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Abstract
We discuss a method for monochromatic inverse scattering in three dimensions of

[R.Novikov 2005] and implemented numerically in [Alekseenko, Burov, Rumyantseva 2007].
This method is obtained as a development of the ∂̄-approach to inverse scattering at fixed
energy in dimension d ≥ 3 of [Beals, Coifman 1985] and [Henkin, R.Novikov 1987] and
involves, in particular, some results of [Faddeev 1965, 1974] and some ideas of the soliton
theory (in particular, some ideas going back to [Manakov 1976] and [Dubrovin, Krichever,
S.Novikov 1976]). Our studies go back also, in particular, to [Regge 1959].

1. Introduction
Consider the Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 2, E > 0, (1.1)

where
v is a sufficiently regular function on Rd

with sufficient decay at infinity.
(1.2)

For equation (1.1) we consider the scattering amplitude f(k, l), where (k, l) ∈ME ,

ME = {k, l ∈ Rd : k2 = l2 = E}, E > 0. (1.3)

For definitions of the scattering amplitude see formula (1.4) below and, for example, [F3],
[FM]. The scattering amplitude f arises, in particular, as a coefficient with scattered spher-
ical wave ei|k||x|/|x|(d−1)/2 in the asymptotics of the wave solutions ψ+(x, k) describing
scattering of incident plan waves eikx for equation (1.1):

ψ+(x, k) = eikx + c(d, |k|) ei|k||x|

|x|(d−1)/2 f
¡
k, |k| x|x|

¢
+

o
¡ 1

|x|(d−1)/2
¢
as |x|→ +∞,

(1.4)

where k ∈ Rd, k2 = E, c(d, |k|) = −πi(−2πi)(d−1)/2|k|(d−3)/2.
Given v, to determine f one can use, in particular, the following integral equation

f(k, l) = v̂(k − l)−
Z
Rd

v̂(m− l)f(k,m)dm

m2 − k2 − i0
, (1.5)
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where

v̂(p) =
¡ 1
2π

¢d Z
Rd

eipxv(x)dx, p ∈ Rd. (1.6)

In addition, (1.5) is an equation for f(k, ·) on Rd for each fixed k ∈ Rd, k2 = E, and the
scattering amplitude arises as the restriction f

¯̄
ME

.
We consider the following monochromatic inverse scattering problem for equation

(1.1):
Problem 1.1 Given f onME at fixed E > 0, find v on Rd (at least approximately,

but sufficiently stably for numerical implementations).
Note that the Schrödinger equation (1.1) at fixed positive energy can be considered

also as the acoustic equation at fixed frequency (see, for example, Section 5.2 of [HN] and
Section 4 of the present article).

Therefore, Problem 1.1 is also a basic problem of the monochromatic ultrasonic to-
mography. Actually, the creation of effective reconstruction methods for inverse scattering
in multidimensions (and especially in three dimensions) was formulated as a very impor-
tant problem many times in the mathematical literature, see, for example, [Gel], [F3],
[Gro]. In particular, as it is mentioned in [Gro]: ”For example, an efficient inverse scatter-
ing algorithm would revolutionize medical diagnostic, making ultrasonic devices at least as
efficient as current X-ray analysis”. The works [No8], [ABR3] can be considered as recent
steps to this ojective.

In [No8] we assume that

v ∈Wn,1
s (Rd) for some n ∈ N, n > d− 2, and some s > 0, (1.7)

where
Wn,1

s (Rd) = {u : Λs∂Ju ∈ L1(Rd) for |J | ≤ n}, (1.8a)

where

J ∈ (N ∪ 0)d, |J | =
dX
i=1

Ji, ∂Ju(x) =
∂|J|u(x)

∂xJ11 . . . ∂x
Jd
d

,

Λsw(x) = (1 + |x|2)s/2w(x), x ∈ Rd.
Suppose, first, that

kvkn,1s = max
|J|≤n

kΛs∂Jvk
L1(Rd

)
(1.8b)

is so small for fixed n, s, d and E0 > 0 that the following well-known Born approximation

f(k, l) ≈ v̂(k − l), (k, l) ∈ME , E ≥ E0, (1.9)

where f is the scattering amplitude for equation (1.1) and v̂ is the Fourier transform of v
(see (1.5),(1.6)), is completely satisfactory. Then Problem 1.1 (for fixed d ≥ 2 and fixed
E ≥ E0) is reduced to finding v from v̂ on B2√E , where

Br = {p ∈ Rd : |p| < r}, r > 0. (1.10)
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The ∂̄-approach to monochromatic inverse scattering

