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The ∂-approach to monochromatic inverse scattering in three dimensions

We discuss a method for monochromatic inverse scattering in three dimensions of [R. Novikov 2005] and implemented numerically in [Alekseenko, Burov, Rumyantseva 2007]. This method is obtained as a development of the ∂-approach to inverse scattering at fixed energy in dimension d ≥ 3 of [Beals, Coifman 1985] and [Henkin, R.Novikov 1987] and involves, in particular, some results of [Faddeev 1965[Faddeev , 1974] ] and some ideas of the soliton theory (in particular, some ideas going back to [Manakov 1976] and [Dubrovin, Krichever, S.Novikov 1976]). Our studies go back also, in particular, to [Regge 1959].

Introduction Consider the Schrödinger equation

-∆ψ + v(x)ψ = Eψ, x ∈ R d , d ≥ 2, E > 0, (1.1)
where v is a sufficiently regular function on R d with sufficient decay at infinity.

(1.2)

For equation (1.1) we consider the scattering amplitude f (k, l), where (k, l) ∈ M E ,

M E = {k, l ∈ R d : k 2 = l 2 = E}, E > 0. (1.3)
For definitions of the scattering amplitude see formula (1.4) below and, for example, [F3], [FM]. The scattering amplitude f arises, in particular, as a coefficient with scattered spherical wave e i|k||x| /|x| (d-1)/2 in the asymptotics of the wave solutions ψ + (x, k) describing scattering of incident plan waves e ikx for equation (1.1):

ψ + (x, k) = e ikx + c(d, |k|) e i|k||x| |x| (d-1)/2 f ¡ k, |k| x |x| ¢ + o ¡ 1 |x| (d-1)/2 ¢ as |x| → +∞, (1.4)
where k ∈ R d , k 2 = E, c(d, |k|) = -πi(-2πi) (d-1)/2 |k| (d-3)/2 . Given v, to determine f one can use, in particular, the following integral equation

f (k, l) = v(k -l) - Z R d v(m -l)f (k, m)dm m 2 -k 2 -i0 , (1.5) where v(p) = ¡ 1 2π ¢ d Z R d
e ipx v(x)dx, p ∈ R d .

(1.6)

In addition, (1.5) is an equation for f (k, •) on R d for each fixed k ∈ R d , k 2 = E, and the scattering amplitude arises as the restriction f ¯ME . We consider the following monochromatic inverse scattering problem for equation (1.1):

Problem 1.1 Given f on M E at fixed E > 0, find v on R d (at least approximately, but sufficiently stably for numerical implementations).

Note that the Schrödinger equation (1.1) at fixed positive energy can be considered also as the acoustic equation at fixed frequency (see, for example, Section 5.2 of [HN] and Section 4 of the present article).

Therefore, Problem 1.1 is also a basic problem of the monochromatic ultrasonic tomography. Actually, the creation of effective reconstruction methods for inverse scattering in multidimensions (and especially in three dimensions) was formulated as a very important problem many times in the mathematical literature, see, for example, [Gel], [F3], [Gro]. In particular, as it is mentioned in [Gro]: "For example, an efficient inverse scattering algorithm would revolutionize medical diagnostic, making ultrasonic devices at least as efficient as current X-ray analysis". The works [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF], [START_REF] Alexeenko | Solution of three-dimensional acoustical inverse scattering problem II. Modified Novikov algorithm[END_REF] can be considered as recent steps to this ojective.

In [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] we assume that v ∈ W n,1 s (R d ) for some n ∈ N, n > d -2, and some s > 0, (1.7)

where

W n,1 s (R d ) = {u : Λ s ∂ J u ∈ L 1 (R d ) for |J| ≤ n}, (1.8a)
where

J ∈ (N ∪ 0) d , |J| = d X i=1 J i , ∂ J u(x) = ∂ |J| u(x) ∂x J 1 1 . . . ∂x J d d , Λ s w(x) = (1 + |x| 2 ) s/2 w(x), x ∈ R d . Suppose, first, that kvk n,1 s = max |J|≤n kΛ s ∂ J vk L 1 (R d ) (1.8b)
is so small for fixed n, s, d and E 0 > 0 that the following well-known Born approximation

f (k, l) ≈ v(k -l), (k, l) ∈ M E , E ≥ E 0 , (1.9)
where f is the scattering amplitude for equation (1.1) and v is the Fourier transform of v (see (1.5),(1.6)), is completely satisfactory. Then Problem 1.1 (for fixed d ≥ 2 and fixed

E ≥ E 0 ) is reduced to finding v from v on B 2 √ E , where B r = {p ∈ R d : |p| < r}, r > 0.
(1.10)

This linearized monochromatic inverse scattering problem can be solved by the formula

v(x) = v lin appr (x, E) + v lin err (x, E), v lin appr (x, E) = Z B 2 √ E e -ipx v(p)dp, v lin err (x, E) = Z R d \B 2 √ E e -ipx v(p)dp, (1.11) x ∈ R d , E ≥ E 0 . In addition, if v ∈ W n,1 0 (R d
) for some n > d and kvk n,1 0 ≤ C (where we use definitions (1.8a), (1.8b)), then

|v(p)| ≤ c 1 (n, d)C(1 + |p|) -n , p ∈ R d , (1.12a)
and, therefore,

|v lin err (x, E)| ≤ c 2 (n, d)CE -(n-d)/2 , x ∈ R d , E ≥ E 0 , (1.12b)
where c 1 (n, d), c 2 (n, d) are some positive constants. Thus, in the Born approximation (1.9) (that is in the linear approximation near zero potential) we have that:

