d, N, x) = P F d+2,N ≥ x d + 2 - x d P F d,N +2 ≥ N + 2 N d x , x > 0,
where F d,N denotes a Fisher random variable with d and N degrees of freedom. The function x → Dkhi(d, N, x) is decreasing and we write EDkhi[d, N, x] for its inverse, see [START_REF] Baraud | Gaussian model selection with unknown variance[END_REF] Section 6.1 for details. Then, we fix some constant K > 1 and set

(3) pen(d) = K n -d n -d -1 EDkhi d + 1, n -d -1, C d p-1 (d + 1)(D M + 1) -1
,

where

D M = max {deg(m) : m ∈ M}.
Size of the penalty. The size of the penalty pen(d) is roughly 2Kd log p for large values of p. Indeed, we will work in the sequel with collections of models, such that

D M ≤ η n 2 1.1 + √ log p 2 , for some η < 1,
and then, we approximately have for large values of p and n

pen(d) K 1 + e η 2 log p 2 (d + 1), d ∈ {0, . . . , D M } ,
see Proposition 4 in Baraud et al. [START_REF] Baraud | Gaussian model selection with unknown variance[END_REF] for an exact bound. In Section 3.2, we show that the size of this penalty is minimal in some sense.

Computational cost. The computational cost of the selection procedure appears to be very high. For example, if M = M c D it increases as p (D+1) with the dimension p. In a future work, we will propose various strategies to reduce the cardinality of the set M over which the minimization (2) occurs.

Main results

We are not able to derive an upper bound for the MSEP of the estimator θ (except when M = M c D for some D). Nevertheless, next theorem bounds from above the MSEP of a slight variation θ of θ, defined by ( 4) θ(j) = θ(j) 1 { θ(j) ≤ √ p Tn} , for all j ∈ {1, . . . , p} , with T n = n 2 log n .

We note that θ and θ coincide in practice since the threshold level T n increases very fast with n, e.g. T 20 ≈ 6.10 7 .

In the sequel, we write

σ 2 j = C -1 j,j -1 = Var(X (j) | X (k) , k = j) and define θ m by C 1/2 (θ -θ m ) 2 = min αm∈Θm C 1/2 (θ -α m ) 2 .
Theorem 1. Assume that D M = max {deg(m) : m ∈ M} fulfills the condition

(5) 1 ≤ D M ≤ η n 2 1.1 + √ log p 2 , for some η < 1.
Then, the MSEP of the estimator θ defined by ( 4) is upper bounded by

(6) E C 1/2 ( θ -θ) 2 ≤ c(K, η) min m∈M    C 1/2 (θ -θ m ) 2 1 + pen(D M ) n -D M + 1 n p j=1 (pen(|m j |) + K)σ 2 j    + R n (η, C, θ)
where K is the constant appearing in (3), c(K, η) = 4 and the residual term R n (η, C, θ) (made explicit in the proof ) is of order a p 2 n -4 log n .

K (K-1)(1- √ η)
The proof of this theorem is delayed to Section 4.2. Below, we discuss the bound [START_REF] Davidson | Local operator theory, random matrices and Banach spaces[END_REF]. We first emphasize that the factor pen(D M )/(n -D M ) behaves like a constant under condition ( 5) and then we explain how (6) enables to compare the MSEP of θ with the minimum over M of the MSEP of θm .

