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 I. INTRODUCTION

Internal erosion of soil resulting from seepage flow is
the main cause of serious hydraulic work (dykes, dams)
failure, in terms of the risk of flooding areas located
downstream.  When internal erosion is suspected of
occurring or has already been detected in situ, the  time to
failure is difficult to predict.  To be able to develop
effective emergency action plans preventing heavy
casualties  and damage to property, it is necessary to have
a characteristic time to use as a basis.

During the last few decades, several laboratory studies
have been carried out on internal erosion. Four types of
internal erosion process have been identified in particular:
1) evolution of defects (cracks and microfissures) in the
soil matrix, 2) regressive erosion, 3) internal suffusion,
which affects the soil structure, 4) external suffusion
between two soils.  The present study concerns the first
process: the enlargement of a crack, which leads to an
internal erosion process known as “piping” in soil
mechanics.

Several experimental methods have been developed for
simulating the internal erosion process experimentally,
and various types of equipment have been  developed for
performing  hole erosion tests [3], [12], [13].  However,
few attempts have been made to model these tests.  The
aim of this study was to draw up a useful model for
interpreting hole erosion tests.

In the first part of this paper, equations for diphasic
flow and equations of jump with erosion are presented.  In
the second part, a model is developed by spatially
integrating simplified equations obtained from asymptotic
developments in the case of a circular hole.  Some
comparisons are made in the third part between the model
and experimental data.

 II. TWO-PHASE FLOW EQUATION WITH INTERFACE

EROSION

It is proposed to  study the surface erosion of a
fluid/soil interface subjected to a flow running parallel to
the interface.  The soil, which is taken here to be saturated,
is eroded by the flow, which then carries away the eroded
particles.  As long as the particles are small enough  in
comparison with the characteristic length scale of the
flow, this two-phase flow can be said to be a continuum.
We take  Ω  to denote the volume of the two-phase

mixture and  Γ  the fluid/soil interface.  For the sake of
simplification, sedimentation and deposition processes are
neglected.  The mass conservation equations for the
water/particles mixture and for the mass of the particles as
well as the balance equation of momentum of the mixture
within  Ω  can be written as follows in a Eulerian
framework [6], [10]:
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In these equations, 
 
ρ  is the density of the mixture,

depending on the particles mass fraction  Y ,   


u  is the

mass-weighted average velocity,   

J  is the mass diffusion

of the flux of particles, and  σ  is the Cauchy stress tensor
in the mixture.

The two media (i.e. the soil and the two-phase fluid) are
separated by the interface  Γ .  The water/particle mixture
is assumed to flow like a fluid above  Γ , while a solid-like
behaviour is taken to occur below  Γ .  As there is a
process of erosion, a mass flux crosses this interface and
undergoes a transition from solid-like to fluid-like
behaviour.   Γ  is therefore not a material interface: at
different moments,  Γ  is not defined by the same particles.
We assume  Γ  to be a purely geometric separating line
which  has no thickness.  Let us take   


n  to denote the

normal unit vector of  Γ  oriented outwards from the soil,

and 
   


vΓ  to denote the normal velocity of  Γ .  The jump

equations over  Γ  are [9]

     
ρ(

vΓ −


u) ⋅

n  = 0 , (4)

     
ρY(

vΓ −


u) ⋅

n  =


J ⋅

n



 , (5)

      
ρ

u(

vΓ −


u) ⋅

n  = − σ ⋅


n  , (6)
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Figure 1.  Sketch of the axisymmetrical flow process involving

erosion of the soil and transport of the eroded particles.

where 
   
a  = ag − ab  is the jump of any physical variable

 a  across the interface, and 
 
ag  and 

 
ab  stands for the

limiting value of  a  on the solid and fluid sides of the
interface, respectively.  The soil is assumed to be
homogeneous, rigid and devoid of seepage.  The co-
ordinate system depends on  the soil in question. The total
flux of eroded material (both particles and water) crossing

the interface is therefore 
    
m = −ρg


vΓ ⋅

n ,  where 

  
ρg  is

the density of the soil.

