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A robust 2-stage version for theSTEINER TREE
problem

Vangelis Th. Paschos∗, Orestis A. Telelis†, Vassilis Zissimopoulos†

Résumé

Dans cet article, nous considérons une version robuste pour l’arbrede Steiner.
Sous cette version, le problème est défini dans un cadre en deux étapessur un graphe
complet à arêtes pondérées dont les sommets sont associés avec des probabilités de
présence en seconde étape. Une solution réalisable pour la première étape sur le
graphe d’entrée peut devenir non-réalisable pour la seconde étape,quand quelques
sommets disparaissent. Dans ce cas, une « stratégie de modification » est conçue qui
transforme une solution partielle en une solution réalisable pour la seconde étape.
L’objectif est de concevoir un algorithme qui calcul une solution pour la première
étape (cette solution s’appelle solutiona priori ou « d’anticipation ») de qui mini-
mise la fonction objectif du problème robuste. Une caractéristique importante dece
modèle robuste est que la stratégie de modification est partie du problème. Nous re-
cherchons de résultats de complexité et d’approximation en utilisant une stratégie de
modification basée sur l’algorithme du parcours en profondeur.

Mots-clefs : Approximation, Arbre de Steiner, Complexité, Graphe, Optimisation
probabiliste, Robustesse

Abstract

In this paper we consider a robust version forSTEINER TREE. Under it, the prob-
lem is defined in a two-stage setting over a complete weighted graph whose vertices
are associated with a probability of presence in the second stage. A first-stage fea-
sible solution on the input graph might become infeasible in the second stage, when
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A robust 2-stage version for theSTEINER TREEproblem

certain vertices of the graph fail (with the specified probability). Therefore, a well
definedmodification strategyis devised which transforms a partial solution to a fea-
sible second-stage solution. The objective is to devise an algorithm for the first-stage
solution (sometimes called thea priori or anticipatorysolution) so that the expected
second-stage solution cost is minimized. An important feature of this framework is
that the modification strategy is essentially a part of the problem, while algorithmic
treatment is required in the construction of the anticipatory solution. We provide
complexity and approximation results regarding a modification strategy based upon
the well known depth-first-search algorithm.

Key words : Approximation, Complexity, Graph, Probabilistic optimization, Ro-
bustness, Steiner tree

1 Introduction and motivation

Given an edge-weighted complete graphG(V,E, ~w), where~w is a metric|E|-vector that
represents the edge weights, and a subset of “terminal” verticesT ⊆ V , the STEINER

TREE problem consists of determining a minimum total-cost treeS connecting the ver-
tices ofT . We study here the following 2-stage optimization stochastic model. Consider
an instanceG(V,E, ~w) of STEINER TREEand assume that our problem is not to be nec-
essarily solved on the wholeG, but rather on a (unknown a priori) subgraphG′. Suppose
that any vertexvi ∈ V has a probabilitypi, indicating how vertexvi is likely to be present
in the final subgraphG′. Suppose also that anyvi ∈ T has presence-probability 1. Con-
sider finally that onceG′ is specified, the solver has no opportunity to solve it directly (for
example assume that she/he has to react quasi-immediately,so no sufficient time is given
her/him). Then, in order to tackle such constraints, the solver computes ananticipatory
Steiner treeS in G, i.e., a solution for the entire instanceG, and onceG′ becomes known,
she/he modifiesS by means of an efficient algorithm, in order to get a treeS ′ that remains
a Steiner tree with respect toG′. The objective in such approach is to determine an initial
Steiner treeS for G such that, for any subgraphG′, induced by a subsetV ′ ⊆ V , that
will be presented for optimization, the obtained Steiner treeS ′ respects some pre-defined
quality criterion (for example, it is optimal forG′, or it achieves, say, approximation ratio
of a certain level).

