Peggy Cellier

Sébastien Ferré

Olivier Ridoux

Mireille Ducassé

A Parameterized Algorithm for Exploring Concept Lattices

Formal Concept Analysis (FCA) is a natural framework for learning from positive and negative examples. Indeed, learning from examples results in sets of frequent concepts whose extent contains only these examples. In terms of association rules, the above learning strategy can be seen as searching the premises of exact rules where the consequence is fixed. In its most classical setting, FCA considers attributes as a non-ordered set. When attributes of the context are ordered, Conceptual Scaling allows the related taxonomy to be taken into account by producing a context completed with all attributes deduced from the taxonomy. The drawback, however, is that concept intents contain redundant information. In this article, we propose a parameterized generalization of a previously proposed algorithm, in order to learn rules in the presence of a taxonomy. The taxonomy is taken into account during the computation so as to remove all redundancies from intents. Simply changing one component, this parameterized algorithm can compute various kinds of concept-based rules. We present instantiations of the parameterized algorithm for learning positive and negative rules.

Introduction

Learning from examples is a fruitful approach when it is not possible to a priori design a model. It has been mainly tried for classification purposes [START_REF] Mitchell | Machine Learning[END_REF]. Classes are represented by examples and counter-examples, and a formal model of the classes is learned by a machine.

Formal Concept Analysis (FCA) [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF] is a natural framework for learning from positive and negative examples [START_REF] Kuznetsov | Machine learning and formal concept analysis[END_REF]. Indeed, learning from positive examples (respectively negative examples) results in sets of frequent concepts with respect to a minimal support, whose extent contains only positive examples (respectively negative examples). In terms of association rules [AIS93,AS94], the above learning strategy can be seen as searching the premises of exact rules where the consequence is fixed. When augmented with statistical indicators like confidence and support it is possible to extract various kinds of concept-based rules taking into account exceptions [START_REF] Pasquier | Discovering frequent closed itemsets for association rules[END_REF][START_REF] Zaki | Mining non-redundant association rules[END_REF].

The input of FCA is a formal context that relates objects and attributes. FCA considers attributes as a non-ordered set. When attributes of the context are ordered, Conceptual Scaling [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF] allows the attribute taxonomy to be taken into account by producing a context completed with all attributes deduced from the taxonomy. The drawback is that concept intents contain redundant information. In a previous work [START_REF] Cellier | An algorithm to find frequent concepts of a formal context with taxonomy[END_REF], we proposed an algorithm based on Bordat's algorithm [START_REF] Bordat | Calcul pratique du treillis de Galois d'une correspondance[END_REF] to find frequent concepts in a context with taxonomy. In that algorithm, the taxonomy is taken into account during the computation so as to remove all redundancies from intents.

There are several kinds of association rules, and several related issues: e.g. find all association rules with respect to some criteria, compute all association rules with a given conclusion or premise. We propose a generic algorithm to address the above issues. It is a parameterized generalization of our previous algorithm. It learns rules and is able to benefit from the presence of a taxonomy. The advantage of taking a taxonomy into account is to reduce the size of the results. For example, the attributes of contexts about Living Things are intrinsically ordered1 . For a target such as "suckling", a rule such as "Living Things"∧ "Animalia" ∧ "Chordata" ∧ "Vertebrata" ∧ "Mammalia" → "suckling" is less relevant than the equivalent rule "Mammalia" → "suckling" where elements redundant with respect to the taxonomy have been eliminated. The presented algorithm can compute various kinds of concept-based rules by simply changing one component. We present two instantiations which find positive and negative rules. Positive rules predict some given target (e.g. predict a mushroom as poisonous), while negative rules predict its opposite (e.g. edible).

The contributions of this article are twofold. Firstly, it formally defines FCA with taxonomy (FCA-Tax) using the Logical Concept Analysis (LCA) framework [START_REF] Ferré | An introduction to logical information systems[END_REF], where the taxonomy is taken into account as a specific logic. Secondly, it specifies a generic algorithm which facilitates the exploration of frequent concepts in a context with taxonomy. Quantitative experiments show that taking a taxonomy into account does not introduce slowdowns. Furthermore, the pruning implemented by our algorithm related to the taxonomy can often improve efficiency.

