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Duality, Robustness, and 2-stage robust LP
decision models. Appllcatlon to Robust PERT
Scheduling

Michel Minoux*

Résumé

Les modeéles de programmation linéaire robuste étudiés dans la littérature re-
levent principalement, soit de l'incertitude par colonnes, soit de l'incesitpalr
lignes. lls supposent essentiellement que les colonnes (resp : les lignks)ma-
trice des contraintes ont des coefficients pouvant fluctuer, tout tantésclus dans
des ensembles d’incertitude bien définis. On commence par étudier la qustion
savoir si la théorie de la dualité en programmation linéaire peut étre utilisée pour
transformer un probléme de PL robuste avec incertitude disons par lggnes,pro-
bléme de PL robuste avec incertitude par colonnes. On exhibe des examyes
montrant clairement que le dual d’'un programme linéaire robuste donsgemgé-
néral PAS équivalent a la version robuste du dual (en considéiemtshr que les
ensembles d'incertitude pour les lignes - resp : les colonnes - du primtad&timis
exactement de la méme facon que les ensembles d'incertitude pour les solonne
resp : les lignes - du dual). On poursuit I'étude de cette question de la dieatitde
contexte de la robustesse en considérant la sous-classe des progHlaréaiees ro-
bustes avec incertitude sur le second membre seulement (cette sousielsssble
pas, jusqu’ici, avoir fait I'objet d’études significatives). Dans ceterte nous intro-
duisons le concept de 'modeéle de programmation linéaire robuste sur Bmeseé
par contraste avec le cas standard (qui pourrait étre désigné soaslden’mo-
déle de robustesse sur une étape’), et nous formulons successiajne dual du
programme linéaire robuste ; (b) la version robuste du dual. Les eigmesde la
fonction objectif a optimiser dans les deux cas, bien que présentant des slesilitu
formelles, apparaissent clairement distinctes. De plus, du point de vizedif-
culté de résolution, un des problémes est susceptible de résolutionefiicsiagit
d’un probléme d’optimisation convexe), tandis que I'autre, en tant qu#éme non
convexe, peut étre difficile a résoudre dans le cas général. Commeadipplidu
modeéle de programmation linéaire robuste a deux étapes proposé ici, nousiks
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finalement le probléme d’ordonnancement PERT robuste en considiEnaxtdéfi-
nitions naturelles possibles de I'ensemble d’incertitude pour les duréedaes :

le cas ol I'ensemble d'incertitude est, a une mise a I'échelle prés, une letade r
tivement a la norme Linfini; et le cas ol I'ensemble d’'incertitude est, & uneamise
I'échelle prés, une boule de rayon maximum fixé relativement a la distartdarde
ming. On montre que, dans les deux cas, le probléme d’optimisation robusé&ingeu
résolu efficacement en temps polynomial. On explique enfin pourquoi lelenetié
'approche antérieurement proposeés par Bertsimas et Sim (pour [Eprelu plus
court/ plus long chemin robuste) ne pourraient s’appliquer au proldéongonnan-
cement PERT robuste étudié ici, du fait de structures sous-jacentesietsment
différentes.

Mots-clefs : Programmation Linéaire robuste, dualité, ordonnancement PERT ro-
buste

Abstract

The various robust linear programming models investigated so far in the literatu
essentially appear to be based either on what is referred to as rowwiseftainty
models or on 'columnwise’ uncertainty models (these basically assume thatibe r
- resp: the columns - of the constraint matrix are subject to changes withella w
specifieduncertainty set). We first address the question of whether LP duality can
be used to convert a robust LP problem with, say, rowwise uncertairitya ro-
bust LP with columnwise uncertainty. We provide simple examples supporting the
general statement that the dual of a given robust linear programming mdd@T
equivalent to the robust version of the dual (assuming of course ticattainty for
the rows - resp: the columns - of the primal, is specified in exactly the same way
as uncertainty for the corresponding columns - resp: rows - of the.dNakt, we
further investigate this issue of duality in the context of robustness byidmnrgg
the subclass of robust LP models with uncertainty limited to the right handsige on
(this subclass does not appear to have been significantly investigataeq.sim tthis
context we introduce the concept of ’ two-stage robust LP model’ assgupto the
standard case (which might be referred to as 'single-stage robust delnand
we show how to derive both statements of (a) the dual to the robust modi€ban
the robust version of the dual. The resulting expressions of the olgdatixction to
be optimized in both cases, though bearing some formal resemblancet appea
clearly distinct. Moreover, from a complexity point-of-view, one appé¢aise effi-
ciently solvable (it reduces to a convex optimization problem) whereas the athe
a nonconvex optimization problem, is expected to be computationally difficult in the
general case. As an application of the 2-stage robust LP model ingddhere, we
next investigate theobust PERT scheduling problem, considering two possible nat-
ural ways of specifying the uncertainty set for the task durations : tbewhere the
uncertainty set is a scaled ball with respect to g norm; the case where the un-
certainty set is a scaled Hamming ball of bounded radius (which, thougiméetda
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quite different model, bears some resemblance to the well-known BertsimaspS
proach to robustness). We show that in both cases, the resulting optimsization
problem can be efficiently solved in polynomial time.

