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A robust 2-stage version for theSTEINER TREE
problem

Vangelis Th. PaschdsOrestis A. Teleli§, Vassilis Zissimopoulds

Résumé

Dans cet article, nous considérons une version robuste pour I'debBteiner.
Sous cette version, le probleme est défini dans un cadre en deuxsilapesgraphe
complet a arétes pondérées dont les sommets sont associés aveddbdifd® de
présence en seconde étape. Une solution réalisable pour la premigresgétdp
graphe d’entrée peut devenir non-réalisable pour la seconde §tan®] quelques
sommets disparaissent. Dans ce cas, une « stratégie de modification »gestqoin
transforme une solution partielle en une solution réalisable pour la sectapie é
L'objectif est de concevoir un algorithme qui calcul une solution pour éere
étape (cette solution s'appelle solutiarpriori ou « d'anticipation ») de qui mini-
mise la fonction objectif du probléme robuste. Une caractéristique importamie de
modéle robuste est que la stratégie de modification est partie du problénseréNou
cherchons de résultats de complexité et d’approximation en utilisant utéggtrde
modification basée sur I'algorithme du parcours en profondeur.

Mots-clefs : Approximation, Arbre de Steiner, Complexité, Graphe, Optimisation
probabiliste, Robustesse

Abstract

In this paper we consider a robust version$oEINER TREE Under it, the prob-
lem is defined in a two-stage setting over a complete weighted graph whoiseser
are associated with a probability of presence in the second stage. Atdigstfea-
sible solution on the input graph might become infeasible in the second stage, w
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A robust 2-stage version for tlerEINER TREEproblem

certain vertices of the graph fail (with the specified probability). Thessfa well
definedmodification strategys devised which transforms a partial solution to a fea-
sible second-stage solution. The objective is to devise an algorithm forghstge
solution (sometimes called tlaepriori or anticipatorysolution) so that the expected
second-stage solution cost is minimized. An important feature of this frarkaw/or
that the modification strategy is essentially a part of the problem, while algorithmic
treatment is required in the construction of the anticipatory solution. We mrovid
complexity and approximation results regarding a modification strategy based u
the well known depth-first-search algorithm.

Key words : Approximation, Complexity, Graph, Probabilistic optimization, Ro-
bustness, Steiner tree

1 Introduction and motivation

Given an edge-weighted complete grapti/, £, «), whered is a metric| E|-vector that
represents the edge weights, and a subset of “terminalicesf’ C V, the STEINER
TREE problem consists of determining a minimum total-cost tfeeonnecting the ver-
tices of 7. We study here the following 2-stage optimization stodbasbdel. Consider
an instance~(V, E, ) of STEINER TREEand assume that our problem is not to be nec-
essarily solved on the whol&, but rather on a (unknown a priori) subgragh Suppose
that any vertex; € V has a probability;, indicating how vertex; is likely to be present

in the final subgraplé:’. Suppose also that any € T" has presence-probability 1. Con-
sider finally that oncé&” is specified, the solver has no opportunity to solve it diygbr
example assume that she/he has to react quasi-immedsdely, sufficient time is given
her/him). Then, in order to tackle such constraints, theesatomputes aanticipatory
Steiner tree5' in G, i.e., a solution for the entire instan€g and once~’ becomes known,
she/he modifie$' by means of an efficient algorithm, in order to get a tséthat remains

a Steiner tree with respect €. The objective in such approach is to determine an initial
Steiner treeS for G such that, for any subgraph, induced by a subsét’ C V, that
will be presented for optimization, the obtained Steinee &’ respects some pre-defined
quality criterion (for example, it is optimal f&r’, or it achieves, say, approximation ratio
of a certain level).

Acquisition, validation and consistency of input data aekted in almost any opera-
tions research application. Although several well esstigld theoretical models exist for
problems arising in real world, direct application of thesedels may be difficult or even
impossible due to incompleteness of data, or due to thestoumable validity. Occasion-
ally, one may be asked to produce an optimal operationatjdesien before a complete
deterministic picture of input data is provided, but onlyséd on estimations and statis-
tical measures. There are several applications where itnbig impossible to obtain a
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current snapshot of the required information, since thisrmation may be subject to
constant high-rate change.