In the following, Section 2 formally defines FCA with taxonomy (FCA-Tax). Section 3 presents the generalization of the algorithm described in [START_REF] Cellier | An algorithm to find frequent concepts of a formal context with taxonomy[END_REF] to filter frequent concepts in a formal context with taxonomy. Section 4 shows how to instantiate the algorithm to learn different kind rules. Section 5 discusses experimental results.

A Logical Framework for FCA with Taxonomy

In this section, we formally describe Formal Concept Analysis with Taxonomy (FCA-Tax) using the Logical Concept Analysis (LCA [START_REF] Ferré | An introduction to logical information systems[END_REF]) framework. We first present an example of context with taxonomy. Then we briefly introduce LCA, concept-based rules, and we instanciate LCA to FCA-Tax. A taxonomy describes how the attributes of the context are ordered and thus a taxonomy is a kind of logic where the subsumption relation represents this order relation. The context given Table 1 represents the observations of threatened and endangered bird families. Data come from the web site of USFWS2 (U.S Fish and Wildlife Service). The objects are bird families and each family is described by a set of states and regions where specimens have been observed and by a status: threatened or endangered . Note that in this context objects are elements of what could be a taxonomy in another context. Figure 1 shows the taxonomy of states and regions of USA.

Example of Context with a Taxonomy

• • Alcedinidae • • Alcidae • • • • Anatidae • • Cathartide • • Charadriidae • • • • • Corvidae • • Drepanidinae • • Emberizidae • • Gruidae • • • Icteridae • • Muscicapidae • • Strigidae • • • • • • Tyrannidae • • • • • Vireonidae • •
The context given in Table 1 is the straightforward transcription of the information found on the USFWS site. Note that it is not completed with respect to FCA. For example object Accipitridae which has in its description the attribute Florida has not the attribute Southeast. The information that an object has the attribute Florida implies that it has the attribute Southeast is implicitly given by the taxonomy. We have observed that this situation is quite common.

Logical Concept Analysis (LCA)

In LCA the description of an object is a logical formula instead of a set of attributes as in FCA.

-∀f ∈ L ext(f) = {o ∈ O | d(o) f } -∀O ⊆ O int(O) = o∈O d(o)
Definition 4 (logical concept). Let K = (O, L, d) be a logical context. A logical concept is a pair c = (O, f) where O ⊆ O, and f ∈ L, such that int(O) ≡ f and ext(f) = O. O is called the extent of the concept c, i.e. ext c , and f is called its intent, i.e. int c .

The set of all logical concepts is ordered and forms a lattice: let c and c be two

concepts, c ≤ c iff ext c ⊆ ext c . Note also that c ≤ c iff int c int c . c is called a subconcept of c .
The fact that the definition of a logic is left so abstract makes it possible to accommodate non-standard types of logics. For example, attributes can be valued (e.g., integer intervals, string patterns), and each domain of value can be defined as a logic. The subsumption relation allows to order the terms of a taxonomy.

Concept-Based Rules

Definition 5 (concept-based rules). Concept-based rules consider a target W ∈ L such that W is a logical formula which represents a set of objects, ext(W), that are positive (respectively negative) examples. Concept-based rules have the form X → W , where X is the intent of a concept. A rule can have exceptions. These exceptions are measured with statistical indicators like support and confidence, defined below.

Neither FCA nor LCA take into account the frequency of the concepts they define. An almost empty concept is as interesting as a large one. Learning strategy, however, is based on the generalization of frequent patterns. Thus, statistical indicators must be added to concept analysis. There exists several statistical measures like support, confidence, lift and conviction [START_REF] Brin | Dynamic itemset counting and implication rules for market basket data[END_REF]. In the following, support and confidence are used to measure the relevance of the rules, because they are the most widespread. However, the algorithm presented in this article does not depend on this choice.

Definition 6 (support). The support of a formula X is the number of objects described by that formula. It is defined as:

sup(X) = ext(X)
where Y denotes the cardinal of a set Y.

The support of a rule is the number of objects described by both X and W . It is defined as:

sup(X → W) = ext(X) ∩ ext(W)
Definition 7 (confidence). The confidence of a rule X → W describes the probability for objects that are described by X to be also described by W . It is defined as:

conf (X → W) = ext(X) ∩ ext(W) ext(X)
The support applies as well to concepts as to rules. In the case of concept it introduces the notion of frequent concept as formalized by Definition 8.