Erosion laws dealing with soil surface erosion by a
tangential flow are often written in the form of  threshold
laws such as [2]:

     

m =
ker( τb − τc ) if τb > τc

0 otherwise

⎧

⎨
⎪
⎪

⎩
⎪
⎪

, (7)

with

      
τb = (σ ⋅


n)2 − (


n ⋅ σ ⋅


n)2

b

. (8)

where 
  
τ
c

 is the critical (threshold) shear stress involved

in the erosion, 
 
ker  is the coefficient of soil erosion, and

  
τb  is the tangential shear stress at the interface.

This complete set of equations was previously used to
study various situations involving a permanent flow
(boundary layer and free surface flow) over an erodable
soil [1].  The use of these equations is extended here to the
study of internal erosion by introducing a spatial
integration over  Ω .

 III. APPLICATION TO PIPING EROSION

Let us take a cylinder  Ω  with length  L  and radius R  (

initial value 
  
R0 ) (Fig. 1).  Reference velocity is

    
Vfl = Qfl / πR0

2 , where 
 
Qfl  is the initial input flow and

the flow time is 
   
tfl = R0 /Vfl .  By assuming that this is

axisymmetrical flow, we eliminated one momentum

equation.  We introduced the small parameter 
   
Re
−1  to

simplify the dimensionless equations in a boundary layer
theory spirit ([8],[11]), where the Reynolds number

    
Re = VflR0 / ν f  was assumed to be large and   ν f  is the

kinematic viscosity.  Navier-Stokes equations were

written with the time scaled by 
 
tfl , the axial coordinate by

  
R0Re , the radial coordinate by

  
R0 , the axial velocity by

 
Vfl , the radial velocity by 

  
Vfl / Re , and the stresses by

   
ρ fVfl

2 .  Assuming turbulent stress viscosity and

diffusivity, we performed the regular asymptotic
expansion of the unknowns and we neglected the terms of

order 
   
Ο(Re

−1)  in (1) and (2) (as in [1]).  We therefore now

had a single momentum equation, and the pressure was
uniform across any section.

We integrated the system obtained first on a cross

section, and secondly along the axis.  We take 
  
< a >R  to

denote the mean value of  a  in a cross section, and

  
< a >Ω  to denote the mean value in  Ω . The mean

longitudinal velocity is 
  
V =< u >R . The mean density

of the fluid is 
  
ρ =< ρ >Ω . The following  assumptions

were made : A1) the tangential velocities were taken to be
continuous across  Γ  (no-slip condition at the interface),
A2) the radial profile of the velocity field was given by
the Nikuradze approximation, A3) the concentration was
uniform over a given section and linear along the axis,
A4) we introduced a phenomenological friction

coefficient  fb  by 
    
τb = fbρV

2 , A5) the radius  R  was

axially uniform (and therefore , 
  
V =< u >Ω ).  This gave

an ordinary differential system with unknowns    (R,ρ,V )

which can be solved numerically.

If the erosion time scale is suitably chosen, dimensional
analysis shows that the four basic parameters of the
system are:
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R0ρg

fbLρ
f
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2
− 1
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⎜⎜⎜⎜
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⎟⎟⎟⎟⎟
(9)

    

kref =
kerVfl

1 + kerVfl

, 

    

τc =
τc

Pfl

(10)

The stress 
   
Pfl = R0(pin − pout ) / 2L  reflects the

hydraulic gradient and depends on the input and output

pressures, respectively  pin  and  pout .

The erosion velocity turns out to be

    
Ver = kerPfl / (1 + kerVfl )ρg .  The eroded flow  is thus

    Qer = 2πR0LVer  and the erosion time is 
   
ter = R0 /Ver .

The erosion flow scale ratio is therefore

     
Qer /Qfl = αkref aφ

−1 , the erosion time scale ratio is

     
tfl / ter = kref fbρ

f / ρg . The maximum volumic

concentration is 
     
cref = (1− n) / (1 + aφ

kref
−1) , where  n

is the porosity of the soil.

