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Duality, Robustness, and 2-stage robust LP
decision models. Application to Robust PERT

Scheduling
Michel Minoux∗

Résumé

Les modèles de programmation linéaire robuste étudiés dans la littérature re-
lèvent principalement, soit de l’incertitude par colonnes, soit de l’incertitude par
lignes. Ils supposent essentiellement que les colonnes (resp : les lignes)de la ma-
trice des contraintes ont des coefficients pouvant fluctuer, tout en restant inclus dans
des ensembles d’incertitude bien définis. On commence par étudier la questionde
savoir si la théorie de la dualité en programmation linéaire peut être utilisée pour
transformer un problème de PL robuste avec incertitude disons par lignes,en un pro-
blème de PL robuste avec incertitude par colonnes. On exhibe des exemplessimples
montrant clairement que le dual d’un programme linéaire robuste donné n’est en gé-
néral PAS équivalent à la version robuste du dual (en considérant bien sûr que les
ensembles d’incertitude pour les lignes - resp : les colonnes - du primal sont définis
exactement de la même façon que les ensembles d’incertitude pour les colonnes -
resp : les lignes - du dual). On poursuit l’étude de cette question de la dualitédans le
contexte de la robustesse en considérant la sous-classe des programmes linéaires ro-
bustes avec incertitude sur le second membre seulement (cette sous-classene semble
pas, jusqu’ici, avoir fait l’objet d’études significatives). Dans ce contexte nous intro-
duisons le concept de ’modèle de programmation linéaire robuste sur deux étapes’,
par contraste avec le cas standard (qui pourrait être désigné sous le nom de ’mo-
dèle de robustesse sur une étape’), et nous formulons successivement (a) le dual du
programme linéaire robuste ; (b) la version robuste du dual. Les expressions de la
fonction objectif a optimiser dans les deux cas, bien que présentant des similitudes
formelles, apparaissent clairement distinctes. De plus, du point de vue dela diffi-
culté de résolution, un des problèmes est susceptible de résolution efficace (il s’agit
d’un problème d’optimisation convexe), tandis que l’autre, en tant que problème non
convexe, peut être difficile à résoudre dans le cas général. Comme application du
modèle de programmation linéaire robuste à deux étapes proposé ici, nous discutons
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finalement le problème d’ordonnancement PERT robuste en considérantdeux défi-
nitions naturelles possibles de l’ensemble d’incertitude pour les durées destâches :
le cas où l’ensemble d’incertitude est, à une mise à l’échelle près, une boule rela-
tivement à la norme Linfini ; et le cas où l’ensemble d’incertitude est, à une miseà
l’échelle près, une boule de rayon maximum fixé relativement à la distance deHam-
ming. On montre que, dans les deux cas, le problème d’optimisation robuste peut être
résolu efficacement en temps polynomial. On explique enfin pourquoi le modèle et
l’approche antérieurement proposés par Bertsimas et Sim (pour le problème du plus
court / plus long chemin robuste) ne pourraient s’appliquer au problèmed’ordonnan-
cement PERT robuste étudié ici, du fait de structures sous-jacentes essentiellement
différentes.

Mots-clefs : Programmation Linéaire robuste, dualité, ordonnancement PERT ro-
buste

Abstract

The various robust linear programming models investigated so far in the literature
essentially appear to be based either on what is referred to as ’rowwise’uncertainty
models or on ’columnwise’ uncertainty models (these basically assume that the rows
- resp: the columns - of the constraint matrix are subject to changes within a well
specifieduncertainty set). We first address the question of whether LP duality can
be used to convert a robust LP problem with, say, rowwise uncertainty,into a ro-
bust LP with columnwise uncertainty. We provide simple examples supporting the
general statement that the dual of a given robust linear programming model is NOT
equivalent to the robust version of the dual (assuming of course that uncertainty for
the rows - resp: the columns - of the primal, is specified in exactly the same way
as uncertainty for the corresponding columns - resp: rows - of the dual). Next, we
further investigate this issue of duality in the context of robustness by considering
the subclass of robust LP models with uncertainty limited to the right handside only.
(this subclass does not appear to have been significantly investigated so far). In this
context we introduce the concept of ’ two-stage robust LP model’ as opposed to the
standard case (which might be referred to as ’single-stage robust LP model’) and
we show how to derive both statements of (a) the dual to the robust model and (b)
the robust version of the dual. The resulting expressions of the objective function to
be optimized in both cases, though bearing some formal resemblance, appear to be
clearly distinct. Moreover, from a complexity point-of-view, one appearsto be effi-
ciently solvable ( it reduces to a convex optimization problem) whereas the other, as
a nonconvex optimization problem, is expected to be computationally difficult in the
general case. As an application of the 2-stage robust LP model introduced here, we
next investigate therobust PERT scheduling problem, considering two possible nat-
ural ways of specifying the uncertainty set for the task durations : the case where the
uncertainty set is a scaled ball with respect to theL∞ norm; the case where the un-
certainty set is a scaled Hamming ball of bounded radius (which, though leading to a
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quite different model, bears some resemblance to the well-known Bertsimas-Sim ap-
proach to robustness). We show that in both cases, the resulting robustoptimization
problem can be efficiently solved in polynomial time.