Several optimization frameworks have been introduced leydperations research
community for handling these deficiencies, the most knovimgagnestochastic program-
ming (see [6, 8, 27] for basics, [28] for latest news, bibliognapdind related software
and [13, 14, 16, 29, 31, 32, 33] for recent hardness resultgpproximation algorithms)
and therobust discrete optimizatiosee [3, 9, 19, 21, 22] for details). These frameworks
constitute a means of structuring uncertainty and takisgxistence into account dur-
ing the optimization process. Robustness of the designedi@olfrom both feasibility
and cost perspectives in the presence of uncertainty is #ne porpose of devising these
frameworks during an operational design process.

The model we deal with in this paper is a 2-stage optimizattochastic model. For
graph-problems it can be sketched as follows. Consider aanosG(V, E) of an opti-
mization graph-problenil and assume that instead GfII will need to be solved on an
unknown a priori subgrapty’ of G. Any vertexv; € V has a presence probabiliy
(vertex-probabilities are independent). Assume also d@hattore or less efficient algo-
rithm Mis given, modifying any solutiory for IT on G into a solutionS’ for II in any
subgraph’ of G (this algorithm is usually callechodification strategy The objective
is to determine an anticipatory solutiéti for G such that, for any subgragh, induced
by a subset” C V/, that will be presented for optimization, the solutigtrespects some
pre-defined quality criterion. Such a goal amounts to compatanticipatory solutio§
optimizing the expectation of its adaptation to anyC V, i.e., optimizing the sum of the
occurrence probability of”” multiplied by the value of’ over anyV’ C V. Indeed, un-
der the hypotheses just stated, the objective is to detersdme solutiorb™* optimizing
the quantity (called alsfunctiona):

E(G,SM) = > Pr[VIm(G[V'],S) (1)

VIcV

wherem(G[V'], S") denotes the cost ¢f in G[V’|* andPr[V’] the occurrence probability
of V" as second-stage portion expressedwy’| = [[, .y pi [[,,cv\v/(1 — pi). The
optimization goal forE(G, S, M) is identical to the one for the (deterministic) original
problemlI. The derived stochastic problem will be denotedri®pBABILISTICII. It can
easily be seen by the discussion just above that for an wmagdeterministic problen,
different modification strategies give rise to differenvipabilistic models ofI. In other
words, for a problenil any modification strategy induces its own probabilisticrteupart
of I12.

1Quantity m(G[V’], S’) depends indeed also afi since it is the fitting ofS in G[V']; in this
sensem(G[V'], S’) should be rather written as(G[V’], 5", S); but, for simplicity, this dependance will

be omitted.
2In this sense, the correct way to denote a robust version ofrebmatorial optimization problerfl
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This model is originally introduced in [17, 4] under the nameriori probabilistic
combinatorial optimizatioms a means of structuring and handling uncertainty in the va-
lidity of input data and of tackling robustness requirersediot the solutions computed
on such data. Since then, several well-known combinatopgaimization problems have
been treated in this framework, such asltregest path{[23]), themaximum independent
set([24]), and theminimum coloring([25, 7]). Less recent studies include thieort-
est path([18]), the minimum-cost spanning trég5]) and thetravelling salesmarf[17]).
Several examples of natural situations concerning planpnimetabling, etc., that can be
modelled as probabilistic combinatorial optimizationlgems are given in [25, 26].

Let us note that a complementary framework to the one of threoa pptimization, is
thereoptimizatiorconsisting of solving ex nihilo and optimally the portiontb& instance
presented for optimization. Reoptimization is introduagflli7]. The functional for such
a process can be expressed as:

E*(G)= Y Pr[V']opt (G (2)

VICV

whereopt(G’) is the value of an optimal solution fdf in G’ and, as previously’ =
G[V’]. Obviously, for any modification strategy denoting byS* the optimal antici-
patory solution ofPROBABILISTIC IT (underM and assuming that is a minimization
problem:

E*(G) < E(G,S*)M) (3)

Study of PROBABILISTIC STEINER TREEcan be motivated by the following real-world
application arising in the design of wireless networks. Seheetworks consist of a set of
nodes each transmitting a signal using a certain power, ldug$ being able to commu-
nicate with another network node within a range determingethb level of used power.
Therefore the paradigm of multi-hop communication is imerm such networks. Thatis
if a nodeu wishes to send a message to some other nptten this message is forwarded
progressively fromy to v by intermediate nodes.