Acquisition, validation and consistency of input data are tackled in almost any opera-
tions research application. Although several well established theoretical models exist for
problems arising in real world, direct application of thesemodels may be difficult or even
impossible due to incompleteness of data, or due to their questionable validity. Occasion-
ally, one may be asked to produce an optimal operational design even before a complete
deterministic picture of input data is provided, but only based on estimations and statis-
tical measures. There are several applications where it might be impossible to obtain a
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current snapshot of the required information, since this information may be subject to
constant high-rate change.

Several optimization frameworks have been introduced by the operations research
community for handling these deficiencies, the most known being thestochastic program-
ming (see [6, 8, 27] for basics, [28] for latest news, bibliography, and related software
and [13, 14, 16, 29, 31, 32, 33] for recent hardness results and approximation algorithms)
and therobust discrete optimization(see [3, 9, 19, 21, 22] for details). These frameworks
constitute a means of structuring uncertainty and taking its existence into account dur-
ing the optimization process. Robustness of the designed solution from both feasibility
and cost perspectives in the presence of uncertainty is the main purpose of devising these
frameworks during an operational design process.

The model we deal with in this paper is a 2-stage optimizationstochastic model. For
graph-problems it can be sketched as follows. Consider an instanceG(V,E) of an opti-
mization graph-problemΠ and assume that instead ofG Π will need to be solved on an
unknown a priori subgraphG′ of G. Any vertexvi ∈ V has a presence probabilitypi

(vertex-probabilities are independent). Assume also thata more or less efficient algo-
rithm M is given, modifying any solutionS for Π on G into a solutionS ′ for Π in any
subgraphG′ of G (this algorithm is usually calledmodification strategy). The objective
is to determine an anticipatory solutionS∗ for G such that, for any subgraphG′, induced
by a subsetV ′ ⊆ V , that will be presented for optimization, the solutionS ′ respects some
pre-defined quality criterion. Such a goal amounts to compute an anticipatory solutionS
optimizing the expectation of its adaptation to anyV ′ ⊆ V , i.e., optimizing the sum of the
occurrence probability ofV ′ multiplied by the value ofS ′ over anyV ′ ⊆ V . Indeed, un-
der the hypotheses just stated, the objective is to determine some solutionS∗ optimizing
the quantity (called alsofunctional):

E(G,S, M) =
∑

V ′⊆V

Pr [V ′] m (G [V ′] , S ′) (1)

wherem(G[V ′], S ′) denotes the cost ofS ′ in G[V ′]1 andPr[V ′] the occurrence probability
of V ′ as second-stage portion expressed by:Pr[V ′] =

∏
vi∈V ′ pi

∏
vi∈V \V ′(1 − pi). The

optimization goal forE(G,S, M) is identical to the one for the (deterministic) original
problemΠ. The derived stochastic problem will be denoted byPROBABILISTIC Π. It can
easily be seen by the discussion just above that for an underlying deterministic problemΠ,
different modification strategies give rise to different probabilistic models ofΠ. In other
words, for a problemΠ any modification strategy induces its own probabilistic counterpart
of Π2.

1Quantity m(G[V ′], S′) depends indeed also onS since it is the fitting ofS in G[V ′]; in this
sense,m(G[V ′], S′) should be rather written asm(G[V ′], S′, S); but, for simplicity, this dependance will
be omitted.

2In this sense, the correct way to denote a robust version of a combinatorial optimization problemΠ
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This model is originally introduced in [17, 4] under the namea priori probabilistic
combinatorial optimizationas a means of structuring and handling uncertainty in the va-
lidity of input data and of tackling robustness requirements for the solutions computed
on such data. Since then, several well-known combinatorialoptimization problems have
been treated in this framework, such as thelongest path([23]), themaximum independent
set ([24]), and theminimum coloring([25, 7]). Less recent studies include theshort-
est path([18]), theminimum-cost spanning tree([5]) and thetravelling salesman([17]).
Several examples of natural situations concerning planning, timetabling, etc., that can be
modelled as probabilistic combinatorial optimization problems are given in [25, 26].