(1) f on M E stably determines v lin appr (x, E) of (1.11) and (2) the error

v lin err (x, E) = v(x) -v lin appr (x, E) = O(E -(n-d)/2 ) in the uniform norm as E → +∞ for n-times smooth v in the sense (1.7), n > d. (In particular, v lin err = O(E -∞ ) in the uniform norm as E → +∞ for v of the Schwartz class on R d .)
For general nonlinearized case for d = 3 analogs of (1.9), (1.11), (1.12b) are given in [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] (and implemented numerically in [START_REF] Alexeenko | Solution of three-dimensional acoustical inverse scattering problem II. Modified Novikov algorithm[END_REF]). These results are presented below in Sections 2, 3 and 4. However, before this some additional remarks may be in order.

Remark 1.1. One can see that v lin appr (x, E) at fixed E > 0 is not a precise reconstruction of v, in general. On the other hand, if v satisfies (1.7) and, in addition, is compactly supported or exponentially decaying at infinity, then v on B 2 √ E uniquely determines v on R d \B 2 √ E (at fixed E > 0) by an analytic continuation and, therefore, in the Born approximation (1.9) (for d ≥ 2) f on M E (at fixed E ≥ E 0 ) uniquely determines v on R d . However, in contrast with v lin appr the latter determination is not sufficiently stable for direct numerical implementation.

Remark 1.2. The works [START_REF] Novikov | Reconstruction of a two-dimensional Schrödinger operator from the scattering amplitude at fixed energy[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF], [START_REF] Novikov | The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential[END_REF] give, in particular, uniqueness theorems and precise reconstructions for the problem of finding v on R d from f on M E (at fixed E > 0 for d ≥ 2) for the general nonlinearized case. These results are global for d ≥ 3 (and assume that v is sufficiently small in comparison with fixed E > 0 for d = 2). However, these reconstructions of [START_REF] Novikov | Reconstruction of a two-dimensional Schrödinger operator from the scattering amplitude at fixed energy[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF], [START_REF] Novikov | The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential[END_REF] are not sufficiently stable for direct numerical implementation (because of the nature of Problem 1.1 explained already for the linearized case (1.9) in Remark 1.1). Actually, any precise reconstruction of v, where v ∈ C n (R d ) and supp v ∈ B r for fixed n ∈ N and r > 0, from f on M E at fixed E > 0 is exponentially unstable (see [Mand]). In the present text (as well as in [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF], [START_REF] Novikov | Approximate inverse quantum scattering at fixed energy in dimension 2[END_REF], [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]) we do not discuss such reconstructions in detail.

Remark 1.3. In [HN] it is shown, in particular, that if Λ s v ∈ L ∞ (R d , R) for some s > d, where Λ is the weight of (1.8), and if d ≥ 2, then for any fixed E and δ, where 0 < δ < E, the scattering amplitude f on ∪ λ∈[E-δ,E+δ] M λ uniquely determines the Fourier transform v on B 2 √ E . However, unfortunately, this determination of [HN] involves an analytical continuation and, therefore, is not sufficiently stable for direct numerical implementation.

Remark 1.4. In [Ch] an efficient numerical algorithm for the reconstruction from multi-frequency scattering data was proposed in two dimensions, but [Ch] gives no rigorous mathematical theorem.

Remark 1.5. On the other hand (in comparison with results mentioned in Remarks 1.2, 1.3, 1.4) in [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF], [START_REF] Novikov | Approximate inverse quantum scattering at fixed energy in dimension 2[END_REF] we succeeded to give stable approximate solutions of nonlinearized Problem 1.1 for d = 2 and v satisfying (1.7), n > d = 2, with the same decay rate of the error terms for E → +∞ as in the linearized case (1.9), (1.11), (1.12b) (or, more precisely, with the error terms decaying as O(E -(n-2)/2 ) in the uniform norm as E → +∞). In [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF], [START_REF] Novikov | Approximate inverse quantum scattering at fixed energy in dimension 2[END_REF] we proceed from the fixed-energy inverse scattering reconstruction procedure developed in [START_REF] Novikov | Construction of a two-dimensional Schrödinger operator with a given scattering amplitude at fixed energy[END_REF], [GM], [START_REF] Novikov | Reconstruction of a two-dimensional Schrödinger operator from the scattering amplitude at fixed energy[END_REF], [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF] for d = 2. In turn, the works [START_REF] Novikov | Construction of a two-dimensional Schrödinger operator with a given scattering amplitude at fixed energy[END_REF], [GM], [START_REF] Novikov | Reconstruction of a two-dimensional Schrödinger operator from the scattering amplitude at fixed energy[END_REF], [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF] are based on some ideas and approaches of the solition theory (in particular, on some ideas and approaches going back to [M1], [DKN], [M2], [ABF], [START_REF] Novikov | Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations[END_REF], [START_REF] Novikov | Finite-zone, two-dimensional Schrödinger operators. Potential operators[END_REF]) and on some results of [F1], [F2], [F3], [GN]. The work [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF] was stimulated also by the "onedimensional" works [MNPSF] and [HeNo]. The reconstruction procedure of [START_REF] Novikov | Construction of a two-dimensional Schrödinger operator with a given scattering amplitude at fixed energy[END_REF], [GM], [START_REF] Novikov | Reconstruction of a two-dimensional Schrödinger operator from the scattering amplitude at fixed energy[END_REF], [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF] was implemented numerically in [BMRSVZ], [BBMRS], [BMR].

