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Indexing of satellite images with different
resolutions by wavelet features

Bin Luo, Jean-François Aujol, Yann Gousseau, Saı̈d Ladjal

Abstract— As many users of imaging technologies, space
agencies are rapidly building up massive image databases. A
particularity of these databases is that they are made of images
with different but known resolution. In this paper, we introduce a
new scheme allowing to index and compare images with different
resolution. This scheme relies on a simplified modeling of the
acquisition process of satellite images and uses continuous wavelet
decompositions. We establish a correspondance between scales
that permits to compare wavelet decompositions of images having
different resolutions. We validate the approach through several
matching and classification experiments, and show that taking
the acquisition process into account yields better results than
just using scaling properties of wavelet features.

I. INTRODUCTION

Spatial agencies are very rapidly building up massive
databases of images. For example, the CNES (the French
spatial agency) is receiving from its satellites several terabytes
of data each day. Like most users of large databases, these in-
stitutions need efficient tools to index and search their images.
One particularity of satellite image databases, compared to
e.g. natural images databases, is that they are made of images
with different but known resolution1, depending on the satellite
they originate from. In contrast, natural image databases are
made of pictures with different resolutions but the relationship
between the size of objects and pixels is unknown. Moreover,
this quantity depends on the position of objects in the scene, so
that the notion of resolution itself has little general meaning.
This obvious fact made it necessary to develop scale invariant
local features for many computer vision tasks, see e.g. [1].For
the indexing of texture, it makes sense to assume a uniform
resolution through the image. Since this resolution is usually
unknown, many scale invariant indexing schemes have been
developed, see e.g. [2], [3], [4], and [5] for a review. Our
purpose in this paper is quite different. First, the resolution of
satellite images is usually a known parameter, at least if we
neglect tilts of the optical device and assume that the scene
being captured is approximately flat. Therefore, our goal is
to be able to compare two images knowing their resolution
difference. Second, a change in resolution is more complicated
than just a scale change, since it usually involves an optical
device and an imaging captor. In a previous work, [6], [7], this
process was modeled as a convolution followed by a sampling
and its effect on the computation of a characteristic scale was
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1By resolution, we mean the true pixel size in meter.

studied. In this paper, we make use of the same model and
propose a scheme to compare features extracted from images
at different resolutions. Observe that several works have been
performed to extract image features that are invariant with
respect to resolution changes [8], [9]. Again, our purpose is
quite different since we wish to be able to compare images
with different butknownresolution.

Many features have been proposed to index satellite images
[10], [11], [12], [13], [14]. In this work, we only consider
mono-spectral images and classically choose to index them
using texture features. In particular, wavelet features have
been proved suitable for texture indexing or classification
[15], [16], [17], [18], [19], [20], [21], [22]. Wavelet features
have already been used for indexing remote-sensing images
in [23]. The aim of the proposed approach is to investigate
the interplay between resolution and wavelet features and
to propose a scheme for the comparison of images with
different resolutions. Preliminary results of the presentwork
were presented in [24].

The plan of the paper is the following. In Section II a
simplified model for the acquisition of satellite images is
introduced. In Section III, we recall how the marginals of
wavelet coefficients can be used for the indexing of images.
In Section IV, a method is given to compare features extacted
at different resolutions. In Section V, the dependence of
features upon resolution is checked using satellite images
from the CNES and the proposed scheme is validated through
classification experiments. We then conclude in Section VI.

II. M ODEL OF THE ACQUISITION PROCESS

A digital image fr at resolution r is obtained from a
continuous functionf (representing the scene under study)
through an optical device and a digital captor. Neglecting
contrast changes and quantization, the effect of the imaging
device can be modeled as follows,

fr = ΠSr
.(G ∗ f) + n,

where G is the convolution kernel,Sr ⊂ Z
2 the sampling

grid at resolutionr, ΠSr
the Dirac comb onSr and n the

noise. In what follows, we will take interest in the effect ofthe
acquisition model on the wavelet coefficients offr. Therefore,
and assuming that we will neglect coefficients at the smallest
scales, we will assume thatn = 0. Moreover, we will assume
that Sr = rZ

