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Abstract: This paper presents a tutorial on system identification using fractional
differentiation models. The tutorial starts with some general aspects on time
and frequency-domain representations, time-domain simulation, and stability of
fractional models. Then, an overview on system identification methods using
fractional models is presented. Both equation-error and output-error-based models
are detailed. Copyright c©2006 IFAC.
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1. INTRODUCTION

Although fractional (non integer) operators re-
mained for a long time purely a mathematical
concept, the rise of digital computers offered an
easy way for simulating numerically non integer
integro-differentiation of mathematical functions.

The last two decades have witnessed considerable
development in the use of fractional differentiation
in various fields. Fractional differentiation is now
an important tool for the international scientific
and industrial communities. In that scope, the
1st IFAC Workshop on Fractional Differentiation
and its Applications (FDA’04) was hold in 2004
in France. The use of fractional differentiation
models in system identification was initiated in
the late nineties and the beginning of this century
(Le Lay, 1998; Lin, 2001; Cois, 2002; Aoun, 2005).

Fractional models are now enough mature and are
widely used in representing some diffusive phe-
nomena (thermal diffusion, electrochemical diffu-
sion) and in modeling viscoelastic materials.
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athematical background

ctional mathematical model is based on
onal differential equation:

+ b1D
β1y (t) + · · · + bmB D

βmB y (t) =
α0u (t) + a1D

α1u (t) + · · · + amAD
αmA u (t) (1)

e differentiation orders, β1 < β2 < . . . <

α0 < α1 < . . . < αmA
, are allowed to

n-integer positive numbers. The concept of
ntiation to an arbitrary order (non-integer),

Dγ Δ
=

(
d

dt

)γ

∀γ ∈ R
∗

+

efined in the 19th century by Riemann and
ille. The γ fractional derivative of x(t) is
d as being an integer derivative of order
γ� + 1 (�.� stands for the floor operator) of
-integer integral of order 1− (m−γ) (Samko
1993):

x (t)=Dm
(
Im−γx(t)

) Δ
=

1

Γ (m − γ)

(
d

dt

)m
t∫

0

x (τ) dτ

(t − τ)
1−(m−γ)

(2)



where t > 0, ∀γ ∈ R∗

+, and the Euler’s Γ function
is defined as:

Γ(x) =

∞∫
0

e−ttx−1dt ∀x ∈ R
∗ \
{
N

−
}

(3)

A discrete-time definition of fractional derivative
was proposed by Grünwald (1867), ∀γ ∈ R∗

+:

Dγx(t) = lim
h→0

1

hγ

∞∑
k=0

(−1)k

(
γ

k

)
x(t − kh) (4)

where Newton’s binomial (γ
k) is generalized to

non-integer orders by the use of Euler’s Γ function:(
γ

k

)
=

Γ(γ + 1)

Γ(k + 1)Γ(γ − k + 1)
(5)

Equation (4) is generally used in time-domain sim-
ulations of fractional differentiation. As Newton’s
binomial (γ

k) does not converge rapidly to zero
with k when γ is non integer, the computation
of Dγx(t) depends on all values of x(t) between 0
and t (supposing that x(t) is relaxed at t = 0, i.e.
x(t) = 0 ∀t < 0). Since fractional derivatives of a
function depend on whole its past, fractional op-
erators are known to have long memory behavior.

A more concise algebraic tool can be used to rep-
resent fractional systems: the Laplace transform
(Oldham and Spanier, 1974):

L {Dγx (t)} = sγX (s) if x(t) = 0 ∀t < 0

This property allows to write the fractional dif-
ferential equation (1), provided u(t) and y(t) are
relaxed at t = 0, in a transfer function form:

F (s) =

mA∑
i=0

ais
αi

1 +
mB∑
j=1

bjsβj

(6)

where (ai, bj) ∈ R2, (αi, βj) ∈ R2
+, ∀i =

0, 1, . . . , mA, ∀j = 1, 2, . . . , mB.