Key words : Robust Linear Programming, duality, robust PERT scheduling

1 Introduction

Various models for handling robustness objectives witlpeesto uncertainties on
some specified coefficients in linear programming models haen proposed in the liter-
ature. We can mention Soyster (1973), Ben-Tal and Nemirqd€€8, 2000), Bertsimas
and Sim (2003, 2004).

The various approaches proposed can roughly be dividedvitalistinct categories,
depending on whether the underlying uncertainty modetsedtepossible fluctuations on
the row vectors of the constraint matrix (we call thiswwise uncertainty’), or on column
vectors (we call thiscolumnwise uncertainty’).

Columnwise uncertainty was first considered by Soyster (L9lF8this model each
columnA; of them xn constraint matrix is either supposed to be exactly knowrs only
known to belong to a given subskt, C R™ (‘'uncertainty set’). The cost vector and the
right handside are supposed to be certain. A robust soligiaisolution which is feasible
for all possible choices of the uncertain column vectorshiirtrespective uncertainty
sets. With this definition, assuming nonnegativity constsaon all variables of the LP,
it can easily be shown that the problem of finding an optimbalsd solution reduces to
solving an ordinary LP with constraint matrik = (a; ;) where,Vi, j, the coefficients;
is defined as:

e a;; = MaxX,cx,{v;} in case of ath constraint of the form<

e a;; = min,cx, {v;} in case of ath constraint of the forn»

Note that the above maximization (or minimization) canlgds carried out if we assume
the uncertainty sets either of finite cardinality (and natlbg !), or closed convex.

As observed by many authors, a drawback of Soyster’'s motieist usually leads to
rather conservative solutions, in other words the priceapfpr robustness in the above
sense is often too high.

Contrasting with the above, rowwise uncertainty has athatore interest and has
been studied, among others, by Ben-Tal and Nemirovski (1283)), and more recently
by Bertsimas and Sim (2003, 2004).
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Ben-Tal and Nemirovski start with the assumption that eashAg of the constraint
matrix belongs to a known uncertainty set consisting of dipsalid £; ¢ R" , and a
solutionz € R™, z > 0 is said to be robust in this context iff it satisfies:

forall 7 : AZZE < bZ,VAZ e k.

Ben-Tal and Nemirovski then show that finding an optimal rémadution reduces to
solving a conic quadratic problem, which can be done in pmiyial time. Obviously a
drawback of this approach is that, due to nonlinearity ofrésilting robust modelt is
not practically applicable to very large problems.

A way to obviate nonlinearity, while retaining the idea ofwmise uncertainty, was
proposed by Bertsimas and Sim (2003, 2004), consideringyhtifidifferent model of
uncertainty. More precisely, they assume that each unoectefficientq; ; can take
values in a given intervak; ; — «; ;, a; ; + «; ;) and, for each row, a positive parameter
I'; > 0 (not larger than the total number of uncertain coefficientow ¢) is considered.
A solution x is then qualified ag'—robust (in the sense of Bertsimas and Sim) iff for
all i = 1,...,m this solution satisfies thé&h constraint for all possible choices of the
coefficients in row:i such that at mosk'; of the uncertain coefficients in the row are
allowed to deviate from the nominal values;. (note that the above statement implicitly
assumes thE; parameters to be integers, but Bertsimas and Sim show thgh#ysmore
general definition, allowing for nonintegral values of thé can be handled in the same
way). With this model of uncertainty, Bertsimas and Sim shbat finding an optimal
I'—robust solution can be reduced to solving an ordinary lipeagram only moderately
increased in size, thus opening the way to large scale apiplics. Moreover the approach
readily extends to optimization problems including intdiy constraints on all or part of
the variables, in that case the robust version of the prolem MIP, but, again, the
resulting robust model is only moderately increased in azeompared with the original
model.