2, that is a regular and square sampling grid
with stepr. We thus neglect the satellite vibrations and scan
acquisition. Last and more importantly, according to [25],[26],
the response of an ideal optic aperture could be very accurately
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approximated by a Gaussian kernel. Therefore we will assume
that G is an isotropic Gaussian kernel, thus neglecting the
specificity of the satellite optics, the real response of thecaptor
and motion blur. This is probably the strongest assumption
made. The motivation behind it is mainly the tractability of
forecoming computations, as will become clear soon. Last, we
assume that the standard deviation of the kernel is proportional
to the resolution. In the experimental section, we will check
that these assumptions are not too restrictive by considering
realistic satellite images. To summarize, we assume the fol-
lowing acquisition model :

fr = Πr.(f ∗ krp), (1)

where

kσ(x, y) =
1

2πσ2
exp

(

−x2 + y2

2σ2

)

, (2)

Πr is the Dirac comb onrZ
2, that is,

Πr =
∑

i,j∈Z

δ(ir,jr),

and the parameterp is a characteristic of the acquisition
process.

III. WAVELET FEATURES FOR TEXTURE INDEXATION

Based on empirical observations, Mallat [27] proposed to
model the marginals of wavelet coefficients of natural images
by Generalized Gaussian Distributions (GGD). That is, writing
h for the density of the distribution of coefficients at some
scale and orientation,

h(u) = Ke−(|u|/α)β

. (3)

It is shown in [15], [16], [17] that the parametersα andβ of
GGD can be used as efficient features for texture indexing and
classification. It is possible to compute these parameters from
the estimation of the first and second order moments of|u|
[27]: we denote them respectively bym1 =

∫

|u|h(u)du and
m2 =

∫

u2h(u)du. More precisely,m1 = αΓ(2/β)Γ(1/β)−1

andm2 = α2Γ(3/β)Γ(1/β)−1.
In this paper, for simplicity, we address the problem of

relating featuresm1 andm2 to resolution changes. Adapting
the results toα and β is then straightforward. This can
be useful when using the Kullback-Leibler distance in a
classification task, see [16].

In order not to be restricted to dyadic resolution changes,
continuous wavelet transform [28] is used instead of the more
classical discrete wavelet transform. Moreover,we consider
mother wavelets obtained as derivatives of a Gaussian kernel
in horizontal, vertical and diagonal directions. This important
assumption is motivated by the simplified model for resolution
changes presented in the previous section, as will be shown
by the computations of Section IV-A.

Figure 1 shows a histogram of absolute values of wavelet
coefficients, illustrating the soundness of the use of GGDs to
model such distributions.

(a) Marseille
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Fig. 1. (a) Image of Marseille at resolution0.707m ( c©CNES); (b) His-
togram (blue bars) of wavelet coefficients of image (a) at scale 5 (horizontal)
and the approximation by GGD (red curve).

IV. WAVELET FEATURES AND RESOLUTION CHANGES

A. Resolution Invariance

a) Notations:The discrete version of the Gaussian kernel
with standard deviationt (t being given in pixels) is denoted by
k̃t. Let us define the discrete wavelet coefficient as (recall that
the wavelets we use are derivatives of the Gaussian kernel):

wq,r,t = ∆qk̃t∗̃fr = k̃t∗̃∆qfr (4)

whereq ∈ {0, 1, 2, 3}, ∆q stands for the difference between
adjacent pixels in the horizontal (q = 0), vertical (q = 1) or
diagonal (q = 2, 3) direction, and∗̃ stands for the discrete
convolution operation.

b) Resolution invariance:Recall that the imagefr at res-
olution r is obtained byfr = Πr.(krp ∗f). From Equation (4)
, we therefore have:

wq,r,t = k̃t∗̃∆qΠr(krp ∗ f) (5)

≈ k̃t∗̃Πr{r∂q(krp ∗ f)}.

