
HAL Id: hal-00180755
https://hal.science/hal-00180755v1

Submitted on 15 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The ASSET Architecture–Integrating Media
Applications and Products through a Unified API

Mario Cordeiro, Paul Viana, J. Ruela, Mathurin Body, Bernard Cousin,
Daniel Bommart, Guillia Ferrari, Massimo Strambini, Walter Bernet, Edgar

Muller, et al.

To cite this version:
Mario Cordeiro, Paul Viana, J. Ruela, Mathurin Body, Bernard Cousin, et al.. The ASSET
Architecture–Integrating Media Applications and Products through a Unified API. Smpte Motion
Imaging Journal, 2004, 113 (9), pp.307-312. �hal-00180755�

https://hal.science/hal-00180755v1
https://hal.archives-ouvertes.fr

THE ASSET ARCHITECTURE - INTEGRATING MEDIA
APPLICATIONS AND PRODUCTS THROUGH A UNIFIED API

M.Cordeiro1, P. Viana1,2, J. Ruela1, M. Body3, B. Cousin3,4, D. Bommart5, G.
Ferrari6, M. Strambini6, W. Bernet7, E. Müller7, M. Laurentin8, B. Algayres8,

S. Daulard9, I. Hoentsch10, T. Marx10

1INESC Porto-Portugal, 2ISEP-Portugal, 3INRIA-France, 4University of
Rennes-France, 5HP-France, 6SHS-Italy, 7Dalet-a.n.n. -Germany, 8FPDI-

France, 9THOMSON-France, 10IRT-Gernamy

ABSTRACT

Applications and products currently available for the broadcasting market are
vertically integrated or proprietary. They are based on components requiring
specific and costly development to interoperate and do rely typically on a
single manufacturer or system integrator. Hence they are not fully compliant
with broadcasters’ requirements.

ASSET is a European funded project whose main goal is to overcome the
limitations of custom specific implementations of a digital system for TV
content creation. These limitations are generally due to the misfit of
interfaces between software layers, proprietary APIs of equipment from
different vendors and the lack of a generalised middleware for multimedia
content management with openly defined interfaces.

Besides presenting the ASSET proposed architecture and concepts, this
paper describes the prototype under development to test and demonstrate
the project proposals.

INTRODUCTION

The main goal of the ASSET1 project [1][2] is to overcome the limitations for custom specific
implementation of a complete digital system for TV content creation. These limitations are
generally due to lack of connectivity and interoperability between equipment and between
applications, the lack of generalised middleware for multimedia content management and
exchange with openly defined interfaces and the use of databases of different types with
respect to access and data model.

Technical solutions available on the market are vertically integrated or proprietary. They are
based on components requiring specific and costly development to interoperate and do rely
typically on a single manufacturer or system integrator. Therefore they are not compliant with
requirements of end-users (in particular, the broadcasters).

The ASSET project is defining and developing a software architecture and the corresponding
technologies necessary for a unified management of digital TV content which covers the
complete operational workflow, including acquisition, creation, editing, control, storage,
broadcasting, publishing and archiving of digital TV content.

1 (IST-2001-37379 - Architectural Solutions for Services Enhancing digital Television)

ASSET is therefore defining and/or implementing:

§ A harmonised data model and interfaces for accessing and manipulating the
multimedia objects covering the essence (audio and video) and the associated
metadata, based on existing standardisation work.

§ A Command and Control System between the different ASSET components. ASSET
is defining a middleware layer, based on distributed technology, in order to expose an
interface for controlling the different ASSET devices and servers.

§ A reliable way to interchange audio-visual program material, system and descriptive
metadata between the different ASSET components as integral part of a production
and content management system.

The ASSET project exploits open standards and emerging concepts and technologies like
MXF [4], standard data models for describing essence, XML [3] and distributed systems
technologies, for defining the concept of an ASSET Middleware.

A prototype, based on a typical workflow in a Newsroom Platform, demonstrates and
validates the benefit of the ASSET approach.

ASSET ARCHITECTURE

The ASSET architecture is based upon a software framework – the ASSET framework –
composed by a set of three standard interfaces and protocols for applications and products
working together in an integrated environment. Applications communicate with the framework
using the ASSET Public API, which allows them:

§ to communicate with any other application,
§ to access the public services provided by the framework,
§ to use additional functionalities implemented by third party integrators as aggregated

services.

Products from different manufacturers are
integrated in the ASSET framework either
natively (using an ASSET agent) or via an
ASSET proxy. They are controlled and
managed through the Media ASSET Bus API,
based on XML service schema definitions.
This API ensures an easy and seamless
integration of devices and products in the
framework.