Proposition 4 in Baraud et al. [START_REF] Baraud | Gaussian model selection with unknown variance[END_REF] ensures that when D M fulfills Condition (5) we can bound pen(D M )/(n -D M ) by some constant depending on K and η only. Indeed, under Condition [START_REF] Cohen | Compressed sensing and the best k-term approximation[END_REF] we approximately have for large values of n and p

pen(D M ) n -D M K 1 + e η √ 2 log p 2 n -D M × η n 2 1.1 + √ log p 2 ≍ Kη e 2η .
When D M fulfills (5) the MSEP of the estimator θm is bounded from below by

E C 1/2 (θ -θm ) 2 ≥ C 1/2 (θ -θ m ) 2 + 1 1 + η/(2 log p) 2 p j=1 |m j | σ 2 j n .
Besides, we have p j=1 σ 2 j = C 1/2 (Iθ) 2 , so there exists some constant c ′ depending on K and η only, such that under Condition [START_REF] Cohen | Compressed sensing and the best k-term approximation[END_REF] we have

E C 1/2 (θ -θ) 2 ≤ c ′ log(p) inf m∈M E C 1/2 (θ -θm ) 2 ∨ C 1/2 (I -θ) 2 n + R n (η, C, θ).
The MSEP of θ thus nearly achieves, up to a log(p) factor, the minimal MSEP of the collection of estimators θm , m ∈ M .

3.1. Is Condition (5) optimal? Condition (5) requires that D M remains small compared to n/(2 log p). We may wonder if this condition is necessary, or if we can hope to handle graphs with larger degree D. A glance at the proof of Theorem 1 shows that Condition (5) can be replaced by the weaker condition

√ D M + 1 + 2 log C D M p-1 + 1/(4C D M p-1 ) 2 ≤ ηn. Using the classical bound C D p-1 ≤ (ep/D) D
, we obtain that the latter condition is satisfied when

(7) D M ≤ η 6 × n 1 + log p D M
, so we can replace Condition (5) by Condition [START_REF] Drton | A sinful approach to Gaussian graphical model selection[END_REF] in Theorem 1. Let us check now that we cannot improve (up to a multiplicative constant) upon [START_REF] Drton | A sinful approach to Gaussian graphical model selection[END_REF]. 2 , so there is no hope to control the size of C 1/2 (θ -θ) 2 if we do not have for some δ ∈ (0, 1) the inequalities ( 8)

Pythagora's theorem gives C 1/2 (θ -θ) 2 = C 1/2 (I -θ) 2 -C 1/2 (I -θ)
(1 -δ) C 1/2 (I -α) p×p ≤ 1 √ n X(I -α) n×p ≤ (1 + δ) C 1/2 (I -α) p×p for all α ∈ m∈M Θ m
with large probability. Under Condition ( 5) or ( 7), Lemma 1 Section 4 ensures that these inequalities hold for any δ > √ η with probability 1 -2 exp -n(δ -√ η) 2 /2 . We emphasize next that in the simple case where C = I, there exists a constant c(δ) > 0 (depending on δ only) such that the Inequalities (8

) cannot hold if M b D ⊂ M with D ≥ c(δ) n 1 + log p n .
Indeed, when C = I and M b D ⊂ M, the Inequalities (8) enforces that n -1/2 X satisfies the so-called δ-Restricted Isometry Property of order D introduced by Candès and Tao [START_REF] Candès | Decoding by linear programing[END_REF], namely

(1 -δ) β p×1 ≤ n -1/2 Xβ p×p ≤ (1 + δ) β p×1
for all β in R p with at most D non-zero components. Barabiuk et al. [START_REF] Baraniuk | A simple proof of the restricted isometry property for random matrices[END_REF] (see also Cohen et al. [START_REF] Cohen | Compressed sensing and the best k-term approximation[END_REF]) have noticed that there exists some constant c(δ) > 0 (depending on δ only) such that no n × p matrix can fulfill the δ-Restricted Isometry Property of order D if D ≥ c(δ)n/(1 + log(p/n)). In particular, the matrix X cannot satisfies the Inequalities (8) when M b D ⊂ M with D ≥ c(δ)n/(1 + log(p/n)).

3.2.

Can we choose a smaller penalty? As mentioned before, under Condition (5) the penalty pen(d) given by ( 3) is approximately upper bounded by K 1 + e η √ 2 log p 2 (d + 1).