The last approximation will be detailed in the appendix.
Next, we assume that the inversion between convolution

and sub-sampling is licit for non-aliased images such askσ ∗f
whenσ is at least, say,r/2. The validity of this assumption on
real images has been checked in [7]. Assuming thatk̃t ≈ krt

(see [7]), and that the continuous and discrete convolutions
are equivalent, we have:

wq,r,t ≈ rΠr.(krt ∗ krp ∗ ∂qf). (6)

Using the semi-group property of the Gaussian kernel, it can
be deduced that:

wq,r,t

r
≈ Πr.(kr

√
t2+p2

∗ ∂qf). (7)

The accuracy of this approximation will be computed in the
appendix.

Assume now that we have two imagesfr1
and fr2

of the
same scene at resolutionsr1 and r2. ¿From (7), we deduce
that if we choose scalest1 and t2 such that:

r1

√

t21 + p2 = r2

√

t22 + p2 (8)

we have:

m1(q, r1, t1)/r1 ≈ m1(q, r2, t2)/r2 (9)

m2(q, r1, t1)/r2
1 ≈ m2(q, r2, t2)/r2

2 (10)



3

with

m1(q, r, t) =
1

nr

∑

|wq,r,t|,

m2(q, r, t) =
1

nr

∑

|wq,r,t|2,

where nr is the size of the discrete imagefr and the sum
is taken over the image domain (notice that, since we use
a continuous wavelet transform,w has the same size asfr).
These equalities (Formula (9) and (10)) will permit to compare
wavelet features originating fromf1 andf2. In what follows,
we denote byΘq,r,t = {m1(q, r, t),m2(q, r, t)} the wavelet
features at scalet and directionq extracted fromfr.

c) Remark about the naive choicep = 0.0: A naive
assumption could be drawn that for the same scenef , if we
keep

r × t = C (11)

whereC is a constant, the parameter set will also be constant
(after the correct normalization). However, this assumption is
not sufficient because it approximates the resolution change
by a simple zoom, which is not consistent with the acquisition
process modeled in Section II. We will see in Section V that
such a naive choice leads to poor numerical results compared
with the use of Equation (8). In what follows, we will call
”naive choice” the use ofp = 0 in Equation (8).

d) Tuning ofp: To use Equation (8), one needs to know
the value ofp. This is a characteristic of the acquisition process
(see Equation (1)). This can therefore be tabulated once for
each satellite. Observe that if one considers two imagesfr1

and fr2
with different resolutions, it is very likely that they

originate from different satellites and that the corresponding
values ofp be different. In this case, writingpi for the value of
p corresponding to resolutionri (i = 1, 2) it is straightforward
to show that Equation (8) can be generalized to

r1

√

t21 + p2
1 = r2

√

t22 + p2
2. (12)

This equality again ensures that approximations (9) and (10)
will hold and permits the comparison of wavelet features from
fr1

and fr2
. In what follows, for the sake of simplicity, we

will assume thatp1 = p2 and therefore use Equation (8).

B. Wavelet features and resolution

As explained in the introdution, the aim of this paper is
to propose a way to compare the features originating from
two images with different and known resolutions. One way
to achieve this is to modify the features (i.e. the first and
second order momentsm1 andm2) extracted at resolutionr1

to compare them (depending onr2 and r1) with the features
extracted at resolutionr2. Assume that we havefr1

the image
at resolutionr1 of a given scene, and that we want to predict its
features at resolutionr2. From Equations (7)–(10), we deduce
the following scheme:

• Compute the wavelet coefficients forfr1
at scalesti, i =

1, 2, 3, . . . , N ;
• Estimate the parametersΘq,r1,ti

from the wavelet coef-
ficients at scalesti for resolutionr1 ;

• For resolutionr2, compute the scalest′i corresponding to
ti according to (see Equation (8))

t′i =

√

r2
1

r2
2

(t2i + p2) − p2 (13)

• Define Θ̃q,r2,t′i
= Θq,r1,ti

at scalest′i.

By using such an algorithm, it is now possible to compare
images taken at different resolutions and, for instance, totrain
classification methods on a set of images at only one resolution
and to apply the recognition criteria to images at different
resolutions.