Definition 1. A transfer function F (s) is commen-
surate of order γ iff it can be written as F (s) =
S(sγ), where S = T

R
is a rational function with

T and R two co-prime polynomials. Moreover,
the commensurate order γ is the biggest number
satisfying the aforementioned condition. �

In other words, the commensurate order γ is
defined as the biggest real number such that all
differentiation orders are integer multiples of γ.

A modal form transfer function can then be ob-
tained, provided (6) is strictly proper:

F (s) =

N∑
k=1

vk∑
q=1

Ak,l

(sγ − sk)
q , (7)

where sk, k = 1, · · · , N are known as the sγ-poles
of integer multiplicity q.
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tability theorem

gnon, 1998, revisited) A commensurate (of
γ) transfer function F (s) is BIBO stable iff

0 < γ < 2 (8)

r every sγ-pole, sk ∈ C of F (s) :

|arg (sk)| > γ
π

2
(9)

quivalence with rational models

o the consideration that real physical sys-
generally have bandlimited fractional behav-
d due to the practical limitations of input
utput signals (Shannon’s cut-off frequency
e upper band and the spectrum of the input
for the lower band), fractional operators are
y approximated by high order rational mod-
s a result, a fractional model and its rational
ximation have the same dynamics within
ited frequency band. The most commonly
approximation of sγ in the frequency band

B] is the recursive distribution of zeros and
proposed by Oustaloup (1983). Trigeassou et
999) suggested to use an integrator outside
equency range [ωA, ωB] instead of a gain:

→ s
−γ

[ωA,ωB ] =
C0

s

(
1 + s

ωA

1 + s
ωB

)1−γ

≈
C0

s

N∏
k=1

1 + s
ω′

k

1 + s
ωk

(10)

ωi = αω′

i, ω′

i+1 = ηω′

i and

γ = 1 −
log α

log αη
(11)

η are real parameters which depend on the
ntiation order γ. The bigger N the better
proximation of the integrator s−γ .



2. SYSTEM IDENTIFICATION

Frequency-domain system identification using frac-
tional models was initiated by the Ph. D. thesis
of (Le Lay, 1998). Time-domain system identifi-
cation using fractional differentiation models was
initiated by the Ph.D. theses of Le Lay (1998),
Lin (2001), and Cois (2002). Mainly two classes
of models were developed: Equation-Error-based
models and Output-Error-based models, both of
which are presented in this section. Recently
Malti et al. (2005) synthesized fractional orthogo-
nal bases generalizing Laguerre, Kautz and BOG
bases to fractional differentiation orders.

2.1 Equation-error models

Equation-error-based models are linear in coef-
ficients. The identified system is assumed to be
initially at rest, modeled by (1), and characterized
by input/output coefficient’s vector:

θ = [a0 . . . amA
b1 . . . bmB

]T (12)

A priori knowledge is generally used to fix the dif-
ferentiation orders α0, . . . , αmA

, β1, . . . , βmB
. Usu-

ally a commensurate order γ is chosen and then
all its multiples fixed up to a given order, say βmB

,
αmA

is generally set to βmB
−γ for strictly proper

systems.

F (s) =

αmA
γ∑

i=0

ais
iγ

1 +

βmB
γ∑

j=1

bjsjγ

(13)

Consider observed data u(t) and y∗(t) = y(t) +
p(t), where p(t) is a perturbation signal, collected
at regular samples: k0Ts, (k0 + 1)Ts, . . . , (k0 +
K − 1)Ts. The most basic estimation method
consists of computing fractional derivatives of in-
put/output signals from sampled data by applying
(4). The output can be written in a regression
form:

y(t) = φ∗(t)θ (14)

where parameters and regression vectors are re-
spectively given by (12) and:

φ∗(t) =

[
Dα0u (t) · · ·DαmA u (t)

