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Abstract

Fractional differentiation systems are characterized by the presence of non-exponential aperiodic multimodes. Although rational
orthogonal bases can be used to model any L2[0,∞[ system, they fail to quickly capture the aperiodic multimode behavior
with a limited number of terms. Hence, fractional orthogonal bases are expected to better approximate fractional models
with fewer parameters. Intuitive reasoning could lead to simply extending the differentiation order of existing bases from
integer to any positive real number. However, classical Laguerre, and by extension Kautz and generalized orthogonal basis
functions, are divergent as soon as their differentiation order is non-integer. In this paper, the first fractional orthogonal basis
is synthesized, extrapolating the definition of Laguerre functions to any fractional order derivative. Completeness of the new
basis is demonstrated. Hence, a new class of fixed denominator models is provided for fractional system approximation and
identification.
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Nomenclature

(.)T transpose of a matrix.

⌊.⌋ floor operator.

δnm Dirac delta function equals 1 if n = m, and
0 otherwise.

N set of non-negative integers.

R field of real numbers.

R+ set of non negative real numbers.

R+∗ set of strictly positive real numbers.

C field of complex numbers.
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rachid.malti@laps.ims-bordeaux.fr ( R. MALTI),
Francois.Levron@math.u-bordeaux1.fr ( F. LEVRON),
alain.oustaloup@ims-bordeaux.fr ( A. OUSTALOUP).

C+ open right half-plane {s ∈ C : Re(s) > 0}.
C+ closed right half-plane {s ∈ C : Re(s) ≥ 0}.
L2[0,∞[ Lebesgue space of squared integrable func-

tions in [0,∞[.

H2(C
+) Hardy space of functions F , analytical on

C
+ and continuous on C+ such that ‖F‖2 =

1
2π

∫∞

−∞ |f(x + jy)|2 dy < ∞.

Γ(m) Euler’s Gamma function, defined as Γ (m) =
∫∞

0
e−xxm−1dx ∀m ∈ R \ {0}.

C Cholesky decomposition

1 INTRODUCTION

Over the last fifteen years, orthogonal functions have
been widely used in identification and control of linear
systems; see for instance [13,15,21,22] and their own ref-
erences. The most popular orthogonal functions used in
control engineering are Laguerre functions with a single
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pole, Kautz functions with two complex conjugate poles,
and the Generalized Orthogonal Basis (GOB) functions.
The latter extend the first two to any number of real or
complex conjugate poles. All these bases span Lebesgue
space of squared integrable functions, provided the com-
pleteness condition is satisfied [2]. They can hence ap-
proximate any linear system, including those with frac-
tional differentiation, provided its impulse response be-
longs to L2[0, ∞[. However, fractional systems, such as
thermal [5] or electrochemical [7] systems (see the special
issue of Signal Processing [17] for other fields of applica-
tion), are characterized by the presence of two kinds of
modes: exponential modes, as in rational systems, and
aperiodic multimodes [18] which decay polynomially.

Using rational orthogonal bases to approximate a frac-
tional L2[0, ∞[ system leads to a high truncation order
to capture the non-exponential mode’s behavior.

An intuitive approach to extend Laguerre functions to
fractional differentiation orders led El-Sayed [8] to sim-
ply allow their differentiation orders to be positive real
numbers without any precaution. However, Abbot [1],
commenting on El-Sayed’s work, has since proved that
classical Laguerre functions are divergent whenever their
differentiation order is non-integer.

In this paper, a fractional orthonormal basis is synthe-
sized by applying the Gram-Schmidt orthogonalization
procedure. The objective is twofold: to extrapolate La-
guerre functions to any fractional derivative, and to ob-
tain convergent functions forming a complete orthonor-
mal basis in H2(C

+). Hence, a new class of fixed denom-
inator models is provided for fractional differentiation
systems. The new orthonormal basis is governed by two
tuning parameters: an eigenvalue and a commensurable
order γ ∈]0, 2[, (all differentiation orders are multiples
of γ). Laguerre functions correspond to the special case
γ = 1. This is the first working fractional orthonormal
basis ever synthesized.