2 Duality and columnwise/rowwise robustness

We address in this section the question of whether dualitypcave in any way useful
to convert a columnwise uncertain linear program into a r@gwncertain linear pro-
gram, assuming of course the same uncertainty model foralliennis of the given linear
program and for the corresponding rows in the dual.

Intuitively, no nice (i.e. strong) duality result is to bepected when taking into
account robustness constraints since, in both the prinaettedual, there is a price to pay
for uncertainty, therefore: if we maximize in the primak ttobust primal optimal solution
value will be (in general strictly) less than the optimalwtmn value of the 'nominal’
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primal LP; and minimizing in the dual will lead to a robust toatimal solution value
(in general) strictly larger than the same value.

Let us illustrate the phenomenon on a small typical exanmpansider the following
LP (a continuous knapsack problem actually) with two uraiertoefficients:; andas; in
the constraint matrix:

Maximize 4x; + 3zs
(P) s.t:
a1x1 + asxy < 4
12> 0,29 >0

the standard LP dual of which reads:

Minimize 4u
(D) s.t:
aiu >4
asu > 3
u>0

Let us assume that the uncertainty setdoris the real interval2, 3] , the uncertainty
set fora, is the real intervall, 2|, and let us take as definition of a robust solution in
both (P) and (D) a solution which is feasible for any possualkeies ofa; anda, in their
respective uncertainty sets. Then it is easily seen thaighmal robust primal solution is
2% = [0, 2] with corresponding primal objective function value 6; ahd bptimal robust
dual solution is:° = 3 with corresponding dual objective function value 12. Thisraple
thus clearly shows that no natural extension of the usualdepties related to LP duality
is to be expected in the context of robust Linear Programmirige results discussed in
the following section will provide additional evidence big.

3 Duality and robustness for LP’s with uncertainty in the
RHS

A special case of columnwise uncertainty in Linear Programgiis when uncertainty
only concerns the coefficients of the right handside (RHS)hQuoblems frequently arise
in practical applications. As a typical example, we mentioe robust PERT scheduling
problem with uncertainty on the durations of (some of) ttek$aassuming that a robust
earliest termination date has to be determined. More @hciae want to determine the
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minimum total duration of the project under any possiblegaseent of task durations,
taken in a given uncertainty set. The 2-stage robust modeudsed in § 3.2 below will
appear to be relevant to such applications.

Consider the following LP:

and assume that the right handside b is not known exactlyordytknown to belong to
some uncertainty sé8 C R™. The setB may be finite or infinite (we will introduce
additional assumptions on this set when necessary).

Two distinct robustness models for LP’s with uncertain RH% @ successively dis-
cussed in this section, namely single-stage robust deciemdels (8§ 3.1) and two-stage
robust decision models (8 3.2). For both cases it will be shthat, even in the restricted
situation addressed here (uncertainty in the RHS only) onaatause standard duality
theory to convert a columnwise uncertain linear program antowwise uncertain linear
program while preserving equivalence. This will thus pdevadditional evidence of the
fact that strong duality does not hold in general for ungert#’s.

3.1 Single-stage robust (LP) decision model

We first consider the simplest case where the values of altiéeésion variables:
have to be fixed (taking into account uncertainty) before etagy kind of information
on the actual realization of the uncertain parameters. ¢h susimple model (indeed a
special case of Soyster's model) feasibility has to be eustor anyb € B, and the
problem to be solved simply reduces to:

max clx
Ar <b
r >0

where,\Vi, b, = min,ep{b; }
The (standard) LP dual to the above problem reads:
(D1) min u’b

ulTA>c
u>0
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On the other hand, if we consider the dual to:

max CTI

Axr <b

xr
we get:

min  uTb
ul'A >c¢

Now consider the robust version of this dual problem wheeecthst vectob is uncer-
tain and can take any value i. A simple and natural objective in this context is to find
v achieving a minimum value afiax «”b over all possiblé € B, thus leading to:

(D2) min, maxyep {u’b}

s.t: ulA>c
u >0

Itis clearly realized that (D1) and (D2) are completelyeli#éint optimization problems
on the same solution sets since,

Yu > 0,ulh < max{uTb}
beB

with strict inequality holding in the general case.

