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Abstract. In this paper, we study the following model of hidden Markov chain: Yi = Xi + εi,
i = 1, . . . , n+1 with (Xi) a real-valued stationary Markov chain and (εi)1≤i≤n+1 a noise having
a known distribution and independent of the sequence (Xi). We present an adaptive estimator of
the transition density obtained by minimization of an original contrast taking advantage of the
regressive aspect of the problem. It is selected among a collection of projection estimators with
a model selection method. The L2-risk and its rate of convergence are evaluated for ordinary
smooth noise and some simulations illustrate the method. Our estimator allows to avoid the
drawbacks of the quotient estimators.
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1. Introduction

In this paper we consider the following additive hidden Markov model:

(1) Yi = Xi + εi i = 1, . . . , n+ 1

with (Xi)i≥1 a real-valued Markov chain, (εi)i≥1 a sequence of independent and identically dis-
tributed variables and

(2) (Xi)i≥1 and (εi)i≥1 independent.

Only the variables Y1, ..., Yn+1 are observed. Besides its initial distribution, the chain (Xi)i≥1

is characterized by its transition, i.e. the distribution of Xi+1 given Xi. We assume that this
transition has a density Π, defined by Π(x, y)dy = P (Xi+1 ∈ dy|Xi = x), and our aim is to
estimate this transition density Π.

This model belongs to the class of hidden Markov models. The Hidden Markov Models constitute
a very famous class of discrete-time stochastic processes, with many applications in various areas
such as biology, speech recognition or finance. For a general reference on these models, we refer to
Cappé et al. (2005). Here, we study a simple model of HMM where the noise is additive (which
allows to deal also with multiplicative noise by use of logarithm). In standard HMM, it is assumed
that the joint density of (Xi, Yi) has a parametric form and the aim is then to infer the parameter
from the observations Y1, ..., Yn, generally by maximizing the likelihood. For this type of study, we
can see among others Baum and Petrie (1966), Leroux (1992), Bakry et al. (1997), Bickel et al.
(1998), Jensen and Petersen (1999), Douc et al. (2004).

This model is also similar to the so-called convolution model (for which the aim is to estimate
the density of (Xi)i≥1). As proceeded for this model, we use extensively the Fourier transform.
The restrictions on the error distribution and the rate of convergence obtained for our estimator
are also of the same kind. Related works include Stefanski (1990), Fan (1993), Masry (1993) (for
the multivariate case), Pensky and Vidakovic (1999), Comte et al. (2006).
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2 ESTIMATION OF THE TRANSITION OF HIDDEN MARKOV CHAIN

The estimation of the transition density of a hidden Markov chain is studied by Clémençon
(2003). His estimator is based on thresholding of a wavelet-vaguelette decomposition. The draw-
back of this estimator is that it does not achieve the minimax rate because of a logarithmic loss.
Lacour (2007b) describes an estimation procedure by quotient of an estimator of the joint density
and an estimator of the stationary density f . The minimax rate is reached by this estimator if we
assume that f and Πf have the regularity α. But this smoothness condition on f raises a problem.
Indeed Clémençon (2000) exhibits an example where the stationary density f is not continuous,
whereas the transition density Π is constant. It shows that f can be much less regular than Π. Our
aim is then to find an estimator of the transition density which does not have these disadvantages.

To estimate Π, we use an original contrast inspired by the mean square contrast. The first idea
is to connect our problem with the regression model. For any function g, we can write

g(Xi+1) =

(∫

Π(., y)g(y)dy

)

(Xi) + ηi+1

where ηi+1 = g(Xi+1) − E[g(Xi+1)|Xi]. Then, for all function g, we can consider
∫

Πg as a
regression function. The mean square contrast to estimate this regression function, if the Xi were
known, should be (1/n)