2 MATHEMATICAL BACKGROUND

2.1 Definition of fractional differentiation

Differentiation to not only integer but also non-integer
orders was defined in the 19th century by Riemann and
Liouville. This is usually termed fractional differentia-
tion. The γth fractional derivative of a continuous real
function f(t) is defined as [16]:

Dγf(t) =

1

Γ (⌊γ⌋ − γ + 1)

(

d

dt

)⌊γ⌋+1
(

∫ t

0

f (τ)

(t − τ )
γ−⌊γ⌋

dτ

)

(1)

The Laplace transform of Dγf(t), when f is relaxed at
t = 0 (f(t) and all its derivatives equal 0 for all t < 0),

is given by [16]:

L (Dγf (t)) = sγF (s) (2)

This result is coherent with the classical case when γ is
an integer. Consequently, it is easy to define a symbolic
representation of a fractional dynamic system using the
transfer function:

F (s) =

mA
∑

i=0

ais
αi

1 +
mB
∑

j=1

bjsβj

(3)

where ai and bj belong to R and αi and βj belong to
R+, for i = 0, 1, . . . , mA, and for j = 1, 2, . . . , mB. Both
αi and βj form strictly increasing sequences.

F (s) is called a commensurable transfer function at order
γ ∈ R+∗, iff (αi, βj) are commensurable 1 with γ. This γ
is called a commensurable order and the biggest number
is always chosen.

Time-domain simulation of fractional transfer functions
(3) is explained in [3,4,19].

2.2 Aperiodic multimodes as compared to exponential
modes

Taking the inverse Laplace transform of the following
simple fractional transfer function 1

sγ−λ
gives [18]:

K
∑

k=1

sk

γλ
etsk +

sin (γπ)

π

∫ ∞

0

xγe−tx

x2γ − 2λxγ cos (γπ) + λ2
dx

(4)
where sk, k = 1, . . . , K, are the s-roots of sγ − λ = 0.
The number of s-roots, K, depends on γ as shown in
[18]. Expression (4) shows the presence of exponential
modes in the left part, as in rational transfer functions.
Also aperiodic multimodes, which decay polynomially,
are present in the right part [18]. When γ is integer there
is no aperiodic multimode as sin (γπ) = 0 is a factor of
the right part.

Although classical rational orthogonal functions span
completely L2[0,∞[, they are less appropriate for a good
approximation of the polynomially decaying behaviors
when using a limited number of terms. Hence, fractional
orthogonal bases are expected to better approximate
fractional models with fewer parameters.

1 ‘Exactly divisible by the same unit [number] an integral
number of times’ [6].
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2.3 Stability condition

Matignon [14, theorem 2.21 p.150] has established the
stability condition of any commensurable fractional
transfer function (3). However, here is a revisited version
of his theorem:

Stability theorem: A commensurable γ-order transfer

function F (s) = S(sγ) = T (sγ )
R(sγ ) , where T and R are two

coprime polynomials, is BIBO stable iff

0 < γ < 2 (5)

and for every s ∈ C such that R(s) = 0

|arg (s)| < γ
π

2
(6)

�

Stability conditions (5) and (6) will be necessary when
choosing fractional generating functions for the synthesis
of the new basis.

2.4 Fractional transfer functions belonging to H2(C
+)

Contrary to rational systems, the stability condition
does not guarantee that a fractional transfer function
belongs to H2(C

+). The H2 norm of fractional systems
is extensively studied in [12], where it is demonstrated
that a stable fractional transfer function as defined in
(3), where conditions (5) and (6) are satisfied, belongs
to H2(C

+) iff its relative degree is greater than 1
2 :

βmB
− αmA

>
1

2
(7)

Condition (7) will be necessary when choosing fractional
generating functions for the synthesis of the new basis.

2.5 Scalar product, orthogonality and Laguerre func-
tions

Laguerre, Kautz and GOB functions form complete or-
thonormal bases in L2[0,∞[, according to the usual def-
inition of the scalar product:

〈ln, lm〉 =

∞
∫

0

ln (t) lm (t) dt = δnm (8)

where the reciprocal in the frequency domain is obtained
by Plancherel’s theorem:

〈Ln, Lm〉 =
1

2πj

j∞
∫

−jω

Ln (jω)Lm (jω)dω = δnm (9)

Any function f(t) ∈ L2[0,∞[, thus satisfying:

〈f, f〉
1
2 = ‖f‖2 < ∞ (10)

can be written as a linear combination of these functions:

F (s) =

∞
∑

n=0

anLn (s) (11)