An ASSET Private API is defined to access
core services of the framework (common
services) that enable the workability of this
integrated environment. This API is only used
internally in order to guarantee the overall
system integrity.

Figure 1 illustrates the different components of

the ASSET architecture.

ASSET Public API

Media ASSET Bus API

ASSET Services Library

ASSET
Aggregated

Service

ASSET
Aggregated

Service

Application & Business Logic Layer

ASSET Framework

ASSET
Public

Service

ASSET
Public

Service

ASSET
Public
Service

Common Services
• Service Repository
• Security
• Notification
• Debug/logging
• Management
• Session
• Transaction
• License

ASSET
Function
Service

ASSET
Function
Service

ASSET
Function
Service

ASSET Agent

ASSET Compliant
Product

ASSET Compliant
Application

A
SSE

T
 P

rivate A
P

I

ASSET Agent

ASSET Compliant
Product

ASSET Proxy

Legacy
Protocol

Legacy Product
Product Layer

ASSET Public API

Media ASSET Bus API

ASSET Services Library

ASSET
Aggregated

Service

ASSET
Aggregated

Service

Application & Business Logic Layer

ASSET Framework

ASSET
Public

Service

ASSET
Public

Service

ASSET
Public
Service

Common Services
• Service Repository
• Security
• Notification
• Debug/logging
• Management
• Session
• Transaction
• License

ASSET
Function
Service

ASSET
Function
Service

ASSET
Function
Service

ASSET Agent

ASSET Compliant
Product

ASSET Compliant
Application

A
SSE

T
 P

rivate A
P

I

ASSET Agent

ASSET Compliant
Product

ASSET Proxy

Legacy
Protocol

Legacy Product
Product Layer

Figure 1 – ASSET Architecture

ASSET Components

The ASSET Architecture defines a number of concepts, components and functions that
enable the implementation of an ASSET Compliant Framework. The core of the ASSET
Framework consists of three main components:

§ The ASSET Public Services expose the mandatory services of the ASSET framework
to the applications and to the aggregated services through the ASSET Public API.
These services provide a minimum set of multimedia functionality, sufficiently rich and
extensible to not limit the system efficiency. They ensure the consistency and integrity of
the system by handling the internal logic (e.g. access right, resource allocation, etc.)
required for each operation.

§ The ASSET Common Services provide implementation of key infrastructure
requirements such as security, logging, notification, resource management, etc. This
allows a uniform and single implementation of these services throughout the framework.
They expose a private API that can be only used by ASSET Public Services.

§ The ASSET Function Services provide an abstraction of functionalities (encoder,
recorder, player, etc.) to the ASSET public services. They hide the specificities of the
different interconnected products (e.g., for a public service, a VTR output and a Video
Server output are considered as two system-wide logical output ports).

At the Application and Business Logic layer, three components are introduced:

§ The ASSET Compliant Applications are the top level ASSET software components.
They use the ASSET Public API to access services provided by the ASSET
Framework and, optionally, by ASSET aggregated services.

§ The ASSET Services Library is a software component included in (or linked with) an
application, which makes it compliant with the ASSET framework and gives it access
to the ASSET public services.

§ The ASSET Aggregated Services implement additional business logic on top of public
services (or even other aggregated services). They register in the framework as new
services available for ASSET compliant applications (e.g., complex workflows may be
specified as aggregated services and then be made available to other connected
applications or aggregated services).

At the product layer, we call product a manageable hardware or software component that
implements one or several common functions (e.g., most of the Video Server products
implement a Recorder function, a Player function and a Storage function) and logical
components (logical ports, repositories, etc.). Two ways exist to make a product compatible
with the ASSET framework:

§ An ASSET Compliant Product is a product that is managed by the framework through
a built-in ASSET Agent.

§ A Legacy Product is a product that has not (or cannot have) a built-in ASSET agent.
The ASSET framework can nonetheless manage such a product through an external
software module called an ASSET Proxy (e.g., a VTR is not capable of including a
built-in ASSET agent and has to be connected through an ASSET Proxy).

Media ASSET Bus

Most of the ASSET framework is built on top of a software bus called the Media ASSET Bus
or MAB.

The goal of the MAB is to provide support for the integration of the widest range of products
within the ASSET framework, independently of the underlying operating system environment
and protocols.