∑n
i=1[t

2(Xi) − 2t(Xi)g(Xi+1)]. If
∫

g2 = 1, this contrast can be written

(1/n)

n
∑

i=1

[

∫

T 2(Xi, y)dy − 2T (Xi, Xi+1)]

by setting T (x, y) = t(x)g(y) i.e. T such that
∫

T (x, y)g(y)dy = t(x). It is this contrast
which is used in Lacour (2007a) but in our case, only the Y1, . . . , Yn+1 are known. So we in-
troduce in this paper two operators Q and V such that E[QT 2(Yi)|Xi] =

∫

T 2(Xi, y)dy and
E[VT (Yi, Yi+1)|Xi, Xi+1] = T (Xi, Xi+1). It leads to the following contrast:

(3) γn(T ) =
1

n

n
∑

i=1

[QT 2(Yi) − 2VT (Yi, Yi+1)].

A collection of estimators is then defined by minimization of this contrast on wavelet spaces.
Indeed wavelets have many useful properties and in particular they can have a compact support
and can be regular enough to balance the smoothness of the noise. A general reference on the
subject is the book of Meyer (1990).

A method of model selection inspired by Barron et al. (1999) and based on contrast (3) is used
to build an adaptive estimator. A data driven choice of model is performed via the minimization
of a penalized criterion. The chosen model is the one which minimizes the empirical risk added
to a penalty function. In most cases in estimation of mixing processes, a mixing term appears in
this penalty. In the same way, some unknown terms derived from the dependence between the
Xi appears in the thresholding constant used to define the estimator of Clémençon (2003). Here
a conditioning argument allows to lead us back to independent variables and thus to avoid such
a mixing term in the penalty. Our penalty contains only known quantities or terms that can be
estimated and is then computable.

For an ordinary smooth noise with regularity γ, the rate of convergence n−α/(2α+4γ+2) is ob-
tained if the transition Π is supposed to belong to a Besov space with regularity α. Our estimator
is then better than those of Clémençon (2003) which achieves only the rate (ln(n)/n)α/(2α+4γ+2).
Moreover this rate is obtained without supposing known the regularity α of f , our estimator is
then adaptive.

This paper is organized as follows. In Section 2 we present the model and the assumptions.
Section 3 is devoted to the definitions of the contrast and of the estimator. The main result and
a sketch of proof are to be found in Section 4. Numerical illustration through simulated examples
is reported in Section 5. The detailed proofs are gathered in Section 6.
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2. Study framework

2.1. Notations. For the sake of clarity, we use lowercase letters for the dimension 1 and capital
letters for the dimension 2. For a function t : R 7→ R, we denote by ‖t‖ the L2 norm that is
‖t‖2 =

∫

R
t2(x)dx. The Fourier transform t∗ of t is defined by

t∗(u) =

∫

e−ixut(x)dx.

Notice that the function t is the inverse Fourier transform of t∗ and can be written t(x) =
1/(2π)

∫

eixut∗(u)du. The convolution product is defined by (t ∗ s)(x) =
∫

t(x− y)s(y)dy.
In the same way, for a function T : R

2 7→ R, ‖T ‖2 =
∫∫

R2 T
2(x, y)dxdy and

T ∗(u, v) =

∫∫

e−ixu−iyvT (x, y)dxdy.

We denote by t⊗ s the function: (x, y) 7→ (t⊗ s)(x, y) = t(x)s(y).
We will estimate Π on a compact set A = A1 × A2 only and we denote by ‖.‖A the norm in

L2(A) i.e.

‖T ‖2
A =

∫∫

A

T 2(x, y)dxdy.

2.2. Assumptions on the noise. The Markov chain (Xi)i≥1 is observed through a noise sequence
(εi)i≥1 of independent and identical distributed random variables. The density of εi is denoted by
q and is assumed to be known. We assume that the Fourier transform of q never vanishes and that
q is ordinary smooth. More precisely the assumption on the error density is the following.

H1 q is uniformly bounded and there exist γ > 0 and k0 > 0 such that ∀x ∈ R |q∗(x)| ≥
k0(x

2 + 1)−γ/2.