Wireless networks lack stable infrastructure, thereforieas been proposed in the
literature ([35]), that some nodes of the network shouldatarate to simulate the func-
tionality of such an infrastructure by means aietwork backbonéalso called spine). A
backbone is a set of interconnected network nodes whichlésnouting of transmitted
messages, monitoring of the network’s state, acquisitirmh@oss-processing of sensed
data (in the case of sensor networks) and several othercapph-specific labors. Each
node of the network is assigned to a backbone node. Backbales moe interconnected
efficiently via a tree structure emerging as a result of gppate tuning of their power
levels of transmission (see, for example, [20] for some rfeockencerning optimization of

(under the settings described) is bgoBABILISTIC II(M); however, since throughout the paper the modifi-
cation strategy used is fixed, we simplify things by just gstroBABILISTICII instead.
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transmission power). Each node wishing to send a messagetioest node simply sends
this message to the backbone node it is assigned to. Sulpdlohe message is routed
through the backbone to the receiver.

Efficient connectivity of the backbone nodes can be achidyed solution to the
STEINER TREEproblem ([20]). However, nodes of a wireless network areroffubject to
failures caused by environmental factors, energy deplegio. Furthermore, it is a com-
mon monitoring process (performed by the backbone nodesgasure the probability of
a wireless network node being available. ThereforeMlReBABILISTIC STEINER TREE
problem seems in this case a more appropriate model as a wfgansgiding connectivity
to the backbone nodes.

STEINER TREEIis well known to beNP-hard. The first approximation algorithm for
it appeared in [1] (see also [12, 34]) and consists first ofatskt path computation for
all pairs of terminal vertices and next of a computation ofinimum-cost spanning tree
over the shortest-path weighted complete graph with ves&X". The approximation
ratio achieved by this algorithm is bounded above by

This result has been improved in [30] for metric completepgs down to 1.55 in
complete metric graphs and to 1.28 for complete graphs vdgeeosts 1 and 2. Re-
cently, a robust optimization model, quite different frome tmodel we tackle here, called
demand-robust Steiner trémas been introduced and studied in [10].

Finally, let us note thaSTEINER TREEhas also been studied extensively under the
paradigm of stochastic programming; for the best known @ppration algorithms in
this framework see, e.g., [11, 15].

In what follows, we mainly study the complexity and approatmon of a robust model
for STEINER TREEderived by a modification strategy based upon the depths@atch
algorithm ([2]). Given an anticipatory solutiaffor PROBABILISTIC STEINER TREEM
its approximation ratio is defined by(G, S, M)/ E*(G), whereE (G, S, M) andE*(G) are
defined by (1) and (2), respectively.

In Section 2 we formally introduce the model tackled, we gtiisi objective function
(also calledunctiona), the complexity of its computation (let us note that sirtaziries
over all the possible subsets of the input vertex-set, thetional entails an exponential
number of additive terms in such a way that the complexityohumerical computation
is not immediately polynomial) and we discuss approxinmaissues for this model.
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2 Robustness forsTEINER TREE under the depth-first-
search modification strategy

2.1 The derived problem and its complexity

We use the following modification strategy, call&dS. Given an anticipatory Steiner tree
S C F (represented by the set of its edgd3jS first orders the edges 6f by engaging

a depth-first search (DFS) starting from an arbitrary leatex of S. Each vertex ofS

is assigned a number equal to the order of its visitation ByDRS. The tree is thus
partitioned into maximal edge-disjoint paths, whose edgesrdered by the numbering
of their end-vertices. LeP(S) = {Py, P, ..., P,} be the set of these paths, where the
paths are ordered in the order their edges appesrWe represent as an ordered multi-
set of vertices by placing inL the endpoints of the edges Bf,i = 1, .. ., k, following
the order they appear iR; and the ordering oP(.5). It is clear that some vertices will
appear more than once th When a vertex subsét’ C V realizes in second-stagei-S
discards from. all copies of vertices not present Wi. This causes' to break down in
components. Le$” be the surviving edge subset®in G[V'| = G'(V', E’). Then,DFS
traces the surviving portiof’ of £ and, for any two consecutive verticesandv; in L',

if v; is not connected to; and: < j, then edg€uv;, v,) is inserted inS”. This process
causes reformation of all edge-disjoint pathgi(S) and results into a feasible Steiner
treeS’ for G’. It can be immediately seen that the complexityob§s is linear withn (the
order of the input graph).