Similarly to Theorem 1 in Baraud et al. [START_REF] Baraud | Gaussian model selection with unknown variance[END_REF], a slight variation of the proof of Theorem 1 enables to justify the use of a penalty of the form pen(d) = 2Kd log(p -1) with K > 1 as long as D M remains small (the condition on D M is then much stronger than Condition ( 5)). We underline in this section, that it is not recommended to choose a smaller penalty. Indeed, next proposition shows that choosing a penalty of the form pen(d) = 2(1γ)d log(p -1) for some γ ∈ (0, 1) leads to a strong overfitting in the simple case where θ = 0, which corresponds to C = I.

Proposition 1. Consider three integers 1 ≤ D < n < p such that p ≥ e 2/(1-γ) + 1 and

M b D ⊂ M. Assume that pen(d) = 2(1 -γ)d log(p -1)
for some γ ∈ (0, 1) and θ = 0. Then, there exists some constant c(γ) made explicit in the proof, such that when m is selected according to (2)

P | m| ≥ c(γ) min(n, p γ/4 ) (log p) 3/2 ∧ ⌊γD/8⌋ ≥ 1 -3(p -1) -1 -2e -γ 2 n/8 3 .
In addition, in the case where M = M c D , we have 

P | mj | ≥ c(γ) min(n, p γ/4 ) (log p) 3/2 ∧ ⌊γD/8⌋ ≥ 1 -3(p -1) -1 -2e -γ 2 n/8
• n = • n×1 / √ n and λ * d (Z) = inf v∈V 1 ∪...∪V N Zv n v p×1 .
Then, for any x ≥ 0 (9)

P λ * d (Z) ≤ 1 - √ d + √ 2 log N + δ N + x √ n ≤ P (N ≥ x) ≤ e -x 2 /2 ,
where N has a standard Gaussian distribution and

δ N = N √ 8 log N -1 .
Similarly, for any x ≥ 0 (10) P sup

v∈V 1 ∪...∪V N Zv n v p×1 ≥ 1 + √ d + √ 2 log N + δ N + x √ n ≤ P (N ≥ x) ≤ e -x 2 /2 . Proof. The map Z → ( √ n λ * d (Z)
) is 1-Lipschitz, therefore the Gaussian concentration inequality enforces that

P λ * d (Z) ≤ E (λ * d (Z)) -x/ √ n ≤ P (N ≥ x) ≤ e -x 2 /2 .
To get [START_REF] Friedman | Sparse inverse covariance estimation with the lasso[END_REF], we need to bound E (λ * d (Z)) from below. For i = 1, . . . , N , we set

λ i (Z) = inf v∈V i Zv n v .
We get from [START_REF] Davidson | Local operator theory, random matrices and Banach spaces[END_REF] the bound

P λ i (Z) ≤ 1 - d n - x √ n ≤ P(N ≥ x)
hence, there exists some standard Gaussian random variables N i such that

λ i (Z) ≥ 1 -d/n -(N i ) + / √ n,
where (x) + denotes the positive part of x. Starting from Jensen inequality, we have for any

λ > 0 E max i=1,...,N (N i ) + ≤ 1 λ log E e λ max i=1,...,N (N i ) + ≤ 1 λ log N i=1 E e λ(N i ) + ≤ 1 λ log N + 1 λ log e λ 2 /2 + 1/2 ≤ log N λ + λ 2 + e -λ 2 /2 2λ .
Setting λ = √ 2 log N , we finally get

E (λ * d (Z)) = E min i=1,...,N λ i (Z) ≥ 1 - √ d + √ 2 log N + δ N √ n
This concludes the proof of ( 9) and the proof of ( 10) is similar.

Proof of Theorem 1.

