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Supporting the search for a group ranking with robust conclusions on prudent orders

Claude Lamboray

Résumé

Nous analysons le problème où des rangements, fournis par exemple par des évaluateurs, doivent être agrégés en un rangement de compromis. Dans ce contexte, Arrow et Raynaud suggèrent que le rangement de compromis soit un ordre prudent. En général, un ordre prudent n'est pas unique. C'est pourquoi nous proposons de construire des conclusions robustes sur ces ordres prudents afin de gérer la possible multiplicité des solutions de compromis. Cette approche va permettre de progressivement raffiner le modèle d'aide à la décision. Nous illustrons notre approche sur un exemple de rangement de priorités de recherche par un groupe de jeunes chercheurs.

Introduction

Often decision problems that arise in companies or organizations involve a group of individuals. In particular we will focus on the problem where the judgment of different experts, evaluators or decision makers has to be taken into account in order to rank a set of alternatives from the best to the worst. This is typically the case in situations where a group of experts has to agree on a priority list. In the example that we will present at the end of this paper, a group of junior researchers was asked by a scientific funding agency to rank a set of research domains that should be developed in the medium and long term.

Although the group members all pursue a global goal, that is to take a good decision for their company or their organization, they can have a different opinion about how to rank the alternatives. In fact, they may have a different perspective on the problem or they may play a different role within the organization. Inevitably, conflicting preferences will emerge. In such a case, a group decision then consists in reducing the individual preferences into a collective preference (see Jelassi [START_REF] Jelassi | An introduction to group decision and negotiation support[END_REF]).

This problem be approached in a variety of ways, ranging from a simple ranking solely based on, let's say, cost to complex multicriteria group ranking techniques. De Keyser [START_REF] Dekeyser | Another way of looking at group decision making opens new perspectives[END_REF] differentiates between four types of multicriteria multidecision maker models. The last of these four types consists of an approach where, first, each group member explicitly states his individual ranking. In a second stage, mechanisms and tools are then needed that aggregate or combine this multi-dimensional ordinal data into a new, so-called compromise or group ranking. In this paper we are going to adopt such an approach. As argued by De Keyser [START_REF] Dekeyser | Another way of looking at group decision making opens new perspectives[END_REF], this consequently leaves a large amount of freedom to each group member on how to perform his evaluation and construct his personal ranking.

Many ordinal ranking rules have been proposed since more than 200 years. Borda [START_REF] Borda | Mémoire sur les élections au scrutin[END_REF] is one of the first who examined the problem. His rule consists in ranking the alternatives according to the sum of ranks. Some other rules have been proposed where the score of each alternative naturally defines a weak order, such as for instance the rules proposed by Copeland [START_REF] Copeland | A 'reasonable' social welfare function[END_REF] or Simpson [START_REF] Simpson | On defining areas of voter choice: Professor Tullock on stable voting[END_REF]. The Maximize agreement heuristic proposed by Beck and Lin [START_REF] Beck | Some heuristics for the consensus ranking problem[END_REF] is slightly different since it follows a ranking by choosing scheme. From a different perspective, many ranking rules have been modeled as optimization problems. The compromise ranking is a linear order that optimizes a certain objective function. The most known such rule has been proposed by Kemeny [START_REF] Kemeny | Mathematics without numbers[END_REF], but let us also mention the rules proposed by Slater [START_REF] Slater | Inconsistencies in a schedule of paired comparisons[END_REF], Bernardo [START_REF] Bernardo | An assignment approach to choosing R&D experiments[END_REF], Blin [START_REF] Blin | A linear assignement formulation fo the multiattribute decision problem[END_REF] and Cook and Seiford [START_REF] Cook | Priority ranking and consensus formation[END_REF].

In this paper, we will present an approach to support the search for a compromise ranking using the concept of prudent orders. In fact, when working in an "industrial" or "business-like" situation, then Arrow and Raynaud [START_REF] Arrow | Social Choice and Multicriterion Decision-Making[END_REF] suggested that the compromise ranking should be a prudent order. Intuitively, a prudent order is a compromise ranking such that the strongest opposition against this solution is minimal.

Throughout the paper, we will assume that the input data will consist of linear orders. This can be criticized, especially from an operational point of view. However, this assumption will simplify the underlying aggregation problem. This paper can also be seen as a first step toward designing a similar decision aid tool which would allow for more complex preference structures. Prudent orders will be presented in section 2. The methodological framework of our approach will be motivated more in depth in section 3. In section 4, we will compute robust conclusions on these prudent orders. We will discuss an adaptation step in section 5. The concepts introduced are illustrated on an example in section 6. We end this paper with a conclusion. All the proofs can be found in the appendix.

Prudent orders

Let us suppose that a set of alternative has been clearly established and that this set will remain stable during the whole decision process. We will assume that each group member will propose a linear order (antisymmetric, complete and transitive binary relation). These linear orders have then to be aggregated into a group ranking.

Formally, let O denote the set of all linear orders over a finite set of n alternatives A = {a 1 , a 2 , . . . , a n }. Let u = (O 1 , O 2 , . . . O q ) ∈ O q be a profile of q linear orders of the q group members. A valued relation S counts the number of rankings that prefer a i over a j :

S ij = |{k ∈ {1, . . . , q} : (a i , a j ) ∈ O k }|
Since the relations O k are linear orders, it is easy to see that for i = j we have S ij + S ji = q. This is called the constant sum property.