Let us note that the hypothesis that the input grépis complete is a sine qua non
condition for the existence of feasible solutions in anytefinduced subgraphs. Indeed,
if G is not complete there may exist subsgtsC 1" inducing non connected subgraphs
in which patching of the components 6f is impossible.

Example 1. Let as give an example of the functionality of the modificatstrategyDFS
described just above. Consider the tfeshown in Figure 1(a). The numbers on vertices
stem from the DFS visitation ordering. Notice that lalbes assigned to a leaf vertex
of S. The DFS ordering partitions' into the following maximal edge-disjoint paths:
P =1{1,2,3,4}, P, ={2,5,6}, Py = {2,7,8}, P, = {7,9, 10}.

ThenP(S) = {P,, P>, P3, Py} andL = {1,2,3,4,2,5,6,2,7,8,7,9,10}. Suppose
that in second stage the realized vertex sét’is= V' \ {2,7}. ThenDFS discards alll
copies of2 and 7 from L, thus producingl’ = {1,3,4,5,6,8,9,10}. Subsequently,
it traces the ordered and adds edges as described previously. The result is shrown i
Figure 1(b)&

Proposition 1. PROBABILISTIC STEINER TREHS NP-hard.
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ol

(a) The anticipatory first-stage tree (b) The modified second stage tree

Figure 1. Application of th&®FS modification strategy.

Proof. The most technical part of the proof is the inclusiorP@OBABILISTIC STEINER
TREEin NPO3. Then,NP-hardness oPROBABILISTIC STEINER TREEMmediately fol-
lows from the fact that setting occurrence-probability Aday vertex of the input graph,
PROBABILISTIC STEINER TREEcoOiIncides WithSTEINER TREE

For proving inclusion oPROBABILISTIC STEINER TREEN NPO it suffices to prove
that the objective functio®' (G, S, DFS) of the problem is computable in polynomial time.

Let G(V, E) be an instance cfROBABILISTIC STEINER TREEandS be an anticipa-
tory Steiner tree odr. Suppose that a sét inducing a (complete) subgragh = G|[V’]
of GG is presented for optimization. Assume titais represented by the set of its edges.
Assume finally thatS’ is the Steiner tree computed as described before. VI(&t) be
the set of vertices of. Denote byl”” = V(S’) the subset oi’’ consisting of the ver-
tices of S’ and by E” the edge-set of/[V”]. Let £ be the DFS encoding performed over
the anticipatory Steiner tre® by the modification strateg®FS, given as an ordered list
of vertices (in the order decided by the DFS) and[letv;|. be the non-empty sublist
of £ starting atv; and ending ab; (notice that sinceC corresponds to a DFS ordering,
i < j) notincluding neithew; norv; (it is assumed that ifv;, v;]. = 0, or if i > j, then
oep. (1 =) = 0).

We will prove that the objective value (functional) 8fis expressed by:
E(G,S,DFS) = Z w (v, v;) pipj + Z w (v, v;) Pipj H (1—m)
(vi,vj)€S (vi,vj)EE"\S v1€lvi,vg] .

The expression fok (G, S, DFS) consists of two terms, the former expressing the expected
cost of surviving edges of the anticipatory tr€eand the latter expressing the expected
cost of edges added by the modification stratbg$.

SNPO is the class of the optimization problems the decision cenpairts of which are ilNP.
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For the first term it is straightforward to see that an eflgev,) € S survives if both
its endpoints survive, an event occurring with probabitity; (since the two events of
survival of each vertex are independent). Hence the exgeos of surviving edges ifi
is as claimed by the first term of the given expressiond(f, S, DFS).

The second term stems by inspection of the functionalityhef modification strat-
egy DFS. When the actual second stage graph realizes, verticesngiseim the graph
are dropped from the initial DFS encodindy thus producing an encoding’ C L.
Then,DFS scansC’ and for any pair of consecutive verticgsandv, it connects them by
adding(v;, v;) if the three following conditions are satisfied: (i) v; are actually inl’
(i) < < j (by the DFS-produced labelling) and (iit) is not connected to,.