To keep formulaes short, we write henceforth D for D M .

a. From E C 1/2 ( θ -θ) 2 to E X( θ -θ) 2 n .
We set

• n = • n×1 / √ n, λ 0 = 1 - √ η 2 , λ 1 j = Xθ (j) n C 1/2 θ (j) and λ * j = inf    XC -1/2 v n v : v ∈ m∈M * j,D V m    where V m = C 1/2 < θ (j) > +C 1/2 Θ (j)
m and M * j,D is the set of those subsets m of {1, . . . , j -1, j + 1, . . . , p}× {j} with cardinality D. Then, for any j = 1, . . . , p

E C 1/2 ( θ(j) -θ (j) ) 2 = E C 1/2 ( θ(j) -θ (j) ) 2 1 {λ * j ≥λ 0 , θ(j) = θ(j) } +E C 1/2 θ (j) 2 1 {λ * j ≥λ 0 , θ(j) =0, λ 1 j ≤3/2} +E C 1/2 θ (j) 2 1 {λ * j ≥λ 0 , θ(j) =0, λ 1 j >3/2} +E C 1/2 ( θ(j) -θ (j) ) 2 1 {λ * j <λ 0} = E (j) 1 + E (j) 2 + E (j) 3 + E (j) 4 .
Upper bound on E (j)

1 . Since C 1/2 ( θ(j) -θ (j) ) ∈ m∈M * j,D V m ,
we have

C 1/2 ( θ(j) -θ (j) ) 2 1 {λ * j ≥λ 0} ≤ λ -2 0 X( θ(j) -θ (j) ) 2 n
and therefore ( 11)

E (j) 1 ≤ λ -2 0 E X( θ(j) -θ (j) ) 2 n .
Upper bound on E

2 . All we need is to bound P λ * j ≥ λ 0 , θ(j) = 0, λ 1 j ≤ 3/2 from above. Writing λ -for the smallest eigenvalue of C, we have on the event λ

* j ≥ λ 0 θ(j) ≤ C 1/2 θ(j) √ λ - ≤ X θ(j) n λ 0 √ λ - .
Besides, for any m ∈ M,

X θ(j) m = Proj XΘ (j) m Xθ (j) + σ j ε (j)
with ε (j) distributed as a standard Gaussian random variable in R n . Therefore, on the event

λ * j ≥ λ 0 , θ(j) = 0, λ 1 j ≤ 3/2 we have θ(j) ≤ Xθ (j) n + σ j ε (j) n λ 0 √ λ - ≤ 1.5 C 1/2 θ (j) + σ j ε (j) n λ 0 √ λ - .
As a consequence,

P λ * j ≥ λ 0 , θ(j) = 0, λ 1 j ≤ 3/2 ≤ P 1.5 C 1/2 θ (j) + σ j ε (j) n λ 0 √ λ - > T n √ p ≤ 1 when 3 C 1/2 θ (j) > λ 0 pλ -T n P 2σ j ε (j) n > λ 0 pλ -T n else, ≤ 9 C 1/2 θ (j) 2 /(λ 2 0 λ -pT 2 n ) when 3 C 1/2 θ (j) > λ 0 pλ -T n 4σ 2 j /(λ 2 0 λ -pT 2 n ) else.
Finally, ( 12)

E (j) 2 ≤ C 1/2 θ (j) 2 9 C 1/2 θ (j) 2 + 4σ 2 j λ 2 0 λ -pT 2 n .
Upper bound on E (j)

3 . We note that n λ 1 j 2 follows a χ 2 distribution, with n degrees of freedom. Markov inequality then yields the bound

P λ 1 j > 3/2 ≤ exp - n 2 (9/4 -1 -log(9/4)) ≤ exp(-n/5).
As a consequence, we have ( 13)

E (j) 3 ≤ C 1/2 θ (j) 2 exp(-n/5).
Upper bound on E (j)

4 . Writing λ + for the largest eigenvalue of the covariance matrix C, we have

E (j) 4 ≤ 2E C 1/2 θ (j) 2 + C 1/2 θ(j) 2 1 {λ * j <λ 0} ≤ 2 C 1/2 θ (j) 2 + λ + pT 2 n P λ * j < λ 0 .
The random variable Z = XC -1/2 is n × p matrix whose coefficients are i.i.d. and have the standard Gaussian distribution. The condition (5) enforces the bound

√ D + 1 + 2 log |M * j,D | + δ |M * j,D | √ n ≤ √ η,
so Lemma 1 ensures that

P λ * j < λ 0 ≤ exp (-n(1 - √ η)η/2)
and finally ( 14)

E (j) 4 ≤ 2 C 1/2 θ (j) 2 + λ + pT 2 n exp (-n(1 - √ η)η/2) .