Reconstruction of [No8]

2.1. Preliminary presentation. In [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] for v satisfying (1.7), n > d, for general nonlinearized case for d = 3 we succeeded, in particular, to give a stable reconstruction

f on M E stable reconstruction -------------→ v ± appr (•, τ, E) on R 3 (2.1) such that v(x) -v ± appr (x, τ, E) = O(E -(n-3)/2 ln E) in the uniform form as E → +∞, x ∈ R 3 , (2.2)
where ± and τ are fixed parameters. In addition, 0 < τ < δ(s, n, C) for appropriate δ (see formula (2.8) and conditions (2.6) discussed below), where C ≥ kvk n,1 s . That is in [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] we succeded, in particular, to give a stable approximate solution of nonlinearized Problem 1.1 for d = 3 and v satisfying (1.7), n > d = 3 with the error term v(•)v ± appr (•, τ, E) decaying with almost the same rate for E → +∞ as in the linearized case (1.9), (1.11), (1.12b).

Reconstruction (2.1) (with estimate (2.2)) is based, in turn, on the following reconstruction of [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] for v satisfying (1.7), n > d = 3,

f on M E stable reconstruction -------------→ v± appr (•, τ, E) on B 2τ √ E (2.3) such that |v(p) -v± appr (p, τ, E)| = O(E -(n-µ 0 )/2 ) (1 + |p|) µ 0 , as E → +∞, p ∈ B 2τ √ E , µ 0 ∈ [2, n[, (2.4)
where v is (the Fourier transform of v) defined by (1.6), O(E -(n-µ 0 )/2 ) is independent of p, and µ 0 , ±, τ are fixed parameters. In addition,

0 < τ < δ 1 (s, n, µ 0 , C), C ≥ kvk n,1 s , (2.5)
for appropriate δ 1 , where, in particular,

0 < δ 1 < 1, (2.6a) δ 1 → 0 as C → +∞.
(2.6b)

Using (2.3)-(2.6a) one can see that in (2.
3) we even do not try to reconstruct v on R 3 \B 2 √ E . In addition, we think that condition (2.6b) is not necessary and is related mainly with technical details of our proof of [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF].

In terms of the approximate reconstruction v± appr of (2.3), (2.4) the approximate reconstruction v ± appr of (2.1), (2.2) is given by

v ± appr (x, τ, E) = Z B 2 √ E e -ipx v± appr (p, τ, E)dp, x ∈ R 3 , (2.7) 
where we use (2.3), (2.4) for µ 0 = 3. In addition,

δ(s, n, C) = δ 1 (s, n, 3, C), (2.8)
where δ was mentioned in connection with (2.1), (2.2). A stability estimate for (2.3) is given by formula (3.7) below. More detailed version of (2.4) is given by formula (3.6) below.

Note that before [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF], [START_REF] Novikov | Approximate inverse quantum scattering at fixed energy in dimension 2[END_REF] for d = 2 and [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] for d = 3, even for real v of the Schwartz class on R d , d ≥ 2, no result was given, in general, in the literature on finding v on R d from f on M E with the error term decaying more rapidly than O(E -1/2 ) in the uniform norm as E → +∞ (see related discussion given in [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF]).

Note that inverse scattering at fixed energy for the Schrödinger equation (1.1) with spherically symmetric potential v in three dimensions was studied in many works, see [R], [Ne], [CS] and references therein. Nevertheless, the results (of [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]) consisting in reconstruction (2.1)-(2.4) are new even for spherically symmetric potentials.

Note that the method of [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] is obtained as a development of the ∂-approach to inverse scattering at fixed energy in dimension d ≥ 3 of [BC] and [HN] and involves, in particular, some results of [F1], [F2], [F3] and some ideas of the "two-dimensional" works mentioned in Remark 1.5. In addition, there is an interesting similarity between [R], on one hand, and [BC], [HN], [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF], on the other hand, consisting in an essential use of the complex analysis.

Background results. Reconstruction (2.3) is based on properties of the Faddeev function H(k, p),

where k ∈ C 3 \R 3 , p ∈ R 3 . For definitions of H see [F3], [HN]. Given v, to determine H one can use, in particular, the following integral equation

H(k, p) = v(p) - Z R 3 v(p + ξ)H(k, -ξ)dξ ξ 2 + 2kξ , k ∈ C 3 \R 3 , p ∈ R 3 , (2.9)
where v is (the Fourier transform of v) defined by (1.6). Actually, (2.9) is an equation for

H(k, •) on R 3 for each fixed k ∈ C 3 \R 3 . Reconstruction (2.3) is based, in particular, on properties of H on Ω E \Re Ω E ,
where

Ω E = {k ∈ C 3 , p ∈ R 3 : p 2 = 2kp, k 2 = E},
Re

Ω E = {k ∈ R 3 , p ∈ R 3 : p 2 = 2kp, k 2 = E}, (2.10)
and on properties of

H γ (k, p) = H(k + i0γ, p), (k, p) ∈ Re Ω E , γ ∈ S 2 ; ( 2 .11)
see formulas (2.20)-(2.29) given below.