The MAB defines a set of standard interfaces and synchronisation processes, which ensure a
seamless interoperability between ASSET components and products. These interfaces allow
any third party media application or product to be integrated with the Media ASSET Bus by
developing a simple software adapter in an agent or a proxy. A MAB Software Development
Kit (SDK) is provided in order to facilitate
this task. It gives a uniform way of
connecting devices, registering services
and exchanging messages within the
ASSET framework.

The integrated environment offered by the
MAB is based on a Transport Abstraction
Layer (TAL) that takes care of message
exchanges. Messages have XML format,
thus ensuring flexibility and adaptability of
the ASSET solution.

The concept of the Media ASSET Bus is
illustrated in Figure 2. Different ASSET
components and products are
interconnected via software adapters on
top of the MAB SDK.

DEMONSTRATION PLATFORM

The demonstration platform, which is being implemented as part of the ASSET project, has
the purpose of showing the feasibility and simplicity of integrating different broadcast systems
via the ASSET middleware. It should also serve as a reference system, where end users,
administrators and integrators can test and verify the implemented functionality against the
requirements, thus validating the result of the project.

The demonstrator uses one client and two providers of different manufacturers to emulate a
simple workflow of a News Platform. The client is a newsroom application that controls the
ingest process and lists the content stored on the online video server. The providers are an
ingest server and an online storage system provided by a video server. Both the providers
and the client application are connected to the ASSET middleware. All the Command &
Control operations and the data exchange are controlled by the components of the ASSET
middleware.

Interaction between the different components used in the demonstrator is presented in Figure
3.

Figure 2 – Media ASSET Bus

MAB Transport Abstraction Layer

Recorder
Public

Service

Metadata
Public
Service

Player
Public
Service

Recorder
Function
Service

Player
Function
Service

VTR

MAB SDK
Archive Server

Agent

ASSET Compliant
Video Server

MAB SDK
Video Server

Agent
VTR Proxy

MAB SDK

MAB SDK MAB SDK MAB SDK MAB SDK MAB SDK

XML based ASSET messages
Legacy protocol

ASSET Compliant
Archive Server

MAB Transport Abstraction Layer

Recorder
Public

Service

Metadata
Public
Service

Player
Public
Service

Recorder
Function
Service

Player
Function
Service

VTR

MAB SDK
Archive Server

Agent

ASSET Compliant
Video Server

MAB SDK
Video Server

Agent
VTR Proxy

MAB SDK

MAB SDK MAB SDK MAB SDK MAB SDK MAB SDK

XML based ASSET messages
Legacy protocol

ASSET Compliant
Archive Server

Acquisition&Ingest

ASSET Framework

Service Consumer

Newsroom Application

Video Server

Repository
Function
Service

Proxy
Proxy

Cmd&Ctrl via MAB SDK

Content/File Exchange

Content Management
Common Service

Record
Public
Service

Cmd&Ctrl via HTTP and XML

Notification
Common Service

Service Repository
Common Service

UMID Generator
Common Service

Metadata
Public
Service

Record
Function
Service

Repository
Public
Service

Figure 3 – ASSET demonstration platform components

Demonstration Platform Components

The demonstration platform will make the following set of Public, Common and Function
services available:

1. Public Services

a. Record PS: provides an interface (API) to start, stop and restart the recording
of the pre-programmed feeds.

b. Metadata PS: is the central access point for accessing, creating and modifying
any kind of metadata in the system (content management metadata and
descriptive metadata

c. Repository PS: provides the interface for the applications to access and to
modify content stored in any repository (online, near line).

2. Common Services

a. Service Repository CS: provides a mechanism for services (Common and
Function services) to register to the framework so that they can be addressed
and accessed by other services or applications.

b. Notification CS: provides a subscription mechanism for other services and
applications to be notified upon events like creation and modifications to
objects.

c. UMID Generator CS: provides a unique material identifier according to the
SMPTE standard [5].

d. Content Management Metadata CS: maintains the link between a UMID and the
repositories where the material is located.

3. Function Services

a. Record FS: provides an abstraction layer (entities, data exchanged) for
controlling Audio/Video input ports (e.g. sending differed commands to control
the recording of a media asset). In the demonstrator scenario the Record public
service uses the Record function to control the input port of the acquisition
server.

b. Repository FS: provides an abstraction layer (entities, data exchanged) for
controlling all the storage repositories of a system. The repository for the
demonstrator is an online storage video server storing the material ingested by
the Acquisition service.

Demonstration Hardware Architecture

The demonstrator components are connected using different network technologies as
presented in Figure 4.