F (s) is the Laplace transform of f(t). Usually, (11) is
truncated to a given order N which is justified by the
convergence of Fourier coefficients as n tends to infinity.
F (s) is hence approximated by the finite sum:

F (s) ≈ FN (s) =

N
∑

n=0

anLn (s) (12)

The Fourier coefficients are computed by minimizing the
least squares criterion:

J =

∞
∫

0

(f(t) − fN (t))
2
dt (13)

which corresponds to the L2 norm of the approximation
error, according to the definition of the scalar product
(8):

J = ‖f(t) − fN (t)‖2
2 (14)

Minimizing J and taking advantage of the orthonormal-
ity, Fourier coefficients are obtained by computing the
scalar product in time or frequency domains:

an = 〈f, ln〉 = 〈F, Ln〉 (15)

As stated previously ln(t) can represent any set of or-
thonormal functions in L2[0,∞[. In the case where La-
guerre functions are used, ln(t) is defined as:

ln(t) =
√

2λ
eλt

n!

dn
(

tne−2λt
)

dtn
(16)

It has the following Laplace transform:

Ln(s) =
√

2λ
(s − λ)

n

(s + λ)
n+1 (17)

Laguerre functions are well suited for modelling systems
with a dominant time constant, because they have a sin-
gle pole. Abbott [1] has shown that Laguerre functions
(16) are divergent as soon as n becomes non-integer:

∞
∫

0

(ln(t))
2
dt = ∞, ∀n ∈ R

+∗ \ N (18)
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Therefore, the generalization of Laguerre functions by
simply allowing their differentiation order to be real is
not possible.

3 Construction of the orthonormal basis

This section contains the main results of the paper.

3.1 Gram-Schmidt orthogonalization procedure

Given an arbitrary set of functions {Fm}m=m0,m0+1,... M ,
where Fm ∈ H2(C

+) ∀m, the orthonormalized func-
tions {Gm}m=m0,m0+1,... M are obtained, according to
the Gram-Schmidt procedure, as a linear combination
of functions {Fm}m=m0,m0+1,... M :

G = ∆ × F (19)

where

G =
[

Gm0
(s) Gm0+1 (s) · · · GM (s)

]T

, (20)

F =
[

Fm0
(s) Fm0+1 (s) · · · FM (s)

]T

, (21)

and ∆ is a lower-triangular orthogonalization matrix ob-
tained as follows. Since G is the vector of orthonormal
functions:

〈

G,GT
〉

=
















〈Gm0
, Gm0

〉 〈Gm0
, Gm0+1〉 · · · 〈Gm0

, GM 〉

〈Gm0+1, Gm0
〉 . . .

...
...

... · · · . . .
...

〈GM , Gm0
〉 〈GM , Gm0+1〉 · · · 〈GM , GM 〉

















= I

(22)

I denotes M by M identity matrix. Thus, using (19):

〈

G,GT
〉

= ∆
〈

F,FT
〉

∆T = I (23)

The solution of the previous quadratic form is given by
Cholesky decomposition C of the inverse Gram-matrix
〈

F,FT
〉

:

∆ = C

(

〈

F,FT
〉−1

)

(24)

As a result, the functions of the orthonormal set are
given by:

G = C

(

〈

F,FT
〉−1

)

× F (25)

Evaluating the Gram-matrix
〈

F,FT
〉

requires, first of

all, generating functions to be defined.

3.2 Generating functions

To extrapolate Laguerre functions to any fractional or-
der derivative, the {Fm(s)}m≥m0

m ∈ N set of generat-
ing functions is chosen where:

Fm(s) =
1

(sγ + λ)
m (26)

and
λ ∈ R

+∗, γ ∈]0, 2[ (27)

Both conditions in (27) stem from the stability theorem
in 2.3, and with impulse response of (26) set to be real-
valued. To guarantee that the generating function (26)
belongs to H2(C

+), an additional condition is obtained
by applying (7) on (26):

γm >
1

2
(28)

Keeping in mind that m is integer, yields:

m ≥ m0 =

⌊

1

2γ

⌋

+ 1 (29)

Condition (29) defines the starting value m0 of the sub-
script m to orthogonalize the set of functions Fm(s) de-
fined in (26).

