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Indexing of satellite images with different
resolutions by wavelet features

Bin Luo, Jean-Francois Aujol, Yann GousseauidSaadjal

Abstract—As many users of imaging technologies, space studied. In this paper, we make use of the same model and
agencies are rapidly building up massive image databases. Apropose a scheme to compare features extracted from images
particularity of these databases is that they are made of images at different resolutions. Observe that several works haenb

with different but known resolution. In this paper, we introduce a f dt tract i feat that . iant with
new scheme allowing to index and compare images with different performed 1o extract iImage features that are invariant wi

resolution. This scheme relies on a simplified modeling of the respect to resolution changes [8], [9]. Again, our purpase i
acquisition process of satellite images and uses continuous wavelegjuite different since we wish to be able to compare images
decompositions. We establish a correspondance between scalegith different butknownresolution.
that permits to compare wavelet decompositions of images having  \1any features have been proposed to index satellite images
different resolutions. We validate the approach through several 101, 111 [121. 113l [141. In thi K | id
matching and classification experiments, and show that taking [10], [11], [ ]'_[ 1, [14]. In 'S_ work, we only C_O”S' er
the acquisition process into account yields better results than Mono-spectral images and classically choose to index them
just using scaling properties of wavelet features. using texture features. In particular, wavelet featuregeha
been proved suitable for texture indexing or classification
I. INTRODUCGTION [15], [16], [17], [18], [19], [20], [21], [22]. Wavelet featres
Spatial ) idlv buildi _have already been used for indexing remote-sensing images
patial agencies are very rapidly bullding up massiyg 23]. The aim of the proposed approach is to investigate

datapases of Images. l_:or example, th? CNES (the Freqﬁ interplay between resolution and wavelet features and
spatial agency) is receiving from its satellites sevenaltigtes to propose a scheme for the comparison of images with

Of. dgta each day. .L!ke Most users of large database;, _thesedmerent resolutions. Preliminary results of the presewntk
stitutions need efficient tools to index and search theigiesa |, .. presented in [24]
One particularity of satellite image databases, compaoed tThe plan of the paper is the following. In Section Il a

2 ' : . %ﬁ]plified model for the acquisition of satellite images is
with different but known resolution depending on the Sate"'teintroduced. In Section Ill, we recall how the marginals of

they originate from. In contrast, natural image databasles Yavelet coefficients can be used for the indexing of images.

made of plcturgs with d'lfferent resqlutlops but the refasioip In Section 1V, a method is given to compare features extacted
be_:tween t_he size of objects and_plxels IS gnknc_)wn. Moreovg&, different resolutions. In Section V, the dependence of
this quantlty_ depends on ?he posmon of_objects in the SCEME features upon resolution is checked using satellite images
that the notion of resolution itself has little general nmiagn _from the CNES and the proposed scheme is validated through

This obvious fact made it necessar_y_to develop scale MBI, - ssification experiments. We then conclude in Section VI.
local features for many computer vision tasks, see e.gFdi.

the indexing of texture, it makes sense to assume a uniform

resolution through the image. Since this resolution is ligua Il. MODEL OF THE ACQUISITION PROCESS

unknown, many scale invariant indexing schemes have beer digital image f, at resolutionr is obtained from a
developed, see e.g. [2], [3], [4], and [5] for a review. Ougontinuous functionf (representing the scene under study)
purpose in this paper is quite different. First, the resofubf through an optical device and a digital captor. Neglecting
satellite images is usually a known parameter, at least if wentrast changes and quantization, the effect of the ingagin
neglect tilts of the optical device and assume that the sceg@sice can be modeled as follows,

being captured is approximately flat. Therefore, our goal is

to be able to compare two images knowing their resolution fr=Ts, (G * f)+n,

difference. Second, a change in resolution is more corrtphk:awhereG is the convolution kerelS, ¢ Z? the sampling

thap just a scgle change, since it usuglly involves an dpti@'}id at resolutionr, I the Dirac comb onS, andn the
device and an imaging captor. In a previous work, [6], [7 t \,ise 1n what follows, we will take interest in the effecttbé
process was modeled as a convolution fo”owed_by_ a Samp"ﬁ@quisition model on the wavelet coefficientsfof Therefore,
and its effect on the computation of a characteristic scals w4 assuming that we will neglect coefficients at the smalles
B. Luo, Y. Gousseau and BhLadjal are with GET/Elecom Paris, CNRs Scales, we will assume that= 0. Moreover, we will assume
UMR 5141 CNES-DLR-ENST Competence Centre, 46, rue BarragB34, that S, = rZ?, that is a regular and square sampling grid