To deal with f and H of (1.5) and (2.9) (in the framework of the aforementioned results) we consider, in particular, the functional spaces

C α,µ (R 3 ), H α,µ (R 3 ), C α (M E ): C α,µ (R 3 ) = {u ∈ C(R 3 ) : kuk α,µ < +∞}, α ∈]0, 1[, µ ∈ R, (2.12) 
where kuk α,µ = kΛ µ uk α , (2.13a)

Λ µ u(p) = (1 + |p| 2 ) µ/2 u(p), p ∈ R 3 , (2.13b) kwk α = sup p,ξ∈R 3 , |ξ|≤1 (|w(p)| + |ξ| -α |w(p + ξ) -w(p)|); (2.13c) H α,µ is the closure of C ∞ 0 (R 3 ) in k • k α,µ , α ∈]0, 1[, µ ∈ R, (2.14) 
where C ∞ 0 (R 3 ) is the space of infinitely smooth functions on R 3 with compact support;

C α (M E ) = {u ∈ C(M E ) : kuk C α (M E ),0 < +∞}, α ∈ [0, 1[, E > 0, (2.15) where kuk C 0 (M E ),µ = kuk C(M E ),µ = sup (k,l)∈M E (1 + |k -l| 2 ) µ/2 |u(k, l)|, µ ≥ 0, (2.16a) kuk C α (M E ),µ = max(kuk C(M E ),µ , kuk 0 C α (M E ),µ ), kuk 0 C α (M E ),µ = sup (k,l),(k 0 ,l 0 )∈M E |k-k 0 |≤1,|l-l 0 |≤1 (1 + |k -l| 2 ) µ/2 (|k -k 0 | α + |l -l 0 | α ) -1 × |u(k, l) -u(k 0 , l 0 )| for α ∈]0, 1[, µ ≥ 0. (2.16b) We use that if v satisfies (1.7), d = 3, then v ∈ H α,n (R 3 ) for α ∈ ½ ]0, s] for s < 1 ]0, 1[ for s ≥ 1 , kvk α,n ≤ Const 0 (s, α, n)kvk n,1 s ,
(2.17

)
where v is the Fourier transform of v. Further, for obtaining (2.3), (2.4) we use, in particular, that if v ∈ H α,n (R 3 ) for some α ∈]0, 1[ and some real µ > 1 ( 2 .18)

and

kvk α,µ ≤ D < E σ/2 Const 1 (α, µ, σ) for some σ ∈]0, min (1, µ -1)[ and some E ≥ 1, (2.19)
then (see [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]):

I. For k 2 = E equations (1.5) for f and (2.9) for H are uniquely solvable in C α,µ (R 3 ) for each fixed k (considered as mentioned in these equations).

II. The function H γ of (2.11) at fixed E is well-defined and is related with the scattering amplitude f on M E by the following equation (of [F2], [F3])

h γ (k, l) = f (k, l) + πi √ E Z S 2 √ E h γ (k, m)χ((m -k)γ)f (m, l)dm, (k, l) ∈ M E , γ ∈ S 2 = S 2 1 ,
(2.20)

where

S 2 r = {m ∈ R 3 : |m| = r}, r > 0, (2.21) χ(s) = 0 for s ≤ 0, χ(s) = 1 for s > 0, (2.22)
and by the formula

H γ (k, p) = h γ (k, k -p), (k, p) ∈ Re Ω E , γ ∈ S 2 = S 2 1 , (2.23) where (k, p) ∈ Re Ω E ⇐⇒ (k, k -p) ∈ M E .
(2.24)

III. The following ∂-equation (of [BC], [HN]) holds:

∂kH(k, p) = -2π Z R 3 ( 3 X j=1 ξ j d kj )H(k, -ξ)H(K + ξ, p + ξ)× δ(ξ 2 + 2kξ)dξ for H on Ω E \Re Ω E , (2.25)
where δ is the Dirac function: Z

R 3 u(ξ)δ(ξ 2 + 2kξ)dξ = Z {ξ∈R 3 : ξ 2 +2kξ=0} u(ξ) |J(k, ξ)| |dξ 3 |, (2.26) where J(k, ξ) = 4[(ξ 1 + Re k 1 )Im k 2 -(ξ 2 + Re k 2 )Im k 1 ]
is the Jacobian of the map (ξ 1 , ξ 2 , ξ 3 ) → (ξ 2 + 2Re kξ, 2Im kξ, ξ 3 ) and u is a test function. In addition,

(k, p) ∈ Ω E =⇒ (k, -ξ) ∈ Ω E , (k + ξ, p + ξ) ∈ Ω E if ξ ∈ R 3 , ξ 2 + 2kξ = 0.
(2.27)

IV. The following formula (of [HN]) holds:

v(p) = lim (k,p)∈Ω E ,|k|→∞ H(k, p) for each p ∈ R 3 , (2.28)
where |k| = (|Re k| 2 + |Im k| 2 ) 1/2 . V. The following estimates hold:

|H(k, p)| ≤ D (1 -E -σ/2 Const 1 (α, µ, σ)D)(1 + |p| 2 ) µ/2 , (k, p) ∈ Ω E \Re Ω E , (2.29) kf k C(M E ),µ ≤ D 1 -E -σ/2 Const 1 (α, µ, σ)D , (2.30a) kf k C α (M E ),µ ≤ Const 2 D 1 -E -σ/2 Const 1 (α, µ, σ)D , (2.30b) 
where D and Const 1 are the constants of (2.18), see [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] (and [ER] in connection with (2.30)).