V. EXPERIMENTS AND RESULTS

A. Image database

In the following sections, we experimentally validate the
proposed scheme for comparing wavelet features. These exper-
iments are carried on an image database provided by the CNES
(the French spatial agency). This database is made of various
scenes (such as fields, forests and cities). Each scene has been
acquired as an aerial image at resolution0.25m. Then, for each
scene, the CNES has simulated images at various resolutions,
using realistic satellite modeling. The available resolutions
range from0.5m to 4m, according to a geometric progression
with ratio 21/6. In Figure 2 some examples of the images from
the database are shown. It is important at this point to note
that convolution kernels used by the CNES are not Gaussian.
However, we will see that the approximate acquisition model
of Section II yields good numerical results. In what follows,
we will use the acquisition model (1) with a valuep = 1.3.
This value has been chosen as the value yielding the best
numerical results (among values ranging from 1 to 2 by steps
of 0.1) and also corresponds to a rough approximation of the
kernel used by the CNES.

B. Validity of the prediction scheme

First, we check the validity of Formula (8), (9) and (10) by
plotting numerical values of featuresm1 andm2.

In Figures 3 (d)-(f) (resp. (g)-(i)) graphs ofm1(q, r, t)/r
(resp.m2(q, r, t)/r2) as functions ofr are presented whenrt
is kept constant (that is when using the naive normalization
of Equation (11)) and whenr

√

t2 + p2 (here p = 1.30)
is kept constant (see Equation (8)). The resolutionr ranges
from 0.50m to 4m. For the image at resolution0.50m (the
highest available resolution),m1 and m2 are computed at
scale 16 in the horizontal direction. It may be seen that
using Equation (11) (that is forgetting the convolution step
in the model of resolution change) does not yield a constant
parameter set, especially when the resolution change is large.
In such cases, one must use Equation (8) to compare features.

Next, and for various scales, we compare values ofm1

and m2 computed on an image with resolution3.175m to
values of m1 and m2 computed on a image of the same
scene with resolution1m and then predicted for a resolution
of 3.175m. Figures 4 (a)-(c) (resp. (d)-(f)) show the values
of m1 (respectivelym2) at various scales (scale is on the
horizontal axis) in solid blue line for three different scenes.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 2. Image samples from the database provided by the CNES: (a)-(d)
Images at resolution0.5m; (e)-(h) Images at resolution1.0m; (i)-(l) Images
at resolution2.0m; (m)-(p) Images at resolution3.175m; (q)-(t) Images at
resolution4.0m; ¿From left to right, classes of the images are: city, field,
forest and sea.
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Fig. 3. (a)-(c)Three images (c©CNES);(d)-(f) graphs ofm1(q, r, t)/r (with
q = 0) as a function ofr; (g)-(i) graphs ofm2(q, r, t)/r2 (with q = 0) as
a function ofr. On all these graphs, solid lines correspond to the case where
r2

p

t2 + p2 is kept constant (withp = 1.3), and dashed lines correspond to
the case the case wherert is kept constant.
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Fig. 4. Values ofm1 ((a)-(c)) and ofm2 ((d)-(f)) for various scales (scale
corresponds to the horizontal axis). In solid red line are displayed the values
computed directly on images with resolution3.175m (the ground truth in this
experiment). In solid blue line, are displayed the values first computed on the
images with resolution1m and then predicted using the scheme presented in
Section IV-B. Both solid lines almost perfectly coincide, showing the accuracy
of the scheme. Dash lines show the results obtained by using the scheme
proposed in Section IV-B but replacing Equation (13) witht′

i
= r1ti/r2 (the

naive normalization).

On the same figure,m1 (resp.m2) predicted from a resolution
of 1m for a resolution of3.175m according to the scheme
presented in Section IV-B are displayed by a solid red line.
The two solid lines almost perfectly coincide. In dashed line,
are plotted the values ofm1 (respectivelym2) predicted from
a resolution of1m for a resolution of3.175m by the same
scheme of Section IV-B, except that Equation (13) is replaced
by t′i = r1ti/r2. This corresponds to what we called the naive
choice, neglecting convolutions in the resolution change.It can
be seen that in this case, the guessed values ofm1 andm2 are
less accurate, especially for small scales. These experiments
validate the scheme proposed in Section IV-B and suggests
that it is necessary to take into account the convolution
step in resolution changes to be able to compare features
computed on images with different resolution. The next section
investigates how the accuracy of the proposed scheme permits
the classification of images at different resolutions.