Paris Cedex 13, France. ; . . .
J-F. Aujol is with CMLA, ENS Cachan, CNRS, UniverSud, 61 a, With stepr. We thus neglect the satellite vibrations and scan

President Wilson, F-94230 Cachan, France. ‘acquisition. Last an_d more ir_ﬂportantly, according to [226],
1By resolution, we mean the true pixel size in meter. the response of an ideal optic aperture could be very aatyrat



approximated by a Gaussian kernel. Therefore we will assume &
that G is an isotropic Gaussian kernel, thus neglecting the
specificity of the satellite optics, the real response ofcdyator
and motion blur. This is probably the strongest assumption
made. The motivation behind it is mainly the tractability of
forecoming computations, as will become clear soon. Last, w
assume that the standard deviation of the kernel is praypti Fod W \
to the resolution. In the experimental section, we will dhec (a) Marseille (b) Histogram

that these assumptions are not too restrictive by consigleri

realistic satellite images. To summarize, we assume the fg;g. 1. (a) Image of Marseille at resolutian707m (©CNES); (b) His-

lowing acquisition model : togram (blue bars) of wavelet coefficients of image (a) atestdhorizontal)
and the approximation by GGD (red curve).

=0 =261p=12626|
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f'r' = Hr(f * krp)v (1)
where IV. WAVELET FEATURES AND RESOLUTION CHANGES
1 2% 4+ A. Resolution Invariance
ko’(x7y) = 2 2 exXp | — 9 2 ) (2) . . . .
o o a) Notations: The discrete version of the Gaussian kernel

with standard deviation(¢ being given in pixels) is denoted by

. . 5 . "
I is the Dirac comb onZ?, that is, k:. Let us define the discrete wavelet coefficient as (recall tha

I, = Z 8(irjr) the wavelets we use are derivatives of the Gaussian kernel):
hick Wq,rt = Aqfft;fr = ]}t;‘Aqfr 4)
and the parametep is a characteristic of the acquisition,

whereq € {0,1,2,3}, A, stands for the difference between
adjacent pixels in the horizonta§ & 0), vertical = 1) or
diagonal ¢ = 2,3) direction, andx stands for the discrete
[1l. WAVELET FEATURES FOR TEXTURE INDEXATION convolution operation.

b) Resolution invarianceRecall that the imagé. at res-

Based on empirical observations, Mallat [27] proposed {9 tion  is obtained byf, = II,..(k,, * f). From Equation (4)
model the marginals of wavelet coefficients of natural insage e therefore have:

by Generalized Gaussian Distributior3@D). That is, writing

process.

h for the density of the distribution of coefficients at some Were = kFAGIL(kyp * f) (5)
scale and orientation, ~ kL {rdy (ke * f)}.
h(u) = Ke~(ul/e)”, (3) The last approximation will be detailed in the appendix.

Next, we assume that the inversion between convolution
It is shown in [15], [16], [17] that the parametessand 5 of  and sub-sampling is licit for non-aliased images such,asf
classification. It is possible to compute these parameters f rea| images has been checked in [7]. Assuming that k..

the estimation of the first and second order momentupf (see [7]), and that the continuous and discrete convolstion
[27]: we denote them respectively by; = [ |u|h(u)du and zre equivalent, we have:

me = [u?h(u)du. More preciselym; = aI'(2/8)['(1/3)~*
andmgy = o2T'(3/3)T(1/6) . Wt R 710 (Kpg * Ky % Og f). (6)

In.th|s paper, for simplicity, we a_ddress the problem C{sting the semi-group property of the Gaussian kernel, it can
relating featuresn; andms to resolution changes. Adapting .