−Dβ1y∗ (t) · · · −DβmB y∗ (t)

]
(15)

The estimated parameters vector θ̂ of θ is obtained
by minimizing the quadratic norm of the error:

J
(
θ̂
)

= ETE (16)

where:

E =

[
ε (k0Ts) ε ((k0 + 1)Ts)

· · · ε ((k0 + K − 1)Ts)

]T
and

ε (t) = y∗ (t) − φ∗(t)θ̂

The m
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inimum of J is given by the classical least
es:

θ̂opt =
(
Φ∗T

Φ∗

)
−1

Φ∗T
Y∗

:

=
[
φ∗T (k0Ts) φ∗T ((k0 + 1)Ts) . . .

φ∗T ((k0 + K − 1)Ts)
]T

(17)

the integer case, fractional differentiation of
signals amplifies the noise. Hence, a linear
ormation (low-pass filter) can be applied to
o as to obtain a linear continuous regression
ered input, uf(t), and output, y∗

f(t), signals:

yf (t) = φ∗

f (t)θ (18)

) =

[
Dα0uf (t) · · ·DαmA uf (t)

−Dβ1y∗

f (t) · · · −DβmB y∗

f (t)

]
(19)

lter is generally chosen to be causal, station-
nd low-pass. Among the possible filters, Cois
(2001) extend the concept of State Variable
s (SVF) to fractional differentiation systems.
propose to use the following fractional filter:

=
A

α0 + α1sγ + ... + αNf−1sγ(Nf−1) + sγNf

s filter’s order. The design must respect the
ing specifications:

f > max (βmB
, αmA

)
oefficients α0, α1, . . . , αNf−1 must be cho-
en such that H(s) is stable.

ticular choice of SVF, proposed by Cois et
001), is the fractional Poisson’s filter:

= 1((
s

ωf

)n

+1

)Nf
=

ω
nNf

f(
Nf
1

)
ωn

f
s

n

(
Nf−1

)
..

(
Nf

Nf−1

)
ω

n

(
Nf−1

)
f

sn + ω
nNf

f

h is simply an extension of the rational
n’s filter to fractional differentiation orders.
ency ωf is fixed by the user according to the
ncy characteristics of the system to be iden-
(close to the highest corner frequency). The
vector, composed of fractional derivatives of
d input or output signals, is defined by:

=

[
D(Nf−1)γzf (t) ,D(Nf−2)γzf (t) ,

. . . ,Dγzf (t) , zf (t)

]T
(20)

zf denotes either uf or yf . The fractional
space representation of the filter is given by:

Dγxf (t) = Afxf (t) + Bfzf (t) (21)

Af = −



Fig. 2. Fractional state variable filters⎡
⎢⎢⎢⎢⎢⎢⎣
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and

Bf =
[

ω
γNf

f 0 . . . 0
]T

Each state represents the derivative of a given
order of input or output signals (see figure (2)).
Fractional Poisson’s filters are simulated using (4)

The estimated parameters vector θ̂ of θ is now
obtained by minimizing the quadratic norm of the
filtered equation error:

J
(
θ̂
)

= Ef
TEf (22)

where:

Ef =

[
εf (k0Ts) εf ((k0 + 1)Ts)

· · · εf ((k0 + K − 1)Ts)

]T
and

εf (t) = y∗

f (t) − φ∗

f (t)θ̂,

φ∗

f being defined by (19).

The solution is given by the classical least squares:

θ̂ =
(
Φf

TΦf

)
−1

Φf
TY∗

f (23)

where:

Φ∗

f =
[
φ∗

f
T (k0Ts) φ∗

f
T ((k0 + 1)Ts) . . .