This linearized monochromatic inverse scattering problem can be solved by the formula

v(x) = vlinappr(x,E) + vlinerr(x,E),

vlinappr(x,E) =

Z
B2√E

e−ipxv̂(p)dp, vlinerr(x,E) =

Z
Rd\B2√E

e−ipxv̂(p)dp, (1.11)

x ∈ Rd, E ≥ E0. In addition, if v ∈ Wn,1
0 (Rd) for some n > d and kvkn,10 ≤ C (where we

use definitions (1.8a), (1.8b)), then

|v̂(p)| ≤ c1(n, d)C(1 + |p|)−n, p ∈ Rd, (1.12a)

and, therefore,

|vlinerr(x,E)| ≤ c2(n, d)CE
−(n−d)/2, x ∈ Rd, E ≥ E0, (1.12b)

where c1(n, d), c2(n, d) are some positive constants.
Thus, in the Born approximation (1.9) (that is in the linear approximation near zero

potential) we have that:
(1) f onME stably determines v

lin
appr(x,E) of (1.11) and

(2) the error vlinerr(x,E) = v(x)− vlinappr(x,E) = O(E−(n−d)/2) in the uniform norm as

E → +∞ for n-times smooth v in the sense (1.7), n > d. (In particular, vlinerr = O(E−∞)
in the uniform norm as E → +∞ for v of the Schwartz class on Rd.)

For general nonlinearized case for d = 3 analogs of (1.9), (1.11), (1.12b) are given
in [No8] (and implemented numerically in [ABR3]). These results are presented below in
Sections 2, 3 and 4. However, before this some additional remarks may be in order.

Remark 1.1. One can see that vlinappr(x,E) at fixed E > 0 is not a precise reconstruction
of v, in general. On the other hand, if v satisfies (1.7) and, in addition, is compactly
supported or exponentially decaying at infinity, then v̂ on B2√E uniquely determines v̂

on Rd\B2√E (at fixed E > 0) by an analytic continuation and, therefore, in the Born

approximation (1.9) (for d ≥ 2) f onME (at fixed E ≥ E0) uniquely determines v on Rd.
However, in contrast with vlinappr the latter determination is not sufficiently stable for direct
numerical implementation.

Remark 1.2. The works [No2], [No3], [No4], [No5] give, in particular, uniqueness
theorems and precise reconstructions for the problem of finding v on Rd from f on ME

(at fixed E > 0 for d ≥ 2) for the general nonlinearized case. These results are global for
d ≥ 3 (and assume that v is sufficiently small in comparison with fixed E > 0 for d = 2).
However, these reconstructions of [No2], [No3], [No4], [No5] are not sufficiently stable for
direct numerical implementation (because of the nature of Problem 1.1 explained already
for the linearized case (1.9) in Remark 1.1). Actually, any precise reconstruction of v,
where v ∈ Cn(Rd) and supp v ∈ Br for fixed n ∈ N and r > 0, from f on ME at fixed
E > 0 is exponentially unstable (see [Mand]). In the present text (as well as in [No6],
[No7], [No8]) we do not discuss such reconstructions in detail.
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Remark 1.3. In [HN] it is shown, in particular, that if Λsv ∈ L∞(Rd,R) for some
s > d, where Λ is the weight of (1.8), and if d ≥ 2, then for any fixed E and δ, where
0 < δ < E, the scattering amplitude f on ∪λ∈[E−δ,E+δ] Mλ uniquely determines the
Fourier transform v̂ on B2√E . However, unfortunately, this determination of [HN] involves
an analytical continuation and, therefore, is not sufficiently stable for direct numerical
implementation.

Remark 1.4. In [Ch] an efficient numerical algorithm for the reconstruction from
multi-frequency scattering data was proposed in two dimensions, but [Ch] gives no rigorous
mathematical theorem.

Remark 1.5. On the other hand (in comparison with results mentioned in Remarks 1.2,
1.3, 1.4) in [No6], [No7] we succeeded to give stable approximate solutions of nonlinearized
Problem 1.1 for d = 2 and v satisfying (1.7), n > d = 2, with the same decay rate of the
error terms for E → +∞ as in the linearized case (1.9), (1.11), (1.12b) (or, more precisely,
with the error terms decaying as O(E−(n−2)/2) in the uniform norm as E → +∞). In
[No6], [No7] we proceed from the fixed-energy inverse scattering reconstruction procedure
developed in [No1], [GM], [No2], [No4] for d = 2. In turn, the works [No1], [GM], [No2],
[No4] are based on some ideas and approaches of the solition theory (in particular, on
some ideas and approaches going back to [M1], [DKN], [M2], [ABF], [NV1], [NV2]) and
on some results of [F1], [F2], [F3], [GN]. The work [No6] was stimulated also by the ”one-
dimensional” works [MNPSF] and [HeNo]. The reconstruction procedure of [No1], [GM],
[No2], [No4] was implemented numerically in [BMRSVZ], [BBMRS], [BMR].

2. Reconstruction of [No8]

2.1. Preliminary presentation. In [No8] for v satisfying (1.7), n > d, for general
nonlinearized case for d = 3 we succeeded, in particular, to give a stable reconstruction

f on ME

stable reconstruction
−−−−−−−−−−−−−→ v±appr(·, τ, E) on R3 (2.1)

such that

v(x)− v±appr(x, τ,E) = O(E−(n−3)/2 ln E)

in the uniform form as E → +∞, x ∈ R3,
(2.2)

where ± and τ are fixed parameters. In addition, 0 < τ < δ(s, n,C) for appropriate δ (see
formula (2.8) and conditions (2.6) discussed below), where C ≥ kvkn,1s . That is in [No8]
we succeded, in particular, to give a stable approximate solution of nonlinearized Problem
1.1 for d = 3 and v satisfying (1.7), n > d = 3 with the error term v(·) − v±appr(·, τ, E)
decaying with almost the same rate for E → +∞ as in the linearized case (1.9), (1.11),
(1.12b).