Definition 8 (frequent concept).

A concept is called frequent with respect to a min sup threshold if sup(int c) is greater than min sup.

Formal Concept Analysis with Taxonomy

FCA-Tax is more general than FCA because the attributes of the context are ordered. It can be formalized in LCA.

Definition 9 (taxonomy). A taxonomy is a partially ordered set of terms

T AX =< T, ≤ >
where T is the set of terms and ≤ is the partial ordering. Let x and y be attributes in T , x ≤ y means that y is more general than x.

Example 1. In Figure 1, Hawai ≤ Pacific ≤ USA.

Definition 10 (predecessors, successors, Min tax). Let T AX =< T, ≤ > be a taxonomy and X in T be a set of terms. The predecessors of X in the taxonomy T AX are denoted by

↑ tax (X) = { t ∈ T | ∃x ∈ X : x ≤ t }
The successors of X in the taxonomy T AX are denoted by

succ tax (X) = { t ∈ T | ∃x ∈ X : x > t ∧ (∃t ∈ T : x > t > t) }
The successors represented by succ tax (X) are immediate ones only. succ + tax (X) is the transitive closure of succ tax (X), i.e. all successors of X in the taxonomy.

M in tax (X) is the set of minimal elements of X with respect to T AX. M in tax (X) = { t ∈ X | ∃x ∈ X : x < t }
In fact, M in tax (X) is X minus its elements that are redundant with respect to T AX.

Example 2. On the context of Table 1, with the taxonomy of Figure 1, examples of predecessors, successors and M in tax are as follows:

-

↑ tax ({Mississipi, Arizona }) = {Mississipi, Southeast, Arizona, Southwest, USA} -succ tax ({USA}) = {Pacific, Southeast, GreatLakes/BigRivers, Southwest, Northeast, Mountains/Prairie, Region7 , Region8 } -M in tax ({Florida, Southeast, USA}) = {Florida} Definition 11 (L tax). Let T AX =< T, ≤ > be a taxonomy. L tax = (L tax , tax , tax , tax , tax , ⊥ tax)
is the logic of FCA-Tax, related to T AX:

-L tax = 2 T where T is the set of terms, -tax such that X Y iff ↑ tax (X) ⊇ ↑ tax (Y), -tax is ∪ tax such that X ∪ tax Y = M in tax (X ∪ Y), -tax is ∩ tax such that X ∩ tax Y = M in tax (↑ tax (X) ∩ ↑ tax (Y)), -tax = {x ∈ T | ext({x}) = O} -⊥ tax =M in tax (T). L = {{Hawai }, {Oregon}, {Pacific}, {Southwest }, ..., {USA}, (1) {Hawai
, Southwest }, ...} {Michigan, Florida} {Michigan, Southeast } (2) {Michigan, Southeast } {Florida} = {Michigan, Florida} (3) {Mississipi } {Florida} = {Southeast } (4) = {USA} (5) ⊥ = {Hawai, Washington, Oregon, Arizona, Michigan, Mississipi, (6)
Florida, Utah, Alaska, California, Nevada } Fig. 2. Examples of operations on the attributes of the taxonomy of Figure 1.

and follow the usage of description logics, where (resp.) corresponds to intersection (resp. union) over sets of objects.

Example 3. Figure 2 shows examples of operations on the context of bird families. The language, L is the powerset of attributes (1). Florida implies Southeast in the taxonomy, thus all bird families observed in Michigan and Florida can also be said to have been observed in Michigan and Southeast (2). To be observed in Florida is an information more precise than to be observed in Southeast, thus only the attribute Florida is kept in (3). The fact that birds are observed in Michigan or Florida can be generalized by birds which are observed in Southeast (4). The top concept contains only one attribute USA (5), and the bottom concept all minimal attributes (6).