This assumption restrains the regularity class of the noise. Among the so-called ordinary smooth
noises, we can cite the Laplace distribution, the exponential distribution and all the Gamma or
symmetric Gamma distributions. The noise follows a Gamma distribution with scale parameter λ
and shape parameter ζ if q(x) = λζxζ−1e−λx/Γ(ζ) for x > 0 with Γ the classic Gamma function,
and then

|q∗(x)| =

(

1 +
x2

λ2

)−ζ/2

.

So q is bounded and verifies H1 with γ = ζ. The case ζ = 1 corresponds to an exponential
distribution and if λ = 1/2, ζ = p/2, it is a chi-square χ(p). A Laplace noise is defined in the
following way

q(x) =
λ

2
e−λ|x−µ| and |q∗(x)| =

λ2

x2 + λ2

Then H1 is satisfied with γ = 2. More generally, we can define the symmetric gamma distribution
with density q(x) = λζ |x|ζ−1e−λ|x|/(2Γ(ζ)). The characteristic function is then

q∗(x) =

(

1 +
x2

λ2

)−ζ/2

cos

(

2ζ arctan

(

x

λ+
√
x2 + λ2

))

so that H1 is verified with γ = ζ + 1 if ζ is an odd integer and γ = ζ otherwise.

Remark 1. We have to notice that the Gaussian noise does not verify Assumption H1. Indeed,
an exponential decrease of the Fourier transform of the error density is more difficult to control
and a supersmooth noise makes the denoising more difficult. For that reason, many authors have
considered only ordinary smooth noise, one can cite among others Butucea (2004), Koo and Lee
(1998) or Youndjé and Wells (2002). The method used in this paper does not allow to deal with
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supersmooth noise. Indeed, it requires a basis more regular than the noise and also with compact
support (because of Assumption H4 below), which is impossible when the noise is supersmooth.

2.3. Assumptions on the chain. The hypotheses on the hidden Markov chain (Xi)i≥1 are the
following.

H2 The chain is irreducible, positive recurrent and stationary with unknown density f .
H3 There exists a positive real f0 such that, for all x in A1,

f0 ≤ f(x) ≤ ‖f‖∞,A1 <∞
H4 The transition density Π is bounded on A by ‖Π‖∞,A <∞.
H5 The process (Xk) is geometrically β-mixing (βq ≤ e−θq), or arithmetically β-mixing (βq ≤

q−θ) with θ > 8 where

βq =

∫

‖P q(x, .) − µ‖TV f(x)dx

with P q(x, .) the distribution of Xi+q given Xi = x, µ the stationary distribution and
‖.‖TV the total variation distance.

We refer to Doukhan (1994) for details on the β-mixing. Assumption H5 implies that the
process (Yk) is β-mixing with β-mixing coefficients smaller than those of (Xk). Assumption H3 is
common (but restrictive) and is crucial to control the empirical processes brought into play. A lot
of processes verify Assumptions H2–H5, as autoregressive processes, diffusions or ARCH processes.
These examples are detailed in Lacour (2007a).

3. Estimation procedure

3.1. Projection spaces. Here we describe the projection that we use in this paper to estimate
the transition Π. We will consider an increasing sequence of spaces, indexed by m, to construct a
collection of estimators. For the sake of simplicity, we assume that A = [0, 1]2.

We use a compactly supported wavelet basis on the interval [0, 1], described in Cohen et al.
(1993). The construction furnishes a set of functions (φk) for k = 0, . . . , 2J −1 with J a fixed level,
and for all j > J a set of functions (ψjk), k = 0, . . . , 2j − 1. The collection of these functions forms
a complete orthonormal system on [0, 1]. Then , for u in L2([0, 1]), we can write

u =
2J−1
∑

k=0

bkφk +
∑

j>J

2j−1
∑

k=0

ajkψjk.