Let us note that a complementary framework to the one of the a priori optimization, is
thereoptimizationconsisting of solving ex nihilo and optimally the portion ofthe instance
presented for optimization. Reoptimization is introduced in [17]. The functional for such
a process can be expressed as:

E∗(G) =
∑

V ′⊆V

Pr [V ′] opt (G′) (2)

whereopt(G′) is the value of an optimal solution forΠ in G′ and, as previously,G′ =
G[V ′]. Obviously, for any modification strategyM, denoting byS∗ the optimal antici-
patory solution ofPROBABILISTIC Π (underM) and assuming thatΠ is a minimization
problem:

E∗(G) 6 E (G,S∗, M) (3)

Study ofPROBABILISTIC STEINER TREEcan be motivated by the following real-world
application arising in the design of wireless networks. These networks consist of a set of
nodes each transmitting a signal using a certain power level, thus being able to commu-
nicate with another network node within a range determined by the level of used power.
Therefore the paradigm of multi-hop communication is inherent in such networks. That is
if a nodeu wishes to send a message to some other nodev, then this message is forwarded
progressively fromu to v by intermediate nodes.

Wireless networks lack stable infrastructure, therefore it has been proposed in the
literature ([35]), that some nodes of the network should collaborate to simulate the func-
tionality of such an infrastructure by means of anetwork backbone(also called spine). A
backbone is a set of interconnected network nodes which handles routing of transmitted
messages, monitoring of the network’s state, acquisition and cross-processing of sensed
data (in the case of sensor networks) and several other application-specific labors. Each
node of the network is assigned to a backbone node. Backbone nodes are interconnected
efficiently via a tree structure emerging as a result of appropriate tuning of their power
levels of transmission (see, for example, [20] for some models concerning optimization of

(under the settings described) is byPROBABILISTIC Π(M); however, since throughout the paper the modifi-
cation strategy used is fixed, we simplify things by just using PROBABILISTIC Π instead.
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transmission power). Each node wishing to send a message to another node simply sends
this message to the backbone node it is assigned to. Subsequently the message is routed
through the backbone to the receiver.

Efficient connectivity of the backbone nodes can be achievedby a solution to the
STEINER TREEproblem ([20]). However, nodes of a wireless network are often subject to
failures caused by environmental factors, energy depletion etc. Furthermore, it is a com-
mon monitoring process (performed by the backbone nodes) tomeasure the probability of
a wireless network node being available. Therefore thePROBABILISTIC STEINER TREE

problem seems in this case a more appropriate model as a meansof providing connectivity
to the backbone nodes.

STEINER TREEis well known to beNP-hard. The first approximation algorithm for
it appeared in [1] (see also [12, 34]) and consists first of a shortest path computation for
all pairs of terminal vertices and next of a computation of a minimum-cost spanning tree
over the shortest-path weighted complete graph with vertexsetT . The approximation
ratio achieved by this algorithm is bounded above by2.

This result has been improved in [30] for metric complete graphs, down to 1.55 in
complete metric graphs and to 1.28 for complete graphs with edge costs 1 and 2. Re-
cently, a robust optimization model, quite different from the model we tackle here, called
demand-robust Steiner treehas been introduced and studied in [10].

Finally, let us note thatSTEINER TREEhas also been studied extensively under the
paradigm of stochastic programming; for the best known approximation algorithms in
this framework see, e.g., [11, 15].

In what follows, we mainly study the complexity and approximation of a robust model
for STEINER TREEderived by a modification strategy based upon the depth-first-search
algorithm ([2]). Given an anticipatory solutionS for PROBABILISTIC STEINER TREE(M)
its approximation ratio is defined byE(G,S, M)/E∗(G), whereE(G,S, M) andE∗(G) are
defined by (1) and (2), respectively.