Let λ ∈ {0, . . . , q}. Let R ≥λ (R >λ ) be a cut-relation of S defined as follows:

S ij ≥ λ ⇒ (a i , a j ) ∈ R ≥λ and S ij > λ ⇒ (a i , a j ) ∈ R >λ .
When λ = 0, R ≥λ contains all the ordered pairs. By increasing the value of λ, less pairs of alternatives will belong to the cut-relation. At one point, it will no longer be possible that R ≥λ contains a linear order. In particular we are interested in the largest possible value of λ such that R ≥λ still contains a linear order. α = max{λ ∈ {0, . . . , q} : R ≥λ contains a linear order } When λ = q, then R >λ is empty. In particular, the relation R >λ does not contain any cycles. By decreasing the value of λ, the relation R >λ will contain a cycle at some point. We are interested in the smallest value of λ such that the corresponding strict cut-relation is acyclic. β = min{λ ∈ {0, . . . , q} : R >λ is cycle-free }

The following theorems establish the links between these two relations.

Theorem 1 [START_REF] Arrow | Social Choice and Multicriterion Decision-Making[END_REF] [START_REF] Arrow | Social Choice and Multicriterion Decision-Making[END_REF] (page 93) If the constant sum property holds, then any linear order O containing R >β is contained in R ≥α and any linear order contained in R ≥α also contains R >β . Furthermore, α + β = q.

Arrow and Raynaud [START_REF] Arrow | Social Choice and Multicriterion Decision-Making[END_REF] (see axiom V' page 95) thus proposed that the compromise ranking should be a prudent order.

Definition 1 A prudent order O is a linear order that contains R >β and is contained in R ≥α : R >β ⊆ O ⊆ R ≥α .
We will denote by PO = {O ∈ O : R >β ⊆ O ⊆ R ≥α } the set of all prudent orders. The authors justify this approach to be prudent by the fact that ordered pairs of alternatives that belong to the relation R >β are pairs with no contradiction and a high support. If these pairs would not belong to the final compromise ranking, there would be a large and non-divided coalition against such a ranking. On the other hand, a group ranking which is not contained in R ≥α has at least one ordered pair of alternatives (a i , a j ) such that S ij is strictly smaller than α. That is why such a group ranking should be discarded.

Let us remind the reader that the transitive closure of a relation R, denoted by t(R), is the smallest relation that is transitive and that contains R. Furthermore, a linear extension of a relation R is a linear order O ∈ O that contains this relation: R ⊆ O.

Proposition 1

Let O be a linear order. The following statements are equivalent.

1. O is a prudent order 2. O is an optimal solution of max O∈O min (a i ,a j )∈O S ij 3. O is an optimal solution of min O∈O max (a i ,a j ) ∈O S ij

4. t(R >β ) ⊆ O
Point 2 states that a prudent order is a ranking that maximizes the weakest link. Equivalently, point 3 states that a prudent order is a ranking that minimizes the strongest opposition. Let us note that these results are only valid when the constant-sum property is satisfied.

One can show that the transitive closure of a cycle-free relation is a partial order (reflexive, transitive and antisymmetric relation). Since R >β is cycle-free, then, following point 4 of proposition 1 PO can be seen as the set of linear extensions of the partial order t(R >β ). This equivalence between linear extensions of a partial order and prudent orders will be useful, from a practical point of view, to perform the computations introduced in the next sections.

The properties of prudent orders have been analyzed by Debord [START_REF] Debord | Axiomatisation de procédures d'agrégation de préférences[END_REF] (chapter 6) and by Lansdowne [START_REF] Lansdowne | Ordinal ranking methods for multicriterion decision making[END_REF]. Let us point out that prudent orders verify unanimity: if an alternative a i is preferred to another alternative a j in all the rankings, then a i will also be preferred to a j in all the prudent orders. Another important characteristic of prudent orders is that they are Condorcet-consistent: in case the majority relation1 is a linear order, this will be the unique prudent order. Let us also refer the interested reader to the axiomatic characterization of the prudent order preference function presented in [START_REF] Lamboray | An axiomatic characterization of the prudent order preference function[END_REF].

Prudent orders are interesting because they synthesize the profile not necessarily into one but into a whole range of possible compromise rankings. Hence they do not completely act as an aggregation operator on the profile, but rather tend to reformulate the information contained in the initial rankings.

If there are more contradictions in the initial orders, then cycles may appear more easily. This means that β will be larger and, consequently, α will be smaller. As the two relations R >β and R ≥α drift further apart, the number of prudent orders will increase, until the trivial case where every linear order on A is a prudent order (see for instance [START_REF] Lansdowne | Outranking methods for multicriterion decision-making : Arrow's and Raynaud's conjecture[END_REF] for such an example). In fact, a direct corollary of point 4 of proposition 1 is that the size of PO is equal to the number of linear extensions of the partial order t(R >β ). This number can increase dramatically as the number of incomparable pairs in the partial order increases. In that context, let us mention Debord [START_REF] Debord | Axiomatisation de procédures d'agrégation de préférences[END_REF] (chapter 6), who performed simulations to estimate the number of prudent orders for small profiles. For instance, the
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Figure 1: Obtaining the prudent order dcab with Kohler's rule.

average number of prudent orders of profiles with 7 alternatives and 10 rankings is 134.