: . : be deduced that:
the results toa and  is then straightforward. This can w
. . . . ,rt

be u_sgful_ when using the Kullback-Leibler distance in a ‘IT ~ 1‘IT.(k7_\/t2+—p2 * g f). @)
classification task, see [16]. _ o . .

In order not to be restricted to dyadic resolution changeEhe accuracy of this approximation will be computed in the
continuous wavelet transform [28] is used instead of theemd@PPendix. .
classical discrete wavelet transform. Moreoveg consider ~ASSume now that we have two imagg¢s and f., of the
mother wavelets obtained as derivatives of a Gaussian ker§@Me scene at resolutions and r,. ¢From (7), we deduce
in horizontal, vertical and diagonal directions. This impot that if we choose scalels andt, such that:

assumption is motivated by the simplified model for resoluti \/272 B \/272
changes presented in the previous section, as will be shown ry Pt =T+ p (®)
by the computations of Section IV-A. we have:
Figure 1 shows a histogram of absolute values of wavelet
coefficients, illustrating the soundness of the use of GGDs t ma(q, 1, t1)/r1 &~ ma(q, 72, t2) /T2 9)

model such distributions. ma(g,r1,t1) /17 ~ ma(q,ra,t2) /73 (10)



with « For resolutionr,, compute the scale$ corresponding to
mi(q,r,t) = S Z Wyt t; according to (see Equation (8))
Ny

=

(t? 4 p?) — p? (13)

NN

r
r

1 t =
m2(Q7T7 t) = ni Z ‘wq77’-,t|27 v
T

wheren,. is the size of the discrete imagé and the sum « Define éqmtg = Oy, 1, at scaleg’.

is taken over the image domain (notice that, since we UseBy using such an algorithm, it is now possible to compare
a continuous wavelet transform; has the same size 35). images taken at different resolutions and, for instancéaio
These equalities (Formula (9) and (10)) will permit to conépa classification methods on a set of images at only one resaluti
wavelet features originating frorfy and f,. In what follows, and to apply the recognition criteria to images at different
we denote by9, ., = {mi(q,r,t),ma(q,r,t)} the wavelet resolutions.
features at scale and directiong extracted fromf,..

c) Remark about the naive choige = 0.0: A naive V. EXPERIMENTS AND RESULTS
assumption could be drawn that for the same scgnié we

keep A. Image database

rxt=C (11 In the following sections, we experimentally validate the
proposed scheme for comparing wavelet features. These-expe
where( is a constant, the parameter set will also be constanients are carried on an image database provided by the CNES
(after the correct normalization). However, this assuompis  (the French spatial agency). This database is made of &riou
not sufficient because it approximates the resolution ohangcenes (such as fields, forests and cities). Each scene éras be
by a simple zoom, which is not consistent with the acquisiticacquired as an aerial image at resolutidzbm. Then, for each
process modeled in Section Il. We will see in Section V thatene, the CNES has simulated images at various resolutions
such a naive choice leads to poor numerical results comparaihg realistic satellite modeling. The available resohs
with the use of Equation (8). In what follows, we will callrange from0.5m to 4m, according to a geometric progression
"naive choice” the use of = 0 in Equation (8). with ratio 2/6. In Figure 2 some examples of the images from
d) Tuning ofp: To use Equation (8), one needs to knowhe database are shown. It is important at this point to note
the value ofp. This is a characteristic of the acquisition proceghat convolution kernels used by the CNES are not Gaussian.
(see Equation (1)). This can therefore be tabulated once fdowever, we will see that the approximate acquisition model
each satellite. Observe that if one considers two imafjes of Section Il yields good numerical results. In what follows
and f,, with different resolutions, it is very likely that theywe will use the acquisition model (1) with a valge= 1.3.
originate from different satellites and that the corregting This value has been chosen as the value yielding the best
values ofp be different. In this case, writing; for the value of numerical results (among values ranging from 1 to 2 by steps
p corresponding to resolution (: = 1, 2) it is straightforward of 0.1) and also corresponds to a rough approximation of the
to show that Equation (8) can be generalized to kernel used by the CNES.