We assumed that 
     
aφ ≥ Ο(1)  and 

     
bφ ≈ Ο(1) , which is

the case in the experiments described below.   We call

  
kref  the kinetics of erosion (dimensionless) number.  If
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kref  1  is a small parameter, then asymptotic analysis

will yield important conclusions: 1) the concentration will
be  low and becomes a secondary unknown, as it does not
influence the density, the inertia, the velocity or the stress,
2) the flow will be quasi steady, 3) the interface velocity
will be low and will not contribute to the inertia.  We call

this case, which arises when 
    
ker Vfl

−1 , the low kinetics

of erosion situation.

Starting with the initial condition

   
(R(0) = R0,V(0) = 0) ,  under the constant hydraulic

gradient 
   
Pfl > τc , the solution of the system can be

written as follows:
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⎢

⎤

⎦
⎥
⎥
, (10)

   

V(t)

Vfl

=
R(t)

R0

 , (11)

    

ter =
2Lρg

ker(pin − pout )
. (12)

The shear stress at the interface and the flow are given
by:

    

τb(t)

Pfl

=
R(t)

R0

,

   

Q(t)

Qfl

=
R(t)

R0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

5/2

. (13)

 It should be noted that the limiting case 
    
kref → 1

(corresponding to 
  
ker → ∞ ) can be of interest.  In this

case, the concentration can be high, and even reaching the

soil compacity level 
     
cref = (1− n) / (1 + aφ) .  The

erosion law (3) leads to 
   
τb = τc , but the rheological law

depends stronglyon the concentration [7] (assumption A4
therefore has to be modified), and so the velocity remains
unknown.  Moreover, the concentration probably affects

the velocity profile: assumptions A2 and A4 are no longer
relevant.  To our knowledge, radial profiles of
concentrations in pipe flow with erosion have not yet been
investigated.

 IV. COMPARISON WITH EXPERIMENTAL DATA

According to the logic of the derivation given above,
the scaling laws previously obtained (10) and (11) should
hold in all past and future experiments performed on
erosional pipe flow with a constant pressure drop
involvinglow  erosion kinetics.  The folllowing
comparisons with experimental data confirm the validity
of this statement .

The Hole Erosion Test was designed to simulate piping
flow erosion in a hole [3].  The soil specimen is
compacted in a standard mould used for the Standard
Compaction Test.  A hole is drilled along the longitudinal
axis of the soil sample.  An eroding fluid is driven through
the soil sample to initiate erosion of the soil along the pre-
formed hole.  The  results of the test are given in terms of
the flow rate versus time curve under a constant pressure
drop.  For further details about this test, see [3], [12], [13].

The predicted scaling law is now compared with
previously published data [3].  Simulations were
performed in 17 tests, using 10 different soils (clay, sandy
clay, clayey sand or silty sand).  Table I contains
geological origin, particle size distribution and particle
density of soils samples.  Table II contains geotechnical
properties of soil samples.  Table III contains parameters
of the hole erosion tests. Table IV contains results of the
modelling of these tests with the scaling law (10) and (11).

The initial radius and the length of the pipe were 
  
R

0
=3

mm and L =117 mm.  Since the  
   
a
φ

 numbers ranged from

2.37 to 4.82, and the  
  
k
er

 numbers, from 7.54 10
-5

 to 1.19

10
-2

,  low erosion kinetics were present in all the cases
studied.

Fig. 2 gives the increase in the flow in    Q ∝ R5/2 , and

shows that the use of 
 
ter  leads to efficient dimensionless

scaling.  In Fig. 3, experimental data from [3] are plotted

in the (
    
R(t) / R0 − τc / Pfl , 

    
t / ter + ln(1− τc / Pfl ) )

plane.  Nearly all the data can be seen to  fall on a single
curve.  Thanks to the many simplifying assumptions, the
agreement with the scaling law (4) speaks for itself: in

spite of the large range of 
 
k
er

 (three orders of magnitude),

TABLE I.  
 GEOLOGICAL ORIGIN, PARTICLE SIZE DISTRIBUTION AND PARTICLE DENSITY OF SOIL SAMPLES

Soil

Geological

Origin %Gravel %Sand %Fines

%Finer than

0.002mm

Soil Particle

Density

Bradys Residual 1 24 75 48 2.74

Fattorini Colluvial 3 22 75 14 2.68

Hume Alluvial 0 19 81 51 2.71

Jindabyne Residual 0 66 34 15 2.68

Lyell Residual 1 70 29 13 2.61

Matahina Residual 7 43 50 25 2.67

Pukaki Glacial 10 48 42 13 2.70

Shellharbour Residual 1 11 88 77 2.75

Waranga Alluvial 0 21 79 54 2.69
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no further manipulations are required to bring the model
into line with the experimental data.