In Section 2 we formally introduce the model tackled, we study its objective function
(also calledfunctional), the complexity of its computation (let us note that since it carries
over all the possible subsets of the input vertex-set, the functional entails an exponential
number of additive terms in such a way that the complexity of its numerical computation
is not immediately polynomial) and we discuss approximation issues for this model.
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2 Robustness forSTEINER TREE under the depth-first-
search modification strategy

2.1 The derived problem and its complexity

We use the following modification strategy, calledDFS. Given an anticipatory Steiner tree
S ⊆ E (represented by the set of its edges),DFS first orders the edges ofS by engaging
a depth-first search (DFS) starting from an arbitrary leaf-vertex ofS. Each vertex ofS
is assigned a number equal to the order of its visitation by the DFS. The treeS is thus
partitioned into maximal edge-disjoint paths, whose edgesare ordered by the numbering
of their end-vertices. LetP(S) = {P1, P2, . . . , Pk} be the set of these paths, where the
paths are ordered in the order their edges appear inS. We representS as an ordered multi-
set of verticesL by placing inL the endpoints of the edges ofPi, i = 1, . . . , k, following
the order they appear inPi and the ordering ofP(S). It is clear that some vertices will
appear more than once inL. When a vertex subsetV ′ ⊆ V realizes in second-stage,DFS
discards fromL all copies of vertices not present inV ′. This causesS to break down in
components. LetS ′′ be the surviving edge subset ofS in G[V ′] = G′(V ′, E ′). Then,DFS
traces the surviving portionL′ of L and, for any two consecutive verticesvi andvj in L′,
if vi is not connected tovj andi < j, then edge(vi, vj) is inserted inS ′′. This process
causes reformation of all edge-disjoint paths inP(S) and results into a feasible Steiner
treeS ′ for G′. It can be immediately seen that the complexity ofDFS is linear withn (the
order of the input graph).

Let us note that the hypothesis that the input graphG is complete is a sine qua non
condition for the existence of feasible solutions in any of its induced subgraphs. Indeed,
if G is not complete there may exist subsetsV ′ ⊆ V inducing non connected subgraphs
in which patching of the components ofS ′′ is impossible.

Example 1. Let as give an example of the functionality of the modification strategyDFS
described just above. Consider the treeS shown in Figure 1(a). The numbers on vertices
stem from the DFS visitation ordering. Notice that label1 is assigned to a leaf vertex
of S. The DFS ordering partitionsS into the following maximal edge-disjoint paths:
P1 = {1, 2, 3, 4}, P2 = {2, 5, 6}, P3 = {2, 7, 8}, P4 = {7, 9, 10}.

ThenP(S) = {P1, P2, P3, P4} andL = {1, 2, 3, 4, 2, 5, 6, 2, 7, 8, 7, 9, 10}. Suppose
that in second stage the realized vertex set isV ′ = V \ {2, 7}. ThenDFS discards all
copies of2 and 7 from L, thus producingL′ = {1, 3, 4, 5, 6, 8, 9, 10}. Subsequently,
it traces the orderedL and adds edges as described previously. The result is shown in
Figure 1(b).

Proposition 1. PROBABILISTIC STEINER TREEis NP-hard.
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(a) The anticipatory first-stage tree
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(b) The modified second stage tree

Figure 1: Application of theDFS modification strategy.

Proof. The most technical part of the proof is the inclusion ofPROBABILISTIC STEINER

TREE in NPO3. Then,NP-hardness ofPROBABILISTIC STEINER TREEimmediately fol-
lows from the fact that setting occurrence-probability 1 for any vertex of the input graph,
PROBABILISTIC STEINER TREEcoincides withSTEINER TREE.

For proving inclusion ofPROBABILISTIC STEINER TREEin NPO it suffices to prove
that the objective functionE(G,S, DFS) of the problem is computable in polynomial time.