3.3 Evaluating elements of the Gram-matrix
〈

F,FT
〉

Each element 〈Fh, Fm〉 of the matrix 〈F,FT 〉 is a scalar
product of two generating functions (26):

〈Fh, Fm〉 =
1

2π

∞
∫

−∞

Fh (jω)Fm (jω)dω

=
1

2π

∞
∫

−∞

(

1

(jω)γ + λ

)h(
1

(−jω)γ + λ

)m

dω (30)

Evaluating integral (30) is not an easy task because
Fm(s) is a complex multivalued function when γ 6= 1.
Consequently, a plane cut is necessary. Integral (30) is
solved in appendix A.

3.4 Completeness of the fractional basis

Completeness theorem: Define Fm(s) as in (26)
with conditions (27) satisfied. Then, the linear span of

{Fm}m=m0,...,∞, where m0 =
⌊

1
2γ

⌋

+ 1, is dense in

H2(C
+). �
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ReRe

ℑm ℑm

w = 1
sγ+λ

C+

Ω

1
λ

Γ

Fig. 1. Conformal mapping 1

sγ+λ
of C

+ onto Ω for 0 < γ < 1.

When 1 < γ < 2, Ω intrudes in C \ C+.

Proof: To prove the completeness of the generating
functions {Fm}m=m0,...,∞ in H2(C

+), it suffices to prove
the completeness in a dense subset of H2(C

+), denoted
H, since for a given ε > 0 and K ∈ H2(C

+), there exists
an H ∈ H satisfying:

‖K − H‖2 < ε

For a given positive integer N , there exists a dense subset
H of H2(C

+) satisfying [9, Corollary 3.3]:

(i) H(s) is continuous on C+ and infinitely differen-
tiable on the imaginary axis for all H ∈ H.

(ii) lim
|s|→∞

|s|N |H(s)| = 0, ∀s ∈ C+.

For a given H ∈ H, let

G(s) = (sγ + λ)m0H(s) (31)

Due to (i) and by setting N > γm0 in (ii), G is analytic

on C+, continuous on C+ and vanishes when |s| → ∞.

Let w = F1(s) = 1
sγ+λ

. F1 is a bijective conformal map-

ping from C+ on bounded open domain Ω limited by
Jordan curve Γ, where Γ is a union of two circular arcs
with end points 0 and 1

λ
, as shown in fig. 1.

Define

F(z) = G ◦ F−1
1 (z), z ∈ Ω (32)

Thus, F is analytic on Ω and continuous on its clo-
sure Ω. All the assumptions in Mergelyan’s theorem [20,
theorem 20.5] are satisfied and there is a polynomial

P (z) =
N
∑

n=0
anzn such that:

|F(z) − P (z)| ≤ ǫ, ∀z ∈ Ω (33)

which, replacing z by F1(s), yields

∣

∣

∣

∣

∣

G(s) −
N
∑

n=0

an(F1(s))
n

∣

∣

∣

∣

∣

≤ ǫ, ∀s ∈ C+

Replacing G(s) by its definition (31), noting that
Fn(s) = (F1(s))

n
, and integrating the square of the ob-

tained expression along the imaginary axis, yields the
desired result:

j∞
∫

−j∞

∣

∣

∣

∣

∣

H(s) −
N
∑

n=0

anFn+m0
(s)

∣

∣

∣

∣

∣

2

ds ≤ ǫ2
j∞
∫

−j∞

|Fm0
(s)|2 ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H(s) −
N
∑

n=0

anFn+m0
(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ ε

Thus, the linear span of {Fm}m0,m0+1,...,∞ is dense in
H2(C

+), which completes the proof. �

Consequently, the linear span {Gm}m≥m0
is dense in

H2(C
+) too, and the orthonormal functions {Gm}m≥m0

can be used to approximate any finite energy system.

Important remarks

- The new basis has two tuning parameters: an eigen-
value λ and a commensurable order γ.

- The only necessary conditions to build the basis are
λ > 0 and 0 < γ < 2.

- When the commensurable order γ equals 1, the
built basis corresponds exactly to the classical La-
guerre basis. Hence, the fractional Laguerre basis
can be considered as an extrapolation of the ra-
tional Laguerre basis for any commensurable order
γ ∈]0, 2[.