C. Classification

a) Classified database:We have manually built a clas-
sified database based on the sequences of images provided
by the CNES. This database contains366 scenes observed on
urban areas (Marseille and Toulouse), rural areas (Roujan),
forests (Didrai) and the sea. For each scene, there are5 dif-
ferent images corresponding to 5 different resolutions (0.5m,
1m, 2m, 3.175m and4m). The scenes are manually divided
into 4 sets: city (199 scenes), fields (134 scenes), forests (23
scenes) and sea (10 scenes).

b) Experiment:The first experiment carried out on this
database is classification. Images at the resolution of4m are
used as a learning set for training the classifier. The aim is
to find the classes of the images at resolutions other than
4m. Wavelet features (m1 andm2) are at first extracted from
all the images by applying Gaussian derivatives at different
scales in4 directions (horizontal, vertical and diagonal). The
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TABLE I

CLASSIFICATION RESULTS OBTAINED WITH WAVELET FEATURES EXTRACTED IN 4

DIRECTIONS AT21 SCALES (t = {2i/6|i = 0, 1, . . . , 20}). THE LEARNING SET IS

MADE OF IMAGES AT RESOLUTION4m.

Resolution error (p = 1.3) error (p = 0)
0.5m 0.00% 21.86%
1m 0.00% 19.95%
2m 0.00% 10.66%

3.175m 0.00% 1.91%

TABLE II

CLASSIFICATION RESULTS OBTAINED WITH WAVELET FEATURES EXTRACTED IN 4

DIRECTIONS AT3 SCALES (t = 1, 2, 4). THE LEARNING SET IS MADE OF IMAGES AT

RESOLUTION4m.

Resolution error (p = 1.3) error (p = 0)
0.5m 0.55% 26.50%
1m 0.00% 24.59%
2m 0.00% 12.84%

3.175m 0.27% 4.92%

features extracted from the images at a resolution of4m
over 21 scales (t = {2i/6, i = 0, 1, . . . , 20}) are used to
train the classifier. Therefore the dimension of the feature
space is2 × 4 × 21 = 168. The features extracted from the
other resolutions are predicted for4m by using the scheme
presented in Section IV-B. For comparison, we set the valuep
respectively equal to1.3 (using the acquisition model) and
0.0 (the naive approach). We then classify the images at
resolutions other than4m with the predicted features.

The classifier we used is simply the nearest neighbor
classification algorithm. For a given image A, the classifier
search for its nearest neighbor B in the training set and affect
to A the class of B. As a distance between features, we use
the Euclidean distance, after normalizing each coordinateby
its variance.

c) Results:The classification results are shown in Tab. I.
It can be observed that with the naive approach, the classifica-
tion errors increase rapidly when the resolution gets away from
4m. This shows numerically that the naive approach (p = 0) is
not a good choice for classification purpose. On the contrary,
when the acquisition model is taken into consideration (i.e.
p = 1.3), there is no error. This is due to the fact that the
prediction scheme is very accurate, as we have shown in
Section V-B. Errors are small enough not to switch from one
class to another when changing the resolution.

d) Influence of the number of features:The classification
results presented in Table I are obtained from features in a
space with relatively large dimension (168 values for each
image). We therefore study the effect of a dimension reduction.
In Table II are shown the classification results obtained when
performing the same experiment as in Table I, using the
wavelet features (m1 andm2) at only 3 scales (t = 1, 2, 4). In
this case the dimension of the feature space is2× 4× 3 = 24
and it can be observed that the errors remain similar.

e) Comparison with other features:In order to further
investigate the effect of resolution changes on classification
tasks, we perform an experiment using Haralick features.

TABLE III

CLASSIFICATION RESULTS OBTAINED WITHHARALICK FEATURES. THE DISTANCE

PARAMETER FOR CALCULATING CO-OCCURRENT MATRICES VARIES ACCORDING TO

THE RESOLUTION OF IMAGE. THE LEARNING SET IS MADE OF IMAGES AT

RESOLUTION4m.