Key words : Robust Linear Programming, duality, robust PERT scheduling

1 Introduction

Various models for handling robustness objectives with respect to uncertainties on
some specified coefficients in linear programming models have been proposed in the liter-
ature. We can mention Soyster (1973), Ben-Tal and Nemirovski(1998, 2000), Bertsimas
and Sim (2003, 2004).

The various approaches proposed can roughly be divided intotwo distinct categories,
depending on whether the underlying uncertainty model refers to possible fluctuations on
the row vectors of the constraint matrix (we call this’rowwise uncertainty’), or on column
vectors (we call this’columnwise uncertainty’).

Columnwise uncertainty was first considered by Soyster (1973). In this model each
columnAj of them×n constraint matrix is either supposed to be exactly known, oris only
known to belong to a given subsetKj ⊂ R

m (’uncertainty set’). The cost vector and the
right handside are supposed to be certain. A robust solutionis a solution which is feasible
for all possible choices of the uncertain column vectors in their respective uncertainty
sets. With this definition, assuming nonnegativity constraints on all variables of the LP,
it can easily be shown that the problem of finding an optimal robust solution reduces to
solving an ordinary LP with constraint matrixA = (ai,j) where,∀i, j, the coefficientai,j

is defined as:

• ai,j = maxv∈Kj
{vi} in case of aith constraint of the form≤

• ai,j = minv∈Kj
{vi} in case of aith constraint of the form≥

Note that the above maximization (or minimization) can easily be carried out if we assume
the uncertainty sets either of finite cardinality (and not too big !), or closed convex.

As observed by many authors, a drawback of Soyster’s model isthat it usually leads to
rather conservative solutions, in other words the price to pay for robustness in the above
sense is often too high.

Contrasting with the above, rowwise uncertainty has attracted more interest and has
been studied, among others, by Ben-Tal and Nemirovski (1998,2000), and more recently
by Bertsimas and Sim (2003, 2004).
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Ben-Tal and Nemirovski start with the assumption that each row Ai of the constraint
matrix belongs to a known uncertainty set consisting of an ellipsoid Ei ⊂ R

n , and a
solutionx ∈ R

n, x ≥ 0 is said to be robust in this context iff it satisfies:

for all i : Aix ≤ bi,∀Ai ∈ Ei.

Ben-Tal and Nemirovski then show that finding an optimal robust solution reduces to
solving a conic quadratic problem, which can be done in polynomial time. Obviously a
drawback of this approach is that, due to nonlinearity of theresulting robust model,it is
not practically applicable to very large problems.

A way to obviate nonlinearity, while retaining the idea of rowwise uncertainty, was
proposed by Bertsimas and Sim (2003, 2004), considering a slightly different model of
uncertainty. More precisely, they assume that each uncertain coefficientai,j can take
values in a given interval[ai,j − αi,j, ai,j + αi,j] and, for each rowi, a positive parameter
Γi > 0 (not larger than the total number of uncertain coefficients in row i) is considered.
A solution x is then qualified asΓ−robust (in the sense of Bertsimas and Sim) iff for
all i = 1, ...,m this solution satisfies theith constraint for all possible choices of the
coefficients in rowi such that at mostΓi of the uncertain coefficients in the row are
allowed to deviate from the nominal valuesai,j. (note that the above statement implicitly
assumes theΓi parameters to be integers, but Bertsimas and Sim show that a slightly more
general definition, allowing for nonintegral values of theΓi’s can be handled in the same
way). With this model of uncertainty, Bertsimas and Sim show that finding an optimal
Γ−robust solution can be reduced to solving an ordinary linearprogram only moderately
increased in size, thus opening the way to large scale applications. Moreover the approach
readily extends to optimization problems including integrality constraints on all or part of
the variables, in that case the robust version of the problemis a MIP, but, again, the
resulting robust model is only moderately increased in sizeas compared with the original
model.

2 Duality and columnwise/rowwise robustness

We address in this section the question of whether duality can prove in any way useful
to convert a columnwise uncertain linear program into a rowwise uncertain linear pro-
gram, assuming of course the same uncertainty model for the columns of the given linear
program and for the corresponding rows in the dual.