One way of finding a prudent order is to use Kohler's ranking rule [START_REF] Kohler | Choix multicritère et analyse algébrique de données ordinales[END_REF], since every solution found by this rule must be a prudent order ( [START_REF] Arrow | Social Choice and Multicriterion Decision-Making[END_REF], page 103). This rule can be seen as a sequential maxmin rule: at step r, identify the minimum along each row of S. Select the row such that the minimum is maximum. If there are ties, choose one arbitrarily. This row corresponds to the alternative that will be put at rank r in the ranking. Delete the row and the column corresponding to the selected alternative. Furthermore, one can show ( [START_REF] Kohler | Choix multicritère et analyse algébrique de données ordinales[END_REF][START_REF] Arrow | Social Choice and Multicriterion Decision-Making[END_REF]) that the smallest of these successive maxima corresponds to α.

However, Kohler's rule is not sufficient to find the whole set of prudent orders (see Lansdowne [START_REF] Lansdowne | Outranking methods for multicriterion decision-making : Arrow's and Raynaud's conjecture[END_REF] for a counter example). A straightforward algorithm to enumerate all the prudent orders is as follows: apply Kohler's rule once. Find the value of β = qα. Compute R >β and t(R >β ). Apply an algorithm that enumerates all the linear extensions of a partial order. For instance, Pruesse and Ruskey [START_REF] Pruesse | Generating linear extensions fast[END_REF] proposed an algorithm that generates all the linear extensions in constant amortized time, which means in O(|PO|).

In figure 1, we illustrate this on the profile u = (abcd, bcda, cdab, dabc, dcba). For instance, the prudent order dcab will be obtained using Kohler's rule. The smallest of the coefficients selected is min{2, 2, 3, 2} = 2. Hence, α = 2 and β = qα = 5 -2 = 3. The set of prudent orders thus corresponds to all the linear extensions of the t(R >3 ) = R >3 = {(d, a)}. These 12 prudent orders are listed in figure 2.

Although we do not want, a priori, to discard any prudent order, it can sometimes be useful to select a few "good" prudent orders. In order to discriminate between the prudent orders, different approaches can be considered:

• Evaluate each prudent order O ∈ PO according to the sum of the outranking coefficients (a i ,a j )∈O S ij and select the prudent orders with the largest evaluation. Let us note that, if the Kemeny order [START_REF] Kemeny | Mathematics without numbers[END_REF] is also a prudent order, this approach will select a Kemeny-optimal order. However, by adopting a sum-operator, the ordinal aspect of the model of prudent orders will be lost.

• Among all the linear orders, prudent orders are those that maximize the weakest link. Among all the prudent orders, select the ones that maximize the second weakest link. Among, these, select the ones that maximize the third weakest link. Repeat the procedure n(n-1)
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times or until there is only one linear order left. This procedure comes down to refining prudent orders, which are min-optimal solutions, by so-called leximin-optimal solutions (see for instance Fishburn [START_REF] Fishburn | Lexicographic orders, utilities and decision rules: A survey[END_REF] for a formal definition of the lexicographic criterion). The interest of this procedure is its complete ordinal character. It simply follows the prudent logic to its end. This is illustrated in figure 2. In the second column of this table, a vector

(S i 1 i 2 , S i 1 i 3 , . . . , S i 1 in , S i 2 i 3 , . . . , S i n-1 in )
corresponding to the prudent order O = a i 1 a i 2 . . . a in is indicated. In the third column, this vector is ordered. One can see that the ranking cdab is both optimal under a sumoperator and under the lexicographic rule.

A robust framework for using prudent orders

The basic assumption in this work is that the group agrees on the fact that the solution should be a prudent order. Although prudent orders are, in general, not unique, they will however depict a whole range of possible, potentially interesting, compromise solutions. Paradoxically, prudent orders have rarely been considered as an interesting aggregation mechanism, especially because of this multiplicity (see Debord [START_REF] Debord | Axiomatisation de procédures d'agrégation de préférences[END_REF], page 108 ). It will be this potential diversity of prudent orders that will be at the core of our approach.

The use in a decision aid context of ambiguous ranking rules, i.e. rules that possibly lead to more than one compromise ranking, has been addressed by Roy and Bouyssou [START_REF] Roy | Aide multicritère à la décision: méthodes et cas[END_REF] (pages 359-360) in the context of a ranking at minimal distance. First of all, the authors note that allowing multiple solutions does not really solve the problem of what ranking rule to use. Furthermore, such rules can favor ambiguities and misinterpretations, since the various ranking solutions can possibly be very contradictory. In the end, it is not a solution to our problem, since the aim is to construct one unique compromise ranking.

Although prudent orders may be appropriate in our setting, the choice of an ambiguous rule is still not an obvious task and can only be justified by a sound theoretic understanding of the ranking rule. However, in case a group actually accepts to use an ambiguous ranking rule (i.e. in our case prudent orders), then we feel that there is a need to actually exploit the existence of multiple compromise rankings and to support the group in selecting the "right" compromise ranking.