- For a large number of functions (large M), bad con-

ditioning of
〈

F,FT
〉

matrix (to be inverted in (24))

may occur. Orthogonal functions can then be com-
puted using a recursive Gram-Schmidt procedure:















































Gm0
(s) =

Fm0
(s)

||Fm0
(s)||

Gm(s) =

Fm(s) −
m−1
∑

i=m0

〈Fm(s), Gi(s)〉Gi(s)

∥

∥

∥

∥

Fm(s) −
m−1
∑

i=m0

〈Fm(s), Gi(s)〉Gi(s)

∥

∥

∥

∥

,

for m > m0

(34)
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3.5 Examples

When the differentiation order γ = 0.4 and the eigen-
value λ = 1.5, condition (29) imposes starting from
m0 = 2. Hence, the first three orthonormal functions
are:

G2(s) = 3.18
(s0.4+1.5)2

G3(s) = 4.62
(s0.4+1.5)2 + −18.48

(s0.4+1.5)3

G4(s) = 5.87
(s0.4+1.5)2 + −53.05

(s0.4+1.5)3
+ 95.50

(s0.4+1.5)4

(35)

When the differentiation order is integer, γ = 1, and the
eigenvalue λ = 1.5, the first three orthonormal functions
are:

G1(s) = 1.73
s+1.5

G2(s) = 1.73
s+1.5 + −5.19

(s+1.5)2

G3(s) = 1.73
s+1.5 + −10.39

(s+1.5)2
+ 15.59

(s+1.5)3

(36)

This corresponds exactly to the classical definition of
Laguerre functions (17), which are thus considered as a
special case of the new fractional basis when γ = 1.

When the differentiation order γ = 1.5 and the eigen-
value λ = 1.5, the first three orthonormal functions are:

G1(s) = 1.49
s1.5+1.5

G2(s) = 1.06
s1.5+1.5 + −2.38

(s1.5+1.5)2

G3(s) = 1.06
s1.5+1.5 + −2.77

(s1.5+1.5)2
+ 3.56

(s1.5+1.5)3

(37)

Fig. 2 shows impulse responses of the first three orthogo-
nal functions for λ = 1.5 and various values of γ. One can
notice that fractional orthonormal functions are more
oscillatory when the differentiation order increases be-
yond 1. Also the impulse response at t = 0 can be finite
or infinite depending on γ. Proof is given by the initial
value theorem:

lim
t→0

gm (t) = lim
s→∞

sGm (s) =















∞ if 0 < γ < 1
√

2λ if γ = 1

0 if 1 < γ < 2

(38)

4 System identification using fractional La-
guerre basis

Fractional Laguerre basis can be used in output error
identification with fixed denominator models [22]. Prior
knowledge can be used to fix both tuning parameters γ
and λ. These two parameters are then plugged in (26),
and the orthonormal basis is synthesized using (25).

0 5 10 15
−1

−0.5

0

0.5

1

1.5

2

Time(s)

G
3

G
2

G
1

λ = 1.5 and γ = 0.4

0 5 10 15
−1

−0.5

0

0.5

1

1.5

2

Time(s)

G
3

G
2

G
1

λ = 1.5 and γ = 1

0 5 10 15
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

G
3

G
2

G
1

λ = 1.5 and γ = 1.5

Fig. 2. Impulse responses of the first three orthogonal func-
tions for λ = 1.5 and for different values of γ

Then, Fourier coefficients are computed using a least
squares estimate.

Assume u(t), y(t), t ∈ [0, T ] input and output data gen-
erated using a finite energy linear fractional model H .
So H(s) can be approximated by a linear combination
of orthonormal functions with:

H(s) ≈
M
∑

m=m0

gmGm(s) = gT G(s) (39)

where G is defined by (20) and

g = [gm0
gm0+1 . . . gM ]T

The truncation order M is fixed to obtain a satis-
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factory approximation. Akaike and Young informa-
tion criteria can be used. The identification proce-
dure consists of computing optimal coefficient vector
g = [gm0

, gm0+1, . . . , gM ]T which minimizes the least
square error:

J =
1

T

T
∫

0

(ε(t))
2
dt = 〈ε, ε〉 (40)

where

ε(t) = y(t) −
M
∑

m=m0

gmuGm
(t) (41)

y(t) and uGm(t) are respectively the system and orthog-
onal network outputs:

uGm
(t) = Gm(t) ⊗ u(t)

Setting:

uG(t) =
[

uGm0
(t) uGm0+1

(t) · · · uGM
(t)
]

,

the optimum estimation of Fourier coefficients ĝ is given
by the least squares formula:

ĝ =





T
∫

0

uG(t)T uG(t)dt





−1
T
∫

0

uG(t)T y (t) dt (42)

Or, after a numerical discretization, by defining Y as a
column vector of system’s output and Φ as a regression
matrix where columns are filter outputs, ĝ can be ap-
proximated by:

ĝ = (ΦT Φ)−1ΦTY (43)

All properties of least squares estimates (persistent ex-
citation, variance on estimates) as stated in [11] apply
in this context.