All notions defined in LCA apply in FCA-Tax, in particular extent, intent, and concept lattice. Note that the intents of two ordered concepts c < c differ because one or more attributes are added in int(c), or because an attribute of int(c) is replaced in int(c) by a more specific attribute in the taxonomy, or a combination of both. FCA-Tax differs from FCA in that the intents of concepts in FCA-Tax are without redundancy (see the use of M in tax in the definition of). In a previous article [START_REF] Cellier | An algorithm to find frequent concepts of a formal context with taxonomy[END_REF] we described an algorithm for finding frequent concepts in a context with taxonomy. The algorithm is a variant of Bordat's algorithm [START_REF] Bordat | Calcul pratique du treillis de Galois d'une correspondance[END_REF] which takes care of the taxonomy for avoiding redundant intents. In this section, a generalization of this algorithm is described in order to search concept-based rules. In a first step, the relation between frequent concepts and rules is presented. In a second step, the parameterized algorithm with this filter function is described.

From Frequent Concepts to Rules

Relevant rules are rules that are frequently observed. In the general case, see for example [START_REF] Pasquier | Discovering frequent closed itemsets for association rules[END_REF], all frequent rules are searched, without any constraint on the premises and conclusions. However, in the learning case, either the premise or the conclusion is fixed by the learning target. So, one searches for frequent rules where conclusions or premises match the target. For instance, learning sufficient conditions for a target W is to search frequent rules like X → W . For example, in a context describing mushrooms it can be relevant to search properties implying that a mushroom is poisonous, i.e. X → poisonous.

As explained in Section 2, the frequency of a rule is evaluated by a statistical measure: the support. A rule cannot be more frequent than its premise or its conclusion. Indeed, let c be a concept then sup(int c) ≥ sup(int c ∪ W) = sup(int c → W). This implies that only the intents of frequent concepts are good candidates to be the premises of the searched rules. Therefore, in order to learn rules, the frequent concepts that are computed by the algorithm presented in [START_REF] Cellier | An algorithm to find frequent concepts of a formal context with taxonomy[END_REF] need to be filtered. Only most frequent concepts that form relevant rules with respect to statistical measures are kept. Some statistical measures like the support, are monotonous. For instance, given two concepts c and c , c < c ⇒ sup(c) < sup(c) holds. It means that if the support of a concept c is lower than min sup, all subconcepts of c have a support lower than min sup. Thus, it is not relevant to explore subconcepts of c.

A filter function, called FILTER, is defined in order to take into account these observations. FILTER takes two parameters, two sets of objects: ext c and ext(W). These two parameters are sufficient to compute all statistical measures like support, confidence, lift and conviction as it is illustrated in Figure 3. Using ext c and ext(W), we can compute ext c ∪ ext(W), ext c ∩ ext(W), and all complements like O \ ext c , O \ (ext c ∪ ext(W)). FILTER(ext c , ext(W)) returns two booleans: KEEP and CONTINUE. KEEP tells whether int c → W is a relevant rule with respect to statistical measures. CONTINUE allows monotonous properties to be considered. Indeed, CONTINUE tells whether there may be some subconcept c of c such that int c → W is a relevant rule. Thus FILTER gives four possibilities: 1) keep the current concept and explore subconcepts, 2) keep the current concept and do not explore subconcepts, 3) do not keep the current concept and explore subconcepts, 4) do not keep the current concept

ext c O ext(W) conf (int c → W) = ext c ∩ ext(W) ext c conv(int c → W) = ext c * O \ ext(W) ext c ∩ (O \ ext(W)) sup(int c → W) = ext c ∩ ext(W) lif t(int c → W) = ext c ∩ ext(W) ext c * ext(W)
Fig. 3. Computing measures using the extents of a concept c and a target W .

and do not explore subconcepts. Section 4 illustrates on examples how these four possibilities are used.

Algorithm Parameterized with Function FILTER

In the first part of this subsection, the data structures used in the algorithm are briefly introduced. In the second part, the algorithm is described. In the last part, the difference with the previous algorithm is given.

The algorithm uses two data structures: incr c of a concept c and Exploration. incr c contains increments of a concept c. Apart from the top concept, each concept s is computed from a concept p(s), called the predecessor of s. Let s be a concept and p(s) be the predecessor of s then there exists a set of attributes, X, such that ext s = ext p(s) ∩ ext(X). We call X an increment of p(s), and we say that X leads from p(s) to s. All known increments are kept in a data structure incr p(s) which is a mapping from subconcepts to increments: s maps to X iff X leads to s. Notation incr p(s) [s → X] means that the mapping is overridden so that s maps to X.