2 2 __ 2 2
r Py = T2yl + P 12) g, Validity of the prediction scheme

This equality again ensures that approximations (9) andl (10 First, we check the validity of Formula (8), (9) and (10) by
will hold and permits the comparison of wavelet featuresnfro plotting numerical values of features; andms.
fr, and f.,. In what follows, for the sake of simplicity, we In Figures 3 (d)-(f) (resp. (9)-(i)) graphs of(q,r,t)/r
will assume thap; = p» and therefore use Equation (8).  (resp.ma(q,r,t)/r?) as functions of- are presented whert
is kept constant (that is when using the naive normalization
of Equation (11)) and whemy/t2 +p? (herep = 1.30)
is kept constant (see Equation (8)). The resolutioranges

As explained in the introdution, the aim of this paper ifrom 0.50m to 4m. For the image at resolutiod.50m (the
to propose a way to compare the features originating froRighest available resolution)n; and m, are computed at
two images with different and known resolutions. One waycale 16 in the horizontal direction. It may be seen that
to achieve this is to mOdlfy the features (le the first ar\gising Equation (11) (that is forgetting the Convo|utionpste
second order moments; andm.) extracted at resolution; i the model of resolution change) does not yield a constant
to compare them (depending en andr;) with the features parameter set, especially when the resolution changegs.lar
extracted at resolutior,. Assume that we havg,., the image |n such cases, one must use Equation (8) to compare features.
at resolution"l Ofagiven scene, and that we want to pl‘ediCt its Next, and for various Sca|esl we compare Va'uemf

features at resolution,. From Equations (7)—(10), we deduceynd m, computed on an image with resolutighl75m to

B. Wavelet features and resolution

the following scheme: values of m; and m, computed on a image of the same
« Compute the wavelet coefficients f@f, at scaleg;, i = scene with resolutionm and then predicted for a resolution
1,2,3,..., N, of 3.175m. Figures 4 (a)-(c) (resp. (d)-(f)) show the values

» Estimate the parametef3, ,, ;, from the wavelet coef- of m; (respectivelym,) at various scales (scale is on the
ficients at scaleg; for resolutionr; ; horizontal axis) in solid blue line for three different sesn



. g ) v‘yyy‘ i l" L i yv‘.y"
(d) (e) ®
Fig. 4. Values ofm; ((a)-(c)) and of my ((d)-(f)) for various scales (scale
corresponds to the horizontal axis). In solid red line aspldiyed the values

(d)
(h)

computed directly on images with resolutidn 75m (the ground truth in this
(l) experiment). In solid blue line, are displayed the values éosputed on the
(p)
(®

of the scheme. Dash lines show the results obtained by usmgdheme
proposed in Section IV-B but replacing Equation (13) with= r1t;/r2 (the
naive normalization).

images with resolutionm and then predicted using the scheme presented in
Section IV-B. Both solid lines almost perfectly coincidepaling the accuracy

On the same figuren, (resp.ms) predicted from a resolution
of 1m for a resolution of3.175m according to the scheme
presented in Section IV-B are displayed by a solid red line.
The two solid lines almost perfectly coincide. In dashea,lin
are plotted the values ofi; (respectivelyms) predicted from

a resolution oflm for a resolution of3.175m by the same

(@ (s)

Fig. 2.~ Image samples from the database provided by the CNB%d)Xa scheme of Section IV-B, except that Equation (13) is reflace

Images at resolution.5m; (e)-(h) Images at resolutioh.0m; (i)-(I) Images , . .
at resolution2.0m; (m)-(p) Images at resolutiof.175m; (g)-(t) Images at by t; = rlti/r2- This CorreSpondS to what we called the naive

resolution4.0m; ¢From left to right, classes of the images are: city, fieldchoice, neglecting convolutions in the resolution chatigean
forest and sea. be seen that in this case, the guessed values,;adndm, are

less accurate, especially for small scales. These expetsme
validate the scheme proposed in Section IV-B and suggests
that it is necessary to take into account the convolution
step in resolution changes to be able to compare features
computed on images with different resolution. The nextisact
investigates how the accuracy of the proposed scheme germit
the classification of images at different resolutions.