Reconstruction (2.1) (with estimate (2.2)) is based, in turn, on the following recon-
struction of [No8] for v satisfying (1.7), n > d = 3,

f on ME

stable reconstruction
−−−−−−−−−−−−−→ v̂±appr(·, τ, E) on B2τ√E (2.3)
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such that

|v̂(p)− v̂±appr(p, τ,E)| =
O(E−(n−µ0)/2)

(1 + |p|)µ0 , as E → +∞, p ∈ B2τ√E, µ0 ∈ [2, n[, (2.4)

where v̂ is (the Fourier transform of v) defined by (1.6), O(E−(n−µ0)/2) is independent of
p, and µ0, ±, τ are fixed parameters. In addition,

0 < τ < δ1(s, n, µ0, C), C ≥ kvkn,1s , (2.5)

for appropriate δ1, where, in particular,

0 < δ1 < 1, (2.6a)

δ1 → 0 as C → +∞. (2.6b)

Using (2.3)-(2.6a) one can see that in (2.3) we even do not try to reconstruct v̂ on R3\B2√E .
In addition, we think that condition (2.6b) is not necessary and is related mainly with
technical details of our proof of [No8].

In terms of the approximate reconstruction v̂±appr of (2.3), (2.4) the approximate re-
construction v±appr of (2.1), (2.2) is given by

v±appr(x, τ, E) =

Z
B2√E

e−ipxv̂±appr(p, τ,E)dp, x ∈ R3, (2.7)

where we use (2.3), (2.4) for µ0 = 3. In addition,

δ(s, n,C) = δ1(s, n, 3, C), (2.8)

where δ was mentioned in connection with (2.1), (2.2).
A stability estimate for (2.3) is given by formula (3.7) below. More detailed version

of (2.4) is given by formula (3.6) below.
Note that before [No6], [No7] for d = 2 and [No8] for d = 3, even for real v of the

Schwartz class on Rd, d ≥ 2, no result was given, in general, in the literature on finding
v on Rd from f onME with the error term decaying more rapidly than O(E−1/2) in the
uniform norm as E → +∞ (see related discussion given in [No6]).

Note that inverse scattering at fixed energy for the Schrödinger equation (1.1) with
spherically symmetric potential v in three dimensions was studied in many works, see
[R], [Ne], [CS] and references therein. Nevertheless, the results (of [No8]) consisting in
reconstruction (2.1)-(2.4) are new even for spherically symmetric potentials.

Note that the method of [No8] is obtained as a development of the ∂̄-approach to
inverse scattering at fixed energy in dimension d ≥ 3 of [BC] and [HN] and involves, in
particular, some results of [F1], [F2], [F3] and some ideas of the ”two-dimensional” works
mentioned in Remark 1.5. In addition, there is an interesting similarity between [R], on
one hand, and [BC], [HN], [No8], on the other hand, consisting in an essential use of the
complex analysis.
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2.2. Background results. Reconstruction (2.3) is based on properties of the Faddeev
function H(k, p), where k ∈ C3\R3, p ∈ R3. For definitions of H see [F3], [HN]. Given v,
to determine H one can use, in particular, the following integral equation

H(k, p) = v̂(p)−
Z
R3

v̂(p+ ξ)H(k,−ξ)dξ
ξ2 + 2kξ

, k ∈ C3\R3, p ∈ R3, (2.9)

where v̂ is (the Fourier transform of v) defined by (1.6). Actually, (2.9) is an equation for
H(k, ·) on R3 for each fixed k ∈ C3\R3. Reconstruction (2.3) is based, in particular, on
properties of H on ΩE\ReΩE , where

ΩE = {k ∈ C3, p ∈ R3 : p2 = 2kp, k2 = E},
ReΩE = {k ∈ R3, p ∈ R3 : p2 = 2kp, k2 = E},

(2.10)

and on properties of

Hγ(k, p) = H(k + i0γ, p), (k, p) ∈ ReΩE, γ ∈ S2; (2.11)

see formulas (2.20)-(2.29) given below.
To deal with f and H of (1.5) and (2.9) (in the framework of the aforementioned

results) we consider, in particular, the functional spaces Cα,µ(R3), Hα,µ(R3), Cα(ME):

Cα,µ(R3) = {u ∈ C(R3) : kukα,µ < +∞}, α ∈]0, 1[, µ ∈ R, (2.12)

where

kukα,µ = kΛµukα, (2.13a)

Λµu(p) = (1 + |p|2)µ/2u(p), p ∈ R3, (2.13b)

kwkα = sup
p,ξ∈R3

, |ξ|≤1
(|w(p)|+ |ξ|−α|w(p+ ξ)−w(p)|); (2.13c)