More particularly, we will suggest that the possible diversity of prudent orders will be handled by computing so-called robust conclusions, which, in the end, will support the group to select one prudent order. Following the terminology of Roy [START_REF] Roy | A missing link in operational research decision aiding: robustness analysis[END_REF], a robust conclusion will be an assertion valid for all the prudent orders. This scheme is illustrated in figure 3.

Initially, the concept of robustness has been presented as a way to handle decision problems with imprecise, uncertain, ill-defined and generally badly known parameters (see Bisdorff [START_REF] Bisdorff | Concordant outranking with multiple criteria of ordinal significance. a contribution to robust multicriteria aid for decision[END_REF] and Dias [START_REF] Dias | On computing ELECTRE's credibility indices under partial information[END_REF][START_REF] Dias | ELECTRE TRI for groups with imprecise information on parameter values[END_REF][START_REF] Dias | Dealing with imprecise information in group multicriteria decisions: a methodology and a GDSS architecture[END_REF]). In our setting however, the robustness issue arises conceptually because of the non-uniqueness of a compromise ranking, which can be seen as a consequence of the difficulty and ambiguity of aggregating ordinal data.

More generally, Dias [START_REF] Dias | An note one the role of robustness analysis in decision-aiding processes[END_REF] distinguishes between three roles of robustness in decision aid. A first approach sees robustness as an ex-ante concern, where a robustness criterion, such as for instance the maxmin criterion, is defined and optimized. In a second approach, robustness is seen as an ex-post concern, where the various solutions that can be obtained from the various versions of the decision aid problem are analyzed, but not aggregated anymore. This is in line with the ideas of robust conclusions of Bernard Roy. Finally, in a third approach, robustness is used as a tool to progress in a decision aid process, for instance by helping to refine some parameters of the decision model. This work can be seen as a contribution that combines the last two roles and uses robustness both as an ex-post exploitation procedure and as a refinement tool in a decision aid process.

Concerning the ex-post exploitation, we will compute the intersection of the prudent orders, the best and worst rank that an alternative can occupy in all the prudent orders and the maximal (or minimal) rank differences between any two alternatives.

One potential benefit of this approach relies in the fact that the information contained in the set of prudent orders will be captured while reducing the cognitive load. The solutions will be explicitly delimited, which can help the group to better understand the possibilities of comprise solutions.

Furthermore, the fact that different prudent orders can be contradictory will not be perceived as a problem anymore. The quality of the robust conclusions obtained will be inversely proportional to the degree of contradictions contained in the initial profile. Incomparabilities in the intersection, different best and worst ranks and large maximal rank differences and will point out problematic alternatives or parts of the compromise ranking. Hence, the group has to concentrate on these parts in order to reach a final compromise ranking.

Following the ideas of Dias, the robustness concept will also be used as a tool to progressively refine a decision model. In fact, by agreeing on some parts and by adapting accordingly their individual rankings, the group will gradually move toward a compromise ranking. The following four steps can thus be considered:

Data collection step

First every decision maker proposes his individual ranking. This ranking can be obtained, for instance, by a multicriteria method of his choice.

Aggregation step

The profile given by the group will define a set of prudent orders. If requested, within this set of rankings, an automatic procedure can select the "best" one, according to some predefined criteria, such as for instance the lexicographic criterion or the sum criterion introduced in the previous section. This ranking is then proposed to the group. Either the group accepts this solution, and the procedure stops, or the group proceeds to the next step.

Analysis and discussion step

The set of prudent orders can be described and analyzed by various robust conclusions. Such information will help the group to understand the current possible compromise solutions.

Adaptation step

Through the information learned from the previous step, each decision maker has the possibility to adapt his individual ranking in order to converge toward one compromise ranking. The group then proceeds back to step 1.

It is important to note that during the whole process, no solution will be imposed to the group. The robust conclusions that will be presented to the group can be considered as a guidance.

Since the number of prudent orders can increase dramatically as the number of alternatives increases and as the contradictions in the profile increases, complete enumeration will soon become infeasible, from a computational point of view. Fortunately, for all the conclusions that we will present, no complete enumeration of all the prudent orders will be necessary. This means that the robust conclusions can be directly deduced from the profile (see figure 3). In fact, the computations will be solely based on the equivalence between prudent orders and linear extensions.

Although we are mainly concerned with prudent orders, the proposed robust methodology can be extended to any other set of potentially interesting compromise rankings.

For instance, an ad-hoc solution that is used in practice is to consider all the solutions obtained by a set of different popular ranking rules (see for instance Colson [8]). In a way, a new rule is defined by combining existing rules. The idea behind this is to achieve either a confirmation of the results or to highlight at least different types of possible results since each ranking rule has its own logic and consequently treats the data from its own perspective. Such a more pragmatic approach thus also fits well into our robust scheme.

Computing robust conclusions

Instead of explicitly considering the prudent orders belonging to PO, we are going to describe them by their intersection (section 4.1), by the possible ranks that an alternative can occupy (section 4.2) and by the maximal rank differences between two alternatives (section 4.3). Although rank ranges and rank differences can be easily understood by a group, their cardinal character should be handled with care, especially in view of the ordinal character of the prudent order model.