o ) b C. Classification

oo I it vy SN R e a) Classified databaseWe have manually built a clas-

. sified database based on the sequences of images provided

by the CNES. This database conta8t® scenes observed on

urban areas (Marseille and Toulouse), rural areas (Raujan)

(d)f (e) (f)m{ forests (Didrai) and the sea. For each scene, theré aié

Frerrreee——— 1 ] ferent images corresponding to 5 different resolutidnsr(,

[T 1m, 2m, 3.175m and4m). The scenes are manually divided

) LN el “-tinto 4 sets: city (99 scenes), fields1@4 scenes), forest2§

o - . scenes) and sed(( scenes).

! = = L e et b) Experiment: The first experiment carried out on this

; database is classification. Images at the resolutiofnofare

)] (h) 0) . 2 o -

] , . _ used as a learning set for training the classifier. The aim is
Z'i ?O’) ég);‘(cf)um[;i'21;‘??;ﬁ%?g‘gﬁfé%ﬁf&ﬂ‘f;ﬁ%l((\Z,;t’,;";)/:7" 8’)‘”2‘5 to find the classes of the images at resolutions other than
a function ofr. On all these graphs, solid lines correspond to the caseewhebm. Wavelet featuresng; andms,) are at first extracted from
r2\/t? + p? is kept constant (witlp = 1.3), and dashed lines correspond toall the images by applying Gaussian derivatives at differen
the case the case where s kept constant. scales in4 directions (horizontal, vertical and diagonal). The




TABLE | TABLE Il

CLASSIFICATION RESULTS OBTAINED WITH WAVELET FEATURES EXTRCTED IN 4 CLASSIFICATION RESULTS OBTAINED WITHHARALICK FEATURES. THE DISTANCE
DIRECTIONS AT 21 SCALES(t = {2%/%|i = 0,1,...,20}). THE LEARNING SETIS  PARAMETER FOR CALCULATING CO-OCCURRENT MATRICES VARIES ACCORDING TO
MADE OF IMAGES AT RESOLUTION4m. THE RESOLUTION OF IMAGE THE LEARNING SET IS MADE OF IMAGES AT
_ RESOLUTION4m.
Resolution | error (p = 1.3) | error p = 0)
0.5m 0.00% 21.86% Resolution | distance| error

im 0.00% 19.95% 0.5m 24 31.9%

2m 0.00% 10.66% im 12 29 4%

3.175m 0.00% 1.91% >m 6 13.6%

3.175m 4 10.1%

TABLE Il

CLASSIFICATION RESULTS OBTAINED WITH WAVELET FEATURES EXTRCTED IN 4

DIRECTIONS AT 3 SCALES(t = 1, 2,4). THE LEARNING SET IS MADE OF IMAGES AT Hara|ICk [29] has proposed features based on the StatlStICS

RESOLUTION4m. co-occurrence matrices of images. These features aregtove
Resolution | error p = 1.3) | emror p = 0) be very.efflment for |ndeX|.n.g textures. Co-occurence roagi
0.5m 0.55% 26.50% are defined as the empirical joint distribution of the gray
1m 0.00% 24.59% values of pixels in some directiofi and at some distance
2m 0.00% 12.84% ; — : ;
3175 T 550 d. The considered directions are horizontal, vertical and tw