Intuitively, no nice (i.e. strong) duality result is to be expected when taking into
account robustness constraints since, in both the primal and the dual, there is a price to pay
for uncertainty, therefore: if we maximize in the primal, the robust primal optimal solution
value will be (in general strictly) less than the optimal solution value of the ’nominal’
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primal LP; and minimizing in the dual will lead to a robust dual optimal solution value
(in general) strictly larger than the same value.

Let us illustrate the phenomenon on a small typical example.Consider the following
LP (a continuous knapsack problem actually) with two uncertain coefficientsa1 anda2 in
the constraint matrix:

Maximize 4x1 + 3x2

(P) s.t:

a1x1 + a2x2 ≤ 4

x1 ≥ 0, x2 ≥ 0

the standard LP dual of which reads:

Minimize 4u

(D) s.t:

a1u ≥ 4

a2u ≥ 3

u ≥ 0

Let us assume that the uncertainty set fora1 is the real interval[2, 3] , the uncertainty
set fora2 is the real interval[1, 2], and let us take as definition of a robust solution in
both (P) and (D) a solution which is feasible for any possiblevalues ofa1 anda2 in their
respective uncertainty sets. Then it is easily seen that theoptimal robust primal solution is
x0 = [0, 2] with corresponding primal objective function value 6; and the optimal robust
dual solution isu0 = 3 with corresponding dual objective function value 12. This example
thus clearly shows that no natural extension of the usual properties related to LP duality
is to be expected in the context of robust Linear Programming. The results discussed in
the following section will provide additional evidence of this.

3 Duality and robustness for LP’s with uncertainty in the
RHS

A special case of columnwise uncertainty in Linear Programming is when uncertainty
only concerns the coefficients of the right handside (RHS). Such problems frequently arise
in practical applications. As a typical example, we mentionthe robust PERT scheduling
problem with uncertainty on the durations of (some of) the tasks, assuming that a robust
earliest termination date has to be determined. More precisely, we want to determine the
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minimum total duration of the project under any possible assignment of task durations,
taken in a given uncertainty set. The 2-stage robust model discussed in § 3.2 below will
appear to be relevant to such applications.

Consider the following LP:

max cT x

Ax ≤ b

x ≥ 0

and assume that the right handside b is not known exactly, butonly known to belong to
some uncertainty setB ⊂ R

m. The setB may be finite or infinite (we will introduce
additional assumptions on this set when necessary).

Two distinct robustness models for LP’s with uncertain RHS will be successively dis-
cussed in this section, namely single-stage robust decision models (§ 3.1) and two-stage
robust decision models (§ 3.2). For both cases it will be shown that, even in the restricted
situation addressed here (uncertainty in the RHS only) one cannot use standard duality
theory to convert a columnwise uncertain linear program into a rowwise uncertain linear
program while preserving equivalence. This will thus provide additional evidence of the
fact that strong duality does not hold in general for uncertain LP’s.

3.1 Single-stage robust (LP) decision model

We first consider the simplest case where the values of all thedecision variablesx
have to be fixed (taking into account uncertainty) before we get any kind of information
on the actual realization of the uncertain parameters. In such a simple model (indeed a
special case of Soyster’s model) feasibility has to be ensured for anyb ∈ B , and the
problem to be solved simply reduces to:

max cT x

Ax ≤ b

x ≥ 0

where,∀i, bi = minb∈B{bi}

The (standard) LP dual to the above problem reads:

(D1) min uT b

uT A ≥ c

u ≥ 0
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On the other hand, if we consider the dual to:

max cT x

Ax ≤ b

x ≥ 0

we get:

min uT b

uT A ≥ c

u ≥ 0

Now consider the robust version of this dual problem where the cost vectorb is uncer-
tain and can take any value inB. A simple and natural objective in this context is to find
u achieving a minimum value ofmax uT b over all possibleb ∈ B, thus leading to:

(D2) minu maxb∈B {uT b}

s.t: uT A ≥ c

u ≥ 0

It is clearly realized that (D1) and (D2) are completely different optimization problems
on the same solution sets since,

∀u ≥ 0, uT b ≤ max
b∈B

{uT b}

with strict inequality holding in the general case.

If the set B is either finite, or closed convex, it is observed that (D2) can be efficiently
solved via standard convex optimization techniques since the function:

u → max
b∈B

{uT b}

is convex. Also, in this case, bcan be efficiently computed sinceminb∈B{bi} too is a
convex optimization problem, therefore problem (D1), too,can be efficiently solved.