Conclusion.

Putting together the bounds [START_REF] Kishino | Correspondence analysis of genes and tissue types and finding genetic links from microarray data[END_REF] to [START_REF] Verzelen | Test of neighborhood for Gaussian graphical models[END_REF], we obtain

(15) E C 1/2 ( θ -θ) 2 = p j=1 E C 1/2 ( θ -θ) 2 ≤ λ -2 0 E X( θ -θ) 2 n + R n (η, C, θ) with R n (η, C, θ) = p j=1 (E (j) 2 + E (j) 3 + E (j) 4 ) of order a p 2 T -2 n = p 2 n -4 log n .
b. Upper bound on E X( θθ) 2 n . Let m * be an arbitrary index in M. Starting from the inequality p j=1 X (j) -X θ(j)

m 2 × 1 + pen(| mj |) n -| mj | ≤ p j=1 X (j) -X θ(j) m * 2 × 1 + pen(|m * j |) n -|m * j |
and following the same lines as in the proof of Theorem 2 in Baraud et al. [START_REF] Baraud | Gaussian model selection with unknown variance[END_REF] we obtain for any

K > 1 K -1 K p j=1 X( θ(j) -θ (j) ) 2 n ≤ p j=1   X(θ (j) - θ(j) m * ) 2 n + R (j) m * + σ 2 j n   KU (j) mj -pen(| mj |) V (j) mj n -| mj |     ,
where for any m ∈ M and j ∈ {1, . . . , p}

X θ(j) m = Proj XΘ (j) m (Xθ (j) ), E R (j) m X (k) , k = j ≤ pen(|m j |) X(θ (j) - θ(j) m ) 2 n n -|m j | + σ 2 j n a.s.
and the two random variables U (j) m j and V (j) m j are independent with a χ 2 (|m j | + 1) and a χ 2 (n -|m j | -1) distribution respectively. Combining this bound with Lemma 6 in Baraud et al. [START_REF] Baraud | Gaussian model selection with unknown variance[END_REF], we get

K -1 K E X( θ -θ) 2 n ≤ E X(θ -θm * ) 2 n + p j=1 pen(|m * j |)   E X(θ (j) - θ(j) m * ) 2 n n -|m * j | + σ 2 j n   + K p j=1 σ 2 j n m j ∈M j (|m j | + 1)Dkhi |m j | + 1, n -|m j | -1, (n -|m j | -1)pen(|m j |) K(n -|m j |) ,
where M j = {m j , m ∈ M}. The choice (3) of the penalty ensures that the last term is equal to K p j=1 σ 2 j /n. We also note that X(θ Then, the probability to have Crit ′ (s) > Crit ′ (ŝ Dn,p ) for all s with cardinality smaller than γD n,p /6 is bounded from below by 1 -3p -1 -2 exp(-nγ 2 /512).