Actually

φk(x) =











2J/2φ0(2Jx− k) if k = 0, . . . , N − 1

2J/2φ(2Jx− k) if k = N, . . . , 2J −N − 1

2J/2φ1(2Jx− k) if k = 2J −N, . . . , 2J − 1

where φ is a Daubechies father wavelet with support [−N + 1, N ] and φ0, φ1 are edge wavelets
explicitely constructed in Cohen et al. (1993). The functions φjk have support [(k−N+1)/2J , (k+
N)/2J ] ∩ [0, 1]. For r a positive real, N is chosen large enough so that φ has regularity r (it is
possible since it is a property of the Daubechies wavelets that the smoothness of φ increases linearly
with N). We choose J such that 2J ≥ 2N so that the two edges do not interact (no overlap between
φ0 and φ1). The construction ensures that φ0 and φ1 are also of regularity r. In the same way, for
each level j, the ψjk are dilatation and translation of functions ψ, ψ0 and ψ1 with regularity r.

Now we construct a wavelet basis of L2([0, 1]2) by the tensorial product method (see Meyer
(1990) Chapter 3 Section 3). The father wavelet is φ⊗φ and the mother wavelets are φ⊗ψ, ψ⊗φ,
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φ⊗ φ. A function T in L2([0, 1]2) can then be written

T (x, y) =

2J−1
∑

k=0

2J−1
∑

l=0

bklφk(x)φl(y) +
∑

j>J

2j−1
∑

k=0

2j−1
∑

l=0

(a
(1)
jklφjk(x)ψjl(y)

+a
(2)
jklψjk(x)φjl(y) + a

(3)
jklψjk(x)ψjl(y)).

For the sake of simplicity, we adopt the following notation

T (x, y) =
∑

j≥J

∑

(k,l)∈Λj

ajklϕjk(x)ϕjl(y).

where ϕjk = 2j/2ϕ(2jx− k) with ϕ = φ, φ0, φ1, ψ, ψ0 or ψ1 according to the values of j and k. For
j > J , Λj is a set with cardinal 3.22j and ΛJ is a set with cardinal 22J . In the sequel we will use
the following property of ϕ deriving from the regularity of the initial Daubechies wavelet: there
exists a positive constant k3 such that

(4) ∀u ∈ R |ϕ∗(u)| ≤ k3(u
2 + 1)−r/2

Now , for m ≥ J , we can consider the space

Sm = {T : R
2 → R, T (x, y) =

m
∑

j=J

∑

(k,l)∈Λj

ajklϕjk(x)ϕjl(y)}

Note that the functions in Sm are all supported in the interval [0, 1]2. The dimension of the space
Sm is D2

m = 22J + 3
∑m

j=J+1 22j ∈ [22m, 22m+2]. We denote by S the space Sm0 with the greatest

dimension D2
m0

= D2 smaller than n1/(4γ+2). It is the maximal space that we consider. The spaces
Sm have the following properties:

P1: m′ ≤ m⇒ Sm′ ⊂ Sm

P2: ‖
∑

jkl ajklϕjk ⊗ ϕjl‖2 =
∑

jkl a
2
jkl.

This property derives from the orthonormality of the basis.
Now, for all function t : R 7→ R, let vt be the inverse Fourier transform of t∗/q∗(−.), i.e.

vt(x) =
1

2π

∫

eixu t∗(u)

q∗(−u)du.

This operator is introduced because it verifies E[vt(Yk)|Xk] = t(Xk) for all function t. We can
write the following lemma :

Lemma 1. If r > γ + 2, there exists Φ1 > 0 such that

P3: ‖∑m
j=J

∑

k ϕ
2
jk‖∞ ≤ Φ1Dm

P4: ‖∑k |vϕjk
|2‖∞ ≤ Φ1(2

j)2γ+2

P5:
∑

k ‖vϕjk
‖2 ≤ Φ1(2

j)2γ+1

P6: ‖∑kk′ |vϕjkϕjk′ |2‖∞ ≤ Φ1(2
j)2γ+3

P7:
∑

kk′

∫

|vϕjkϕjk′ |2 ≤ Φ1(2
j)2γ+2

This lemma is proved in Section 6.