If the set B is either finite, or closed convex, it is observeat (D2) can be efficiently
solved via standard convex optimization techniques sinedtnction:

T
u — rilean{u b}

is convex. Also, in this case, tan be efficiently computed sineein,cz{b;} too is a
convex optimization problem, therefore problem (D1), twem be efficiently solved.

3.2 Two-stage robust (LP) decision model

It frequently arises in applications that the process ofsi@e-making under uncer-
tainty can be decomposed in two successive steps (two-dgsion making) or more
(multi-stage decision making). For simplicity of preseiana, we restrict here to the case
of two-stage decision making. In this case, the set of datigariables: is decomposed
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(partitioned) into two distinct sets of variables which wendtey andz. They variables
concern the decisions to be taken in the first stage (befaeikig anything about which
realization of uncertainty will arise) and thevariables concern the decisions to be taken
in the second stage (after realization of uncertainty).

Limiting ourselves, to make the discussion easier to fgllawthe case where the
objective function only depends on the decision variabfat@ first stage, our decision
problem can thus be rewritten:

() max "y
sttt Fy+Gz>1D
y=>0,2>0

wherev, b are vectors an@’ andG are matrices of appropriate dimensions. (Observe
that the reason for restricting to the case of an objectitelapending on the variables
is only for the sake of simplicity in the presentation, ouotatage robust decision model
would readily handle the general case of an objective depgnah both the y and z
variables).

Now, since the RHS$ in (1) is uncertain, we have to make our robustness objestive
precise. In the sequel, we consider robustness for a solutiy requiring that feasibility
can be ensured for any possible RH& B by using the second stage decision variables
z (by analogy with the terminology used in stochastic prograng, the z variables might
be referred to as 'recourse’ variables). So, if we define {y/y > 0 andvb € B,3z >
0:Gz <b-— Fy}, we want to solve:

T
max{7" y}.

Note that in the above, for any given robust solutigrthe value taken by the vari-
ables depends on whidhe B is actually realized. This is an important feature of our
model which explains why it can produce less conservatiatisns as compared with
Soyster’'s model (see example given in Remark 1 below).

According to Farkas’ Lemma, we know that, for fixeéd= B, a necessary and suffi-
cient condition for the existence of> 0 verifying Gz < b — Fy is that:

u® (b — Fy) > 0 for all u in the polyhedral cone® = {u/u’G > 0 andu > 0}.

Denotingu®, u?, ..., u?, the extreme rays of the above cone, theléean equivalently
be represented as the system of linear inequalities:

(W) Fy < (u)'b,Vbe B)Vj=1,..p
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which is equivalent to:

AYA < = min(u)T
(W) Fy < w, rbrélél(u)b.

The robust 2-stage decision problem is then reformulated as

(1) max ~"y
st (W) Fy<w Vj=1,..p
y=>0

Since we are interested in investigating duality in the erndf robustness, let us state
the (standard) dual to (I)’. So, introducing dual variables(j = 1, ...p), the dual to (I)’
can be written as:

min Do AW = A rbréi]?(uj)Tb

st Y NFTW >y
>\j Z O,Vj = 1,...,p

and since{u/u = > \ju/, \; > 0} = {u/GTu > 0,u > 0}, this can be rewritten
as:

(D)’ min, mingeg u’b
S.t: FTu>~
GTu>0
u >0

or , equivalently if we denot&l” denote the set of solutions to (DI)’

. . T
s gt o @

An a priori different way of using duality in our context wallbe to take the (standard)
LP dual to (1) for fixed b, and then to carry out robustness ysiglwith respect to the
coefficients) of the objective in the dual, allowing b to take all possibddues inB . The
LP dual to (I) reads:

(D) minu’b
s.t: FTu >«
GTu>0
u >0
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A natural robust version of (DI) consists in finding the duallsion v minimizing the
value ofu’b produced by the worst possikiiereads:

: T

iyt O @
which is to be contrasted with (1): indeed, it is seen thatrtimist version of the dual
significantly differs from the dual of the robust version bétinitial (primal) problem (1)
because the function afto be minimized isninycz{u’ b} in one case, anthax,cz{u’ b}
in the other case.

It is worth observing that this structural difference bedwéhe two functions also im-
plies a difference with respect to the practical solvapihit the corresponding problems.
The objective function in (2) is convex in, making the robust version of (DI) efficiently
solvable, whereas the objective in (1) is concave,imaking (DI)’ and thus (by standard
LP duality) (1)’ too, difficult problems in the general case.