(j) - θ(j) m * ) 2 n ≤ X(θ (j) -θ (j) m * ) 2 n for all j ∈ {1, . . . , p} since X θ(j) m * = Proj XΘ (j) m * (Xθ (j) ). Combining this inequality with E X(θ (j) -θ (j) m * ) 2 n = C 1/2 (θ (j) -θ (j) m * ) 2 , we obtain K -1 K E X( θ -θ) 2 n ≤ C 1/2 (θ -θ m * ) 2 + p j=1 pen(|m * j |) C 1/2 (θ (j) -θ (j) m * ) 2 n -|m * j | + σ 2 j n + K p j=1 σ 2 j n ≤ C 1/2 (θ -θ m * ) 2 1 + pen(D) n -D + p j=1 (pen(|m j |) + K) σ 2 j n ( 
The proof of this lemma is technical and we only give here a sketch of it. For the details, we refer to Section 4. When p ≥ e 2/(1-γ) and |s| ≤ γD/6 the first term on the right hand side is bounded from above by (1γ)D, then since γ < 1 ∆(s) ≤ (1 + 2γ)γD/6 -γD/2 < 0.

We will now bound P (Ω c 0 ) from above. We write Y = Z T ε/ ε (with the convention that Y = 0 when ε = 0) and where the last inequality comes from D ≤ p γ/4 /(4 log p) 3/2 . To conclude P(Ω c 2 ) ≤ p -1 and P (Ω c 0 ) ≤ 3p -1 + 2 exp(-nγ 2 /512).

Ω 1 =    2 2 + γ ≤ Z α 2

4 .

 4 We note that pen(|s|)/(n -|s|) ≤ pen(D)/(n -D). Multiplying by n/(2 log p) we obtain∆(s) ≤ (1γ)D 1 + D -2(1γ/2)D log p n -D -(1γ/2)D -(1γ)|s| + (2 + γ)|s| + (2 + γ)|s| pen(D) n -D ≤ (1γ)D 1 + D -2(1γ/2)D log p + 2(2 + γ)|s| log p n -D -(1γ/2)D + (1 + 2γ)|s|.

n α 2 ≤Proj 2 Z θŝ D 2 = max |s|=D sup α∈Vs 2 2 ≥ max |s|=D sup α∈Vs 2 < 2 ≥ ( 1 -

 22222221 (1γ/2) -1/2 , for all α ∈ |s|=D Vs Y 2 ≥ 2(1γ/2) 1/2 D log p , Ω 3 = max i=1,...,p Y 2 i ≤ 4 log p .We first prove thatΩ 1 ∩ Ω 2 ∩ Ω 3 ⊂ Ω 0 . Indeed, we have on Ω 1 ∩ Ω < ε, Z α > -Z α Z T ε, α > -n(1γ/2) -1/2 α γ/2)

  3 for all j ∈ {1, . . . , p}.

	4. Proofs
	4.1. A concentration inequality.

Lemma 1. Consider three integers 1 ≤ d ≤ n ≤ p, a collection V 1 , . . . , V N of d-dimensional

linear subspaces of R p and a n × p matrix Z whose coefficients are i.i.d. with standard gaussian distribution. We set

  [START_REF] Yuan | Lin Model selection and estimation in the Gaussian graphical model[END_REF] c. Conclusion. The bound[START_REF] Yuan | Lin Model selection and estimation in the Gaussian graphical model[END_REF] is true for any m * , so combined with[START_REF] Wille | Low-order conditional independence graphs for inferring genetic networks[END_REF] it gives (6). 4.3. Proof of Proposition 1. The proof of Proposition 1 is based on the following Lemma.Let us consider a n × p random matrix Z whose coefficients Z are i.i.d. with standard Gaussian distribution and a random variable ε independant of Z, with standard Gaussian law in R n .To any subset s of {1, . . . , p} we associate the linear space V s = span {e j , j ∈ s} ⊂ R p , where {e 1 , . . . , e p } is the canonical basis of R p . We write Z θs = Proj ZVs (ε), ŝd for the set of cardinality

						(j)
						i
	d such that				
	(17)	Z θŝ d	2 = max |s|=d	Z θs	2 .
	and we define				
	Crit ′ (s) = ε -Z θs	2 1 +	pen(|s|) n -|s|	.
						largest
	integer smaller than				
	5D/6,	p γ/4 (4 log p) 3/2 and	γ 2 n 512(1.1 + √	log p) 2 .