Clearly two verticesy;, v; € L are also inl’" with probability p,p;. Moreover, an
edge(v;, v,) is added to the (new) solutidsT, if v; is not connected to; in second stage.
This means (since; andv; are consecutive ifl’) that all vertices that existed betwegn
andv; in £ have been dropped if’. This happens with probabilit}][vle[vi’vj]ﬂ(l — o).
Furthermore, neither; norv; should also appear as intermediates withinov,] - in the
original (first-stage) list encoding, otherwise (since all intermediate vertices are missing
from L), DFS would not encounter them during its scan®f Finally, [v;, v;] - should not
be empty, otherwise it would entail a surviving edge betwgeandv, (recall thatv; <
v; in the encoding), rendering these vertices connected ionskestage. Therefore, the
expected cost of added edges is as expressed by the secoraf tBe given expression.

It is easy to see that computation of a single term in the sksomm of the func-
tional requiresO(n) computations (at most + 1 multiplications). Since we may do
this for at mostO(n?) times (the edges i), it follows that the whole complexity of
functional’s computation is polynomial (i@(n?)). So,PROBABILISTIC STEINER TREE
belongs toNPO and, with the remark in the beginning of the proof, MB-hardness is
also concluded

Proposition 1 does not derive a compact characterizatioth&optimal anticipatory
solution forPROBABILISTIC STEINER TREE This is due to the second term of the func-
tional £(G, S, DFS) that depends on the structure of the anticipatory solutimsen and
of the present subgraph 6f.

2.2 On the approximability of PROBABILISTIC STEINER TREE

We now turn to study approximation 8ROBABILISTIC STEINER TREEoOr several types
of anticipatory solutions.

We first show an easy though useful result linking, for anyainseG of PROBA-
BILISTIC STEINER TREE E*(G) andopt(G), whereopt(G) is the optimalSTEINER
TREEvalue inG (i.e., the value of an optimal Steiner treeGhby ignoring the vertex-
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probabilities).
Fact 1. E*(G) > opt(G). 1

Indeed, sincd’ is present in any of the set§ C V realized in the second stage, an opti-
mal Steiner tree off has value smaller than, or equal to, the value of an optineah&t
tree of any second-stage induced subgr@pbf G, i.e.,opt(G) < opt(G’), foranyG’ C

G. Using itin (2), we getE*(G) = > oy Pr[V']opt(G) = opt(G) X -vicy Pr[V'] =
opt(G), g.e.d. - -

2.2.1 When anticipatory solution is obtained by minimum spaning tree computa-
tion

We now turn to the classical minimum-cost spanning treerdtgo onG|[T] (sketched in
Section 1) and show the following result.

Proposition 2. A minimum-cost spanning tree over the subgrapty afduced byT" is a
2-approximation forPROBABILISTIC STEINER TREE

Proof. Let H be an isomorphic ofr with modified edge-weights, i.e., whefg, v;) € E
instead of weightv(v;, v,), it has inH weightw’(v;, v;) = p;pjw(v;, v;). Then,

E(G,S.DFS) =m(H,S) = > w(vi,v;) pip; (4)

(’l}qj,’Uj)GS

On the other hand, since edge-weightsdrare at least as large as the corresponding
weights inH, the following holds (also using Fact 1):

E*(G) > opt(G) > opt(H) (5)

Putting (4) and (5) together and taking into account thias a 2-approximation for
STEINER TREEIN H (see Section 1), the result claimed is immediately deriyed.

A minimum-cost spanning tre€ over G[T] (or H[T)]) is a very particular solution
since, thanks to the omnipresence of the verticés, ¢f remains feasible in second stage,
i.e., no completion is needed.

2.2.2 More general anticipatory solutions

We so turn to study anticipatory solutions that have not arpsuch property (i.e., that
need completion in the second stage in order to become fe&tikiner trees) and could
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contain also non-terminal verticesGf i.e., vertices that have a presence-probability less
than 1. More precisely, we consider using an arbitresgpproximation algorithm for
obtaining a feasible Steiner tree with cost no more thdimes the cost of an optimal
Steiner tree of5. We show the following proposition.

