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Abstract: This paper presents a tutorial on system identification using fractional
differentiation models. The tutorial starts with some general aspects on time
and frequency-domain representations, time-domain simulation, and stability of
fractional models. Then, an overview on system identification methods using
fractional models is presented. Both equation-error and output-error-based models

are detailed. Copyright (©)2006 IFAC.

Keywords: Fractional differentiation, fractional integration, identification,
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1. INTRODUCTION

Although fractional (non integer) operators re-
mained for a long time purely a mathematical
concept, the rise of digital computers offered an
easy way for simulating numerically non integer
integro-differentiation of mathematical functions.

The last two decades have witnessed considerable
development in the use of fractional differentiation
in various fields. Fractional differentiation is now
an important tool for the international scientific
and industrial communities. In that scope, the
1st IFAC Workshop on Fractional Differentiation
and its Applications (FDA’04) was hold in 2004
in France. The use of fractional differentiation
models in system identification was initiated in
the late nineties and the beginning of this century
(Le Lay, 1998; Lin, 2001; Cois, 2002; Aoun, 2005).

Fractional models are now enough mature and are
widely used in representing some diffusive phe-
nomena (thermal diffusion, electrochemical diffu-
sion) and in modeling viscoelastic materials.
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1.1 Mathematical background

A fractional mathematical model is based on
fractional differential equation:

y () + 01Dy () + -+ + by DBy (1) =

aoDu (t) + a1 D u (¢) + - + am D™ au (t) (1)

where differentiation orders, 81 < (2 < ... <
Bmp, @0 < a1 < ... < aqpm,, are allowed to
be non-integer positive numbers. The concept of
differentiation to an arbitrary order (non-integer),

Afd\
was defined in the 19*" century by Riemann and
Liouville. The ~ fractional derivative of z(t) is
defined as being an integer derivative of order
m = |v] +1 (|.] stands for the floor operator) of
a non-integer integral of order 1 — (m —+) (Samko
et al., 1993):

D7z () =D™ (1" "a(t)) 2

d

_ 7)1—(m—'y)



where t > 0, Vy € R}

is defined as:

/ i ldt Ve e RO\ (N} (3)
0

, and the Euler’s I' function
I(x)

A discrete-time definition of fractional derivative
was proposed by Griinwald (1867), Vy € R :

! kz_0<—1>’“<

7y

D7z(t) 3

= lim — t—kh) (4
tim - Jatt—w) (@
where Newton’s binomial (}) is generalized to
non-integer orders by the use of Euler’s I" function:

<v) _ I'(y+1) (5)

k Nk+1DI'(y—k+1)
Equation (4) is generally used in time-domain sim-
ulations of fractional differentiation. As Newton’s
binomial (]) does not converge rapidly to zero
with k& when ~ is non integer, the computation
of D7x(t) depends on all values of z() between 0
and ¢ (supposing that z(t) is relaxed at ¢t = 0, i.e.
x(t) = 0 ¥t < 0). Since fractional derivatives of a
function depend on whole its past, fractional op-
erators are known to have long memory behavior.

A more concise algebraic tool can be used to rep-
resent fractional systems: the Laplace transform
(Oldham and Spanier, 1974):

ZL{Dz(t)} =s"X(s) ifx(t)=0Vt<0

This property allows to write the fractional dif-
ferential equation (1), provided u(t) and y(t) are
relaxed at ¢ = 0, in a transfer function form:

ma
> a;s®
i=0
mp
1+ Z bjSBj
j=1

(aiaﬁj) € Ria Vi
ma, Vi =1,2,....m

F(s) = (6)

where (a;,b;) € R?,
0.1,...,

B-

Definition 1. A transfer function F(s) is commen-
surate of order + iff it can be written as F(s) =
S(s7), where S = % is a rational function with
T and R two co-prime polynomials. Moreover,
the commensurate order 7y is the biggest number
satisfying the aforementioned condition. 0

In other words, the commensurate order ~ is
defined as the biggest real number such that all
differentiation orders are integer multiples of ~.

A modal form transfer function can then be ob-
tained, provided (6) is strictly proper:

Ap

S'V—sk

Uk

ZZ

k=1qg=1

(7)

where s;, k= 1,--- , N are known as the s”-poles
of integer multiplicity gq.
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1. Recursive approximation of a fractional
differentiator with poles and zeroes

1.2 Stability theorem

Fig.