φ∗

f
T ((k0 + K − 1)Ts)

]
(24)

As in the classical case, Cois et al. (2001) showed
that the least squares estimator (23) is biased in
presence of noisy output. To eliminate the bias,
they propose to use instrumental variable method.
Parameters are estimated according to:

θ̂IV
opt =

(
ΦIV

f

T
Φ∗

f

)
−1

Φf
IVT

Y∗

f

where ΦIV
f is the regression matrix formed of

derivatives of filtered inputs and derivatives of
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mental variables. The authors also suggest
imize instruments by an iterative method.

utput-error models

t-error-based models allow simultaneous es-
ion of differentiation orders and model para-
s. Mainly, two identification methods were
sed in the literature. They differ in the way
onal derivatives are simulated and, at the
time, the way differentiation orders are es-
ed. The first approach is based on discrete-
imulation of fractional models and assumes
he fractional behavior is present in the whole
ncy band, whereas the second one is based
ntinuous-time simulation of fractional mod-
d assumes that the fractional behavior is
t in a limited frequency band.

Method based on discrete-time simulation
tional models Here, the system to be iden-
is assumed to be initially at rest, modeled
). It is now characterized by input/output

formed of coefficients and differentiation
s θ = [a0, . . . amA

, b1, . . . bmB
, α0, . . . αmA

,

. βmB
].

the number of parameters in (6) is high,
ization algorithms applied on θ are ill-
tioned due to the absence of constraints on
ntiation orders. One way for introducing a
ained optimization on differentiation orders
at the same time, limiting the number of
eters consists of optimizing the commensu-
rder γ instead of all differentiation orders.
s case, the fractional transfer function (6) is
ten in a commensurate form as in (13).

rator and denominator orders, respectively
and βmB

(both multiples of γ), are fixed
classical rational models. Henceforth, the

is entirely characterized by coefficients’
: θ = [a0, . . . , amA

, b1, . . . , bmB
, γ]. As far as

fication of stable systems is concerned, the
ensurate order can be constrained to ]0, 2[
ondition (8) of stability theorem).

dering observed data u(t) and y∗(t) =
p(t), p(t) being an output white noise, the

atic norm:

J
(
θ̂
)

=

k0+K−1∑
k=k0

ε2
(
kTs, θ̂

)
(25)

put error:

ε
(
kTs, θ̂

)
= y∗ (kTs) − ŷ

(
kTs, θ̂

)
(26)

minimized. Model’s output ŷ(kTs, θ̂) being

near in θ̂, gradient-based algorithms, such as



the Marquardt algorithm (Marquardt, 1963), are

used to estimate θ̂ iteratively:

θ̂i+1 = θ̂i −
{

[J′′

θθ + ξI]
−1

J′

θ

}
θ=θ̂i

(27)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J
′

θ = −2

k0+K−1∑
k=k0

ε (kTs)S
(
kTs, θ̂

)
: gradient

J
′′

θθ ≈ 2

k0+K−1∑
k=k0

S

(
kTs, θ̂

)
S

T
(
kTs, θ̂

)
: hessian

S

(
kTs, θ̂

)
=

∂ŷ
(
kTs, θ̂

)
∂θ

: output sensitivity

ξ : Marquardt parameter

(28)

Output sensitivity functions can be computed
by differentiating (13) with respect to ai, bi,
γ. In doing so, one can notice the presence of

ln(s), in ∂F (s)
∂γ

. Consequently, ∂F (s)
∂γ

is computed
numerically rather than analytically.

The idea of optimizing the commensurate order
instead of all differentiation orders was first intro-
duced in (Cois et al., 2000) who chose to write the
transfer function (13) in a modal form as in (7).
They however constrained all sγ-poles to be real
and of multiplicity one (vk = 1, ∀k). In general,
sγ-poles can be real or complex conjugate, and of
multiplicity greater or equal to one.

2.2.2. Method based on continuous-time simula-
tion of fractional models Trigeassou et al. (1999)
take as a building block of fractional models a non
integer integrator bounded in the frequency band
as shown in (10) and described in section 1.3. The
estimation of differentiation order is carried out by
estimating the parameters α and η of the recursive
distribution of poles and zeros (10). Once α and
η known, the differentiation order γ is deduced
according to (11).