3.2. Construction of a contrast. We will estimate the transition density of the Markov chain
by minimizing a contrast. This section is devoted to the definition of this contrast. We explain
here how we can obtain it by considering first the case without noise.



6 ESTIMATION OF THE TRANSITION OF HIDDEN MARKOV CHAIN

3.2.1. First step: if the (Xi)’s were observed. We present here an heuristic to understand why we
choose the contrast, assuming first that the (Xi) are known. For all function g, the definition of
the transition density implies E[g(Xi+1)|Xi] =

∫

Π(Xi, y) g(y)dy so that we can write

g(Xi+1) =

(∫

Π(., y)g(y)dy

)

(Xi) + ηi

where ηi = g(Xi+1) − E[g(Xi+1)|Xi] is a centered process. We recognize then a regression model.
A contrast to estimate

∫

Π(., y)g(y)dy is

γn(u) =
1

n

n
∑

i=1

[u2(Xi) − 2u(Xi)g(Xi+1)].

It is the classical mean square contrast to estimate a regression function. But we want to estimate
Π(., y) and not only

∫

Π(., y)g(y)dy.
So we observe that if

∫

g2 = 1 and T (x, y) = u(x)g(y), then u(.) =
∫

T (., y)g(y)dy. So if u(.) =
∫

T (., y)g(y)dy estimates
∫

Π(., y)g(y)dy, we can hope that T estimates Π. Since
∫

T 2(., y)dy =
u2(.), the contrast becomes

γn(T ) =
1

n

n
∑

i=1

[

∫

T 2(Xi, y)dy − 2T (Xi, Xi+1)]

It is the contrast studied in Lacour (2007a) and it allows a good estimation of Π(., y) in the case
where the Markov chain is observed. We can observe that

Eγn(T ) =

∫

T 2(x, y)f(x)dxdy − 2

∫

T (x, y)f(x)Π(x, y)dxdy = ‖T − Π‖2
f − ‖Π‖2

f

where f is the density of Xi and

‖T ‖f =

(∫

T 2(x, y)f(x)dxdy

)1/2

.

Then this contrast is an empirical counterpart of the distance ‖T − Π‖f .

3.2.2. Second step: the Xi’s are unknown, the observations are the (Yi)’s. The aim of this step is
to modify the previous contrast, to take into account that the Xi’s are not observed. To do this, we
use the same technique as in the convolution problem (see Comte et al. (2006)). Let us denote by
FX the density of (Xi, Xi+1) and FY the density of (Yi, Yi+1). We remark that FY = FX ∗ (q ⊗ q)
and F ∗

Y = F ∗
X(q∗ ⊗ q∗) and then

E[T (Xi, Xi+1)] =

∫∫

TFX =
1

2π

∫∫

T ∗F ∗
X =

1

2π

∫∫

T ∗

q∗ ⊗ q∗
F ∗

Y

by using the Parseval equality. The idea is then to define V ∗
T = T ∗/(q∗ ⊗ q∗) so that

E[T (Xi, Xi+1)] =
1

2π

∫∫

V ∗
T F

∗
Y =

∫∫

VTFY = E[VT (Yi, Yi+1)].

Then we will replace the term T (Xi, Xi+1) in the contrast by VT (Yi, Yi+1). In the same way, we
find an operator Q to replace the term

∫

T 2(Xi, y)dy. More precisely, for all function T , let VT be
the inverse Fourier transform of T ∗/(q∗ ⊗ q∗)(−.), i.e.

VT (x, y) =
1

4π2

∫∫

eixu+iyv T ∗(u, v)

q∗(−u)q∗(−v)dudv.

Let QT be the inverse Fourier transform of T ∗(., 0)/(q∗)(−.), i.e.

QT (x) =
1

2π

∫

eixu T
∗(u, 0)

q∗(−u) du.
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V and Q have been chosen so that the following lemma holds.