2.3. Reconstruction scheme. Reconstruction (2.3) is based on properties (2.11), (2.20), (2.23), (2.25), (2.28), (2.29), (2.30) of the functions H and f and consists of the following parts:

f on M E (2.20),(2.23),(2.30) ----------→ H γ (k, p), (k, p) ∈ Re Ω E , γ ∈ S 2 , γk = 0, ------→ H ± (k, p) = H γ ± (k,p) (k, p), γ ± (k, p) = ±p × (k -p/2) |p||k -p/2| , (k, p) ∈ Re Ω E , |p| 6 = 0, (2.31a)
where × denotes vector product;

H + and H -on Re Ω τ E (2.11),(2.25),(2.29) ----------→ H appr E,τ on Ω τ E \Re Ω τ E , Ω τ E = {(k, p) ∈ Ω E : p ∈ B 2τ √ E }, Re Ω τ E = {(k, p) ∈ Re Ω E : p ∈ B 2τ √ E }, (2.31b)
where τ is the parameter of (2. (2.32) where χ r denotes the multiplication operator by the function

∂kχ 2τ √ E H(k, p) = -2π Z R 3 ( 3 X j=1 ξ j d kj )χ 2τ √ E H(k, -ξ)χ 2τ √ E H(k + ξ, p + ξ)× δ(ξ 2 + 2kξ)dξ + R E,τ (k, p) for χ 2τ √ E H on Ω τ E \Re Ω τ E , τ ∈]0, 1[,
χ r (p) = 1 for |p| < r, χ r (p) = 0 for |p| ≥ r,
where p ∈ R 3 , r > 0, and, as a corollary,

χ 2τ √ E H = H on Ω τ E \Re Ω τ E , χ 2τ √ E H ≡ 0 on (Ω E \Re Ω E )\Ω τ E ,
(2.33) R E,τ is a remainder which can be written explicitly (see [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]). Proceeding from (2.32), the definition of H ± of (2.11), (2.31a) and estimate (2.29), we obtain for

H E,τ = H ¯Ωτ E \Re Ω τ E
a nonlinear integral equation of the form (see [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]): (2.34) where H 0 E,τ is expressed explicitly in terms of H ± , M E,τ is a nonlinear integral operator and Q E,τ is a remainder expressed in terms of R E,τ and admitting an estimate using (2.29). Proceeding from (2.34) we define H appr E,τ of (2.31b) by the nonlinear integral equation 

H E,τ = H 0 E,τ + M E,τ (H E,τ ) + Q E,τ , τ ∈]0, 1[,
H appr E,τ = H 0 E,τ + M E,τ (H appr E,τ ), τ ∈]0, 1[. ( 2 
(k, p) ∈ Ω E ⇐⇒ k ∈ Σ (3) E,p = {k ∈ C 3 : k 2 = E, p 2 = 2kp}
(2.36)

for fixed E > 0 and p ∈ R 3 . In addition,

Σ

(3)

E,p ≈ Σ (2) E-p 2 /4 , Σ (2) 
E = {k ∈ C 2 : k 2 = E}, for 0 < |p| < 2 √ E.
(2.37)

It is interesting to note that the inverse scattering theory at fixed energy E > 0 in dimension d = 2 mentioned in Remark 1.5 of Introduction is, actually, based on some complex analysis on Σ

(2)

E .
In particular, it is very much used in these 2D considerations that the following formulas

λ = k 1 + ik 2 E 1/2 , k 1 = ¡ λ + 1 λ ¢ , k 2 = ¡ 1 λ -λ ¢ iE 1/2 2 (2.38)
give a diffeomorphism between Σ

(2)

E , E > 0, and C\0 (with the variable λ). Proceeding from these observations we introduce some convenient coordinates on Ω τ E , E > 0, τ ∈]0, 1], as follows [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]).

Let (2.40)

L ν = {p ∈ R 3 : p = tν, t ∈ R}, (2.39a) B r,ν = {p ∈ B r : p 6 ∈ L ν }, (2.39b) Ω τ E,ν = {(k, p) ∈ Ω τ E,ν : p 6 ∈ L ν }, ReΩ τ E,ν = {(k, p) ∈ Re Ω τ E,ν : p 6 ∈ L ν }, (2.39c) where ν ∈ S 2 , r > 0, E > 0, τ ∈]0, 1]. For p ∈ R 3 \L ν we consider θ(p)
Conditions (2.40) imply that ω(p) = p × θ(p) |p| for p ∈ R 3 \L ν (2.41a) or ω(p) = - p × θ(p) |p| for p ∈ R 3 \L ν , (2.41b) 
where × denotes vector product. To satisfy (2.40), (2.41a) one can take

θ(p) = ν × p |ν × p| , ω(p) = p × θ(p) |p| , p ∈ R 3 \L ν . (2.42) Let E > 0, τ ∈]0, 1], ν ∈ S 2
and the functions θ and ω of (2.40), (2.41a) be fixed. Then ( [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]) the following formulas give a diffeomorphism between Ω τ E,ν and (C\0) (2.45)