Let G(V,E) be an instance ofPROBABILISTIC STEINER TREEandS be an anticipa-
tory Steiner tree onG. Suppose that a setV ′ inducing a (complete) subgraphG′ = G[V ′]
of G is presented for optimization. Assume thatS is represented by the set of its edges.
Assume finally thatS ′ is the Steiner tree computed as described before. LetV (S) be
the set of vertices ofS. Denote byV ′′ = V (S ′) the subset ofV ′ consisting of the ver-
tices ofS ′ and byE ′′ the edge-set ofG[V ′′]. LetL be the DFS encoding performed over
the anticipatory Steiner treeS by the modification strategyDFS, given as an ordered list
of vertices (in the order decided by the DFS) and let[vi, vj]L be the non-empty sublist
of L starting atvi and ending atvj (notice that sinceL corresponds to a DFS ordering,
i < j) not including neithervi nor vj (it is assumed that if[vi, vj]L = ∅, or if i > j, then∏

vl∈[vi,vj ]L
(1 − pl) = 0).

We will prove that the objective value (functional) ofS is expressed by:

E(G,S, DFS) =
∑

(vi,vj)∈S

w (vi, vj) pipj +
∑

(vi,vj)∈E′′\S

w (vi, vj) pipj

∏

vl∈[vi,vj ]L

(1 − pl)

The expression forE(G,S, DFS) consists of two terms, the former expressing the expected
cost of surviving edges of the anticipatory treeS, and the latter expressing the expected
cost of edges added by the modification strategyDFS.

3NPO is the class of the optimization problems the decision counterparts of which are inNP.
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For the first term it is straightforward to see that an edge(vi, vj) ∈ S survives if both
its endpoints survive, an event occurring with probabilitypipj (since the two events of
survival of each vertex are independent). Hence the expected cost of surviving edges inS
is as claimed by the first term of the given expression forE(G,S, DFS).

The second term stems by inspection of the functionality of the modification strat-
egyDFS. When the actual second stage graph realizes, vertices missing from the graph
are dropped from the initial DFS encodingL, thus producing an encodingL′ ⊆ L.
Then,DFS scansL′ and for any pair of consecutive verticesvi andvj it connects them by
adding(vi, vj) if the three following conditions are satisfied: (i)vi, vj are actually inL′

(ii) i < j (by the DFS-produced labelling) and (iii)vi is not connected tovj.

Clearly two verticesvi, vj ∈ L are also inL′ with probability pipj. Moreover, an
edge(vi, vj) is added to the (new) solutionS ′, if vi is not connected tovj in second stage.
This means (sincevi andvj are consecutive inL′) that all vertices that existed betweenvi

andvj in L have been dropped inL′. This happens with probability
∏

vl∈[vi,vj ]L
(1 − pl).

Furthermore, neithervi nor vj should also appear as intermediates within[vi, vj]L in the
original (first-stage) list encodingL, otherwise (since all intermediate vertices are missing
fromL′),DFSwould not encounter them during its scan ofL′. Finally, [vi, vj]L should not
be empty, otherwise it would entail a surviving edge betweenvi andvj (recall thatvi <
vj in the encoding), rendering these vertices connected in second-stage. Therefore, the
expected cost of added edges is as expressed by the second term of the given expression.

It is easy to see that computation of a single term in the second sum of the func-
tional requiresO(n) computations (at mostn + 1 multiplications). Since we may do
this for at mostO(n2) times (the edges inE), it follows that the whole complexity of
functional’s computation is polynomial (inO(n3)). So,PROBABILISTIC STEINER TREE

belongs toNPO and, with the remark in the beginning of the proof, itsNP-hardness is
also concluded.

Proposition 1 does not derive a compact characterization for the optimal anticipatory
solution forPROBABILISTIC STEINER TREE. This is due to the second term of the func-
tionalE(G,S, DFS) that depends on the structure of the anticipatory solution chosen and
of the present subgraph ofG.