Figure 4 – ASSET network architecture for the demonstrator platform

The Newsroom application displays the status of the ingest operation and lists all content
stored on the online video server. Incoming material (A/V-feeds) are digitised with different
technical qualities. High-resolution copies are recorded on the video server. Each time a
recording is initiated, a new and unique UMID will be associated to the new feed. The video
server informs (notifies) the ASSET framework about the new content creation and status
changes.

Register Record and Repository Functions - Use Case

Some use cases were developed to model the behaviour and the interaction between

different modules in the demonstrator. Figure 5 presents the Record and Repository FS
registration into the ASSET framework. The following steps are executed:

A0 – All the PS subscribe for notifications to the Notification CS in order to receive
notifications they are interested in – the Metadata PS to receive all modifications regarding
the creation, deletion, move, and modification of content, and the Record and Repository
PS to receive notifications about the corresponding newly registered functions.

A1 – The Record and Repository Proxies are registering to the ASSET framework. The
Service Repository CS creates the corresponding function services acting as client stubs
for the proxies. After that, the corresponding PS are notified about the new registrations
through the notification common service. In the general case, the public services would
read the pre-defined configuration from the Configuration Management CS. In the
demonstrator scenario the configuration for the proxies are stored in configuration files
read by the corresponding PS. The PS initialises the corresponding proxy by calling the
function service’ Initialise command passing the configuration in the XML data
parameter.

A2 – After its registration, the Repository proxy sends a notification describing its content.
This notification is received by the Metadata PS, which updates the Content Management
CS information regarding the content location (repository) and media assets structures.

Figure 5 – ASSET demonstration Registration Scenario

Initialize(Rec Config XML)

Initialize_ACK()

Record
PS

Recorder
Proxy

Serv. R
CS

Metadata
PS

Repository
Proxy

Register_adaptor(Recorder proxy id)

Rec.FS

Commands provided by the MAB -SDK
Private API, provided by CS

Notification
CS

Notify(essence_creation)

NewEssence(essenceID)
A2

A1

Repository
PS

Content
Mngt CS

Notify(Asset_creation.)

Initialize(Rep Config XML)

Rep.FS

Register_adaptor(Repository proxy id)

instantiates

instantiates

Initialize_ACK()

Register (Notification_set/*asset_mod*/))

Register (Notification_set/*proxy_regist*/))

Register (Notification_set/*proxy_regist*/))

Notify(Recorder,proxyID)
Notify(Recorder,proxyID)

Initialize(ProxyID,Rec Config XML)

Initialize_ACK()

Notify(Repository,proxyID)
Notify(Repository,proxyID)

Initialize(ProxyID,RepConfig XML)

Initialize_ACK()

A0

Initialize(Rec Config XML)

Initialize_ACK()

Record
PS

Recorder
Proxy

Serv. R
CS

Metadata
PS

Repository
Proxy

Register_adaptor(Recorder proxy id)

Rec.FS

Commands provided by the MAB -SDK
Private API, provided by CS

Notification
CS

Notify(essence_creation)

NewEssence(essenceID)
A2

A1

Repository
PS

Content
Mngt CS

Notify(Asset_creation.)

Initialize(Rep Config XML)

Rep.FS

Register_adaptor(Repository proxy id)

instantiates

instantiates

Initialize_ACK()

Register (Notification_set/*asset_mod*/))

Register (Notification_set/*proxy_regist*/))

Register (Notification_set/*proxy_regist*/))

Notify(Recorder,proxyID)
Notify(Recorder,proxyID)

Initialize(ProxyID,Rec Config XML)

Initialize_ACK()

Notify(Repository,proxyID)
Notify(Repository,proxyID)

Initialize(ProxyID,RepConfig XML)

Initialize_ACK()

A0

CONCLUSIONS

This paper gives an overview of the work developed within the scope of the ASSET project.
The software architecture and the main ASSET concepts are described and a simplified
prototype that is expected to test and validate the project approach is presented.

This work is expected to improve the interconnection between equipment and media
applications in digital TV environments, solving some of the problems users and system
integrators face currently.

REFERENCES

[1] ASSET web site – http://www.ist-asset.com

[2] Paula Viana et all, 2003. A Unified Solution for the Integration of Media Applications and
Products in Broadcaster Environments – The ASSET Architecture. Proceedings of the
NAB Conference

[3] W3C, 2000. Extensible Markup Language (XML) 1.0 (Second Edition), W3C
Recommendation. World Wide Consortium, http://www.w3c.org/TR/REC-xml, October 6.

[4] SMPTE, 2003. Material Exchange Format (MXF); File Format Specification, SMPTE
Proposed Standard 377M

[5] SMPTE, 2000. Unique Material Identifier (UMID), SMPTE Standard 330M-2000