Lemma 2. Assume that p ≥ e 2/(1-γ) and pen(d) = 2(1-γ)d log p. We write D n,p for the

  1/2 ε 2 n max Similarly, on Ω 1 we have Z θs 2 ≤ ε 2 n Proj Vs Y 2 × (2 + γ)/2 for all s with cardinality less than D. Since Proj Vs Y 2 ≤ |s| max i=1,...,p (Y 2 i ), we have on Ω 1 ∩ Ω 3 Z θs 2 ≤ 2(2 + γ)|s| ε 2 n log p, for all s with cardinality less than D and then Ω 1∩ Ω 2 ∩ Ω 3 ⊂ Ω 0 .To conclude, we bound P(Ω c i ) from above, for i = 1, 2, 3. First, we have> 4 log p ≤ 2p P(Y 1 ≥ 2 log(p)) ≤ 2p -1 .To bound P(Ω c 1 ), we note that (1γ/2) -1/4 ≥ 1 + γ/8 and 2/(2 + γ) ≤ 1γ/8 for any 0 < γ < 1, so Lemma 1 ensures that P(Ω c 1 ) ≤ 2e -nγ 2 /512 . Finally, to bound P(Ω c 2 ), we sort the Y 2 i in decreasing order Y 2 (1) > Y 2 (2) > . . . > Y 2 (p) and note that max |s|=D Proj Vs Y 2 ≥ DY 2 (D) . where the last inequality follows from p ≥ e 2/(1-γ) and Inequality (60) in Baraud et al. [3]. Finally, we obtain P Y 2 (D) ≤ 2(1γ/2) 1/2 log p ≤ p -1 exp D log p -(p -D + 1)p √

	P(Ω c 3 ) = P max i=1,...,p (D) ≤ 2(1 -γ/2) 1/2 log p Y 2 P Y 2 i Furthermore, we have	≤ ≤ p D-1 1 -D -1 p P Y 2 1 ≤ 2(1 -γ/2) 1/2 log p p √ 1-γ/2 4(1 -γ/2) 1/4 √ 2 log p p-D+1 p-D+1 , 1-γ/2 4(1 -γ/2) 1/4 √ 2 log p ≤ p -1 ,

|s|=D Proj Vs Y 2 ≥ 2D (1γ/2) ε 2 n log p.

Sketch of the proof of Lemma 2. We have

According to Lemma 1, when |s| is small compare to n/ log p, we have Z α 2 ≈ n α 2 with large probability and then

Since max |s|=d Proj Vs Y 2 ≈ 2d log p with large probability, we have Z θŝ d 2 ≈ 2d log p× ε 2 /n and then

Therefore, with large probability we have Crit ′ (s) > Crit ′ (ŝ Dn,p ) for all s with cardinality less than γD n,p /6.

Proof of Proposition 1. We start with the case M b D ⊂ M. When | m| ≤ γD n,p-1 /6, we have in particular | m1 | ≤ γD n,p-1 /6. We build m from m by replacing m1 by a set m1 ⊂ {1}×{2, . . . , p} which maximizes X θ When M = M c D , the same argument shows that for any j ∈ {1, . . . , p} the probability to have | mj | ≤ γD n,p-1 /6 is bounded from above by 3(p -1) -1 + 2 exp(-nγ 2 /512).

4.4.

Proof of Lemma 2. We write D for D n,p and Ω 0 for the event

for all s with |s| ≤ D .

We will prove first that on the event Ω 0 we have Crit ′ (s) > Crit ′ (ŝ Dn,p ) for any s with cardinality less than γD n,p /6 and then we will prove that Ω 0 has a probability bounded from below by 1 -3p -1 -2 exp(-nγ 2 /512).

We write ∆(s) = Crit ′ (ŝ D ) -Crit ′ (s). Since we are interested in the sign of ∆(s), we will still write ∆(s) for any positive constant times ∆(s). We have on Ω 0 ∆(s)