Example

To illustrate the use of fractional Laguerre bases in sys-
tem identification, the following academic system is sim-
ulated and then identified in a noisy context:

H(s) =
1

s0.7 + 2
+

1

s0.8 + 2
+

1

s0.9 + 1
(44)

The pseudo random binary sequence used as input sig-
nal and the output signal are plotted in fig. 3. Output
signal is corrupted by a stationary zero mean Gaussian
white noise with a signal to noise ratio arbitrarily set to

10 log10

(

Signal energy
Noise energy

)

= 13dB.
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O
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H is approximated using two fractional Laguerre func-
tions. Least squares error, J , is computed in terms of dif-
ferentiation order γ varying from 0.55 to 1.9 and eigen-
value λ varying from 0.55 to 3. For each pair of (γ, λ),
generating functions (26) are orthogonalized, and then
Fourier coefficients, g, computed using the least squares
formula (42). Iso-contours of J are plotted in fig. 4 for γ ∈
[0.55, 1] and λ ∈ [0.5, 3]. Then, tuning parameters are
chosen around the optimal values (γ, λ) = (0.75, 1.75).
The optimal differentiation order is far from an inte-
ger value, as expected, because the initial system (44) is
fractional. The optimal model is:

Ĥ(s) = 1.90G1(s) − 0.29G2(s) (45)
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true system, the fractional Laguerre model, the Laguerre
model and the generalized orthogonal basis model is almost
indistinguishable.

where G1(s) and G2(s) are the orthonormal functions:

G1(s) =
1.51

s0.75 + 1.75
(46)

G2(s) =
1.34s0.75 − 4.68

s1.50 + 3.50s0.75 + 3.06
(47)

(48)

The normalized residual,

JdB = 10 log











T
∫

0

(ε(t))
2
dt

T
∫

0

(y(t))
2
dt











≈ −13dB, (49)

is mainly due to the injected noise (as SNR is 13dB). The
modeling error is hence very small, which is confirmed
when noise-free validation data are applied to the true
system and to the obtained model.

For further comparison, the system is identified using
classical orthogonal bases. Six Laguerre functions or two
GOB functions with optimal poles provide similar ap-
proximation errors: JdB = −12.5dB. Optimal Kautz
poles converge to the optimal Laguerre pole (the imag-
inary parts equal zero). Fig. 5 shows that time-domain
outputs of the true system (44) and the identified models
are almost identical. A better distinction is obtained in
the frequency domain and fig. 6 shows that the fractional
Laguerre model clearly exhibits a better approximation.
Fractional models can indeed have any asymptotic slope
in the gain diagram and any asymptotic phase lock in
the phase diagram [18].

5 CONCLUSION

An orthonormal fractional Laguerre basis has been syn-
thesized for system approximations. It has two tuning
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Fig. 6. Bode diagrams of the true system, the fractional
Laguerre model, the Laguerre model, and the GOB model.

parameters: an eigenvalue and a commensurable differ-
entiation order γ ∈]0, 2[. Classical Laguerre functions
are shown as a special case of the new basis correspond-
ing to γ = 1. This is the first fractional basis ever devel-
oped. An academic system identification example shows
the advantage of using a fractional basis as compared to
a rational one.

A Computing scalar product 〈Fh, Fm〉

Fh and Fm are the orthogonalized functions defined by
(26).

〈Fh, Fm〉 =

〈

1

(sγ + λ)
h
,

1

(sγ + λ)
m

〉

(A.1)

where λ ∈ R+∗, γ ∈ R+∗, h ≥ m0, m ≥ m0 and m0 =
⌊

1
2γ

⌋

+ 1.