Hα,µ is the closure of C∞0 (R
3) in k · kα,µ, α ∈]0, 1[, µ ∈ R, (2.14)

where C∞0 (R
3) is the space of infinitely smooth functions on R3 with compact support;

Cα(ME) = {u ∈ C(ME) : kukCα(ME),0 < +∞}, α ∈ [0, 1[, E > 0, (2.15)

where
kukC0(ME),µ = kukC(ME),µ =

sup
(k,l)∈ME

(1 + |k − l|2)µ/2|u(k, l)|, µ ≥ 0, (2.16a)

kukCα(ME),µ = max(kukC(ME),µ, kuk0Cα(ME),µ
),

kuk0Cα(ME),µ
= sup

(k,l),(k0,l0)∈ME

|k−k0|≤1,|l−l0|≤1

(1 + |k − l|2)µ/2(|k − k0|α + |l − l0|α)−1×

|u(k, l)− u(k0, l0)| for α ∈]0, 1[, µ ≥ 0.

(2.16b)
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We use that if v satisfies (1.7), d = 3, then

v̂ ∈ Hα,n(R3) for α ∈
½
]0, s] for s < 1
]0, 1[ for s ≥ 1 ,

kv̂kα,n ≤ Const0(s, α, n)kvkn,1s ,

(2.17)

where v̂ is the Fourier transform of v. Further, for obtaining (2.3), (2.4) we use, in partic-
ular, that if

v̂ ∈ Hα,n(R3) for some α ∈]0, 1[ and some real µ > 1 (2.18)

and

kv̂kα,µ ≤ D <
Eσ/2

Const1(α, µ, σ)

for some σ ∈]0,min (1, µ− 1)[ and some E ≥ 1,
(2.19)

then (see [No8]):
I. For k2 = E equations (1.5) for f and (2.9) for H are uniquely solvable in Cα,µ(R3)

for each fixed k (considered as mentioned in these equations).
II. The functionHγ of (2.11) at fixedE is well-defined and is related with the scattering

amplitude f onME by the following equation (of [F2], [F3])

hγ(k, l) = f(k, l) +
πi√
E

Z
S2√E

hγ(k,m)χ((m− k)γ)f(m, l)dm,

(k, l) ∈ME , γ ∈ S2 = S21,

(2.20)

where

S2r = {m ∈ R3 : |m| = r}, r > 0, (2.21)

χ(s) = 0 for s ≤ 0, χ(s) = 1 for s > 0, (2.22)

and by the formula

Hγ(k, p) = hγ(k, k − p), (k, p) ∈ ReΩE , γ ∈ S2 = S21, (2.23)

where
(k, p) ∈ ReΩE ⇐⇒ (k, k − p) ∈ME . (2.24)

III. The following ∂̄-equation (of [BC], [HN]) holds:

∂k̄H(k, p) = −2π
Z
R3

(
3X

j=1

ξjdk̄j)H(k,−ξ)H(K + ξ, p+ ξ)×

δ(ξ2 + 2kξ)dξ for H on ΩE\ReΩE ,

(2.25)
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where δ is the Dirac function:Z
R3

u(ξ)δ(ξ2 + 2kξ)dξ =

Z
{ξ∈R3

: ξ2+2kξ=0}

u(ξ)

|J(k, ξ)| |dξ3|, (2.26)

where J(k, ξ) = 4[(ξ1 + Rek1)Imk2 − (ξ2 + Rek2)Imk1] is the Jacobian of the map
(ξ1, ξ2, ξ3)→ (ξ2 + 2Rekξ, 2Imkξ, ξ3) and u is a test function. In addition,

(k, p) ∈ ΩE =⇒ (k,−ξ) ∈ ΩE , (k + ξ, p+ ξ) ∈ ΩE if ξ ∈ R3, ξ2 + 2kξ = 0. (2.27)

IV. The following formula (of [HN]) holds:

v̂(p) = lim
(k,p)∈ΩE ,|k|→∞

H(k, p) for each p ∈ R3, (2.28)

where |k| = (|Rek|2 + |Imk|2)1/2.
V. The following estimates hold:

|H(k, p)| ≤ D

(1−E−σ/2Const1(α, µ, σ)D)(1 + |p|2)µ/2
, (k, p) ∈ ΩE\ReΩE , (2.29)

kfkC(ME),µ ≤
D

1−E−σ/2Const1(α, µ, σ)D
, (2.30a)

kfkCα(ME),µ ≤
Const2D

1−E−σ/2Const1(α, µ, σ)D
, (2.30b)

where D and Const1 are the constants of (2.18), see [No8] (and [ER] in connection with
(2.30)).