Resolution distance error
0.5m 24 31.9%
1m 12 22.4%
2m 6 13.6%

3.175m 4 10.1%

Haralick [29] has proposed features based on the statisticsof
co-occurrence matrices of images. These features are proved to
be very efficient for indexing textures. Co-occurence matrices
are defined as the empirical joint distribution of the gray
values of pixels in some directionθ and at some distance
d. The considered directions are horizontal, vertical and two
diagonal directions. The distance between the pixel pairs can
be considered as a scale parameter. For images at different
resolutions, it is therefore natural to compute co-occurrence
matrices with different distances. In our experiment, we set
d = 3, 4, 6, 12, 24 respectively for images at resolutions4m,
3.175m, 2m, 1m and0.5m. These values ensure thatd×r is a
constant. The Haralick features are composed of13 statistical
values calculated from each matrix and the mean and standard
deviation values through the four directions. Therefore the
total feature dimension is(4 + 2) × 13 = 78.

Figure III shows the classification results obtained with
Haralick features. Our purpose here is not to compare directly
these results with the results obtained in the previous section.
Indeed, results obtained with wavelet features are better,but
we did not take full advantages of co-occurrence matrices since
only one scale is used for each image. The interesting point
is to notice how fast the classification results decrease with
the change of resolution, therefore showing the inability of
Haralick features to handle such changes. Observe that the
approach taken here is similar to the naive choice of previous
sections (approximating a resolution change through a zoom).
Due to the non-linear nature of co-occurrence matrices, the
approach proposed in the case of wavelet features is not
adaptable to Haralick features.

D. Image Matching

In this subsection, we carry out a more difficult experiment
than in the previous subsections. For each image at a resolution
of 4m, we want to find the exact same scene from the images
at other resolutions with the help of wavelet features. The
features are extracted and predicted as presented in Section IV-
B. For an image at a resolution different from4m, we search
its nearest neighbor in the feature space among the set of
images at4m. If the two images are of the same scene, it is
a correct match, otherwise it is an error. This is the same
classification task as before, except that we consider each
scene to be a class in itself.

In Table IV are displayed the matching results when using
features over21 scales (ti = 2i/6, i = 0, 1, ,̇20) and 4
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TABLE IV

M ISMATCHING PERCENTAGES WHEN USING WAVELET FEATURES EXTRACTED AT 21

SCALES WITH 4 ORIENTATIONS.

resolution 0.5 1.0 2.0 3.175
p=1.3 4.1 0.27 0 1.64
p=0 81.97 79.51 65.57 34.97

TABLE V

M ISMATCHING PERCENTAGES WHEN USING WAVELET FEATURES EXTRACTED AT 3

SCALES WITH 4 ORIENTATIONS

resolution 0.5 1.0 2.0 3.175
p=1.3 11.2 4.64 1.09 9.29
p=0 95.90 96.45 92.62 62.02

orientations. In Figure V are displayed the matching results
when using only3 scales (ti = 2i, i = 0, 1, 2).

It can be observed that:

• The errors increase considerably when compared to the
classification results of the previous subsection, especially
when p = 0.0. This is due to the fact that in the image
database, there are many scenes of the same class which
are very similar one to another. Therefore the points
representing these images in the feature space are close
one to another. As a consequence, a small error in the
prediction causes an error in the image matching, in
contrast with the classification case of Section V-C.

• The small errors in the casep = 1.3 confirm the accuracy
of the scheme.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed a scheme for comparing
wavelet features from images taken at different resolutions.

The acquisition of images is modeled by a convolution
followed by a sampling. The scheme to compare wavelet
features is based on this model and the semi-group property
of the Gaussian kernel. We first checked experimentally the
validity of this scheme and showed that the numerical accuracy
is significantly improved compared to a naive approach where
resolution change is simply modeled by a zoom. This approach
is then applied for the classification of satellite images at
several resolutions simulated by the CNES. Our approach
improves significantly the accuracy of the classification. This
fact is confirmed trough an image matching experiment.