Remark 1: As already suggested above, the two-stage robust decisidelmproposed
here is capable of producing less conservative solutioograpared with Soyster’'s model.
The reason for this is that if, for a given uncertainty set B,omasider Soyster’s model
for problem (l), the problem to be solved is

T
max{y" y}
where the seY; is defined agy/y > 0and3z > 0 : Gz < b— Fy} with b defined as:
It is easily seenthaY, C YV = {y/y > 0andV¥b € B,32 > 0: Gz < b— Fy}
and cases where strict inclusion holds (leading to an ingatawbust optimal solution

value over the optimal value of Soyster’s model) can eaglfoloind, as illustrated by the
following example.

In this example we consider 3 variables> 0, z; > 0 andz; > 0, and 3 constraints:

y—2 < b
y—20< by
Zl+22§ bg

and the uncertainty se® is taken as the set containing the two vectors), 1)* and
(0,1,1)T. The objective function is to maximizg It is easily checked that the sE
corresponding to Soyster's model is in this case the reahat [0, 1/2] leading to an
optimal robust solution valué.5. On the other hand, the s&t corresponding to our
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two-stage model is the real interJal 1] leading to the (less conservative) optimal robust
solution value 1. Indeed, the value = 1 is feasible in our model because, in case
b = (1,0,1)” occurs, we can take; = 0 andz, = 1; and, in casé = (0,1,0)”
occurs, we can take = 1 andz, = 0. (Observe, as already pointed out above, that the
value taken by the variables indeed depends on whicke B is actually realized). Of
course, this example does not rule out the possibility offtay” = Y for some special
instances. As will be seen in the next section, this posyibwlill arise in connection
with the robust PERT scheduling problem, in the special ¢eeferred to there a€ase

1) where the uncertainty set on the task durations is thestartg@roduct of a family of
real intervals.

4 An application of the 2-stage robust LP model with
RHS uncertainty: robust PERT scheduling

In this section we specialize the general two-stage robBstiécision model investi-
gated above to robust PERT scheduling, with an uncertaettip ®n the durations of the
tasks, supposed to be given as a (finite or infinite) list ofrsgios’. More precisely, we
want to determine an earliest termination date which carchewaed for any realization
of the task durationg in a given uncertainty sdb.

4.1 Formulation as a 2-stage robust LP model

Consider a PERT network represented as a directed circigiaph/NV in which the
nodes correspond to tasks (the tasks are numberet 2, ..n, the set of tasks is denoted
I), and there is an ar(, j) with length (duration)l; whenever there is a precedence
constraint stating that processing of tgskhould not start before completion of task
The set of arcs is denotdd. We assume that node 1 has no immediate predecessor (it
thus represents the initial task) and nadkas no direct successor (it thus represents the
terminal task of the project). Denoting(j = 1, ..n) the starting date for each tagkand
assuming first that the task duratiafysare exactly known, we want to minimize the total
duration of the project while satisfying all precedencestaaints, in other words:

Maximize -y,
S.t:

n 0

Indeed, it is easy to check that in the aboye,= 0 can be replaced by, > 0, or
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equivalently—y; < 0, thus the problem can be rewritten:

Maximize -y,
s.t:

-y <0
Yi —Y; S —dz,V(Z,j) eU

This model is recognized as a special case of (l), the canstratrix [F, ] being
formed by the transpose of the node-arc incidence matriX afith an additional row
involving variabley; only (with associated coefficient -1) is reduced in this case to
a single column (the column corresponding to nad@ the transpose of the incidence
matrix of V). The right handside vectdris the vector with coefficients equal to the
opposite of the task durations (more specifically, the riggntdside coefficient for the
constraint corresponding to af¢, j) € U is equal to—d;). Note that we do not state
explicitly the nonnegativity conditions op, since they are implied by the precedence
constraints and nonnegativity of tigcoefficients.

Thus the problem is cast in a form very similar to (I) the onlfedence being that the
nonnegativity conditions opandz are dropped. The consequence of this on the analysis
of § 3.2 is just that we have to consider the polyhedral adhe: {u/u"G = 0 andu >
0} instead of the polyhedral coné€! = {u/u”G > 0 andu > 0.}

Due to the special structure of tiiematrix arising in the PERT scheduling problem,
we have the following result:

Proposition 1: The extreme rays of the polyhedral cone C’ are in 1-1 corredpoce
with the characteristic vectors of the various paths betwesle 1 and node in V.