2.3. Reconstruction scheme. Reconstruction (2.3) is based on properties (2.11), (2.20),
(2.23), (2.25), (2.28), (2.29), (2.30) of the functions H and f and consists of the following
parts:

f on ME

(2.20),(2.23),(2.30)
−−−−−−−−−−→Hγ(k, p), (k, p) ∈ ReΩE, γ ∈ S2, γk = 0,

−−−−−−→H±(k, p) = Hγ±(k,p)(k, p),

γ±(k, p) =
±p× (k − p/2)

|p||k − p/2| , (k, p) ∈ ReΩE , |p| 6= 0,

(2.31a)

where × denotes vector product;

H+ and H− on ReΩτE
(2.11),(2.25),(2.29)
−−−−−−−−−−→Happr

E,τ on ΩτE\ReΩτE,
ΩτE = {(k, p) ∈ ΩE : p ∈ B2τ√E}, ReΩ

τ
E = {(k, p) ∈ ReΩE : p ∈ B2τ√E},

(2.31b)

where τ is the parameter of (2.3), Happr
E,τ is an approximation to H on ΩτE\ReΩτE , H

appr
E,τ is

found using (2.25) (as an appropriate ∂̄- equation for H on ΩτE\ReΩτE), the property that

8
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H+ and H− are the boundary values of H in the limits on ReΩτE from ΩτE\ReΩτE (see
(2.11), (2.31a)) and estimate (2.29), more precisely, Happr

E,τ is found from equation (2.35)
discussed below;

v̂±appr(p, τ, E)
(2.28)
= lim

(k,p)∈Ωτ,±
E

,|k|→∞
Happr
E,τ (k, p) for almost each p ∈ B2τ√E,

Ωτ,±E = {(k, p) ∈ ΩτE :
Imk

|Imk| = ±
p×Rek

|p×Rek| , Imk 6= 0, p 6= 0},
(2.31c)

see also (2.55).
To present (2.31b) in more detail we emphasize that (2.25) is only an approximate

∂̄-equation for H on ΩτE\ReΩτE, τ ∈]0, 1[:

∂k̄χ2τ
√
EH(k, p) = −2π

Z
R3

(
3X

j=1

ξjdk̄j)χ2τ
√
EH(k,−ξ)χ2τ√EH(k + ξ, p+ ξ)×

δ(ξ2 + 2kξ)dξ +RE,τ (k, p) for χ2τ
√
EH on ΩτE\ReΩτE, τ ∈]0, 1[,

(2.32)

where χr denotes the multiplication operator by the function

χr(p) = 1 for |p| < r, χr(p) = 0 for |p| ≥ r,

where p ∈ R3, r > 0, and, as a corollary,

χ2τ
√
EH = H on ΩτE\ReΩτE ,

χ2τ
√
EH ≡ 0 on (ΩE\ReΩE)\ΩτE ,

(2.33)

RE,τ is a remainder which can be written explicitly (see [No8]). Proceeding from (2.32), the
definition of H± of (2.11), (2.31a) and estimate (2.29), we obtain for HE,τ = H

¯̄
Ωτ
E
\ReΩτ

E

a nonlinear integral equation of the form (see [No8]):

HE,τ = H0
E,τ +ME,τ (HE,τ ) +QE,τ , τ ∈]0, 1[, (2.34)

where H0
E,τ is expressed explicitly in terms of H±, ME,τ is a nonlinear integral operator

and QE,τ is a remainder expressed in terms of RE,τ and admitting an estimate using (2.29).
Proceeding from (2.34) we define Happr

E,τ of (2.31b) by the nonlinear integral equation

Happr
E,τ = H0

E,τ +ME,τ (H
appr
E,τ ), τ ∈]0, 1[. (2.35)

2.4. Precise formulas for H0
E,τ and ME,τ . Precise formulas for H0

E,τ and ME,τ

of (2.35) (see formulas (2.49), (2.50) given below) are based on the following additional
geometric considerations. One can see that

(k, p) ∈ ΩE ⇐⇒ k ∈ Σ(3)E,p = {k ∈ C
3 : k2 = E, p2 = 2kp} (2.36)

9
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for fixed E > 0 and p ∈ R3. In addition,

Σ
(3)
E,p ≈ Σ

(2)
E−p2/4, Σ

(2)
E = {k ∈ C2 : k2 = E}, for 0 < |p| < 2

√
E. (2.37)

It is interesting to note that the inverse scattering theory at fixed energyE > 0 in dimension
d = 2 mentioned in Remark 1.5 of Introduction is, actually, based on some complex analysis

on Σ
(2)
E . In particular, it is very much used in these 2D considerations that the following

formulas

λ =
k1 + ik2
E1/2

, k1 =
¡
λ+

1

λ

¢
, k2 =

¡ 1
λ
− λ

¢ iE1/2
2

(2.38)

give a diffeomorphism between Σ
(2)
E , E > 0, and C\0 (with the variable λ). Proceeding

from these observations we introduce some convenient coordinates on ΩτE, E > 0, τ ∈]0, 1],
as follows ([No8]).

Let

Lν = {p ∈ R3 : p = tν, t ∈ R}, (2.39a)

Br,ν = {p ∈ Br : p 6∈ Lν}, (2.39b)

ΩτE,ν = {(k, p) ∈ ΩτE,ν : p 6∈ Lν}, ReΩτE,ν = {(k, p) ∈ ReΩτE,ν : p 6∈ Lν}, (2.39c)

where ν ∈ S2, r > 0, E > 0, τ ∈]0, 1]. For p ∈ R3\Lν we consider θ(p) and ω(p) such that

θ(p), ω(p) smoothly depend on p ∈ R3\Lν
take their values in S2 and

θ(p)p = 0, ω(p)p = 0, θ(p)ω(p) = 0.