The method presented in Section IV-B to compare wavelet
features between images with different resolution is quite
general. We applied it to images classification, but other tasks
could benefit from this approach. For instance, the scale invari-
ance of wavelet transformations has been applied to the fusion
of aerial images having different resolutions [30][31][32].
None of these works takes into account the influence of the
optics and captors on the change of resolution. We believe
that the approach presented in Section IV could improve the
precision of such fusions of images.
Acknowledgements:We thank Mihai Datcu, Alain Giros and
Henri Mâıtre for their advices and comments.

APPENDIX

In this appendix, we detail the approximation made in Equa-
tion (5) and compute the error functions of the approximation
made in Equation (6).

Recall that wq,r,t are the wavelet (Gaussian derivative)
coefficients extracted fromfr at scalet and in directionq,
where fr is the digital image at resolutionr obtained from
the continuous scenef . For clarity, we only consider the1D
case. Recall Formula (5):

wq,r,t = ∆qk̃t∗̃Πr(krp ∗ f)

= k̃t∗̃∆qΠr(krp ∗ f).

In the 1D case, we have

wr,t = k̃t∗̃∆xΠr(krp ∗ f).

Writing g(x) = (krp ∗ f)(x), we have

wr,t(x) = k̃t∗̃∆xΠr(g(x))

= k̃t∗̃(Πr(g(x + r) − g(x))),

and sinceg ∈ C1, we have

g(x + r) = g(x) + rg′(x) + o(r).

Therefore

wr,t ≈ k̃t∗̃Πr(g(x) + rg′(x) − g(x))

= k̃t∗̃Πr(rg
′(x))

≈ rk̃t∗̃Πr(krp ∗ f ′(x)).

This is the approximation made in Equation (5). Next, we
compute the error energy of the approximation made in
Equation (6). For simplicity, we consider the resolutionr = 1.
We want to show that the energy of the error is small.

E =
∑

|∆xk̃t ∗ Π1(g) − Π1(kt ∗ g′)|2

=

∫

|FT
{

∆xk̃t ∗ Π1(g) − Π1(kt ∗ g′)
}

|2dω

whereFT (f) is the Fourier transform off . With the approx-
imation kt ≈ Πr(krt), we have

E ≈
∫

|FT {∆xΠ1(kt ∗ g) − Π1(kt ∗ g′)} |2dω

=

∫

|FT {Π1(kt ∗ g(x + 1) − kt ∗ g(x)) − Π1(kt ∗ g′)} |2dω

=

∫

|FT {Π1(kt ∗ g(x + 1) − kt ∗ g(x) − kt ∗ g′)} |2dω

We suppose that the image is not aliased, (i.e.kt ∗ g is band
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Fig. 5. Error function (E) and power spectrum of wavelet coefficientswr,t

in the frequency domain.

limited), therefore :

E ≈ 2

∫ π

0

|FT {kt ∗ g(x + 1) − kt ∗ g(x) − kt ∗ g′} |2dω

= 2

∫ π

0

|ejω − 1 − jω|2|FT{kt ∗ g}|2dω

= 2

∫ π

0

(

2(1 − cos ω − w sinω) + ω2
)

|FT{kt ∗ g}|2dω

≈ 2

∫ π

0

(

2(−ω2

2
+

ω4

8
) + ω2

)

|FT{kt ∗ g}|2dω

≈
∫ π

0

ω4

2
|FT{kt ∗ kp ∗ f}|2dω

=

∫ π

0

ω4

2
|FT{k√

p2+t2
}|2|FT{f}|2dω

Recall thatt ≥ 1 and p = 1.3 in all our numerical experi-
ments. Since the power spectrum of the imagef is generally
decreasing, andω

4

2 is increasing, the worst case (which yields
the largest error) is therefore|FT{f}|2 = 1 for all ω, where
we have

E ≈
∫ π

0

ω4

2
|FT{k√12+1.32}|2dω

and
E

∑ |wr,t|2
≈ 0.035

Figure 5 shows a plot ofE and the power spectrum of wavelet
coefficientswr,t in the frequency domain for the case where
|FT{f}|2 = 1. In the worst case, the approximation made in
Equation (6) yields an energy error of3.5% when compared
to the energy of the original wavelet coefficients.
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