Exploration contains frequent subconcepts that are to be explored. In Exploration, each concept s to explore is represented by a triple: (ext s → X, int p(s) , incr p(s)) where ext s = ext(int p(s) ∪ X) = ext p(s) ∩ ext(X) and ext s ≥ min sup, which means that X is an increment from p(s) to s. An invariant for the correction of the algorithm is

∀c concept : incr c ⊆ {s → X | ext s = ext c ∩ ext(X) ∧ ext s ≥ min sup} .
Thus, all elements of incr c are frequent subconcepts of c. An invariant for completeness is

∀c, s concepts : (ext s ⊂ ext c ∧ ext s ≥ min sup ∧ ¬∃X ⊂ T : s → X ∈ incr c) =⇒ (∃s a concept : ext s ⊂ ext s ⊂ ext c ∧ ∃X ⊂ T : s → X ∈ incr c) .
Thus, all frequent subconcepts of c that are not in incr c are subconcepts of a subconcept of c which is in incr c . Algorithm Explore concepts allows frequent concepts of a context with taxonomy to be filtered with the generic function FILTER previously introduced. Some examples of instantiation of the function FILTER are given in section 4.

Algorithm 1 Explore concepts

Require: K, a context with a taxonomy TAX; and min sup, a minimal support Ensure: Solution, the set of all frequent concepts of K with respect to min sup, and FILTER 1: Solution := ∅ 2: Exploration.add(O → , ∅, ∅) 3: while Exploration = ∅ do 4:

let (exts → X, int p(s) , incr p(s)) = maxext(Exploration) in 5:

(KEEP, CONTINUE) := FILTER(exts, ext(X)) 6:

if KEEP or CONTINUE then 7:

ints := (int p(s) ∪tax X) The concept lattice is explored top-down, starting with the top of the lattice, i.e. the concept labelled by all objects (i.e. the concept) (line 2). At each iteration of the while loop, an element of Exploration with the largest extent is selected (line 4): (ext s → X, int p(s) , incr p(s)). This element represents a concept s which is tested with the function FILTER (line 5). At line 7, the intent of s is computed by supplementing (int p(s) ∪ tax X) with successors of X in the taxonomy. The redundant attributes are eliminated thanks to ∪ tax .

∪tax {y ∈ succ + tax (X) | exts ⊆ ext({y})} 8: if CONTINUE then 9: incrs := {c → X | ∃c : c → X ∈ incr p(s) ∧ c = exts ∩ c ∧ c ≥
Then the increment of s are computed; incr s is computed by exploring the increments of p(s) (step 9) and the successors of the attributes of X in the taxonomy (steps 10-15). Note that increments of p(s) can still be increments of s. For instance, if p(s) > s, p(s) > s , and s > s , the increment of p(s) which leads to s is also an increment of s that leads to s . If these increments are relevant with respect to FILTER, they are added to Exploration (lines 16-18).

Finally if s is relevant with respect to FILTER, it is added to Solution (line 21).

The difference between the algorithm in [START_REF] Cellier | An algorithm to find frequent concepts of a formal context with taxonomy[END_REF] and the algorithm presented here is the addition of the function FILTER that allows frequent concepts to be filtered and exploration to be stopped. If function FILTER always returns (KEEP = true, CONTINUE=true), then all frequent concepts are eventually computed.

Example 5. Illustration of the computation of Exploration is as follows. The taxonomy is presented in Figure 4; Figure 5 shows the explored lattice. We assume min sup=3. The first 2 steps of computation are explained. Initially, Exploration is:

-Exploration = {(O → , ∅, ∅)}.
First step: the top of the lattice is explored, i.e. s=c 0 . Increments of s are computed from the taxonomy only, as there is no predecessor concept: Second step: an element of Exploration with the largest possible extent is explored: s = c 2 , p(s) = c 0 . In order to compute incr c2 , we have to consider the elements of incr c0 and the elements in the taxonomy.

-incr c0 = { {o 3 , o 4 , o 7 , o 8 , o 9 , o 10 } → {b}, {o 1 , o 2 , o 7 , o 8 , o 10 } → {a},
-

incr c2 = { {o 7 , o 8 , o 10 } → {a}, {o 7 , o 9 , o 10 } → {c, d}, {o 8 , o 10 } → {e}} /////////////// -Exploration = {({o 1 , o 2 , o 7 , o 8 , o 10 } → {a}, ∅, incr c0), ({o 5 , o 6 , o 7 , o 9 ,
o 10 } → {c}, ∅, incr c0), ({o 7 , o 9 , o 10 } → {c,d}, {b}, incr c2), ({o 7 , o 8 , o 10 } → {a}, {b}, incr c2)}.