Intersection

A natural robust conclusion is to state that an alternative a i is preferred to an alternative a j in all the prudent orders of PO:

(a i , a j ) ∈ O ∀O ∈ PO
This is equivalent to stating that (a i , a j ) belongs to the intersection of all the prudent orders. We know from point 4 in proposition 1 that the set PO is equivalent to all the linear extensions of the partial order P = t(R >β ). Since the intersection of all the linear extensions of a partial order is the partial order itself (see Dushnik and Miller [18]), we have :

O∈PO O = t(R >β ) = P
Hence, we do not need to explicitly enumerate all the prudent orders of PO in order to know their intersection. Instead it suffices to compute one transitive closure. The transitive closure can be computed by using for example Roy and Warschall's algorithm [START_REF] Warschall | A theorem on boolean matrices[END_REF].

Reciprocally, given P , every linear extension of this partial order is a prudent order. One may show that ∀(a i , a j ) ∈ R >β , S ij > q 2 . However, it can happen that a i will be preferred to a j in all the prudent orders although S ij is less than q 2 (but always larger than α = qβ), since (a i , a j ) has been added to R >β by transitivity.

Let us note that the P relation can be interpreted as the minimal compromise that can be reached with a given profile. In case, the group members are willing to achieve a stronger compromise, they should bring closer their individual rankings with this P relation. This issue will be further addressed in section 5.

Rank range

Let us now concentrate on the possible ranks of an alternative in the compromise ranking. By convention, if an alternative is ranked first in a linear order O, it has rank 1, if it is ranked second, it has rank 2 and so on. We denote by ρ O (a i ) the rank of alternative a i in the linear order O. Let ρ + i and ρ - i be the best and the worst rank a given alternative a i occupies :

ρ + i = min O∈PO ρ O (a i ) and ρ - i = max O∈PO ρ O (a i ).
Maximal and minimal ranks in an aggregation procedure have already been suggested by Guénoche [START_REF] Guénoche | Vainqueurs de Kemeny et tournois difficiles[END_REF] in the context of determing median orders of difficult valued tournaments. However his motivation was rather algorithmic than conceptual.

Since the set PO consists of all the linear extensions of the partial order t(R >β ), one can show that (see for instance [START_REF] Bruggemann | Applying the concept of partially ordered sets on ranking of near shore sediments by a battery of tests[END_REF]) the best rank and the worst rank can be computed as follows:

ρ + i = |N + i | where N + i = {a j : (a j , a i ) ∈ t(R >β )} (1) ρ - i = n + 1 -|N - i | where N - i = {a j : (a i , a j ) ∈ t(R >β )} (2) 
Once ρ + i and ρ - i are computed, a robust conclusion would be to state that the rank of alternative a i is higher or equal than ρ + i and smaller or equal than ρ - i . Furthermore, for each r such that ρ + i ≤ r ≤ ρ - i , we know that there exists at least one prudent order where alternative a i has rank r. Hence, apart from extreme rank values, the whole rank range is covered.The difference ρ - iρ + i , which is called the variability of a i by Bruggemann [START_REF] Bruggemann | Applying the concept of partially ordered sets on ranking of near shore sediments by a battery of tests[END_REF], gives an indication about the degree of contradictions or uncertainties concerning the alternative a i . In fact, the bigger this difference is, the more unclear it is assigning a rank in the compromise ranking to a i .

Maximal rank differences

We are interested in the largest possible rank difference between alternative a j and alternative a i . This difference quantifies the possible advantage of an alternative a i over an alternative a j .

Formally, we would like to compute:

∆ max ij = max O∈PO (ρ O (a j ) -ρ O (a i ))
More precisely, if ∆ max ij ≥ 0, then this means that, at best, alternative a i is ranked ∆ max ij positions ahead of alternative a j . If ∆ max ij < 0, then this means that a i will always be at least ∆ max ij ranks below a j .

These quantities can be computed as follows:

Proposition 2

∆ max ij = n + 1 -(|N - j | + |N + i |) if (a j , a i ) ∈ t(R >β ) |N - i ∩ N + j | -1 if (a j , a i ) ∈ t(R >β )

Adaptation step

Let us suppose that the rankings u = (O 1 , O 2 , . . . , O q ) provided by the experts have been aggregated into the set of prudent orders PO. Let us note that a unique final compromise ranking has not been reached so far. The robust information introduced in the previous section should help the group to understand the current the current possibilities of compromise. We then consider the following two possibilities:

1. Several or all the group members agree to adapt their rankings. This new profile will lead to a completely new set of prudent orders. The analysis explained in the previous section can then be reapplied to that new set of prudent orders.

2. The group can agree on an ordered block partition of the alternatives. For instance, the group agrees on the fact that a and b occupy the first two positions of the compromise ranking, whereas the remaining alternatives have at least rank 3. This is an example of a 2-block partition, but, more generally, we can consider any ordered block partition B 1 , B 2 , . . . B r of A. Each block can then be reexamined separately.

We will now analyze the possible convergence of the set of prudent orders in this two possibilities. To do so, let us denote by

u new = (O new 1 , O new 2 , . . . , O new q
) the new rankings of the group members. Let us recall that P is the intersection of all the prudent orders of the initial profile. This relation P will be crucial when analyzing the possible convergence of the compromise.