〈Fh, Fm〉 =
1

2π

+∞
∫

−∞

1

((jω)γ + λ)
h

(

1

((jω)γ + λ)
m

)

dω

(A.2)
then

〈Fh, Fm〉 = 1
2π

∞
∫

0

dω

((jω)γ+λ)h(jγωγ+λ)
m

+ 1
2π

∞
∫

0

dω

((−jω)γ+λ)h((−j)γωγ+λ)
m

(A.3)

The following change of variable is applied: ωγ = x ,

dω = 1
γ
x

1
γ
−1dx. Also, by defining:

I

(

ζ, η,
1

γ
, h, m

)

=

∞
∫

0

x
1
γ
−1dx

(ζx + 1)
h

(ηx + 1)
m

(A.4)
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(A.3) can be rewritten as:

〈Fh, Fm〉 = 1
γ2πλh+m

[

I
(

λ−1ej π
2

γ , λ−1e−j π
2

γ , 1
γ
, h, m

)

+I
(

λ−1e−j π
2

γ , λ−1ej π
2

γ , 1
γ
, h, m

)]

(A.5)

Let q =
⌊

1
γ

⌋

and ρ be the non-integer part of 1
γ
.

Depending on the value of γ, integral I is computed
differently. Hence the following two decompositions:

• If 0 < γ < 2 and 1
γ

/∈ N

I
(

ζ, η, 1
γ
, h, m

)

=
∞
∫

0

(

h−1
∑

l=0

Alx
ρ−1

(ζx+1)h−l +
m−1
∑

l=0

Blx
ρ−1

(ηx+1)m−l

)

dx

(A.6)
where

Al =
q!

(m − 1)!ζl
×

l
∑

k=Max(0,l−q)

(

(m + k − 1)!

k!(l − k)!(q + k − l)!

(−η)k(−ζ)l−q−k

(− η
ζ

+ 1)m+k

)

(A.7)

and

Bl =
q!

(h − 1)!ηl
×

l
∑

k=Max(0,l−q)

(

(h + k − 1)!

k!(l − k)!(q + k − l)!

(−ζ)k(−η)l−q−k

(− ζ
η

+ 1)h+k

)

(A.8)

By applying formula [3.194, 4 p. 285] of [10],

∞
∫

0

xρ−1dx

(ζx + 1)l
=

π(−1)l−1

ζρsin(ρπ)

(

ρ − 1

l − 1

)

, if l > ρ (A.9)

The integral (A.6) is:

I

(

ζ, η,
1

γ
, h, m

)

=

π

ζρsin(ρπ)

h−1
∑

l=0

Al(−1)h−l−1
(

ρ−1
h−l−1

)

+

π

ηρsin(ρπ)

m−1
∑

l=0

Bl(−1)m−l−1
(

ρ−1
m−l−1

)

(A.10)

• If 0 < γ < 2 and 1
γ
∈ N

I

(

ζ, η,
1

γ
, h, m

)

=

∞
∫

0

[

A′
h−1 + B′

m−1

(ζx + 1)(ηx + 1)

+

h−2
∑

l=0

A′
l

(ζx + 1)h−l
+

m−2
∑

l=0

B′
l

(ηx + 1)m−l

]

dx (A.11)

where

A′
l =

(q − 1)!

(m − 1)!ζl
×

l
∑

k=Max(0,l−q+1)
(

(m + k − 1)!

k!(l − k)!(q + k − l − 1)!

(−η)k(−ζ)l−q−k+1

(− η
ζ

+ 1)m+k

)

(A.12)

and

B′
l =

(q − 1)!

(h − 1)!ηl

l
∑

k=Max(0,l−q+1)
(

(h + k − 1)!

k!(l − k)!(q + k − l − 1)!

(−ζ)k(−η)l−q−k+1

(− ζ
η

+ 1)h+k

)

(A.13)

Integral I can be computed using:

∞
∫

0

dx

(ζx + 1)l
=

1

ζ(l − 1)
, if l > 1 (A.14)

and

∞
∫

0

dx

(ζx + 1)(ηx + 1)
=

ln(ζ) − ln(η)

ζ − η
(A.15)

Integral (A.11) is now:

I

(

ζ, η,
1

γ
, h, m

)

=
(A′

h−1 + B′
m−1)

ζ − η
(ln(ζ) − ln(η))

+

h−2
∑

l=0

A′
l

ζ(h − l − 1)
+

m−2
∑

l=0

B′
l

η(m − l − 1)
(A.16)

The scalar product (A.1) can be deduced from (A.5) and
(A.10) when 1

γ
/∈ N, and from (A.5) and (A.16) when

1
γ
∈ N. �
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