(2.40)

Conditions (2.40) imply that

ω(p) =
p× θ(p)

|p| for p ∈ R3\Lν (2.41a)

or

ω(p) = −p× θ(p)

|p| for p ∈ R3\Lν , (2.41b)

where × denotes vector product. To satisfy (2.40), (2.41a) one can take

θ(p) =
ν × p

|ν × p| , ω(p) =
p× θ(p)

|p| , p ∈ R3\Lν . (2.42)

Let E > 0, τ ∈]0, 1], ν ∈ S2 and the functions θ and ω of (2.40), (2.41a) be fixed. Then
([No8]) the following formulas give a diffeomorphism between ΩτE,ν and (C\0)×B2τ√E,ν :

(k, p)→ (λ, p), where λ = λ(k, p) =
k(θ(p) + iω(p))

(E − p2/4)1/2
, (2.43)
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(λ, p)→ (k, p), where k = k(λ, p,E) = κ1(λ, p,E)θ(p) + κ2(λ, p,E)ω(p) + p/2,

κ1(λ, p,E) =
¡
λ+

1

λ

¢(E − p2/4)1/2

2
, κ2(λ, p,E) =

¡ 1
λ
− λ

¢ i(E − p2/4)1/2

2
,

(2.44)

where (k, p) ∈ ΩτE,ν , (λ, p) ∈ (C\0)×B2τ√E,ν ; in addition, formulas (2.43), (2.44) give also
diffeomorphisms between ReΩτE,ν and T × B2τ√E,ν and between ΩτE,ν\ReΩτE,ν and
(C\(0 ∪ T ))×B2τ√E,ν , where

T = {λ ∈ C : |λ| = 1}. (2.45)

We consider λ, p of (2.43), (2.44) as coordinates on ΩτE,ν and on Ω
τ
E, E > 0, τ ∈]0, 1].

One can see a considerable similarity between formulas (2.43), (2.44) and formulas
(2.38).

In the coordinates λ, p the restriction HE,τ = H
¯̄
Ωτ
E
\ReΩτ

E

can be written as

HE,τ = H(λ, p,E) = H(k(λ, p,E), p), λ ∈ C\(T ∪ 0), p ∈ B2τ√E,ν , (2.46a)

and H± of (2.31a) can be written as

H±(λ, p,E) = H±(k(λ, p,E), p), λ ∈ T , p ∈ B2τ√E,ν . (2.46b)

In addition,
(a) the following limit relation is valid:

H±(λ, p,E) = H(λ(1∓ 0), p, E), λ ∈ T , p ∈ B2τ√E,ν ; (2.47)

(b) the ∂̄-equation (2.32) takes the form

∂

∂λ̄
H(λ, p,E) = (H,H)E,τ (λ, p) +RE,τ (λ, p), λ ∈ C\(T ∪ 0), p ∈ B2τ√E,ν , (2.48)

where (H,H) is defined by (2.51) and RE,τ (λ, p) = RE,τ (k(λ, p,E), p);
(c) the following formulas for H0

E,τ and ME,τ of (2.35) hold:

H0
E,τ (λ, p) =

1

2πi

Z
T

H+(ζ, p,E)
dζ

ζ − λ
, λ ∈ D+, p ∈ B2τ√E,ν ,

H0
E,τ (λ, p) = −

1

2πi

Z
T

H−(ζ, p,E)
λdζ

ζ(ζ − λ)
, λ ∈ D−, p ∈ B2τ√E,ν ,

(2.49)

ME,τ (U)(λ, p) =M+
E,τ (U)(λ, p) =

− 1
π

Z Z
D+

(U,U)E,τ (ζ, p)
dRe ζdImζ

ζ − λ
, λ ∈ D+, p ∈ B2τ√E,ν , (2.50a)
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ME,τ (U)(λ, p) =M−E,τ (U)(λ, p) =

− 1
π

Z Z
D−

(U,U)E,τ (ζ, p)
λdRe ζdImζ

ζ(ζ − λ)
, λ ∈ D−, p ∈ B2τ√E,ν , (2.50b)

(U1, U2)E,τ (λ, p) =

− π

4

πZ
−π

µ
(E − p2/4)1/2

sgn(|λ|2 − 1)(|λ|2 + 1)
λ̄|λ| (cosϕ− 1)− |p| 1

λ̄
sinϕ

¶
×

U1(z1(λ, p,E, ϕ),−ξ(λ, p,E, ϕ))U2(z2(λ, p,E,ϕ), p+ ξ(λ, p,E,ϕ))×
χ2τ
√
E(ξ(λ, p,E, ϕ))χ2τ

√
E(p+ ξ(λ, p,E,ϕ))dϕ, λ ∈ D+ ∪D−, p ∈ B2τ√E,ν ,

(2.51)

where

D+ = {λ ∈ C : 0 < |λ| < 1}, D− = {λ ∈ C : |λ| > 1} (2.52)