In the second step, attributes d and e are introduced as successors of attributes b, and attributes a and c are introduced as increments of c 0 , the predecessor of c 2 .

Increment {e} is eliminated because it leads to an unfrequent concept. Attributes c and d are grouped into a single increment because they lead to the same subconcept. This ensures that computed intents are complete.

Comparison with Bordat's algorithm

The algorithm presented in the previous section is based on Bordat's algorithm. Like in Bordat's version, our algorithm starts by exploring the top concept. Then for each concept s explored, the subconcepts of s are computed; this corresponds to the computation of incr s . Our algorithm uses the same data structure to represent Solution, i.e. a trie. The differences between our algorithm and Bordat's are: 1) the strategy of exploration, 2) the data structure of Exploration and 3) taking into account the taxonomy.

In our algorithm, 1. we first explore concepts in Exploration with the largest extent. Thus, it is a top-down exploration of the concept lattice, where each concept is explored only once. Contrary to Bordat, it avoids to test if a concept has already been found when it is added to Solution. 2. Whereas in Bordat's algorithm Exploration is represented by a queue that contains subconcepts to explore, in our version the data structure of Exploration elements is a triple: (ext s → X, int p(s) , incr p(s)) where incr p(s) avoids to test all attributes of the context when computing increments of s. Indeed, if an increment X is not relevant for p(s) it cannot be relevant for s, because ext s ⊂ ext p(s) and thus (ext s ∩ ext(X)) ⊂ (ext p(s) ∩ ext(X)). Thus, the relevant increments of the predecessor of s are stored in incr p(s) and are potential increments of s. In Exploration, a concept cannot be represented several times. When a triple representing a concept c is added to Exploration, if c is already represented in Exploration, the new triple erases the previous one. 3. The attributes can be structured in a taxonomy. This taxonomy is taken into account during the computation of the increments and the intents. Using ∪ tax instead of the plain set-theoretic union operation allows computed intents to be without redundancy. Another benefit is that it makes computation more efficient. For instance, when the taxonomy is deep, a lot of attributes can be pruned without testing.

Instantiations of the Parameterized Algorithm

In the previous section, the presented algorithm is parameterized with a filter function in order to permit the computation of concept-based rules in FCA-Tax.

In this section, we show two instantiations of the filter function to learning. The first one allows sufficient conditions to be computed. Sufficient conditions are premises of rules where the conclusion (the target), W , represents the positive examples. In other words, the searched rules are of the form X → W .

The second one allows incompatible conditions to be computed. Incompatible conditions are premises of rules where the conclusion (the target), W , is the negation of the intent of positive examples. In other words, the searched rules are of the form X → ¬W .

Computing sufficient conditions

In the generation of sufficient conditions, the learning objective, W , is the target of the rules to be learned. For computing sufficient conditions, one must determine what conjunctions of attributes, X, implies W , i.e. the intents X of concepts such that the rule X → W has a support and a confidence greater than the thresholds min sup and min conf . Sufficient conditions can be computed with the algorithm described in Section 3 that filters all frequent concepts of a context, by instantiating the filter function with:

FILTER sc (ext s , ext(W)) = (KEEP = sup(int s → W) ≥ min sup ∧ conf (int s → W) ≥ min conf, CONTINUE = sup(int s → W) ≥ min sup)
It implies three possible behaviours of the algorithm.

1. The concept s is relevant, i.e. the rule int s → W has a support and a confidence greater than the thresholds. s is a solution and has to be kept, and its subconcepts are potential solutions and have to be explored. Thus FILTER sc (ext s) returns (true, true). 2. The concept s has a support greater than min sup but a confidence lower than min conf . s is not a solution but the confidence is not monotonous and thus subconcepts of s can be solutions. FILTER sc (ext s) returns (f alse, true). 3. The concept s has a support lower than min sup. s is not a solution. As the support is monotonous, i.e. the support of a subconcept of s is lower than the support of s, subconcepts of s cannot be solutions. FILTER sc (ext s) returns (f alse, f alse).