Proposition 3. Any p-approximation algorithm fosTEINER TREEYields an anticipatory
solution resulting in &p-approximation forPROBABILISTIC STEINER TREE This ratio
is tight even when edge costs are 1 and 2 and an optdsmRINER TREESoIlution is used
as anticipatory (first-stage) solution.

Proof. The proof is based upon the following emphasized claiime total cost of edges
added to the partial tre¢” in order to produceS’ is at mos2m(G, S), whereS is the
anticipatory Steiner tree computeddn

Figure 2: The total cost of edges added to the partial $¥fem order to produce’ (the
Steiner tree irG’) is at mosm/(G, 5).

Figure 2, where vertices are named by tHaS ordering, gives an example illus-
trating the central idea in the proof of the claim that followThe anticipatory Steiner
tree S is the tree with thin lines. We suppose that white vertices aysent in sec-
ond stage. Hence, the edges added in this stage in orderdonectS are (the thick)
edgeq1,5), (5,7), (7,8), (15,18) and(18, 19). In the so reconstructed tré#, and since
we assume that is metric, edges$l, 2) and(2, 3) are counted once, due to the insertion
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of edge(1,5). Edges(3,4) and(4,5) count twice (due to the insertions ¢f,5) and

of (15,18). Edges(5,6) and(6,7) count once (for edgés, 7)). Edges(3, 16), (16, 17),

(5,9), (9,11), and(11, 15) count once, for edgél5, 18). Edge(17,18) counts twice,
once for edgg15, 18) and once for(18,19). Finally, edge(17,19) counts once, for
edge(18,19).

In order to formally prove the claim, “rehang”, for claritihe treeS from its leaf
numbered by 1 (that becomes the root)f Then, any vertex has BFS number less
than the numbers of the vertices on its subtree.

Consider an edg@;, v;) € E, absent front (i.e., either; or v; are absent fron”).
Then, the anticipatory tree will be completed by an efigev;) such thatt < 7 and
[l > j. In other words,uy, is a predecessor af; andv; (or v; itself) andv; a suc-
cessor of them (op; itself). Obviously, by the fact that: is metric, w([vg, vi]z) <
> (wr o) elonme W(rs vs). Hence, the cost ofv;, v;) € [ug, vz will count once “for-
wardly” when(vg, v;) is added taS”.

Assume that an edde,, v,), p > [ is added later. Obviously > p > [. Edge(v;, v;)
will count once more “backwardly” if, is in the subtree rooted a andv, is in some
subtree rooted at a predecessop,odnduv;, this subtree being different from the one in
which lie v; andv;. Once morew([vy, vele) < 320, vo)efup gl W(Urs Us)-

It is easy to see that edde;, v;) will not count another time forwardly. Indeed, if
it counted once more in this way due, say, to an edgev,), a < k andb > [, then,
edgedv,, vx), (vk, v;) @andu;, v,) should have been added for completiorséfinstead of
only (v,, vy) @and (v, v;). Hence(v;, v;) would have counted only once.

Assume now thafv;, v;) counts a second time backwardly due to an egev,)
added aftefv,, v,). Obviously,p < ¢ < ¢ < d. Then, as mentioned above, is on a
subtree rooted at;. Sincec > ¢, there is enough vertices in this subtree in order that
one of them takes thBFS numberg, i.e., v, should not been located where it has been
assumed to be previously (in some subtree rooted at a presteaefy; andv;, this subtree
being different from the one in which lig andv;). So,v;,v; will backwardly count at
most once and the claim is proved.

Observe also that the edges.$that will count twice in the completion are absent
from S”. Indeed, an edge &f that survives inG’, so in.S”, will count in a completion
edge only “backwardly”.