 V. CONCLUSION

Many laboratory tests are commonly used to study
internal erosion in a soil.  One of them, the hole erosion
test appears to be an efficient and simple means of
quantifying the rate of piping erosion, but few attempts
have been made so far to model this process.  In the
present modelling study, we  started with the field
equations for diphasic flow with diffusion and the
equations of jump with erosion.  After many simplifying
assumptions, using asymptotic developments and
dimensional analysis,  some characteristic numbers were
obtained,  the two most significant of which are the
kinetics of dimensionless number erosion and the erosion
time.

A particular case was defined, involving   low  erosion
kinetics.  This situation arises when the erosion kinetics
aremuch smaller than one.  In this case, the influence of
both the concentration and inertial effects can be
neglected.  An analytical scaling law was obtained for
interpreting the hole erosion test with a constant pressure
drop.  Comparisons were made between the results of the
present modelling study and previously published
experimental data obtained in seventeen tests using nine
different soils.  These comparisons confirm the validity of
our scaling law, which can therefore be used to interpret
the results of hole erosion tests.

Further research is now required  to determine whether
this characteristic time could be used in practical
situations to predict the development of internal erosion in
hydraulic works.

ACKNOWLEDGMENT

The authors wish to thank  Pr. Robin Fell and Dr. Chi
Fai Wan for their valuable experimental data.

REFERENCES

[1] O. Brivois, Contribution to strong slope erosion by a two-phase
turbulent flow, PhD, University of Aix-Marseille II, 2005.

[2] H. Chanson, The Hydraulics of Open Channel Flows: An

Introduction, Butterworth-Heinemann, Oxford, UK, 1999.

[3] R. Fell and C.F. Wan , Investigation of internal erosion and piping

of soils in embankment dams by the slot erosion test and the hole
erosion test UNICIV Report No R-412, The University of New

South Wales Sydney ISSN 0077 880X, 2002.

[4] M. A. Foster and R. Fell, !Assessing embankment dam filters that
do not satisfy design criteria. Journal of Geotechnical and

Geoenvironmental Engineering, 127(5) !, 398–407, 2001.

[5] J.-J. Fry , Internal Erosion: Typology, Detection, Repair, Barrages
and Reservoirs No. 6. French Comitee of Large Dams, Le

Bourget-du-lac Cedex, 1997.

[6] P. Germain, Q.S. Nguyen and P. Suquet, Continuum

Thermodynamics, Journal of Applied Mechanics, 50, 1010-1020,
1983.

[7] P.-Y. Julien, Erosion and Sedimentation, Cambridge University

Press, 1995.

[8] P.-Y. Lagrée and S. Lorthois, The RNS/Prandtl equations and their
link with other asymptotic descriptions. Application to the

computation of the maximum value of the Wall Shear Stress in a
pipe, International Journal of Engineering Science , 43(3), 352-

378, 2005.

[9] L. W. Morland and S. Sellers, Multiphase mixtures and singular

surfaces, International Journal of Non-Linear Mechanics,  36,
131-146, 2001.

[10] R.I. Nigmatulin, Dynamics of multiphase media, Book News, Inc.

Portland, 1990.

TABLE II.  
 GEOTECHNICAL PROPERTIES OF SOIL SAMPLES

Soil Test Name

Optimum Water

Content (%)

Test  Water

Content (%)