FILTER sc (ext s , ext(W)) can be expressed in terms of extent by simply applying the definitions of support and confidence seen in Section 2. The filter function can therefore be defined by :

FILTER sc (ext s , ext(W)) = (KEEP = ext s ∩ ext(W) ≥ min sup ∧ ext s ∩ ext(W) ext s ≥ min conf, CONTINUE = ext s ∩ ext(W) ≥ min sup)
Note that it is easy to use other statistical indicators like lift or conviction, by adding conditions in the evaluation of KEEP.

Computing incompatible conditions

In the case of incompatible conditions, the learning objective, W , is the negation of the target of the rules to be learned. For computing incompatible conditions, one must determine what conjunctions of attributes, X, implie ¬W . In other words, one looks for the intents X of concepts such that the rule X → ¬W has a support and a confidence greater than the thresholds min sup and min conf .

Incompatible conditions can be computed with the algorithm described in Section 3 by instantiating the filter function with:

FILTER ic (ext s , ext(W)) = (KEEP = sup(int s → ¬W) ≥ min sup ∧ conf (int s → ¬W) ≥ min conf, CONTINUE = sup(int s → ¬W) ≥ min sup)
As for sufficient conditions, this can be expressed in terms of extents, using the definitions of support and confidence. The filter function to compute incompatible conditions can thus be defined by :

FILTER ic (ext s , ext(W)) = (KEEP = ext s ∩ (O \ ext(W)) ≥ min sup ∧ ext s ∩ (O \ ext(W)) ext s ≥ min conf, CONTINUE = ext s ∩ (O \ ext(W)) ≥ min sup)
5 Experiments

Experimental settings. The algorithm is implemented in CAML (a functional programming language of the ML family) inside the Logic File System LISFS [START_REF] Padioleau | A logic file system[END_REF]. LISFS implements the notion of Logical Information Systems (LIS) as a native Linux file system. Logical Information Systems (LIS) are based on LCA. In LISFS, attributes can be ordered to create a taxonomy (logical ordering). The data structures which are used allow taxonomies to be easily manipulated. For more details see [START_REF] Padioleau | A logic file system[END_REF]. We ran experiments on an Intel(R) Pentium(R) M processor 2.00GHz with Fedora Core release 4, 1GB of main memory.

We tested the parameterized algorithm with two contexts: "Mushroom" and "Java". The Mushroom benchmark3 contains 8 416 objetcs which are mushrooms. The mushrooms are described by properties such as whether the mushroom is edible or poisonous, the ring number, or the veil color. The context has 127 properties. The Java context4 taken from [START_REF] Sigonneau | Indexation multiple et automatisée de composants logiciels[END_REF], contains 5 526 objects which are the methods of java.awt. Each method is described by its input and output types, visibility modifiers, exceptions, keywords extracted from its identifiers, and keywords from its comments. The context has 1 624 properties, and yields about 135 000 concepts.

Quantitative Experiments. Many efficient algorithms computing association rules exist5 . None of them allow a taxonomy to be taken into account. We do not pretend that our algorithm is faster. The objectives of this section are rather to show 1) that our algorithm is reasonably efficient, 2) that given an algorithm which searches for association rules, the additional mechanisms described in Sections 3 and 4 do not cause any significant slowdown in the presence of a taxonomy, and 3) that they can even improve efficiency in certain cases.

We evaluate our algorithm on the mushroom benchmark, computing frequent concepts. It enables us to compare our algorithm's performance with Pasquier et al.'s CLOSE algorithm, using the figures published in Pasquier's PhD thesis [START_REF] Pasquier | Data Mining : Algorithmes d'extraction et de réduction des règles d'association dans les bases de données[END_REF]. For the same task, execution times are of the same order for both algorithms. For instance, with min sup = 5% CLOSE computation time is about 210s and our algorithm computation time is 290.8s; with min sup = 20% CLOSE computation time is about 50s and our algorithm computation time is only 26.2s. Hence, even without a taxonomy our algorithm does not introduce any slowdown.