Proof: By observing thaG* is the node-arc incidence matrix of the gratwithout
the row associated with nodebut with an extra column with coefficient -1 in the first
row and all other coefficients 0, it is realized thasatisfyingGTv = 0 andu > 0
corresponds to a nonnegative flow between node 1 andmadév with value equal to
w11, the component of corresponding to the extra column with coefficient -1 in tingt i
row and all other coefficients 0. Therefore the extreme réyseoconeC’ correspond to
the incidence vectors of the various paths connecting naden@den in V. ]

Let us denoteP = {r! 72 ..,7%} the set of all paths betweehandn in N,
ut,u?, ..., u” the corresponding characteristic vectors, the conditidn” (b — Fiy) > 0
specializesto= >, v d; +y, >0

(this is because, in that caséu*)"v = —>"._ . d; and(v*)'Fy = —y,). So the
condition for feasibility is that for each pattt : y,, > >, . d;.
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In view of this, the robust PERT scheduling problem can berretilated as:

max —Yn
S.t:
Yo =Y di,Vr* € PVdeED

iemk
where we recall that D denotes the uncertainty set for tHedasations.

This problem therefore reduces to determining the pdtmaximizing, over the set
P of all possible paths iV, the objective function:

max{) _d;}

iemk

in other words we want to solve:

naxnax() 4} (RPS)

iEm
(Robust Pert Scheduling’ problem)

Now, if we want to go further into the analysis of (RPS), we htvepecify how the
uncertainty seD is defined. Of course there are many possible ways for thigomeent
ourselves below to examine two among the most natural dessdsinitions, and show
that, for each of them, the above robust optimization prob{RPS) can be efficiently
solved .

Case 1:D isascaled ball wir.t. the L., norm.

The first easy special case is when, for each ta#ike durationi; can take any value
in a given real intervald; , ;"] with 0 < d; < d;. In this caseD is the cartesian product:
[dy,df] x [dy,df] x ... x [d,,d}], which may be viewed as a scaled ball w.r.t. the
norm (using component-wise scaling to have all intervalsopfal width). It is easily seen
that an optimal robust solution for problem (RPS) can be abtiin this case by looking
at a longest path (critical path) iN when each of the tasksis assigned the longest

possible duratior;’.

As an illustration of the above, consider the following exdenwith n = 7 tasks,
where the graph of precedence constraints has the followiosgs (1,2), (1,3), (2,3),
(2,5), (2,6), (3,4), (3,7), (4,5), (5,7) and (6, 7). Thus task 2 cannot be started before
completion of task 1, etc. Also note that the tasks are nuetb&ccording to a topological
ordering of the graph, since there is no &icj) with i« > j. The associated intervals
[d, d;] for the durations of the tasks are the following:

17

Task 1| Task 2| Task 3| Task 4| Task 5| Task 6
2,4] | [4,8] | [3,6] | [4,8] | [4,8] | [8,16]
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Task 7 is not shown in the above table because it is a dummyaésikiration 0, without
uncertainty) representing the end of the schedule. It ig ®esee that in this example, the
optimal solution to the (RPS) problem has duration 34 andcespiwnds to the critical path
(1,2,3,4,5,7). Indeed 34 is the earliest achievable termination date ifegeire that the
schedule remains feasible for any possible choice of tHedastions in the cartesian
product[d; ,d{] x [dy,df] x ... X [dg,d¢]. This corresponds to the situation where the
duration of each taskis d;.

Case 2:D isa scaled Hamming ball of bounded radiusT'.

Here again we assume that, for each tasle duration/; can take any value in a given
real interval(d;, d; + A;] with d; > 0. d; is called the nominal value of the duration for
taski, d; + A; being the possible extreme (or worst-case) value for thedasation. As is
actually the case in many practical applications, it isketli that all tasks simultaneously
take on worst-case values. To take this observation intouatcwe will impose an upper
boundI" on the number of task durations which are allowed to take ooratwase value,
given that all task durations which do not take on a worsecadue are assumed to be
equal to their nominal value. More formally, associatinghneach task a 0-1 integer
variableu; , the uncertainty seb corresponding to this definition is:

=1
As can be seen from the above definition, in the special caseadil A, are equal to 1,
D is recognized as the Hamming ball of radlusentered afl = (d;),7 = 1, ..n (in other
words,f — d can be any 0-1 vector with at mdsitomponents equal to 1). When theg's
take on arbitrary positive values, the Hamming ball strrects still present after applying
scaling to each componentith respect to the correspondidg value.