U1, U2, U3 are test functions on (D+ ∪D−)×B2τ√E,ν ,

z1(λ, p,E, ϕ) =
k(λ, p,E)(θ(−ξ(λ, p,E,ϕ)) + iω(−ξ(λ, p,E, ϕ)))

(E − |ξ(λ, p,E, ϕ)|2/4)1/2 ,

z2(λ, p,E, ϕ) =
(k(λ, p,E) + ξ(λ, p,E,ϕ))(θ(p+ ξ(λ, p,E, ϕ)) + iω(p+ ξ(λ, p,E,ϕ)))

(E − |p+ ξ(λ, p,E, ϕ)|2/4)1/2 ,

(2.53)

ξ(λ, p,E,ϕ) = Rek(λ, p,E)(cosϕ− 1) + k⊥(λ, p,E) sinϕ,

k⊥(λ, p,E, ϕ) =
Imk(λ, p,E)×Rek(λ, p,E)

|Imk(λ, p,E)| ,
(2.54)

where k(λ, p,E) is defined by (2.44) and θ, ω are the functions of (2.40), (2.41a).
Note also that in the coordinates λ, p formula (2.31c) takes the form

v̂+appr(p, τ, E) = lim
λ→0

Happr
E,τ (λ, p), λ ∈ D+, p ∈ B2τ√E,ν ,

v̂−appr(p, τ, E) = lim
λ→∞

Happr
E,τ (λ, p), λ ∈ D−, p ∈ B2τ√E,ν .

(2.55)

This completes a formal description (without estimates) of equations and formulas involved
in (2.3), (2.31).

3. Error and stability estimates of [No8]
Note that it is more convenient (for estimates) to consider (2.3), (2.31) under condition

(2.18), µ ≥ 2, than under our initial condition (1.7), n > d = 3. We have, in particular,
the following results of [No8].

Let v̂ satisfy (2.18), where µ ≥ 2 and kv̂kα,µ ≤ D for some D > 0. Let f be the
scattering amplitude for equation (1.1). Let

0 < τ < τ1(α, β, µ, µ0, σ,D), E ≥ E1(α, β, µ, µ0, σ,D, g1, g2) (3.1)

12
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for some special τ1 and E1 (which can be given explicitly, see [No8]), where β, µ, µ0, σ,
D, g1, g2 are some additional fixed numbers such that

2 ≤ µ0 ≤ µ, 0 < σ < 1, 0 < β < min(α, σ, 1/2),

g1 > 1, g2 > Const2(µ), g2 > g1.
(3.2)

In addition, in particular,

E1 → +∞ as D→ +∞,

0 < τ1 < 1 and (in the framework of [No8]) τ1 → 0, as D→ +∞.
(3.3)

Let also λ, p be the coordinates of (2.43), (2.44). Then ([No8]):
I. The following estimates hold:

kfkC(ME),µ < g1D, kfkCα(ME),µ < g2D, (3.4)

|H0
E,τ (λ, p)| ≤ R(α, β, µ, σ,D,E, |p|) def=

µ
2µ/2D +

Const3(α, β, µ, σ)D
2

Eβ/2

¶
1

(1 + |p|)µ ,

λ ∈ D+ ∪D−, p ∈ B2τ√E,ν ,
(3.5)

where H0
E,τ is the function of (2.35), (2.49).

II. All equations of (2.3), (2.31) (equations (2.20), (2.35)) for finding v̂±appr(·, τ, E)
on B2τ√E from f on ME are uniquely solvable (by successive approximations) and the
following error estimate holds:

|v̂(p)− v̂±appr(p, τ,E)| ≤
Const4(µ, µ0, τ)D

2

(1 + |p|)µ0(1 + 2τ
√
E)µ−µ0

, p ∈ B2τ√E,ν . (3.6)

III. In addition, if f̃ is an approximation to f , where estimates (3.4) are valid also for

f̃ in place of f , then by means of (2.31), (2.35) f̃ onME determines ˜̂v
±
appr on B2τ√E and

the following estimate holds:

|v̂±appr(p, τ,E)− ˜̂v
±
appr(p, τ, E)| ≤

Const5
(1 + ln E)kf − f̃kC(ME),µ

(1 + |p|)µ0 +Const6(εβ)×

(Const7,1(µ)g2D +Const7,2(β, µ)(g1D)
2E−β/2)(kf − f̃kC(ME),µ)

1−ε

(1 + |p|)µ0 ,

p ∈ B2τ√E,ν , ε ∈]0, 1[.