For the sake of simplicity, consider the following
fractional differential system:

Dγy(t) + a0y(t) = b0u(t) (29)

Identification algorithm System is identified in an
output error context as defined in section 2.2.1.

In the case, the fractional behavior is believed
to be naturally limited in a frequency band, say
[ωA, ωB], then authors propose to estimate the
parameter vector:

θT = [a0, b0, α, η] (30)

In all cases the optimized criterion is defined as
in (25) and (26). The coefficients are computed
recursively according to (27) and (28). Sensitivity
functions are now obtained by computing partial
derivatives of (10) with respect to each of the
parameter of (30).
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. Insulated long aluminium rod heated by a
esistor

100 200 300 400 500 600 700 800 900 1000
Time (s)

100 200 300 400 500 600 700 800 900 1000
Time (s)

. Estimation data

3. EXAMPLE

strate the use of fractional models in system
fication, a semi-infinite dimensional thermal

is considered. It is constituted of a long
nium rod heated by a resistor. To ensure
ectional heat transfer, the entire surface of
d is insulated. The temperature of the rod is
red at a distance x = 5mm from the heated
gure (3)).

thermal system is considered as a semi-
e plane homogenous medium initially at
nt temperature. Losses on the surface where
ermal flux is applied are neglected. Cois et
000) have shown that the analytical model
g the flux density applied on the outgoing
l surface of the medium to the temperature
red at an abscissa x inside the medium has
mensurate order of 0.5.

of all, the system was identified by applying
ion-error model and more precisely the SVF
d. Identification data are plot on figure (4).
ommensurate order was set to 0.5 and the
ing three-parameter model was obtained:

H1(s) =
0.256s0.5 − 0.002

2.585s1.5 + s
(31)

equation error model was applied and
mmensurate order optimized. The following
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Fig. 5. Validation data

five-parameter model was obtained:

H2(s) =
0.319

s0.483 + 0.016
−

0.530

s0.483 + 0.608
(32)

The optimal commensurate order is close to 0.5
as in the analytic model Cois et al. (2000).

Next, for comparison purposes, a twelve parame-
ters rational model was identified:

H3(s) =

−0.01s5 + 0.45s4
− 0.07s3 + 1.55s2 + 0.03s + 10−5

s6 + 0.16s5 + 13.04s4 + 1.09s3 + 31.23s2 + 1.70s + 0.01

The normalized mean squared errors computed
on validation data for both fractional models are
close to each other: NMSE(H1) ≈ NMSE(H2) ≈
2 × 10−4; whereas the normalized mean squared
error of the rational model is: NMSE(H1) ≈ 6 ×
10−4.

As shown on validation data of figure (5), the
identified models give satisfactory results.

4. CONCLUSION AND OUTLOOKS

This paper presents a tutorial on system iden-
tification using fractional differentiation models.
Mainly equation-error and output-error models
were detailed. In the former differentiation orders
are fixed and only model’s parameters are esti-
mated. In the latter both differentiation orders
and model’s coefficients are estimated. One way
for limiting the number of parameters consists
of estimating the commensurate order and fixing
all its multiples. For the time being, only white
additive noise was considered. All model classes
including colored noise should be extended to frac-
tional differential orders. Moreover, system iden-
tification using stochastic signals is worth consid-
eration.

Multiple other questions regarding fractional sys-
tem identification remain unanswered. One of the
most challenging is how to take into account ini-
tial conditions? This question cannot be answered
as easily as in the rational case because a non-
integer derivative of a signal depends on its whole
past. Lorenzo and Hartley (2000) showed that the
effect of the past can be considered by taking
into account an initialization function instead of
a limited number of points. Can such a function
be identified?
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entification par modèle non entier : appli-

ation en thermique. PhD thesis. Université
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emporelle par modèle non entier. PhD thesis.
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