We note here that, in spite of the fact that the definition adewclose in spirit to the
concept of uncertainty suggested by Bertsimas and Sim (20UBL), our model is fairly
different from the one studied by these authors, since tastyict themselves to rowwise
uncertainty, whereas in our robust PERT scheduling proplegrhave uncertainty on the
RHS only (a special case of columnwise uncertainty). For ndetailed discussion of
this issue, see §4.2 below.

We now show that, with the above definition of the uncertagatyD, problem (RPS)
can be efficiently solved via a dynamic programming recursio that aim, we will con-
sider the problem with paramet€ras only one representative of the class of problems
(RPS, k]) for i running from 1 ton (the number of tasks) and running from 0 tol".
More precisely, assuming that the tasks are numbered angdada topological ordering
of the circuitless graptv , (RPSi, k]) consists of the robust PERT scheduling subprob-
lem corresponding to the subset of tasks 1, 2,the durations of at mogt of which are
allowed to take on their worst-case values. The case k=0 ¢m@mtion allowed) corre-
sponds to the usual PERT scheduling problem in terms of thenad values for the task
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durations. We denote [i, k] the optimal objective function value for problem (RR$]),
and for any task, we denotePred|i| the set of taskg such thatj, ) is an arc ofNV (the
set of direct predecessors of noge Bellman’s optimality principle then leads to the
following dynamic programming recursion:

Vie [l,n],Vk=0,1,.T:v"[i,k] = Jnax max{v*[j, k] + d;; v*[7, k — 1] + d; + A}
jePred|i
3)

The optimal value of the robust PERT scheduling problem veeiaterested in is then:
v*[n,T']. The rationale behind Eq. (3) can easily be explained asvisll Consider the
set of all paths from 1 tg € Pred]i]. The duration of ar¢j, ) has nominal valu€; and
worst-case valu€; + A;. The maximum duration of a path from 1 td¢hrough; with
at mostk tasks allowed to deviate from their nominal values can baiobt: either by
allowing for at most deviations on the subset of tasks 2, ..j} and taking the nominal
duration for arc(j,4); or by allowing at most: — 1 deviations on the subset of tasks
{1,2, ..} and taking the worst-case duration for djjci). Thus the optimal value for
nodes via nodej is the maximum value among these two alternatives, and thmalp
value for node is the maximum taken on the set of all direct predecessarsQifviously,
solving the recursion (3) is achieved in polynomial timén x n), wherem is the number
of arcs and n the number of nodes of the PERT network; moresgig¢he complexity is
O(m x I') wherel', the parameter defining the uncertainty set, is at mp#te number
of tasks (but often significantly smaller thann practical applications).

Let us illustrate the above on the same 7 task example as theamsidered to illus-
trate case 1. We thus consider the same intervals for thedtasitions, the lower bound
of each interval representing the nominal task duratiod,tha upper bound representing
the worst-case duration. For= 3, application of the recursion (3) leads to thgi, k|
values shown in the following table.

1=2 1= 1=4|1=5|1= 1=
k=20 2 6 9 13 6 17
k=1 4 10 13 17 10 22
k=2 4 12 16 21 12 26
k=3 4 12 18 24 12 29

For instance the value*[4,2] = 16 corresponds to the patf, 2,3,4) with 3 arcs of
nominal durations 2, 4 and 3 respectively. If, in this patig arcs out of three are allowed
to take on their worst-case durations, the worst case (Magptiained when task 2 has
duration 8 and task 3 has duration 6 (task 1 keeping its ndrduration 2), the resulting
length of the path being: 8 + 6 + 2 = 16. Let us also illustrate be recursion (3) works
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for computing e.gv*[7, 2] andv*[7, 3]. We have:

v*[7,2] = max{v*[3,2] + 3;v"[3,1] + 6;v"[5,2] + 4;v*[5, 1] + §;
v*[6,2] + 8;v*[6, 1] + 16}
— max{15, 16,25, 25,20, 26} = 26.

The maximum above is obtained fgr= 6 and the corresponding optimal path is
(1,2,6,7).

Similarly we have:

v*[7,3] = max{v*[3,3] + 3;v"[3,2] + 6;v*[5, 3] + 4;v"[5,2] + §;
v*[6, 3] + 8;v*[6,2] + 16}
— max{15, 18,28,29, 20,28} = 29.