(3.7)

More precisely, ˜̂v
±
appr on B2τ√E is determined from f on ME via (2.31), (2.35), (2.49),

(2.50), (2.55) with f̃ , H̃γ , H̃±, H̃
0
E,τ , H̃

appr
E,τ ,

˜̂v
±
appr in place of f , Hγ , H±, H

0
E,τ , H

appr
E,τ ,

13
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v̂±appr, where H̃
0
E,τ arising in (2.49) is corrected also as follows:

H̃0
E,τ (λ, p)→ H̃0

E,τ (λ, p)

if |H̃0
E,τ (λ, p)| ≤ R(α, β, µ, σ,D,E, |p|),

H̃0
E,τ (λ, p)→ R(α, β, µ, σ,D,E, |p|)

H̃0
E,τ (λ, p)

|H̃0
E,τ (λ, p)|

if |H̃0
E,τ (λ, p)| > R(α, β, µ, σ,D,E, |p|),

(3.8)

where R is radius of (3.5).
In connection with (3.5), (3.8) note also that if f̃ = f (that is the scattering amplitude

is given with no errors) and H̃0
E,τ is calculated from f̃ with no errors, then H̃0

E,τ = H0
E,τ

and (due to (3.5)) correction (3.8) is not necessary. However, if some of these errors are
present, then (3.8) seems to be necessary, in general, for solvability of (2.35) by iterations
and for validity of (3.7).

The remark that (2.17) follows from (1.7), d = 3, and estimates (3.6), (3.7) imply the
estimates of (2.3), (2.4).

4. Results of [ABR3]
The monochromatic inverse scattering method of [No8] was implemented for the first

time numerically in [ABR2], [ABR3] for the case of the inverse scattering problem for the
acoustic equation

−∆ψ =
¡ ω

c(x)
+ iα(x, ω)

¢2
ψ, x ∈ R3, (4.1)

with velocity of sound c(x), amplitude absorption coefficient α(x, ω), at fixed frequency ω,
under the assumption that

c(x) ≡ c0, α(x, ω) ≡ 0 for |x| ≥ r. (4.2)

The possibility of applications of the method of [No8] (as well as of any method for solving
Problem 1.1 for equation (1.1) under assumption (1.2)) to the inverse scattering problem
for equation (4.1) under assumptions (4.2) (with known background c0) is based on the
fact that (4.1) can be written in the form (1.1), where

v =
ω2

c20
−
¡ ω

c(x)
+ iα(x, ω)

¢2
, E =

ω2

c20
, (4.3a)

and that, as a corollary of (4.2),

v = v(x, ω) ≡ 0 for |x| ≥ r. (4.3b)

The main (or, at least, the most difficult for numerical implementation) points of
monochromatic inverse scattering method of [No8] consists in finding hγ from f via (2.20)
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and finding Happr
E,τ from H0

E,τ via (2.35). One can see that (2.20) is a (standard) lin-
ear Fredholm integral equation of the second type, whereas (2.35) is a nonlinear integral
equation. In [ABR3] equation (2.35) is solved for τ = 1 by iterations organized as follows:

H̃j
E(λ, p) =WE(|p|)

¡
H0
E(λ, p) +ME(

˜̃H
j−1
E )(λ, p)

¢
,

˜̃H
j=0

E (λ, p) =WE(|p|)H0
E(λ, p),

˜̃H
j

E = (1− ε) ˜̃H
j−1
E + εH̃j

E , 0 < ε ≤ 1,
(4.4)

where ε is a relaxation parameter and WE(|p|) is a sufficiently regular filter such that

WE(r) = 1 for 0 ≤ r ≤ 2τ0
√
E, WE(r) = 0 for r ≥ 2τ1

√
E

for some τ0 and τ1, 0 < τ0 < τ1 ≤ 1.

In addition, the numerical implementation of [ABR3] is reduced to the algorithm of
[ABR1] if (2.35) is ”solved” by the zero approximation:

Happr
E,1 ≈ H0

E,1. (4.5)

Note that sufficiently strong scatterers are successfully reconstructed in [ABR3] by the
method of [No8] in the framework of numerical simulations for the acoustic equation (4.1).
We emphasize that the Born approximation method does not give already a satisfactory
reconstruction result for these scatterers. In [ABR3] it is also numerically shown that the
method of [No8] is considerably more precise than its approximate version solving (2.35)
by the zero approximation and actually used in [ABR1].

Note that in the numerical simulations on [ABR3] is is assumed that c and α of (4.1)
are spherically symmetric functions of x. However, this condition is used in [ABR3] for
reducing the volume of numerical operations only and is not an assumption of the method.

Note that some of results of [ABR3] are presented already in [ABR2].

5. Open problem for the acoustic case
Note that the potential v = v(x, ω) of (4.3) depends on the frequecy ω in constrast

with the energy independent potential v = v(x) of the Schrödinger equation (1.1).
For the acoustic equation (4.1) under condition (4.2) and even with α ≡ 0 on the

whole space (in dimension d ≥ 2), analogs of (2.2), (2.4) are not obtained yet, in general,
in the framework of (approximate but) sufficiently stable monochromatic inverse scattering
(by methods of [No6]-[No8] or by other methods). This is an important open problem for
the acoustic case. In this connection, in addition to results of [No6]-[No8] and [BBMRS],
[BMR], [ABR3], we would like to mention also that:

In the particular case of the 3-dimensional acoustic equation in a half-space with
horizontally-homogeneous velocity c (and zero absorption α) a stable monochromatic in-
verse scattering method with the error estimate (for ω → +∞) of the type (2.2) was
developed in [MNPSF], [HeNo].

An interesting stability analysis for monochromatic acoustical inverse scattering with
a decreasing error term as ω → +∞ is developed in [P] for d = 2.
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