We say that the adaptation from O i into O new i is not against the compromise if:

∀a i , a j : (a i , a j ) ∈ O new ∧ (a i , a j ) ∈ O ⇒ (a i , a j ) ∈ P. Proposition 3 If the adaptation from O i into O new i is not against the compromise ∀i = 1, . . . , q, then PO(u new ) ⊆ PO(u).
Hence if the adaptations of all the group members are in favor of the compromise, then convergence is ensured. Hence it is reasonable to encourage the group to agree with P as much as possible. However, the group should not be obliged to stick to this type of adaptations and the possibility should be given to slightly shift the focus of the set of prudent orders. Hence, it may happen that, after adapting individually, the new rankings

(O new 1 , O new 2 , . . . , O new q
) together may yield new contradictions and cycles, avoiding thus a clear convergence.

Second, let us suppose that the group applies the ordered block partition approach. Let B 1 , . . . , B r be an ordered block partition of the alternatives. We say that this partition is compatible with the compromise if:

∀a i , a j s.t.a i ∈ B k a j ∈ B l k < l ⇒ (a j , a i ) ∈ P
When examining the blocks separately, the next proposition says that the set of compromise rankings can possibly converge. Let u B be the profile restricted to the alternatives belonging to a block B i . PO(u B i ) thus corresponds to the prudent orders of that restricted profile. Furthermore, let (PO(u)) B i be the set of prudent orders of the profile u, but restricted to the alternatives of block B i . Proposition 4 Let B 1 , B 2 , . . . , B r be an ordered block partition compatible with the compromise. Then

∀B i : PO(u B i ) ⊆ (PO(u)) B i .

Example

In order to illustrate our approach, we present an example where a group of junior researchers, mainly working in the field of information technologies in various research institutions in Luxembourg, were asked to rank a set of research domains. The problem took place in the framework of the Foresight exercise [11] organized by the Luxembourg FNR (Fonds National de la Recherche). The aim of this project is to identify socioeconomic needs in order to decide on scientific research domains for Luxembourg in the medium and long term.

To achieve this goal, stakeholders were involved and, in particular, a one day workshop was organized for a group of junior researchers. During that day, 40 different research domains were put forward, amongst which 11 were finally selected as the most pertinent by the group of participants. They are listed in figure 1. The actual workshop ended at this stage.

The participants were asked after the workshop to rank these research domains. This ranking should represent their view on the prioritization of the different research domains. Let us stress that this is not an application, but only an illustration of the methodology presented in this paper. After having submitted their individual rankings, the researchers were not confronted with the results presented in this section.

Since it can be difficult for a participant of the workshop to quantify the difference of importance between two research domains, it is reasonable to use an ordinal scale. Furthermore, working with rankings as input avoids to fix a common evaluation method for the whole group.

The rankings of the 10 researchers are represented in table 2. This profile of 10 linear orders with 11 alternatives will lead to 1350 prudent orders, which means that 1350 11! = 0.0034% of all the linear orders on 11 alternatives are prudent orders. A straightforward choice of one prudent order seems to be practically impossible. In order to go on with the decision process, several robust informations will be computed.

First of all, the intersection of all the prudent orders is represented in figure 4 (the transitivity arcs are omitted). We can learn from this figure that, for instance, a 4 (Electronic cooperation networks) is preferred to a 7 (Finance and Banking sector) in all the prudent orders.

The rank ranges are depicted in table 3. For instance the rank of a 4 (Electronic co- Table 3: The rank ranges operation networks) will be either 1 or 2. On the other hand, the rank of a 6 (Innovative materials) seems to be unclear since, at best this alternative has rank 4 but at worst it is ranked last.

a 1 Knowledge management technology a 2 E-Government a 3 IT
Finally, the maximal rank differences are depicted in table 4. For instance, at best, a 1 (Knowledge management technology) can be six ranks ahead of a 2 (E-Government), whereas a 2 can only be, at best, one rank ahead of a 1 . There are also negative maximal rank differences. For instance, a 11 (Artificial Intelligence) will always be at least 3 ranks below a 1 .

Among the 1350 prudent orders, there are 18 orders which are optimal under the lexicographic rule. One of these rankings, could be automatically proposed to the group. Another possibility is to perform robust conclusions on these 18 rankings. For instance, the best and worst rank of each alternative in all these rankings are indicated in table 5. This information is of course consistent with the information in table 3, since lexicographic orders are a refinement of prudent orders. However, unlike for prudent orders, the extreme ranks of lexicographic optimal orders do not determine rank ranges: for instance, we know that there exists at least one lexicographic order where a 6 has rank 7 and at least one where a 6 has rank 11, but we do not have any guarantee that there also exists at least one lexicographic order where a 6 has rank 8, 9 or 10.

When analyzing the rank ranges of prudent orders, apart from the more problematic alternative a 6 (Innovative materials), let us assume that the group agrees to adopt the block partition approach in order to move toward a compromise. Let us suppose that does not really belong to the first block. Taking a closer look at the rank differences of a 6 , the group may agree on the fact that a 6 belongs also to the middle block. In fact, its ability to be much higher ranked than a 9 , a 10 and a 11 does not make it a very bad alternative neither. Consequently, a 6 fits best in the middle part of the global ranking. Let us note that this 3 block partition is compatible with the P relation.