2.2 On the approximability of PROBABILISTIC STEINER TREE

We now turn to study approximation ofPROBABILISTIC STEINER TREEfor several types
of anticipatory solutions.

We first show an easy though useful result linking, for any instanceG of PROBA-
BILISTIC STEINER TREE, E∗(G) and opt(G), whereopt(G) is the optimalSTEINER

TREE-value inG (i.e., the value of an optimal Steiner tree inG by ignoring the vertex-
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probabilities).

Fact 1. E∗(G) > opt(G).

Indeed, sinceT is present in any of the setsV ′ ⊆ V realized in the second stage, an opti-
mal Steiner tree ofG has value smaller than, or equal to, the value of an optimal Steiner
tree of any second-stage induced subgraphG′ of G, i.e.,opt(G) 6 opt(G′), for anyG′ ⊆
G. Using it in (2), we get:E∗(G) >

∑
V ′⊆V Pr[V ′] opt(G) = opt(G)

∑
V ′⊆V Pr[V ′] =

opt(G), q.e.d.

2.2.1 When anticipatory solution is obtained by minimum spanning tree computa-
tion

We now turn to the classical minimum-cost spanning tree algorithm onG[T ] (sketched in
Section 1) and show the following result.

Proposition 2. A minimum-cost spanning tree over the subgraph ofG induced byT is a
2-approximation forPROBABILISTIC STEINER TREE.

Proof. Let H be an isomorphic ofG with modified edge-weights, i.e., where(vi, vj) ∈ E
instead of weightw(vi, vj), it has inH weightw′(vi, vj) = pipjw(vi, vj). Then,

E(G,S, DFS) = m(H,S) =
∑

(vi,vj)∈S

w (vi, vj) pipj (4)

On the other hand, since edge-weights inG are at least as large as the corresponding
weights inH, the following holds (also using Fact 1):

E∗(G) > opt(G) > opt(H) (5)

Putting (4) and (5) together and taking into account thatS is a 2-approximation for
STEINER TREEin H (see Section 1), the result claimed is immediately derived.

A minimum-cost spanning treeS over G[T ] (or H[T ]) is a very particular solution
since, thanks to the omnipresence of the vertices ofT , S remains feasible in second stage,
i.e., no completion is needed.

2.2.2 More general anticipatory solutions

We so turn to study anticipatory solutions that have not a priori such property (i.e., that
need completion in the second stage in order to become feasible Steiner trees) and could
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contain also non-terminal vertices ofG, i.e., vertices that have a presence-probability less
than 1. More precisely, we consider using an arbitraryρ-approximation algorithm for
obtaining a feasible Steiner tree with cost no more thanρ times the cost of an optimal
Steiner tree ofG. We show the following proposition.

Proposition 3. Anyρ-approximation algorithm forSTEINER TREEyields an anticipatory
solution resulting in a2ρ-approximation forPROBABILISTIC STEINER TREE. This ratio
is tight even when edge costs are 1 and 2 and an optimalSTEINER TREE-solution is used
as anticipatory (first-stage) solution.

Proof. The proof is based upon the following emphasized claim.The total cost of edges
added to the partial treeS ′′ in order to produceS ′ is at most2m(G,S), whereS is the
anticipatory Steiner tree computed inG.

1

2

3

4

5

6

7 8

9

10
11
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14
1516

17

18
19

Figure 2: The total cost of edges added to the partial treeS ′′ in order to produceS ′ (the
Steiner tree inG′) is at most2m(G,S).