3.2 Two-stage robust (LP) decision model

It frequently arises in applications that the process of decision-making under uncer-
tainty can be decomposed in two successive steps (two-stagedecision making) or more
(multi-stage decision making). For simplicity of presentation, we restrict here to the case
of two-stage decision making. In this case, the set of decision variablesx is decomposed
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(partitioned) into two distinct sets of variables which we denotey andz. They variables
concern the decisions to be taken in the first stage (before knowing anything about which
realization of uncertainty will arise) and thez variables concern the decisions to be taken
in the second stage (after realization of uncertainty).

Limiting ourselves, to make the discussion easier to follow, to the case where the
objective function only depends on the decision variables of the first stage, our decision
problem can thus be rewritten:

(I) max γT y

s.t: Fy + Gz ≥ b

y ≥ 0, z ≥ 0

whereγ, b are vectors andF andG are matrices of appropriate dimensions. (Observe
that the reason for restricting to the case of an objective not depending on thez variables
is only for the sake of simplicity in the presentation, our two-stage robust decision model
would readily handle the general case of an objective depending on both the y and z
variables).

Now, since the RHSb in (I) is uncertain, we have to make our robustness objectives
precise. In the sequel, we consider robustness for a solution y by requiring that feasibility
can be ensured for any possible RHSb ∈ B by using the second stage decision variables
z (by analogy with the terminology used in stochastic programming, the z variables might
be referred to as ’recourse’ variables). So, if we defineY = {y/y ≥ 0 and∀b ∈ B,∃z ≥
0 : Gz ≤ b − Fy}, we want to solve:

max
y∈Y

{γT y}.

Note that in the above, for any given robust solutiony, the value taken by thez vari-
ables depends on whichb ∈ B is actually realized. This is an important feature of our
model which explains why it can produce less conservative solutions as compared with
Soyster’s model (see example given in Remark 1 below).

According to Farkas’ Lemma, we know that, for fixedb ∈ B, a necessary and suffi-
cient condition for the existence ofz ≥ 0 verifying Gz ≤ b − Fy is that:

uT (b − Fy) ≥ 0 for all u in the polyhedral cone:C = {u/uT G ≥ 0 andu ≥ 0}.

Denotingu1, u2, ..., up, the extreme rays of the above cone, the setY can equivalently
be represented as the system of linear inequalities:

(uj)T Fy ≤ (uj)T b,∀b ∈ B,∀j = 1, ...p
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which is equivalent to:
(uj)T Fy ≤ wj = min

b∈B
(uj)T b.

The robust 2-stage decision problem is then reformulated as:

(I)’ max γT y

s.t: (uj)T Fy ≤ wj,∀j = 1, ..., p

y ≥ 0

Since we are interested in investigating duality in the context of robustness, let us state
the (standard) dual to (I)’. So, introducing dual variablesλj, (j = 1, ...p), the dual to (I)’
can be written as:

min
∑

j λjw
j =

∑

j

λj min
b∈B

(uj)T b

s.t:
∑

j λjF
T uj ≥ γ

λj ≥ 0,∀j = 1, ..., p

and since:{u/u =
∑

λju
j, λj ≥ 0} = {u/GT u ≥ 0, u ≥ 0}, this can be rewritten

as:

(DI)’ minu minb∈B uT b

s.t: F T u ≥ γ

GT u ≥ 0

u ≥ 0

or , equivalently if we denoteW denote the set of solutions to (DI)’

min
u∈W

min
b∈B

{uT b} (1)

An a priori different way of using duality in our context would be to take the (standard)
LP dual to (I) for fixed b, and then to carry out robustness analysis with respect to the
coefficientsb of the objective in the dual, allowing b to take all possible values inB . The
LP dual to (I) reads:

(DI) min uT b

s.t: F T u ≥ γ

GT u ≥ 0

u ≥ 0
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A natural robust version of (DI) consists in finding the dual solutionu minimizing the
value ofuT b produced by the worst possibleb, reads:

min
u∈W

max
b∈B

{uT b} (2)

which is to be contrasted with (1): indeed, it is seen that therobust version of the dual
significantly differs from the dual of the robust version of the initial (primal) problem (I)
because the function ofu to be minimized isminb∈B{u

T b} in one case, andmaxb∈B{u
T b}

in the other case.

It is worth observing that this structural difference between the two functions also im-
plies a difference with respect to the practical solvability of the corresponding problems.
The objective function in (2) is convex inu, making the robust version of (DI) efficiently
solvable, whereas the objective in (1) is concave inu, making (DI)’ and thus (by standard
LP duality) (I)’ too, difficult problems in the general case.