(Matignon, 1998, revisited) A commensurate (of
order «y) transfer function F'(s) is BIBO stable iff

(8)

0<y<2
and for every s7-pole, s € C of F(s) :

9)

s
jaxg ()] > 72

1.8 FEquivalence with rational models

Due to the consideration that real physical sys-
tems generally have bandlimited fractional behav-
ior and due to the practical limitations of input
and output signals (Shannon’s cut-off frequency
for the upper band and the spectrum of the input
signal for the lower band), fractional operators are
usually approximated by high order rational mod-
els. As a result, a fractional model and its rational
approximation have the same dynamics within
a limited frequency band. The most commonly
used approximation of s in the frequency band
[wa,wp] is the recursive distribution of zeros and
poles proposed by Oustaloup (1983). Trigeassou et
al. (1999) suggested to use an integrator outside
the frequency range [wa,wp]| instead of a gain:

. 1—
- Co (14 i !
S — S[UJA WB] ? 1 + i

S

UJ

N
/ —
Wiy = nw; and

where w; = aw},

log o

(11)

« and 7 are real parameters which depend on the
differentiation order y. The bigger N the better
the approximation of the integrator s~7.

B log an



2. SYSTEM IDENTIFICATION

Frequency-domain system identification using frac-
tional models was initiated by the Ph. D. thesis
of (Le Lay, 1998). Time-domain system identifi-
cation using fractional differentiation models was
initiated by the Ph.D. theses of Le Lay (1998),
Lin (2001), and Cois (2002). Mainly two classes
of models were developed: Equation-Error-based
models and Output-Error-based models, both of
which are presented in this section. Recently
Malti et al. (2005) synthesized fractional orthogo-
nal bases generalizing Laguerre, Kautz and BOG
bases to fractional differentiation orders.

2.1 Equation-error models

Equation-error-based models are linear in coef-
ficients. The identified system is assumed to be
initially at rest, modeled by (1), and characterized
by input/output coefficient’s vector:

It (12)

0= [ao...amAbl...me

A priori knowledge is generally used to fix the dif-
ferentiation orders ayg, ..., m 51, - - -, Bmp . Usu-
ally a commensurate order « is chosen and then
all its multiples fixed up to a given order, say G, 5,
Qm,, 1s generally set to (,,, — for strictly proper
systems.

il .
> a8t
i=0

B g

i .

1+ Z bjS]V
j=1
Consider observed data u(t) and y*(t) = y(t) +
p(t), where p(t) is a perturbation signal, collected
at regular samples: koTs, (ko + 1)Ts,..., (ko +
K — 1)Ts. The most basic estimation method
consists of computing fractional derivatives of in-
put/output signals from sampled data by applying
(4). The output can be written in a regression
form:

F(s) = (13)

y(t) = ¢ (t)0 (14)
where parameters and regression vectors are re-
spectively given by (12) and:

¢*(t) = {DQOU (t)--- D (t)

DYy ()= Dy ()] 1P

The estimated parameters vector 6 of 0 is obtained
by minimizing the quadratic norm of the error:

J(8) =E"E (16)
where:
5 [s(kOTS) e(tho+1)T) )"
- e ((ko + K —1)Ty)
and
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The minimum of J is given by the classical least
squares:

R -1
eopt — (@*T@*) @*TY*

where:

&* = [¢*" (koTs) ¢*7 ((ko +1)T5)

o' (o + K -DT)]" (1)
As in the integer case, fractional differentiation of
noisy signals amplifies the noise. Hence, a linear
transformation (low-pass filter) can be applied to
(14) so as to obtain a linear continuous regression
of filtered input, uy(t), and output, y}(t), signals:

yr (t) = o5(0)0 (18)

where
. D*ug (t)--- DY auy(t
¢f(t> _ f( ) f( )

D75 (0~ Dy ()] 1)

The filter is generally chosen to be causal, station-
ary, and low-pass. Among the possible filters, Cois
et al. (2001) extend the concept of State Variable
Filters (SVF) to fractional differentiation systems.
They propose to use the following fractional filter:

A

o+ a8y + ...+ osz,ls’Y(fol) + 57Ny

H(s) =
Ny is filter’s order. The design must respect the
following specifications:

o Ny >max By, ¥my)
o Coefficients ag, oy, . .., QN,—1 must be cho-
sen such that H(s) is stable.