On the Java context, we measured the computation time of the frequent concepts, in order to show the impact of the taxonomy on the computation. The taxonomy is derived, for the largest part, from the class inheritance graph, and, for a smaller part, from a taxonomy of visibility modifiers that is predefined in Java. The result is given in Table 2. The third column of that table contains the execution times in seconds of algorithm when the taxonomy is taken into account. The fourth column corresponds to the execution times when the context is a priori completed with the elements of the taxonomy. When min sup = 5%, 189 frequent concepts are computed in 8s with taxonomy, whereas they are computed in 16s without taxonomy. When min sup = 2.5%, 2300 frequent concepts are computed in 55s with taxonomy, whereas they are computed in 54s without taxonomy. It is explained by the fact that the Java context has few very frequent concepts. Thus pruning using the taxonomy when min sup is greater than 5% occurs very early in the traversal of the concept lattice. For min sup = 2.5%, pruning are less impact, computation time is therefore equivalent with or without taxonomy.

Note that from a qualitative point of view, with this context, using the taxonomy allows the number of irrelevant attributes in the intents to be reduced by 39% for min sup = 5%.

Conclusion

In this article we have proposed an algorithm parameterized by a filter function to explore frequent concepts in a context with taxonomy in order to learn association rules. We have described how to instantiate the filter function in order to find premises of rules where the target are positive examples (sufficient conditions) and negative examples (incompatible conditions). Quantitative experiments have shown that, in practice, taking a taxonomy into account does not negatively impact the performance and can even make the computation more efficient.

The advantage of the presented method is to avoid the redundancies that a taxonomy may introduce in the intents of the frequent concepts.

 Example 4. ext(Oregon, Calif ornia) = {Alcidae, Strigidae} int(Alcedinidae, Corvidae) = {P acif ic, Endangered} sup(Oregon, Calif ornia → T hreatened) = 2 conf (Calif ornia → T hreatened) = 0.5 Note in the example about the computation of intent that Corvidae has not explicitly the property P acif ic but the property Hawai. But in the taxonomy the property Hawai implies the property P acif ic.

Fig. 4 .

 4 Fig. 4. Taxonomy of the example. Fig. 5. Concept lattice.

Table 1 .

 1 Context of threatened or endangered bird families in the USA

 Definition 3 defines the logical versions of extent and intent. The extent of a logical formula f is the set of objects in O whose description is subsumed by f . The intent of a set of objects O is the most precise formula that subsumes all descriptions of objects in O. Definition 4 gives the definition of a logical concept.

					USA			
		Pacific	Southwest	Great Lakes Big Rivers	Southeast	Northeast	Mountain Prairie	Region 7	Region 8
			Arizona	Mississipi	Florida	Utah	Alaska
	Hawai	Washington	Oregon	Michigan				California	Nevada
			Fig. 1. Taxonomy of USA states and regions.	
	Definition 1 (logical context). A logical context is a triple (O, L, d) where O is a set of objects, L is a logic (e.g. proposition calculus) and d is a mapping from O to L that describes each object by a formula.
	Definition 2 (logic). A logic is a 6-tuple L = (L, , , , , ⊥) where
	-L is the language of formulas,				
	-	is the subsumption relation,				
	-	and are respectively conjunction and disjunction,	
	-	and ⊥ are respectively tautology and contradiction.	
	Definition 3 (extent, intent). Let K = (O, L, d) be a logical context. The definition of extent and intent are:

 {o 5 , o 6 , o 7 , o 9 , o 10 } → {c}} -Exploration = {({o 3 , o 4 , o 7 , o 8 , o 9 , o 10 } → {b}, ∅, incr c0), ({o 1 , o 2 , o 7 , o 8 ,

o 10 } → {a}, ∅, incr c0), ({o 5 , o 6 , o 7 , o 9 , o 10 } → {c}, ∅, incr c0)}.

Table 2 .

 2 Number of concepts and execution times (in seconds) for different values of min sup.

	min sup Number of concepts Execution time	Execution time
			(with taxonomy) (without taxonomy)
	(%)		(s)	(s)
	20	35	4.5	12.2
	15	48	4.8	13.2
	10	54	5.2	13.6
	7.5	86	5.8	14.8
	5	189	7.9	16.3
	2.5	2300	55.0	54.1

http://anthro.palomar.edu/animal/table humans.htm

http://ecos.fws.gov/tess public/CriticalHabitat.do?listings=0&nmfs=1

Available at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/mushroom/

Available at http://lfs.irisa.fr/demo-area/awt-source/,

some of them are available on the FIMI web site http://fimi.cs.helsinki.fi/src