Given the 3 block partition, the new rankings of the 10 participants can be found in table 6. We then compute the set of prudent orders separately in each block. Given this new data, the intersection of all the prudent orders can be found in figure 4 (the transitivity arcs are omitted). The final ranking is now almost complete. In fact, the still incomparable pairs are pairs that are completely indetermined in the sense that there are always five group members who prefer the first over the second alternative and five group members who prefer the second over the first alternative. In order to achieve a complete ranking, the group now has to concentrate on these pairs. As a conclusion, the 10 group members can agree on the following compromise ranking. The most important research domains are Knowledge management technologies and Electronic cooperation networks. These two domains are then followed by Mobile Communications and IT security. Although E-Government is perceived as more important than Innovative materials, the precise rank of Finance remains unclear in the middle of the ranking. It follows Business Improvement research. Finally, Artificial Intelligence followed by Human-Machine interface research can be found at the bottom of the compromise ranking. The final position of Image processing has still to be discussed in this

Conclusion

In this paper, we suggest to better exploit the multiplicity of solutions when working with ambiguous ranking rules, and in particular with prudent orders. Instead of imposing one final compromise ranking, potentially interesting compromise rankings are described with robust conclusions, which allows the group to progressively refine the decision model and progress toward a compromise ranking in an interactive way.

In our approach, we suppose that the group has to agree on some parts of the ranking and consequently each group member has to adapt his ranking. A future research direction is to develop tools that suggests to the group "good" block. A tool may also be needed to support the group members in adapting their ranking. Another research direction is to quantify and detect the conflict (in the prudent order sense) within the group.

We presented an example with 11 alternatives and 10 group members. Although from a computational point of view, the approach seems widely applicable, a question that needs further investigation is to determine for what type of problems (number of alternatives, size of the group, degree of conflict) this prudent and robust approach actually presents the most benefits from a decision aid point of view.

Finally, a potentially useful direction of further research is to develop a decision aid tool which follows the philosophy presented in this paper, but which could handle both on the input side (i.e the ordinal data received from the group members) and on the output side (i.e. the compromise solutions) more complex preference structures than just linear orders.

∆ max ij ≤ n + 1 -(|N - j | + |N + i |
). We will prove that there exists one linear order O ∈ PO (i.e. one linear extension of t(R >β )) such that this upper bound can be reached.

A linear extension of a partial order can be constructed sequentially as follows: remove any maximal element from the partial order and rank it below the already ranked alternatives in the linear extension; stop the procedure when all the alternatives have been ranked. In our case, this procedure can be applied to the partial order t(R >β ). Let N + i and N - j be defined as in 1 and 2 and let Nij = A\(N + i ∪N - j ). First, we will rank all the alternatives belonging to N + i (ranking a i last ), then we will rank all the alternatives from Nij and finally we will rank all the alternatives belonging to N - j ( ranking a j first). One can show that at each step it is possible to find a maximal element in the relevant subset of alternatives. Let us also note that N + i ∩ N - j = ∅, because otherwise there would exist an alternative a t such that (a t , a i ) ∈ t(R >β ) and (a j , a t ) ∈ t(R >β ), which contradicts the fact that (a j , a i ) ∈ t(R >β ). Consequently, the rank of a i in this order is |N + i |, the rank of a j is n + 1 -|N - j | and so the rank difference between a i and a j will be n + 1

-(|N - j | + |N + i |). • (a j , a i ) ∈ t(R >β )
Since (a j , a i ) ∈ t(R >β ) implies that a j is always above a i in all the prudent orders of PO. Consequently we want a i to be as close as possible to a j . Since the alternatives of N - i ∩ N + j have to be anyway between a j and a i , we must have that ∆ max ij ≤ |N - i ∩ N + j | -1. We will prove that there exists one linear order O ∈ PO (i.e. one linear extension of t(R >β )) such that this upper bound can be reached by using the procedure described in the previous paragraph. First, we will rank the alternatives belonging to N + j \ N - i , then we will rank the alternatives belonging to N - i ∩N + j (ranking a i first and ranking a j last) and finally we will rank the remaining alternatives.

Proof of proposition 3:

Proof:

Let R >λ be the cut-relation at level λ and β be the optimal cut-value for profile u. Let R new >λ be the cut-relation at level λ and β new be the optimal cut-value for profile u new . Since the transformation from O i into O new i ∀i is not against the compromise, we have that:

R >β ⊆ R new >β ⊆ R >β ∪ {(a i , a j ) : (a i , a j ) ∈ O new k ∧ (a i , a j ) ∈ O k } ⇒ R >β ⊆ R new >β ⊆ R >β ∪ {(a i , a j ) : (a i , a j ) ∈ t(R >β )} ⇒ R >β ⊆ R new >β ⊆ t(R >β )
Since t(R >β ) is acyclic, R new >β is acyclic, which implies that β new ≤ β. Hence :

R ′ >β ′ ⊆ R ′ >β ⊆ R >β
This means that PO(u new ) ⊆ PO(u).

Proof of proposition 4:

Proof: Let O be a linear order on A.Then:

O ∈ PO(u) ⇐⇒ R >β ⊆ O
Let O ′ be a linear order on B and let (R >β ) B i be the cut relation of S at level β restricted to B i . Since B i belongs to an ordered partition which is compatible with P , we can show that:

O ′ ∈ (PO(u)) B i ⇐⇒ (R >β ) B i ⊆ O ′
Let β ′ be the smallest value such that the strict cut relation of S restricted to B i is acyclic.