A particular choice of SVF, proposed by Cois et
al. (2001), is the fractional Poisson’s filter:

N (i\’f

o) (3

)0 ey
3

s
which is simply an extension of the rational
Poisson’s filter to fractional differentiation orders.
Frequency wy is fixed by the user according to the
frequency characteristics of the system to be iden-
tified (close to the highest corner frequency). The
state vector, composed of fractional derivatives of
filtered input or output signals, is defined by:

. D(Nf—l)vzf (1), D(Nf—2)vzf (t),
oo DYVzp (), 25 (1)
(20)
where z¢ denotes either us or ys. The fractional
state space representation of the filter is given by:

Dzy (t) = Agxy (t) + Byzy (t) (21)
where Ay = —



A4

Real systen

Fractional SVF

e

ag
[D;}ufm
D, (1)

[Fractional SVE|

Y

yp(t) DYyy(t)

38
DL ()]

ll,n“\ a
Lma [ b,

€f(t)

Fig. 2. Fractional state variable filters

N N Py N ¥(Ng=1) 4N
(1f)w}/ (Qf)wf“/ (Njf‘_l)wf( 7 Wy
-1 0
0 0
0 0 -1 0
and
T

Br=|w™0...0

Each state represents the derivative of a given
order of input or output signals (see figure (2)).
Fractional Poisson’s filters are simulated using (4)

The estimated parameters vector 0 of 0 is now
obtained by minimizing the quadratic norm of the
filtered equation error:

J (é) = E"E; (22)

where:

B — [Ef (koTs)  ef (ko +1)T5)

ef ((ko + K = 1)T5)
and A

1 (1) = u} (1) — 63 (00,
¢} being defined by (19).

The solution is given by the classical least squares:

- (i»fT@f)_l &,y (23)

where:

&% = [¢37 (koTy) 637 (ko + 1)T%)
65T (ko + K —1)T2)]  (24)

As in the classical case, Cois et al. (2001) showed
that the least squares estimator (23) is biased in
presence of noisy output. To eliminate the bias,
they propose to use instrumental variable method.
Parameters are estimated according to:

IV _
oopt -

T\ ! g VT
(e ;) @y;

where i’fcv is the regression matrix formed of
derivatives of filtered inputs and derivatives of
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instrumental variables. The authors also suggest
to optimize instruments by an iterative method.

2.2 Output-error models

Output-error-based models allow simultaneous es-
timation of differentiation orders and model para-
meters. Mainly, two identification methods were
proposed in the literature. They differ in the way
fractional derivatives are simulated and, at the
same time, the way differentiation orders are es-
timated. The first approach is based on discrete-
time simulation of fractional models and assumes
that the fractional behavior is present in the whole
frequency band, whereas the second one is based
on continuous-time simulation of fractional mod-
els and assumes that the fractional behavior is
present in a limited frequency band.

2.2.1. Method based on discrete-time simulation
of fractional models Here, the system to be iden-
tified is assumed to be initially at rest, modeled
by (6). It is now characterized by input/output
vector formed of coefficients and differentiation
orders 0 = [ag, ... am4, b1, ..

51)' ﬁmB]

When the number of parameters in (6) is high,
optimization algorithms applied on 6 are ill-
conditioned due to the absence of constraints on
differentiation orders. One way for introducing a
constrained optimization on differentiation orders
and, at the same time, limiting the number of
parameters consists of optimizing the commensu-
rate order vy instead of all differentiation orders.
In this case, the fractional transfer function (6) is
rewritten in a commensurate form as in (13).

Omp, 00y QU y

Numerator and denominator orders, respectively
am, and B, (both multiples of ), are fixed
as in classical rational models. Henceforth, the
system is entirely characterized by coefficients’
vector: 0 = [ag, ..., Qma, 015y bmp,y]. As far as
identification of stable systems is concerned, the
commensurate order can be constrained to ]0, 2|
(see condition (8) of stability theorem).

Considering observed data u(t) and y*(t)
y(t) + p(t), p(t) being an output white noise, the
quadratic norm:

ko+K—1
N , )
J (9) - k:zko e (kTS,H) (25)
of output error:
e (kTs, é) =y (KT3) — ¢ (sz é) (26)

is now minimized. Model’s output §(kTs, é) being
non linear in 6, gradient-based algorithms, such as



the Marquardt algorithm (Marquardt, 1963), are
used to estimate 6 iteratively:

A A -1
b = b= {5+l 3} D)
ko+K—1
J) =2 Z e (kT:)S (KTs,0): gradient
k=ko
ko+K—1
Jjg~2 > S(kT,0) ST (KT, 0): hessian  (28)
k=ko
09 (kTy,0) .
S (kTS,G) = T: output sensitivity
13 Marquardt parameter

Output sensitivity functions can be computed
by differentiating (13) with respect to a;, by,
~. In doing so, one can notice the presence of
In(s), in a}(;_(s)' Consequently, aggs)
numerically rather than analytically.

is computed

The idea of optimizing the commensurate order
instead of all differentiation orders was first intro-
duced in (Cois et al., 2000) who chose to write the
transfer function (13) in a modal form as in (7).
They however constrained all s”-poles to be real
and of multiplicity one (v =1, Vk). In general,
s7-poles can be real or complex conjugate, and of
multiplicity greater or equal to one.