Denote bysS; the set of edge aof that will count once for evaluating the completion
edges and by, the (absent) edges of that will count twice. Denote also by’ the
Steiner tree o€+’ resulting from the completion &§”. Then:

m(G',S) =w(S) <w(S") +w(S) + 2w (Sy) (6)

SetsS; andsS, are obviously disjoint and; U S, C S. Hencew(S;) +w(Ss) < w(S) =
m(G,S). On the other hand, since as noticed just abdkeis not present inS”, S,
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andS” are also disjoint, both sets being subsets$ofHence, againu(S”) + w(S2) <
m(G, S). Putting so these things together with (6), we get{G’, S’) < 2m(G,S5).
Taking finally into account that since the vertices/oéire, by assumption, always present
in V', opt(G’) > opt(G), we get from (1):

E(G,8,DF8) < Y _ Pr[V]2m(G,S) < 2 ) Pr[V]m(G,S)
(aa% VIcV
< 2 Z Pr[V']opt(G) < 2p Z Pr[V]opt (G') < 2pE*(G)
vIcy VIcy

In order to prove tightness, consider a complete gigph, onn+1 vertices numbered by
1,2,...,n+1. Assume w.l.o.g. that > 6 is even and that eddé, 3) and edges$i,i+1),

i =3,...,n— 1have cost 2, while the other edges/of , ; have cost 1. Assume, finally,
that only vertex 2 is non-terminal and its presence proliglslp,. It is easy to see that, in
this graphppt(K,.+1) = n+1 and such atree is realized in several ways and, in partjcular
by a starS with center2, or by a path linking somehow the terminals (for examplengisi
edges(1,3), (i,¢ + 2), for i odd from 1 ton + 1, edge(n — 2,n + 1), edges(j, j — 2),
for 7 even going fromn — 2 down to 4 and, finally, edget, n)). Obviously,

E* (K1) =pen+1)+(1=p2)(n+1)=n+1 (7)

Assume now that the anticipatory solution computed is $ugif costn + 1) and that the

DFS ordering of S has produced the original numbering &f,. 1, i.e., 1 is the leftmost

leaf, 2 the stars’center ar]...n + 1 the rest of leaves. I2 is absent, then the com-
pletion of the tree will produce the path, 3,4,...,n + 1) with cost2n. So, the value

of E(K,1,S5,DFS) will be:

E (K,11,S,DFS) = pa(n+ 1) + (1 — py) 2n = 2n — pan + po (8)

In Figure 3 an illustration of the discussion just above wvpted forn = 6. The thick
edges ofi; in Figure 3(a) are the ones with cost 2. Itis assumed thatesit, 3,4, 5,6, 7
are terminals. In Figure 3(b), an optimal Steiner tredsefis shown using non-terminal
vertex 2. It is assumed that this tree is also the anticigatolution. Its vertices’ num-
bers represent also thé&FS ordering. In Figure 3(c) is shown th&FS completion ofS
when 2 is absent. Finally, in Figure 3(d), the optimal Stetnee of K7 using only termi-
nals built as described above is shown.

Dividing (7) by (8) we get a ratio that for small enough valeég, tends to 21

3 Some comments

By Proposition 3, if for example thé.55-approximation algorithm of [30] is used for
constructing an anticipatory solution3a -approximation foPROBABILISTIC STEINER
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2
{ L 4 L 4
1 3 4 5 6 7 1 3 4
(b) (c)
3
1 4 7

a

(d)
Figure 3: On the tightness of ratip.

203



A robust 2-stage version for tlerEINER TREEproblem

TREEis incurred. This result is obviously dominated by Proposi2. However, The-
orem 3 provides a more general structural result linkingapproximation ofSTEINER
TREEto the one 0PROBABILISTIC STEINER TREEANd carries over more general solution
structures. This, to our opinion, has its own interest.

But, if one restricts to anticipatory solutions that are wyati for STEINER TREEIN the
input-graph, then Proposition 3 implies a tight approxiomatatio 2 forPROBABILISTIC
STEINER TREE In this case the result incurred is also of practical usefsg since it
encompasses more general structures of anticipatoryawdand the approximation ratio
obtained is comparable to the one claimed by Proposition 2.

Before concluding the paper let us note that another way tomasng the approxi-
mation quality of an anticipatory solutiof for PROBABILISTIC STEINER TREEM), for
any modification strategyl is by using the approximation ratié(G, S,M/E(G, S*,M)
where, as noticed in Section &7 is an optimal anticipatory solution. By (3}*(G) is
a lower bound forE(G, S*,DFS). Henceforth, the approximation results derived in this
section remain valid when using approximation rdtig=, S,M/E(G, S*, M also.
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