× B 2τ √ E,ν : (k, p) → (λ, p), where λ = λ(k, p) = k(θ(p) + iω(p)) (E -p 2 /4) 1/2 , (2.43) (λ, p) → (k, p), where k = k(λ, p, E) = κ 1 (λ, p, E)θ(p) + κ 2 (λ, p, E)ω(p) + p/2, κ 1 (λ, p, E) = ¡ λ + 1 λ ¢ (E -p 2 /4) 1/2 2 , κ 2 (λ, p, E) = ¡ 1 λ -λ ¢ i(E -p 2 /4) 1/2 2 , (2.44) where (k, p) ∈ Ω τ E,ν , (λ, p) ∈ (C\0) × B 2τ √ E,ν ; in
We consider λ, p of (2.43), (2.44) as coordinates on Ω τ E,ν and on Ω τ E , E > 0, τ ∈]0, 1]. One can see a considerable similarity between formulas (2.43), (2.44) and formulas (2.38).

In the coordinates λ, p the restriction

H E,τ = H ¯Ωτ E \Re Ω τ E
can be written as

H E,τ = H(λ, p, E) = H(k(λ, p, E), p), λ ∈ C\(T ∪ 0), p ∈ B 2τ √ E,ν , (2.46a) 
and H ± of (2.31a) can be written as

H ± (λ, p, E) = H ± (k(λ, p, E), p), λ ∈ T , p ∈ B 2τ √ E,ν . (2.46b) 
In addition, (a) the following limit relation is valid:

H ± (λ, p, E) = H(λ(1 ∓ 0), p, E), λ ∈ T , p ∈ B 2τ √ E,ν ; ( 2 .47) (b) the ∂-equation (2.32) takes the form ∂ ∂ λ H(λ, p, E) = (H, H) E,τ (λ, p) + R E,τ (λ, p), λ ∈ C\(T ∪ 0), p ∈ B 2τ √ E,ν , (2.48) 
where (H, H) is defined by (2.51) and R E,τ (λ, p) = R E,τ (k(λ, p, E), p); (c) the following formulas for H 0 E,τ and M E,τ of (2.35) hold:

H 0 E,τ (λ, p) = 1 2πi Z T H + (ζ, p, E) dζ ζ -λ , λ ∈ D + , p ∈ B 2τ √ E,ν , H 0 E,τ (λ, p) = - 1 2πi Z T H -(ζ, p, E) λdζ ζ(ζ -λ) , λ ∈ D -, p ∈ B 2τ √ E,ν , (2.49) M E,τ (U )(λ, p) = M + E,τ (U)(λ, p) = - 1 π Z Z D + (U, U) E,τ (ζ, p) dRe ζdIm ζ ζ -λ , λ ∈ D + , p ∈ B 2τ √ E,ν , (2.50a 
)

M E,τ (U )(λ, p) = M - E,τ (U)(λ, p) = - 1 π Z Z D - (U, U ) E,τ (ζ, p) λdRe ζdIm ζ ζ(ζ -λ) , λ ∈ D -, p ∈ B 2τ √ E,ν , (2.50b) (U 1 , U 2 ) E,τ (λ, p) = - π 4 π Z -π µ (E -p 2 /4) 1/2 sgn(|λ| 2 -1)(|λ| 2 + 1) λ|λ| (cos ϕ -1) -|p| 1 λ sin ϕ ¶ × U 1 (z 1 (λ, p, E, ϕ), -ξ(λ, p, E, ϕ))U 2 (z 2 (λ, p, E, ϕ), p + ξ(λ, p, E, ϕ))× χ 2τ √ E (ξ(λ, p, E, ϕ))χ 2τ √ E (p + ξ(λ, p, E, ϕ))dϕ, λ ∈ D + ∪ D -, p ∈ B 2τ √ E,ν , (2.51) 
where where k(λ, p, E) is defined by (2.44) and θ, ω are the functions of (2.40), (2.41a). Note also that in the coordinates λ, p formula (2.31c) takes the form

D + = {λ ∈ C : 0 < |λ| < 1}, D -= {λ ∈ C : |λ| > 1} (2.52) U 1 , U 2 , U 3 are test functions on (D + ∪ D -) × B 2τ √ E,ν , z 1 (λ, p, E, ϕ) = k(λ, p, E)(θ(-ξ(λ, p, E, ϕ)) + iω(-ξ(λ, p, E, ϕ))) (E -|ξ(λ, p, E, ϕ)| 2 /4) 1/2 , z 2 (λ, p, E, ϕ) = (k(λ, p, E) + ξ(λ, p, E, ϕ))(θ(p + ξ(λ, p, E, ϕ)) + iω(p + ξ(λ, p, E, ϕ))) (E -|p + ξ(λ, p, E, ϕ)| 2 /4) 1/2 , ( 2 
v+ appr (p, τ, E) = lim λ→0 H appr E,τ (λ, p), λ ∈ D + , p ∈ B 2τ √ E,ν , v- appr (p, τ, E) = lim λ→∞ H appr E,τ (λ, p), λ ∈ D -, p ∈ B 2τ √ E,ν .
(2.55)

This completes a formal description (without estimates) of equations and formulas involved in (2.3), (2.31).