2.2.2. Method based on continuous-time simula-
tion of fractional models — Trigeassou et al. (1999)
take as a building block of fractional models a non
integer integrator bounded in the frequency band
as shown in (10) and described in section 1.3. The
estimation of differentiation order is carried out by
estimating the parameters o and n of the recursive
distribution of poles and zeros (10). Once o and
7 known, the differentiation order ~ is deduced
according to (11).

For the sake of simplicity, consider the following
fractional differential system:

D7y(t) + aoy(t) = bou(t) (29)
Identification algorithm System is identified in an
output error context as defined in section 2.2.1.

In the case, the fractional behavior is believed
to be naturally limited in a frequency band, say
[wa,wp], then authors propose to estimate the
parameter vector:

0" = [ao, bo, ., 7] (30)

In all cases the optimized criterion is defined as
in (25) and (26). The coefficients are computed
recursively according to (27) and (28). Sensitivity
functions are now obtained by computing partial
derivatives of (10) with respect to each of the
parameter of (30).
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. 3. Insulated long aluminium rod heated by a
resistor

System output
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1000

Fig. 4. Estimation data
3. EXAMPLE

To illustrate the use of fractional models in system
identification, a semi-infinite dimensional thermal
system is considered. It is constituted of a long
aluminium rod heated by a resistor. To ensure
unidirectional heat transfer, the entire surface of
the rod is insulated. The temperature of the rod is
measured at a distance x = 5mm from the heated
end (figure (3)).

The thermal system is considered as a semi-
infinite plane homogenous medium initially at
ambient temperature. Losses on the surface where
the thermal flux is applied are neglected. Cois et
al. (2000) have shown that the analytical model
linking the flux density applied on the outgoing
normal surface of the medium to the temperature
measured at an abscissa x inside the medium has
a commensurate order of 0.5.

First of all, the system was identified by applying
equation-error model and more precisely the SVF
method. Identification data are plot on figure (4).
The commensurate order was set to 0.5 and the
following three-parameter model was obtained:

0.25659-5 — 0.002
Hi(s) = = 5gsaim

(31)

Then, equation error model was applied and
the commensurate order optimized. The following
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Fig. 5. Validation data

five-parameter model was obtained:
0.319 B 0.530
s0-483 1 0.016  s9-483 + 0.608

The optimal commensurate order is close to 0.5
as in the analytic model Cois et al. (2000).

Hj(s) = (32)

Next, for comparison purposes, a twelve parame-
ters rational model was identified:

Hs(s) =
—0.01s® + 0.45s* — 0.07s3 + 1.5552 + 0.03s + 105

86 4+ 0.16s5 + 13.04s5% + 1.09s3 + 31.2352 + 1.70s + 0.01
The normalized mean squared errors computed
on validation data for both fractional models are
close to each other: NMSE(H;) ~ NMSE(Hz) ~
2 x 10~%; whereas the normalized mean squared
error of the rational model is: NMSE(H;) ~ 6 x
1074,

As shown on validation data of figure (5), the
identified models give satisfactory results.

4. CONCLUSION AND OUTLOOKS

This paper presents a tutorial on system iden-
tification using fractional differentiation models.
Mainly equation-error and output-error models
were detailed. In the former differentiation orders
are fixed and only model’s parameters are esti-
mated. In the latter both differentiation orders
and model’s coefficients are estimated. One way
for limiting the number of parameters consists
of estimating the commensurate order and fixing
all its multiples. For the time being, only white
additive noise was considered. All model classes
including colored noise should be extended to frac-
tional differential orders. Moreover, system iden-
tification using stochastic signals is worth consid-
eration.

Multiple other questions regarding fractional sys-
tem identification remain unanswered. One of the
most challenging is how to take into account ini-
tial conditions? This question cannot be answered
as easily as in the rational case because a non-
integer derivative of a signal depends on its whole
past. Lorenzo and Hartley (2000) showed that the
effect of the past can be considered by taking
into account an initialization function instead of
a limited number of points. Can such a function
be identified?
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