Remark 1: As already suggested above, the two-stage robust decision model proposed
here is capable of producing less conservative solutions ascompared with Soyster’s model.
The reason for this is that if, for a given uncertainty set B, weconsider Soyster’s model
for problem (I), the problem to be solved is

max
y∈Ys

{γT y}

where the setYs is defined as{y/y ≥ 0 and∃z ≥ 0 : Gz ≤ b − Fy} with b defined as:

∀i, bi = min
b∈B

{bi}

It is easily seen thatYs ⊆ Y = {y/y ≥ 0 and∀b ∈ B,∃z ≥ 0 : Gz ≤ b − Fy}
and cases where strict inclusion holds (leading to an improved robust optimal solution
value over the optimal value of Soyster’s model) can easily be found, as illustrated by the
following example.

In this example we consider 3 variablesy ≥ 0, z1 ≥ 0 andz2 ≥ 0, and 3 constraints:

y − z1 ≤ b1

y − z2 ≤ b2

z1 + z2 ≤ b3

and the uncertainty setB is taken as the set containing the two vectors(1, 0, 1)T and
(0, 1, 1)T . The objective function is to maximizey. It is easily checked that the setYS

corresponding to Soyster’s model is in this case the real interval [0, 1/2] leading to an
optimal robust solution value0.5. On the other hand, the setY corresponding to our
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two-stage model is the real interval[0, 1] leading to the (less conservative) optimal robust
solution value 1. Indeed, the valuey = 1 is feasible in our model because, in case
b = (1, 0, 1)T occurs, we can takez1 = 0 and z2 = 1; and, in caseb = (0, 1, 0)T

occurs, we can takez1 = 1 andz2 = 0. (Observe, as already pointed out above, that the
value taken by thez variables indeed depends on whichb ∈ B is actually realized). Of
course, this example does not rule out the possibility of having Y = YS for some special
instances. As will be seen in the next section, this possibility will arise in connection
with the robust PERT scheduling problem, in the special case(referred to there asCase
1) where the uncertainty set on the task durations is the cartesian product of a family of
real intervals.

4 An application of the 2-stage robust LP model with
RHS uncertainty: robust PERT scheduling

In this section we specialize the general two-stage robust LP decision model investi-
gated above to robust PERT scheduling, with an uncertainty set D on the durations of the
tasks, supposed to be given as a (finite or infinite) list of ‘scenarios’. More precisely, we
want to determine an earliest termination date which can be achieved for any realization
of the task durationsd in a given uncertainty setD.

4.1 Formulation as a 2-stage robust LP model

Consider a PERT network represented as a directed circuitless graphN in which the
nodes correspond to tasks (the tasks are numberedi = 1, 2, ..n, the set of tasks is denoted
I), and there is an arc(i, j) with length (duration)di whenever there is a precedence
constraint stating that processing of taskj should not start before completion of taski.
The set of arcs is denotedU . We assume that node 1 has no immediate predecessor (it
thus represents the initial task) and noden has no direct successor (it thus represents the
terminal task of the project). Denotingyj(j = 1, ..n) the starting date for each taskj, and
assuming first that the task durationsdi are exactly known, we want to minimize the total
duration of the project while satisfying all precedence constraints, in other words:

Maximize −yn

s.t:

y1 = 0

yi − yj ≤ −di,∀(i, j) ∈ U

Indeed, it is easy to check that in the above,y1 = 0 can be replaced byy1 ≥ 0, or
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equivalently−y1 ≤ 0, thus the problem can be rewritten:

Maximize −yn

s.t:

−y1 ≤ 0

yi − yj ≤ −di,∀(i, j) ∈ U

This model is recognized as a special case of (I), the constraint matrix [F,G] being
formed by the transpose of the node-arc incidence matrix ofN with an additional row
involving variabley1 only (with associated coefficient -1).F is reduced in this case to
a single column (the column corresponding to noden in the transpose of the incidence
matrix of N ). The right handside vectorb is the vector with coefficients equal to the
opposite of the task durations (more specifically, the righthandside coefficient for the
constraint corresponding to arc(i, j) ∈ U is equal to−di). Note that we do not state
explicitly the nonnegativity conditions ony, since they are implied by the precedence
constraints and nonnegativity of thedi coefficients.

Thus the problem is cast in a form very similar to (I) the only difference being that the
nonnegativity conditions ony andz are dropped. The consequence of this on the analysis
of § 3.2 is just that we have to consider the polyhedral coneC ′ = {u/uT G = 0 andu ≥
0} instead of the polyhedral cone:C = {u/uT G ≥ 0 andu ≥ 0.}

Due to the special structure of theG matrix arising in the PERT scheduling problem,
we have the following result:

Proposition 1: The extreme rays of the polyhedral cone C’ are in 1-1 correspondence
with the characteristic vectors of the various paths between node 1 and noden in N .