The maximum above is obtained fgr= 5 and the corresponding optimal path is
(1,2,3,4,5,7). Itis thus seen that, depending on the choice of the con&n@rpeter”,
various optimal paths are obtained which, of course, mdgrdifom the optimal solution
to the non-robust PERT scheduling problem (considering ¢imt nominal values for
the task durations). Also, observe that the valtg, 3] = 29 corresponds to a less
conservative robust situation as compared with the onerwtan case 1 above.

4.2 Differences with Bertsimas and Sim’s approach

We now turn to show that, in spite of the similarity in the daifom of the uncertainty
sets, the robust version of the PERT scheduling problenstigaged here is essentially
different from the model proposed by Bertsimas and Sim [3]tifier robust version of
the shortest path problem. From an abstract point-of-viegvdifference basically stems
from the fact that, in our case, we are faced with a LP probleth uncertainty on the
right handside, whereas Bertsimas and Sim address a LP probta uncertainty on the
cost coefficients. However, to further understand the soafchis difference, we show
below which difficulties would arise if we wanted to apply tBertsimas-Sim approach
to the robust longest (critical) path problem on a direciecldless graplG.

Following these authors, the robust shortest s-t path probh G with uncertainty
parametef’ (assuming’ € N) is formulated as:

(RSP) gél)l(l{ Z Ci’jl'i’jﬁ— max Z Ai,jxi,j}
(ij)eS

= SCU,|S|<T
(i,5)eU 1,
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where X denotes the set of incidence vectors of all s-t path&ir; ; denotes the
nominal cost of arqi, j) andc; ; + A, ; is the worst-case cost of af¢ j). After trans-
formation of (RSP) using the duality theorem to convert theoad term in the brackets
into a minimization, the problem is reformulated as a stashdl® , the solution of which
reduces ton + 1 aplications of a standard shortest path algorithm. Obsiateone of
the reasons for all the above to work so nicely is that thersgéerm in the brackets, as
a function ofz, is convex inz , since it is the pointwise maximum of a finite number of
linear functions.

The above approach is still valid if, instead of looking faraptimum robust minimum
cost path, we were looking for an optimum robust maximum bepath: ¢, ; > 0 being
interpreted as a reward associated with the use dfiaf¢, the effect of uncertainty being
to reduce the nominal rewarg; by the amounty; ;. The problem would then take the
form:

(i,9)€U (i,5)€S
which is essentially analogous to the above robust minimash jgath, up to a change in
the signs of the coefficients in the objective (still assugniof course, that the graph
under consideration is circuitless). In particular, weartbiat the function to be maximized
is concave, so we still have a convex optimization problem.

By contrast, the robust PERT scheduling problem address#dtkipresent paper is
formulated as:
(3,7)€U (4,5)€S
(Wlth Cij > 0 andAM > 0)

It is then readily observed that this problem consists inim&ing a convex function
of z on {0,1}™, and it is well-known that this cannot be simply reduced tdirary
linear programming as is the case for Bertsimas and Sim’'soappr Thus robust PERT
scheduling may be viewed a typical illustration of the biffedences between models
featuring rowwise uncertainty and models featuring coluse uncertainty in robust
Linear Programming.

5 Conclusions

In this paper, various Robust Linear Programming probleme Ih&en investigated,
and the question of whether LP duality can still be used tp lresolving such problems
has been addressed and answered negatively. Among themobbnsidered, Robust
Linear Programming problems with uncertainty in the righhtisides only, have been
recognized as an interesting sub-class of problems, foclwtiie solution techniques
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should not confine themselves to the classical approactopeapby Soyster (1979). In
this respect we have been lead to propose a new class of foBusibdels referred to

here as 'Two-Stage Robust Decision Models’ which can be @gpdo lead to less 'con-
servative’ optimal robust solutions than those usualhaoigd from Soyster’'s model. In
order to show the practical usefulness of this 2-Stage madspecialization to robust
PERT scheduling has been discussed, leading , under twoahatays of defining the

uncertainty set w.r.t. the task durations, to efficient Bolumethods. Also some funda-
mental difference between our approach to robust PERT stihgdand the one proposed
by Bertsimas and Sim [3] in the context of the robust shortash problem has been
pointed out. We think that many other possible applicatiointhis 2-Stage robust mod-
eling approach would deserve further investigations, mstance in dynamic inventory
management, optimal resource allocation problems, teleamication problems, etc.
This will be the subject of future research.
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