Figure 2, where vertices are named by theirDFS ordering, gives an example illus-
trating the central idea in the proof of the claim that follows. The anticipatory Steiner
tree S is the tree with thin lines. We suppose that white vertices are absent in sec-
ond stage. Hence, the edges added in this stage in order to reconnectS are (the thick)
edges(1, 5), (5, 7), (7, 8), (15, 18) and(18, 19). In the so reconstructed treeS ′, and since
we assume thatG is metric, edges(1, 2) and(2, 3) are counted once, due to the insertion
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of edge(1, 5). Edges(3, 4) and (4, 5) count twice (due to the insertions of(1, 5) and
of (15, 18). Edges(5, 6) and(6, 7) count once (for edge(5, 7)). Edges(3, 16), (16, 17),
(5, 9), (9, 11), and(11, 15) count once, for edge(15, 18). Edge(17, 18) counts twice,
once for edge(15, 18) and once for(18, 19). Finally, edge(17, 19) counts once, for
edge(18, 19).

In order to formally prove the claim, “rehang”, for clarity,the treeS from its leaf
numbered by 1 (that becomes the root ofS). Then, any vertex has aDFS number less
than the numbers of the vertices on its subtree.

Consider an edge(vi, vj) ∈ E, absent fromG′ (i.e., eithervi or vj are absent fromV ′).
Then, the anticipatory tree will be completed by an edge(vk, vl) such thatk 6 i and
l > j. In other words,vk is a predecessor ofvi and vj (or vi itself) andvl a suc-
cessor of them (orvj itself). Obviously, by the fact thatG is metric, w([vk, vl]L) 6∑

(vr,vs)∈[vk,vl]L
w(vr, vs). Hence, the cost of(vi, vj) ∈ [vk, vl]L will count once “for-

wardly” when(vk, vl) is added toS ′′.

Assume that an edge(vp, vq), p > l is added later. Obviouslyq > p > l. Edge(vi, vj)
will count once more “backwardly” ifvp is in the subtree rooted atvj andvq is in some
subtree rooted at a predecessor ofvi andvj, this subtree being different from the one in
which lievi andvj. Once more,w([vp, vq]L) 6

∑
(vr,vs)∈[vp,vq ]L

w(vr, vs).

It is easy to see that edge(vi, vj) will not count another time forwardly. Indeed, if
it counted once more in this way due, say, to an edge(va, vb), a < k andb > l, then,
edges(va, vk), (vk, vl) andvl, vb) should have been added for completion ofS ′′ instead of
only (va, vb) and(vk, vl). Hence(vi, vj) would have counted only once.

Assume now that(vi, vj) counts a second time backwardly due to an edge(vc, vd)
added after(vp, vq). Obviously,p < q < c < d. Then, as mentioned above,vc is on a
subtree rooted atvj. Sincec > q, there is enough vertices in this subtree in order that
one of them takes theDFS numberq, i.e.,vq should not been located where it has been
assumed to be previously (in some subtree rooted at a predecessor ofvi andvj, this subtree
being different from the one in which lievi andvj). So,vi, vj will backwardly count at
most once and the claim is proved.

Observe also that the edges ofS that will count twice in the completion are absent
from S ′′. Indeed, an edge ofS that survives inG′, so inS ′′, will count in a completion
edge only “backwardly”.

Denote byS1 the set of edge ofS that will count once for evaluating the completion
edges and byS2 the (absent) edges ofS that will count twice. Denote also byS ′ the
Steiner tree ofG′ resulting from the completion ofS ′′. Then:

m (G′, S ′) = w (S ′) 6 w (S ′′) + w (S1) + 2w (S2) (6)

SetsS1 andS2 are obviously disjoint andS1∪S2 ⊆ S. Hence,w(S1)+w(S2) 6 w(S) =
m(G,S). On the other hand, since as noticed just above,S2 is not present inS ′′, S2
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andS ′′ are also disjoint, both sets being subsets ofS. Hence, againw(S ′′) + w(S2) 6

m(G,S). Putting so these things together with (6), we get:m(G′, S ′) 6 2m(G,S).
Taking finally into account that since the vertices ofT are, by assumption, always present
in V ′, opt(G′) > opt(G), we get from (1):

E(G,S, DFS) 6
∑

V ′⊆V

Pr [V ′] 2m(G,S) 6 2
∑

V ′⊆V

Pr [V ′] m(G,S)