Proof: By observing thatGT is the node-arc incidence matrix of the graphN without
the row associated with noden but with an extra column with coefficient -1 in the first
row and all other coefficients 0, it is realized thatu satisfyingGT u = 0 and u ≥ 0
corresponds to a nonnegative flow between node 1 and noden in N with value equal to
u1,1, the component ofu corresponding to the extra column with coefficient -1 in the first
row and all other coefficients 0. Therefore the extreme rays of the coneC ′ correspond to
the incidence vectors of the various paths connecting node 1to noden in N .

Let us denoteP = {π1, π2, ..., πK} the set of all paths between1 and n in N ,
u1, u2, ..., uK the corresponding characteristic vectors, the condition(uk)T (b − Fy) ≥ 0
specializes to:−

∑
i∈πk di + yn ≥ 0

(this is because, in that case:(uk)T b = −
∑

i∈πk di and(uk)T Fy = −yn). So the
condition for feasibility is that for each pathπk : yn ≥

∑
i∈πk di.
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In view of this, the robust PERT scheduling problem can be reformulated as:

max −yn

s.t:

yn ≥
∑

i∈πk

di,∀πk ∈ P,∀d ∈ D

where we recall that D denotes the uncertainty set for the task durations.

This problem therefore reduces to determining the pathπk maximizing, over the set
P of all possible paths inN , the objective function:

max
d∈D

{
∑

i∈πk

di}

in other words we want to solve:

max
π∈P

max
d∈D

{
∑

i∈π

di} (RPS)

(’Robust Pert Scheduling’ problem)

Now, if we want to go further into the analysis of (RPS), we haveto specify how the
uncertainty setD is defined. Of course there are many possible ways for this; wecontent
ourselves below to examine two among the most natural possible definitions, and show
that, for each of them, the above robust optimization problem (RPS) can be efficiently
solved .

Case 1:D is a scaled ball w.r.t. the L∞ norm.

The first easy special case is when, for each taski, the durationdi can take any value
in a given real interval[d−

i , d+
i ] with 0 ≤ d−

i ≤ d+
i . In this caseD is the cartesian product:

[d−
1 , d+

1 ] × [d−
2 , d+

2 ] × ... × [d−
n , d+

n ], which may be viewed as a scaled ball w.r.t. theL∞

norm (using component-wise scaling to have all intervals ofequal width). It is easily seen
that an optimal robust solution for problem (RPS) can be obtained in this case by looking
at a longest path (critical path) inN when each of the tasksi is assigned the longest
possible durationd+

i .

As an illustration of the above, consider the following example with n = 7 tasks,
where the graph of precedence constraints has the followingarcs: (1, 2), (1, 3), (2, 3),
(2, 5), (2, 6), (3, 4), (3, 7), (4, 5), (5, 7) and(6, 7). Thus task 2 cannot be started before
completion of task 1, etc. Also note that the tasks are numbered according to a topological
ordering of the graph, since there is no arc(i, j) with i > j. The associated intervals
[d−

i , d+
i ] for the durations of the tasks are the following:

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
[2, 4] [4, 8] [3, 6] [4, 8] [4, 8] [8, 16]
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Task 7 is not shown in the above table because it is a dummy task(of duration 0, without
uncertainty) representing the end of the schedule. It is easy to see that in this example, the
optimal solution to the (RPS) problem has duration 34 and corresponds to the critical path
(1, 2, 3, 4, 5, 7). Indeed 34 is the earliest achievable termination date if werequire that the
schedule remains feasible for any possible choice of the task durations in the cartesian
product[d−

1 , d+
1 ] × [d−

2 , d+
2 ] × ... × [d−

6 , d+
6 ]. This corresponds to the situation where the

duration of each taski is d+
i .

Case 2:D is a scaled Hamming ball of bounded radius Γ.

Here again we assume that, for each taski, the durationdi can take any value in a given
real interval[di, di + ∆i] with di ≥ 0. di is called the nominal value of the duration for
taski, di +∆i being the possible extreme (or worst-case) value for the task duration. As is
actually the case in many practical applications, it is unlikely that all tasks simultaneously
take on worst-case values. To take this observation into account, we will impose an upper
boundΓ on the number of task durations which are allowed to take on a worst-case value,
given that all task durations which do not take on a worst-case value are assumed to be
equal to their nominal value. More formally, associating with each taski a 0-1 integer
variableui , the uncertainty setD corresponding to this definition is:

D = {θ = (θ)i=1,...,n/θi = di +∆iui(i = 1, ..., n) such that:
n∑

i=1

ui ≤ Γ, ui ∈ {0, 1},∀i}

As can be seen from the above definition, in the special case where all∆i are equal to 1,
D is recognized as the Hamming ball of radiusΓ centered atd = (di), i = 1, ..n (in other
words,θ−d can be any 0-1 vector with at mostΓ components equal to 1). When the∆i’s
take on arbitrary positive values, the Hamming ball structure is still present after applying
scaling to each componenti with respect to the corresponding∆i value.