Since (R >β ) B i is acyclic, β ≥ β ′ . Hence (R >β ) B i ⊆ (R >β ′ ) B i .
In total we have :

O ∈ PO(u B i ) ⇒ (R >β ′ ) B i ⊆ O ⇒ (R >β ) B i ⊆ O ⇒ O ∈ (PO(u)) B i
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 2 Figure 2: The 12 prudent orders.
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 3 Figure 3: Computing robust conclusions.

Figure 4 :

 4 Figure 4: The intersection of all the prudent orders before (left) and after (right) the adaptation.

a 1 a

 1 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 a

  

Table 1 :

 1 security a 4 Electronic cooperation networks a 5 Mobile Communications a 6 Innovative materials and techniques in construction a 7 Finance and Banking sector a 8 Business Improvement research a 9 Image processing a 10 Human-Machine interface a 11 Artificial Intelligence, multi-agent systems The 11 research domains uni1 a 4 a 5 a 3 a 2 a 8 a 7 a 1 a 11 a 10 a 9 a 6uni2 a 3 a 9 a 4 a 5 a 2 a 1 a 6 a 11 a 7 a 8 a 10 uni3 a 4 a 5 a 2 a 3 a 1 a 6 a 7 a 8 a 11 a 10 a 9 uni4 a 1 a 6 a 8 a 7 a 11 a 10 a 3 a 2 a 5 a 9 a 4 uni5 a 11 a 1 a 9 a 5 a 7 a 10 a 6 a 4 a 3 a 2 a 8 iee a 6 a 5 a 7 a 4 a 2 a 3 a 8 a 1 a 9 a 11 a 10 cvce a 1 a 10 a 3 a 4 a 5 a 2 a 8 a 7 a 11 a 9 a 6 tud1 a 1 a 4 a 5 a 8 a 7 a 3 a 2 a 9 a 10 a 11 a 6 tud2 a 7 a 8 a 1 a 4 a 3 a 9 a 10 a 11 a 5 a 6 a 2 lip a 4 a 1 a 2 a 5 a 6 a 7 a 10 a 9 a 3 a 11 a 8

Table 2 :

 2 The rankings of the 10 researchers

Table 4 :

 4 Maximal rank differences.

	alt. ρ + ρ -
	a 1	1	2
	a 2	6	6
	a 3	5	5
	a 4	1	2
	a 5	3	3
	a 6	7 11
	a 7	4	4
	a 8	7	8
	a 9	8 11
	a 10 9 11
	a 11 8 10

Table 5 :

 5 Best and worst rank of the lexicographic rankings. a 1 , a 3 , a 4 , a 5 a 2 , a 6 , a 7 , a 8 a 9 , a 10 a 11 uni1 a 4 a 5 a 3 a 1 a 2 a 8 a 7 a 6 a 11 a 10 a 9 uni2 a 3 a 4 a 5 a 1 a 2 a 6 a 7 a 8 a 9 a 11 a 10 uni3 a 4 a 5 a 3 a 1 a 2 a 6 a 7 a 8 a 11 a 10 a 9 uni4 a 1 a 3 a 5 a 4 a 6 a 8 a 7 a 2 a 11 a 10 a 9 uni5 a 1 a 5 a 4 a 3 a 7 a 6 a 2 a 8 a 11 a 9 a 10 iee a 5 a 4 a 3 a 1 a 6 a 7 a 2 a 8 a 9 a 11 a 10 cvce a 1 a 3 a 4 a 5 a 2 a 8 a 7 a 6 a 10 a 11 a 9 tud1 a 1 a 4 a 5 a 3 a 8 a 7 a 2 a 6 a 9 a 10 a 11 tud2 a 1 a 4 a 3 a 5 a 7 a 8 a 6 a 2 a 9 a 10 a 11 lip a 4 a 1 a 5 a 3 a 2 a 6 a 7 a 8 a 10 a 9 a 11

Table 6 :

 6 The adapted rankings of the 10 researchers three blocks will be identified. A first block could contain a 1 , a 3 , a 4 and a 5 , a second block could contain a 2 , a 7 and a 8 and a third block could contain a 9 , a 10 and a 11 . Furthermore, since, the best rank of a 6 is 4, a 6

The majority relation M is a binary relation defined as follows: (a i , a j ) ∈ M ⇐⇒ S ij > q

.
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Appendix

Proof of proposition 1: Proof: 

• Equivalence between 1 and 3 Following theorem 1, O is a prudent order if and only if R >β ⊆ O.

Let us show that β = min O∈O max (a i ,a j ) ∈O S ij . Let us suppose by contradiction that there exists

Hence there exists β ′ < β such that R >β ′ is acyclic. This contradicts the definition of β.

This is equivalent to O optimal for arg min O∈O max (a i ,a j ) ∈O S ij , since β = min O∈O max (a i ,a j ) ∈O S ij .

• Equivalence between 1 and 4

Proof of proposition 2: Proof:

i and since (a j , a i ) ∈ t(R >β ) implies that there exists at least one prudent order where a i is above a j , we know that