diagonal directions. The distance between the pixel pairs ¢
be considered as a scale parameter. For images at different
resolutions, it is therefore natural to compute co-ocaoee
features extracted from the images at a resolutiordaf matrices with different distances. In our experiment, we se
over 21 scales { = {2/6i = 0,1,...,20}) are used to d = 3,4,6,12,24 respectively for images at resolutiods:,
train the classifier. Therefore the dimension of the featuBel75m, 2m, 1m and0.5m. These values ensure thak r is a
space is2 x 4 x 21 = 168. The features extracted from theconstant. The Haralick features are composeti3oftatistical
other resolutions are predicted fdm by using the scheme values calculated from each matrix and the mean and standard
presented in Section IV-B. For comparison, we set the valueleviation values through the four directions. Therefore th
respectively equal td.3 (using the acquisition model) andtotal feature dimension it + 2) x 13 = 78.
0.0 (the naive approach). We then classify the images atFigure Il shows the classification results obtained with
resolutions other thadm with the predicted features. Haralick features. Our purpose here is not to compare tirect
The classifier we used is simply the nearest neighbtivese results with the results obtained in the previousosect
classification algorithm. For a given image A, the classifidndeed, results obtained with wavelet features are bditer,
search for its nearest neighbor B in the training set anctaffeve did not take full advantages of co-occurrence matriaesesi
to A the class of B. As a distance between features, we usaly one scale is used for each image. The interesting point
the Euclidean distance, after normalizing each coordibgte is to notice how fast the classification results decreas@ wit
its variance. the change of resolution, therefore showing the inability o
c) Results:The classification results are shown in Tab. Haralick features to handle such changes. Observe that the
It can be observed that with the naive approach, the claasifiapproach taken here is similar to the naive choice of praviou
tion errors increase rapidly when the resolution gets an@yf sections (approximating a resolution change through a yoom
4m. This shows numerically that the naive approgeh=(0) is Due to the non-linear nature of co-occurrence matrices, the
not a good choice for classification purpose. On the contragpproach proposed in the case of wavelet features is not
when the acquisition model is taken into consideration (i.edaptable to Haralick features.
p = 1.3), there is no error. This is due to the fact that the
prediction scheme is very accurate, as we have shown in
Section V-B. Errors are small enough not to switch from org:
class to another when changing the resolution. In this subsection, we carry out a more difficult experiment
d) Influence of the number of featureBhe classification than in the previous subsections. For each image at a rasolut
results presented in Table | are obtained from features inoh4m, we want to find the exact same scene from the images
space with relatively large dimension6@ values for each at other resolutions with the help of wavelet features. The
image). We therefore study the effect of a dimension reduacti features are extracted and predicted as presented in B&¢tio
In Table Il are shown the classification results obtainedrwh®. For an image at a resolution different frotm, we search
performing the same experiment as in Table |, using this nearest neighbor in the feature space among the set of
wavelet featuresnf; andms) at only 3 scalest(=1,2,4). In  images adm. If the two images are of the same scene, it is
this case the dimension of the feature spac&si x 3 =24 a correct match, otherwise it is an error. This is the same
and it can be observed that the errors remain similar. classification task as before, except that we consider each
e) Comparison with other featuredn order to further scene to be a class in itself.
investigate the effect of resolution changes on classificat In Table IV are displayed the matching results when using
tasks, we perform an experiment using Haralick featurdeatures over2l scales {; = 26, i = 0,1,;20) and 4

Image Matching



TABLE IV
APPENDIX
MISMATCHING PERCENTAGES WHEN USING WAVELET FEATURES EXTRATED AT 21

SCALES WITH4 ORIENTATIONS. X A A A A A
In this appendix, we detail the approximation made in Equa-

resolution| 0.5 | 1.0 | 2.0 | 3.175 tion (5) and compute the error functions of the approxinratio
p=13 | 41 | 027 | 0 | 164 made in Equation (6)
p=0 81.97 | 7951 | 65,57 | 34.97 ' ) o
Recall thatw,,: are the wavelet (Gaussian derivative)
coefficients extracted fronf, at scalet and in directiong,
where f, is the digital image at resolution obtained from
the continuous sceng. For clarity, we only consider theD
case. Recall Formula (5):

TABLE V
MISMATCHING PERCENTAGES WHEN USING WAVELET FEATURES EXTRATED AT 3
SCALES WITH4 ORIENTATIONS

resolution| 0.5 1.0 2.0 3.175
p=1.3 11.2 | 464 | 1.09 | 9.29
p=0 95.90 | 96.45| 92.62 | 62.02

Wyt = AgktFIL(kpp * f)
ke AT (pp * ).

orientations. In Figure V are displayed the matching ressulkn the 1D case, we have

when using only3 scales {; = 2¢, i = 0, 1,2). .

It can be observed that: Wrt = keF ALy (krp * f).