6 2ρ
∑

V ′⊆V

Pr [V ′] opt(G) 6 2ρ
∑

V ′⊆V

Pr [V ′] opt (G′) 6 2ρE∗(G)

In order to prove tightness, consider a complete graphKn+1 onn+1 vertices numbered by
1, 2, . . . , n+1. Assume w.l.o.g. thatn > 6 is even and that edge(1, 3) and edges(i, i+1),
i = 3, . . . , n− 1 have cost 2, while the other edges ofKn+1 have cost 1. Assume, finally,
that only vertex 2 is non-terminal and its presence probability is p2. It is easy to see that, in
this graph,opt(Kn+1) = n+1 and such a tree is realized in several ways and, in particular,
by a starS with center2, or by a path linking somehow the terminals (for example, using
edges(1, 3), (i, i + 2), for i odd from 1 ton + 1, edge(n − 2, n + 1), edges(j, j − 2),
for j even going fromn − 2 down to 4 and, finally, edge(4, n)). Obviously,

E∗ (Kn+1) = p2(n + 1) + (1 − p2) (n + 1) = n + 1 (7)

Assume now that the anticipatory solution computed is justS (of costn + 1) and that the
DFS ordering ofS has produced the original numbering ofKn+1, i.e., 1 is the leftmost
leaf, 2 the stars’center and3, . . . n + 1 the rest of leaves. If2 is absent, then the com-
pletion of the tree will produce the path(1, 3, 4, . . . , n + 1) with cost2n. So, the value
of E(Kn+1, S, DFS) will be:

E (Kn+1, S, DFS) = p2(n + 1) + (1 − p2) 2n = 2n − p2n + p2 (8)

In Figure 3 an illustration of the discussion just above is provided forn = 6. The thick
edges ofK7 in Figure 3(a) are the ones with cost 2. It is assumed that vertices1, 3, 4, 5, 6, 7
are terminals. In Figure 3(b), an optimal Steiner tree ofK7 is shown using non-terminal
vertex 2. It is assumed that this tree is also the anticipatory solution. Its vertices’ num-
bers represent also theirDFS ordering. In Figure 3(c) is shown theDFS completion ofS
when 2 is absent. Finally, in Figure 3(d), the optimal Steiner tree ofK7 using only termi-
nals built as described above is shown.

Dividing (7) by (8) we get a ratio that for small enough valuesof p2 tends to 2.

3 Some comments

By Proposition 3, if for example the1.55-approximation algorithm of [30] is used for
constructing an anticipatory solution, a3.1-approximation forPROBABILISTIC STEINER
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Figure 3: On the tightness of ratio2ρ.
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TREE is incurred. This result is obviously dominated by Proposition 2. However, The-
orem 3 provides a more general structural result linking theapproximation ofSTEINER

TREE to the one ofPROBABILISTIC STEINER TREEand carries over more general solution
structures. This, to our opinion, has its own interest.

But, if one restricts to anticipatory solutions that are optimal for STEINER TREEin the
input-graph, then Proposition 3 implies a tight approximation ratio 2 forPROBABILISTIC

STEINER TREE. In this case the result incurred is also of practical usefulness since it
encompasses more general structures of anticipatory solutions and the approximation ratio
obtained is comparable to the one claimed by Proposition 2.

Before concluding the paper let us note that another way for estimating the approxi-
mation quality of an anticipatory solutionS for PROBABILISTIC STEINER TREE(M), for
any modification strategyM, is by using the approximation ratioE(G,S,M)/E(G,S∗,M)
where, as noticed in Section 1,S∗ is an optimal anticipatory solution. By (3),E∗(G) is
a lower bound forE(G,S∗, DFS). Henceforth, the approximation results derived in this
section remain valid when using approximation ratioE(G,S,M)/E(G,S∗,M) also.
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edged.
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