Optimum

Porosity

Test

Porosity

BDHET001 35.0 35.8 0.52 0.52Bradys high plasticity

sandy clay BDHET002 35.0 35.9 0.52 0.52

Fattorini

medium plasticity

sandy clay FTHET010 18.5 15.6 0.37 0.37

HDHET001 21.0 21.4 0.39 0.40

HDHET005 21.0 17.9 0.39 0.40

HDHET006 21.0 22.6 0.39 0.40

HDHET007 21.0 22.4 0.39 0.40

Hume

low plasticity

sandy clay

HDHET009 21.0 22.7 0.39 0.40

JDHET001 16.0 15.7 0.35 0.35

JDHET005 16.0 13.8 0.35 0.35

JDHET013 16.0 16.2 0.35 0.35

Jindabyne clayey sand

JDHET016 16.0 18.3 0.35 0.35

Lyell silty sand LDHET014 10.0 8 0.25 0.25

Matahina low plasticity clay MDHET006 16.5 14.3 0.32 0.32

Pukaki silty sand PDHET003 8.5 8.6 0.20 0.20

SHHET005 41.0 38.7 0.55 0.55Shellharbour high plasticity clay

SHHET009 41.0 37.9 0.55 0.55



ICSE, 3rd International Conference on Scour and Erosion

1-3 nov 2006, Amsterdam

[11] H. Schlichting,  Boundary layer theory , 7th ed Mc Graw Hill,

New York, 1987.

[12] C.F. Wan and R. Fell, Investigation of rate of erosion of soils in
embankment dams, Journal of Geotechnical and

Geoenvironmental Engineering, 30(4), 373-380, 2004.

[13] C.F. Wan and R. Fell, Laboratory Tests on the Rate of Piping

Erosion of Soils in Embankment Dams, Journal of Geotechnical
Testing Journal,  27(3), 2004.

TABLE III.  
 PARAMETERS OF THE HOLE EROSION TEST

Test   
P

fl
 (Pa)

  
V

fl
 (m/s)

  
t
fl
 (10-3  s)

  
f
b
 (10-2)

 
R

e    
a
φ

BDHET001 79.96 2.20 1.36 1.65 6610 2.84

BDHET002 53.22 1.87 1.61 1.52 5606 3.07

FTHET010 93.78 2.57 1.17 1.42 7721 3.61

HDHET001 92.87 2.43 1.23 1.57 7298 3.30

HDHET005 66.13 2.22 1.35 1.34 6663 3.75

HDHET006 79.30 2.29 1.31 1.51 6875 3.46
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PDHET003 16.43 1.02 2.93 1.57 3067 3.87

SHHET005 106.30 2.68 1.12 1.48 8038 3.05

SHHET009 102.39 2.71 1.11 1.39 8144 3.23

WBHET001 105.91 2.71 1.11 1.44 8144 3.58

TABLE IV.  
 RESULTS OBTAINED WITH THE SCALING LAW

Test    
τ
c
 (Pa)

  
V

er
 (10-5  m/s)

  
t
er

 (s)
  
c
ref

 (10-5)
  
k
er

 (10-4  s/m)
  
k
er
V

fl
 (10-4 )

BDHET001 76.07 1.35 223 11 3.02 6.65

BDHET002 50.93 1.43 210 14 4.80 8.97

FTHET010 6.63 4.10 73 39 8.57 22.05

HDHET001 92.87 0.94 319 9 2.01 4.88

HDHET005 66.13 1.00 299 10 2.93 6.50

HDHET006 76.00 0.18 1712 2 0.44 1.01

HDHET007 79.41 0.50 600 5 1.26 2.93

HDHET009 74.42 0.14 2183 1 0.35 0.75

JDHET001 72.32 2.26 133 25 5.89 13.30

JDHET005 6.92 0.46 647 16 9.59 6.76

JDHET013 49.66 0.79 380 13 3.03 4.59

JDHET016 6.42 0.26 1165 10 7.73 4.90

LDHET014 7.95 5.22 57 185 139.19 112.86

MDHET006 128.22 0.71 424 6 1.13 3.31

PDHET003 13.85 0.71 424 21 10.05 10.28

SHHET005 106.20 1.98 152 13 3.22 8.63

SHHET009 99.77 0.31 975 2 0.52 1.40

WBHET001 105.81 1.41 213 12 2.62 7.12
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Figure 2. Hole Erosion Test, test(symbols) versus model(continuous lines). Dimensionless flow is shown as a function of dimensionless time. The

experimental data were based on [2].

Figure 3.  Hole Erosion Test, test(symbols) versus model(continuous lines). Dimensionless radius is shown as a function of dimensionless time.

The experimental data were based on [2].