We note here that, in spite of the fact that the definition above is close in spirit to the
concept of uncertainty suggested by Bertsimas and Sim (2003,2004), our model is fairly
different from the one studied by these authors, since they restrict themselves to rowwise
uncertainty, whereas in our robust PERT scheduling problem, we have uncertainty on the
RHS only (a special case of columnwise uncertainty). For moredetailed discussion of
this issue, see §4.2 below.

We now show that, with the above definition of the uncertaintysetD, problem (RPS)
can be efficiently solved via a dynamic programming recursion. To that aim, we will con-
sider the problem with parameterΓ as only one representative of the class of problems
(RPS[i, k]) for i running from 1 ton (the number of tasks) andk running from 0 toΓ.
More precisely, assuming that the tasks are numbered according to a topological ordering
of the circuitless graphN , (RPS[i, k]) consists of the robust PERT scheduling subprob-
lem corresponding to the subset of tasks 1, 2,...,i, the durations of at mostk of which are
allowed to take on their worst-case values. The case k=0 (no deviation allowed) corre-
sponds to the usual PERT scheduling problem in terms of the nominal values for the task
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durations. We denotev∗[i, k] the optimal objective function value for problem (RPS[i, k]),
and for any taski, we denotePred[i] the set of tasksj such that(j, i) is an arc ofN (the
set of direct predecessors of nodei). Bellman’s optimality principle then leads to the
following dynamic programming recursion:

∀i ∈ [1, n],∀k = 0, 1, ...Γ : v∗[i, k] = max
j∈Pred[i]

max{v∗[j, k] + dj; v
∗[j, k − 1] + dj + ∆j}

(3)
The optimal value of the robust PERT scheduling problem we are interested in is then:
v∗[n, Γ]. The rationale behind Eq. (3) can easily be explained as follows. Consider the
set of all paths from 1 toj ∈ Pred[i]. The duration of arc(j, i) has nominal valuedj and
worst-case valuedj + ∆j. The maximum duration of a path from 1 toi throughj with
at mostk tasks allowed to deviate from their nominal values can be obtained: either by
allowing for at mostk deviations on the subset of tasks{1, 2, ..j} and taking the nominal
duration for arc(j, i); or by allowing at mostk − 1 deviations on the subset of tasks
{1, 2, ..j} and taking the worst-case duration for arc(j, i). Thus the optimal value for
nodei via nodej is the maximum value among these two alternatives, and the optimal
value for nodei is the maximum taken on the set of all direct predecessors ofi. Obviously,
solving the recursion (3) is achieved in polynomial timeO(m×n), wherem is the number
of arcs and n the number of nodes of the PERT network; more precisely the complexity is
O(m × Γ) whereΓ, the parameter defining the uncertainty set, is at mostn, the number
of tasks (but often significantly smaller thann in practical applications).

Let us illustrate the above on the same 7 task example as the one considered to illus-
trate case 1. We thus consider the same intervals for the taskdurations, the lower bound
of each interval representing the nominal task duration, and the upper bound representing
the worst-case duration. ForΓ = 3, application of the recursion (3) leads to thev∗[i, k]
values shown in the following table.

i = 2 i = 3 i = 4 i = 5 i = 6 i = 7
k = 0 2 6 9 13 6 17
k = 1 4 10 13 17 10 22
k = 2 4 12 16 21 12 26
k = 3 4 12 18 24 12 29

For instance the valuev∗[4, 2] = 16 corresponds to the path(1, 2, 3, 4) with 3 arcs of
nominal durations 2, 4 and 3 respectively. If, in this path, two arcs out of three are allowed
to take on their worst-case durations, the worst case (Max) is obtained when task 2 has
duration 8 and task 3 has duration 6 (task 1 keeping its nominal duration 2), the resulting
length of the path being: 8 + 6 + 2 = 16. Let us also illustrate how the recursion (3) works
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for computing e.g.v∗[7, 2] andv∗[7, 3]. We have:

v∗[7, 2] = max{v∗[3, 2] + 3; v∗[3, 1] + 6; v∗[5, 2] + 4; v∗[5, 1] + 8;

v∗[6, 2] + 8; v∗[6, 1] + 16}

= max{15, 16, 25, 25, 20, 26} = 26.

The maximum above is obtained forj = 6 and the corresponding optimal path is
(1, 2, 6, 7).

Similarly we have:

v∗[7, 3] = max{v∗[3, 3] + 3; v∗[3, 2] + 6; v∗[5, 3] + 4; v∗[5, 2] + 8;

v∗[6, 3] + 8; v∗[6, 2] + 16}

= max{15, 18, 28, 29, 20, 28} = 29.