« The errors increase considerably when compared to the
classification results of the previous subsection, espygciaVriting g(z) = (k,p * f)(z), we have
whenp = 0.0. This is due to the fact that in the image
database, there are many scenes of the same class which weg(z) = kFAL(g(z))
are very .S|m|Iar one to anpther. Therefore the points = kF(IL(g(x + ) — g(2))),
representing these images in the feature space are close
one to another. As a consequence, a small error in the . 1
prediction causes an error in the image matching, H*Pd sincey € ¢, we have
contrast with the classification case of Section V-C.

« The small errors in the cage= 1.3 confirm the accuracy g(x +r) = g(x) +rg'(x) + o(r).
of the scheme.

Therefore

VI. CONCLUSIONS AND PERSPECTIVES

, _ kL (g(2) + g () — g(x))
In this paper, we have proposed a scheme for comparing ~

z /
wavelet features from images taken at different resolstion k*;*f[r(rg (@)

The acquisition of images is modeled by a convolution keI (krp + f'(2)).
followed by a sampling. The scheme to compare wavelet
features is based on this model and the semi-group propeHyis is the approximation made in Equation (5). Next, we
of the Gaussian kernel. We first checked experimentally tkempute the error energy of the approximation made in
validity of this scheme and showed that the numerical acyuraEquation (6). For simplicity, we consider the resolutios- 1.
is significantly improved compared to a naive approach whevée want to show that the energy of the error is small.
resolution change is simply modeled by a zoom. This approach
is then applieq for the classification of satellite images at p _ ZIAth + 0 (g) — I (ks # ¢)2
several resolutions simulated by the CNES. Our approach
improves significantly the accuracy of the classificatiohisT
fact is confirmed trough an image matching experiment.

The method presented in Section IV-B to compare wavelet ] ) ]
features between images with different resolution is quité€ref"7'(f) is the Fourier transform of. With the approx-
general. We applied it to images classification, but othgkga 'mation k; ~ IL. (), we have
could benefit from this approach. For instance, the scabrinv
ance of wavelet transformations has been applied to therfusip, - /\FT{Axﬂl(kt xg) — I (k; + ')} [Pdw
of aerial images having different resolutions [30][31]]32
None of these works takes into account the influence of the INSE!
optics and captors on the change of resolution. We believe / FT I (ke g(x 1) = ke x 9(@)) = (ke g)} [l
that the approach presented in Section IV could improve the
precision of such fusions of images.
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Henri Mditre for their advices and comments. We suppose that the image is not aliased, ¢ex g is band

g
3
[—

Q

/ \FT {Azkt + 101, (g) — I (K * g’)} 2dw

_ / FT (T (ky = g(z + 1) — by # g(x) — ke # ¢')} [P
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Fig. 5. Error function £) and power spectrum of wavelet coefficients, ;
in the frequency domain.

limited), therefore :

E =~ 2/ |FT {kyx g(x +1) — ky x g(z) — k% ¢’} [Pdw

JO
= 2/ led — 1 — jw*|FT{k; * g}|*dw
= (2 1 —cosw—wsinw) +w

4
(2 ——+—)+w2

Wt
| FT{ky % ky * f}dw

%

) |FT{k; * g}|*dw

™

Q

/0
/o %'FT{’fW}IQ\FT{f}Fdw

Recall thatt > 1 andp =

) |FT{kys * g}|*dw

1.3 in all our numerical experi-

6]
(7

(8]

El

(20]

(11]

(12]

(13]

[14]

(18]

(16]

(17]

(18]

ments. Since the power spectrum of the imggs generally [19]
decreasing, andz— is increasing, the worst case (which yields

the largest error) is therefoig'T'{ f}|*> = 1 for all w, where
we have

T w4
E%/O 5 [FT{k g} Pdw

and

E ~
S wra? - 0050

(20]

[21]

(22]

Figure 5 shows a plot o and the power spectrum of wavelet
coefficientsw, , in the frequency domain for the case wheré&3]
|FT{f}|?> = 1. In the worst case, the approximation made in

Equation (6) yields an energy error 8%5% when compared

to the energy of the original wavelet coefficients.
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