Error and stability estimates of [No8]

Note that it is more convenient (for estimates) to consider (2.3), (2.31) under condition (2.18), µ ≥ 2, than under our initial condition (1.7), n > d = 3. We have, in particular, the following results of [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF].

Let v satisfy (2.18), where µ ≥ 2 and kvk α,µ ≤ D for some D > 0. Let f be the scattering amplitude for equation (1.1). Let

0 < τ < τ 1 (α, β, µ, µ 0 , σ, D), E ≥ E 1 (α, β, µ, µ 0 , σ, D, g 1 , g 2 ) ( 3 .1)
for some special τ 1 and E 1 (which can be given explicitly, see [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]), where β, µ, µ 0 , σ, D, g 1 , g 2 are some additional fixed numbers such that

2 ≤ µ 0 ≤ µ, 0 < σ < 1, 0 < β < min(α, σ, 1/2), g 1 > 1, g 2 > Const 2 (µ), g 2 > g 1 . (3.2)
In addition, in particular,

E 1 → +∞ as D → +∞, 0 < τ 1 < 1 and (in the framework of [No8]) τ 1 → 0, as D → +∞. (3.3)
Let also λ, p be the coordinates of (2.43), (2.44). Then ( [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]): I. The following estimates hold: 

kf k C(M E ),µ < g 1 D, kf k C α (M E ),µ < g 2 D, (3.4) |H 0 E,τ (λ, p)| ≤ R(α, β, µ, σ, D, E, |p|) def = µ 2 µ/2 D + Const 3 (α, β, µ, σ)D 2 E β/2 ¶ 1 (1 + |p|) µ , λ ∈ D + ∪ D -, p ∈ B 2τ √ E,ν , (3.5 
(p, τ, E)| ≤ Const 4 (µ, µ 0 , τ)D 2 (1 + |p|) µ 0 (1 + 2τ √ E) µ-µ 0 , p ∈ B 2τ √ E,ν . (3.6)
III. In addition, if f is an approximation to f , where estimates (3.4) are valid also for f in place of f , then by means of (2.31), (2.35) f on M E determines ṽ± appr on B 2τ √ E and the following estimate holds: 

|v ± appr (p, τ, E) - ṽ± appr (p, τ, E)| ≤ Const 5 (1 + ln E)kf -f k C(M E ),µ (1 + |p|) µ 0 + Const 6 (εβ)× (Const 7,1 (µ)g 2 D + Const 7,2 (β, µ)(g 1 D) 2 E -β/2 )(kf -f k C(M E ),µ ) 1-ε (1 + |p|) µ 0 , p ∈ B 2τ √ E,ν , ε ∈]0, 1[. ( 3 
E (λ, p) = W E (|p|) ¡ H 0 E (λ, p) + M E ( Hj-1 E )(λ, p) ¢ , Hj=0 E (λ, p) = W E (|p|)H 0 E (λ, p), Hj E = (1 -ε) Hj-1 E + ε Hj E , 0 < ε ≤ 1, (4.4)
where ε is a relaxation parameter and W E (|p|) is a sufficiently regular filter such that W E (r) = 1 for 0 ≤ r ≤ 2τ 0 √ E, W E (r) = 0 for r ≥ 2τ 1 √ E for some τ 0 and τ 1 , 0 < τ 0 < τ 1 ≤ 1. In addition, the numerical implementation of [START_REF] Alexeenko | Solution of three-dimensional acoustical inverse scattering problem II. Modified Novikov algorithm[END_REF] is reduced to the algorithm of [START_REF] Alexeenko | Solution of three-dimensional acoustical inverse scattering problem based on Novikov-Henkin algorithm[END_REF] if (2.35) is "solved" by the zero approximation:

H appr E,1 ≈ H 0 E,1 . (4.5) 
Note that sufficiently strong scatterers are successfully reconstructed in [START_REF] Alexeenko | Solution of three-dimensional acoustical inverse scattering problem II. Modified Novikov algorithm[END_REF] by the method of [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] in the framework of numerical simulations for the acoustic equation (4.1). We emphasize that the Born approximation method does not give already a satisfactory reconstruction result for these scatterers. In [START_REF] Alexeenko | Solution of three-dimensional acoustical inverse scattering problem II. Modified Novikov algorithm[END_REF] it is also numerically shown that the method of [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] is considerably more precise than its approximate version solving (2.35) by the zero approximation and actually used in [START_REF] Alexeenko | Solution of three-dimensional acoustical inverse scattering problem based on Novikov-Henkin algorithm[END_REF].

Note that in the numerical simulations on [START_REF] Alexeenko | Solution of three-dimensional acoustical inverse scattering problem II. Modified Novikov algorithm[END_REF] is is assumed that c and α of (4.1) are spherically symmetric functions of x. However, this condition is used in [START_REF] Alexeenko | Solution of three-dimensional acoustical inverse scattering problem II. Modified Novikov algorithm[END_REF] for reducing the volume of numerical operations only and is not an assumption of the method.

Note that some of results of [START_REF] Alexeenko | Solution of three-dimensional acoustical inverse scattering problem II. Modified Novikov algorithm[END_REF] are presented already in [START_REF] Alexeenko | Solution of three-dimensional inverse scattering problem by the modified Novikov algorithm[END_REF].