The maximum above is obtained forj = 5 and the corresponding optimal path is
(1, 2, 3, 4, 5, 7). It is thus seen that, depending on the choice of the control parameterΓ,
various optimal paths are obtained which, of course, may differ from the optimal solution
to the non-robust PERT scheduling problem (considering only the nominal values for
the task durations). Also, observe that the valuev∗[7, 3] = 29 corresponds to a less
conservative robust situation as compared with the one obtained in case 1 above.

4.2 Differences with Bertsimas and Sim’s approach

We now turn to show that, in spite of the similarity in the definition of the uncertainty
sets, the robust version of the PERT scheduling problem investigated here is essentially
different from the model proposed by Bertsimas and Sim [3] forthe robust version of
the shortest path problem. From an abstract point-of-view,the difference basically stems
from the fact that, in our case, we are faced with a LP problem with uncertainty on the
right handside, whereas Bertsimas and Sim address a LP problem with uncertainty on the
cost coefficients. However, to further understand the source of this difference, we show
below which difficulties would arise if we wanted to apply theBertsimas-Sim approach
to the robust longest (critical) path problem on a directed circuitless graphG.

Following these authors, the robust shortest s-t path problem in G with uncertainty
parameterΓ (assumingΓ ∈ N) is formulated as:

(RSP) min
x∈X

{
∑

(i,j)∈U

ci,jxi,j + max
S⊆U,|S|≤Γ

∑

(i,j)∈S

∆i,jxi,j}
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whereX denotes the set of incidence vectors of all s-t paths inG; ci,j denotes the
nominal cost of arc(i, j) andci,j + ∆i,j is the worst-case cost of arc(i, j). After trans-
formation of (RSP) using the duality theorem to convert the second term in the brackets
into a minimization, the problem is reformulated as a standard LP , the solution of which
reduces tom + 1 aplications of a standard shortest path algorithm. Observethat one of
the reasons for all the above to work so nicely is that the second term in the brackets, as
a function ofx, is convex inx , since it is the pointwise maximum of a finite number of
linear functions.

The above approach is still valid if, instead of looking for an optimum robust minimum
cost path, we were looking for an optimum robust maximum benefit path: ci,j > 0 being
interpreted as a reward associated with the use of arc(i, j), the effect of uncertainty being
to reduce the nominal rewardci,j by the amount∆i,j. The problem would then take the
form:

max
x∈X

{
∑

(i,j)∈U

ci,jxi,j − max
S⊆U,|S|≤Γ

∑

(i,j)∈S

∆i,jxi,j}

which is essentially analogous to the above robust minimum cost path, up to a change in
the signs of the coefficients in the objective (still assuming, of course, that the graphG
under consideration is circuitless). In particular, we note that the function to be maximized
is concave, so we still have a convex optimization problem.

By contrast, the robust PERT scheduling problem addressed inthe present paper is
formulated as:

max
x∈X

{
∑

(i,j)∈U

ci,jxi,j + max
S⊆U,|S|≤Γ

∑

(i,j)∈S

∆i,jxi,j}

(with ci,j > 0 and∆i,j > 0).

It is then readily observed that this problem consists in maximizing a convex function
of x on {0, 1}m, and it is well-known that this cannot be simply reduced to ordinary
linear programming as is the case for Bertsimas and Sim’s approach. Thus robust PERT
scheduling may be viewed a typical illustration of the big differences between models
featuring rowwise uncertainty and models featuring columnwise uncertainty in robust
Linear Programming.

5 Conclusions

In this paper, various Robust Linear Programming problems have been investigated,
and the question of whether LP duality can still be used to help in solving such problems
has been addressed and answered negatively. Among the problems considered, Robust
Linear Programming problems with uncertainty in the right handsides only, have been
recognized as an interesting sub-class of problems, for which the solution techniques
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should not confine themselves to the classical approach proposed by Soyster (1979). In
this respect we have been lead to propose a new class of robustLP models referred to
here as ’Two-Stage Robust Decision Models’ which can be expected to lead to less ’con-
servative’ optimal robust solutions than those usually obtained from Soyster’s model. In
order to show the practical usefulness of this 2-Stage model, a specialization to robust
PERT scheduling has been discussed, leading , under two natural ways of defining the
uncertainty set w.r.t. the task durations, to efficient solution methods. Also some funda-
mental difference between our approach to robust PERT scheduling and the one proposed
by Bertsimas and Sim [3] in the context of the robust shortest path problem has been
pointed out. We think that many other possible applicationsof this 2-Stage robust mod-
eling approach would deserve further investigations, for instance in dynamic inventory
management, optimal resource allocation problems, telecommunication problems, etc.
This will be the subject of future research.
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