Open problem for the acoustic case

Note that the potential v = v(x, ω) of (4.3) depends on the frequecy ω in constrast with the energy independent potential v = v(x) of the Schrödinger equation (1.1).

For the acoustic equation (4.1) under condition (4.2) and even with α ≡ 0 on the whole space (in dimension d ≥ 2), analogs of (2.2), (2.4) are not obtained yet, in general, in the framework of (approximate but) sufficiently stable monochromatic inverse scattering (by methods of [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF]- [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] or by other methods). This is an important open problem for the acoustic case. In this connection, in addition to results of [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF]- [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] and [BBMRS], [BMR], [START_REF] Alexeenko | Solution of three-dimensional acoustical inverse scattering problem II. Modified Novikov algorithm[END_REF], we would like to mention also that:

In the particular case of the 3-dimensional acoustic equation in a half-space with horizontally-homogeneous velocity c (and zero absorption α) a stable monochromatic inverse scattering method with the error estimate (for ω → +∞) of the type (2.2) was developed in [MNPSF], [HeNo].

An interesting stability analysis for monochromatic acoustical inverse scattering with a decreasing error term as ω → +∞ is developed in [P] for d = 2.

  and ω(p) such that θ(p), ω(p) smoothly depend on p ∈ R 3 \L ν take their values in S 2 and θ(p)p = 0, ω(p)p = 0, θ(p)ω(p) = 0.

  addition, formulas (2.43), (2.44) give also diffeomorphisms between Re Ω τ E,ν and T × B 2τ √ E,ν and between Ω τ E,ν \Re Ω τ E,ν and (C\(0 ∪ T )) × B 2τ √ E,ν , where T = {λ ∈ C : |λ| = 1}.

  .53) ξ(λ, p, E, ϕ) = Re k(λ, p, E)(cos ϕ -1) + k ⊥ (λ, p, E) sin ϕ, k ⊥ (λ, p, E, ϕ) = Im k(λ, p, E) × Re k(λ, p, E) |Im k(λ, p, E)| , (2.54) 

  -are the boundary values of H in the limits on Re Ω τ

	E from Ω τ E \Re Ω τ E (see E,τ is found from equation (2.35) (2.11), (2.31a)) and estimate (2.29), more precisely, H appr
	discussed below;			
	v± appr (p, τ, E) Ω τ,± E = {(k, p) ∈ Ω τ (2.28) = (k,p)∈Ω τ,± lim E ,|k|→∞ E : Im k |Im k| = ±	H appr E,τ (k, p) for almost each p ∈ B 2τ |p × Re k| , Im k 6 = 0, p 6 = 0}, p × Re k	√ E ,	(2.31c)
	see also (2.55).			
	To present (2.31b) in more detail we emphasize that (2.25) is only an approximate
	∂-equation for H on Ω τ E \Re Ω τ E , τ ∈]0, 1[:		

3), H appr E,τ is an approximation to H on Ω τ E \Re Ω τ E , H appr E,τ is found using (2.25) (as an appropriate ∂equation for H on Ω τ E \Re Ω τ E ), the property that H + and H

  appr E,τ from H 0 E,τ via (2.35). One can see that (2.20) is a (standard) linear Fredholm integral equation of the second type, whereas (2.35) is a nonlinear integral equation. In [ABR3] equation (2.35) is solved for τ = 1 by iterations organized as follows:

	Hj
	.7)
	More precisely, (2.50), (2.55) with f , Hγ , H± , H0 ṽ± appr on B 2τ √ E is determined from f on M E via (2.31), (2.35), (2.49), E,τ , Happr E,τ , ṽ±

appr in place of f , H γ , H ± , H 0 E,τ , H appr E,τ ,

and finding H

v±

appr , where H0 E,τ arising in (2.49) is corrected also as follows: R(α, β, µ, σ, D, E, |p|),

where R is radius of (3.5).

In connection with (3.5), (3.8) note also that if f = f (that is the scattering amplitude is given with no errors) and H0 E,τ is calculated from f with no errors, then H0

and (due to (3.5)) correction (3.8) is not necessary. However, if some of these errors are present, then (3.8) seems to be necessary, in general, for solvability of (2.35) by iterations and for validity of (3.7).

The remark that (2.17) follows from (1.7), d = 3, and estimates (3.6), (3.7) imply the estimates of (2.3), (2.4).

Results of [ABR3]

The monochromatic inverse scattering method of [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] was implemented for the first time numerically in [START_REF] Alexeenko | Solution of three-dimensional inverse scattering problem by the modified Novikov algorithm[END_REF], [START_REF] Alexeenko | Solution of three-dimensional acoustical inverse scattering problem II. Modified Novikov algorithm[END_REF] for the case of the inverse scattering problem for the acoustic equation

with velocity of sound c(x), amplitude absorption coefficient α(x, ω), at fixed frequency ω, under the assumption that

The possibility of applications of the method of [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] (as well as of any method for solving Problem 1.1 for equation (1.1) under assumption (1.2)) to the inverse scattering problem for equation (4.1) under assumptions (4.2) (with known background c 0 ) is based on the fact that (4.1) can be written in the form (1.1), where

and that, as a corollary of (4.2), v = v(x, ω) ≡ 0 for |x| ≥ r.

(4.3b)

The main (or, at least, the most difficult for numerical implementation) points of monochromatic inverse scattering method of [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] consists in finding h γ from f via (2.20)