Lemma 2. For all k ∈ {1, . . . , n+ 1}
(1) E[VT (Yk, Yk+1)|X1, ..., Xn+1] = T (Xk, Xk+1)
(2) E[VT (Yk, Yk+1)] =

∫∫

T (x, y)Π(x, y)f(x)dxdy
(3) E[QT (Yk)|X1, ..., Xn+1] =

∫

T (Xk, y)dy
(4) E[QT (Yk)] =

∫∫

T (x, y)f(x)dxdy

Points 1. and 3. are proved in Section 6, the other assertions are immediate consequences.
Notice that V and Q are strongly linked with v. In particular Vs⊗t(x, y) = vs(x)vt(y) and
Qs⊗t(x) = vs(x)

∫

t(y)dy.
By using the operators V and Q, we define now the contrast, depending only on the observations

Y1, . . . , Yn+1:

γn(T ) =
1

n

n
∑

k=1

[QT 2(Yk) − 2VT (Yk, Yk+1)]

With Lemma 2, we compute E(γn(T )) =
∫∫

T 2(x, y)f(x)dxdy − 2
∫∫

T (x, y) Π(x, y)f(x)dxdy =
‖T −Π‖2

f −‖Π‖2
f . So we want to estimate Π by minimizing γn. The definition of the contrast leads

to the following “empirical norm”:

Ψn(T ) =
1

n

n
∑

k=1

QT 2(Yk).

The term empirical norm is used because EΨn(T ) = ‖T ‖2
f , but Ψn is not a norm in the common

sense.

3.3. Definition of the estimator. We have to minimize the contrast γn to find our estimator.
By writing T =

∑m
j=J

∑

(k,l)∈Λj
ajklϕjk ⊗ ϕjl =

∑

λ aλ ωλ(x, y), we obtain

∂γn(T )

∂aλ0

=
2

n

n
∑

i=1

(

∑

λ

aλQωλωλ0
(Yi) − Vωλ0

(Yi, Yi+1)

)

.

Then, by denoting by Am the matrix of the coefficients aλ of T ,

(5) ∀λ0
∂γn(t)

∂aλ0

= 0 ⇐⇒ GmAm = Zm

where

Gm =

[

1

n

n
∑

i=1

Qωλωµ(Yi)

]

λ,µ

, Zm =

[

1

n

n
∑

i=1

Vωλ
(Yi, Yi+1)

]

λ

But the matrix Gm is not necessarily invertible. That is why we introduce the set

(6) Γ =

{

min Sp(Gm) ≥ 2

3
f0

}

where Sp denotes the spectrum, i.e. the set of the eigenvalues of the matrix and f0 is the lower
bound of f on A1. On Γ, Gm is invertible and γn is convex so that the minimization of γn is
equivalent to Equation (5) and admits the solution Am = G−1

m Zm. Now we can define

Π̂m =

{

argminT∈Sm γn(T ) on Γ,

0 on Γc.
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Remark 2. The construction of Π̂m described here requires the knowledge of f0. Nevertheless,

when f0 is unknown, we can replace it by an estimator f̂0 defined as the minimum of an estimator
of f (for an estimator of the density of a hidden Markov chain, see Lacour (2007b)). The result
is then unchanged if f is regular enough and the mixing rate high enough.

We have then an estimator of Π for all Sm. But we have to choose the best model m to obtain
an adaptive estimator, i.e. an estimator which achieves the best rate of convergence whatever the
regularity of Π. So we set

m̂ = arg min
m∈Mn

{γn(Π̂m) + pen(m)}

where pen is a penalty function to be specified later and

Mn = {m ≥ J,D4γ+2
m ≤ n}.

Then we can define our definitive estimator:

Π̃ =

{

Π̂m̂ if ‖Π̂m̂‖ ≤ kn with kn = n1/2,

0 else.

4. Result

4.1. Risk and rate of convergence. For a function G and a subspace S, we define

d(G, S) = inf
T∈S

‖G− T ‖A.

We recall that A is the estimation area. For each estimator Π̂m, we have the following decompo-
sition of the risk.

Proposition 1. We consider a Markov chain and a noise satisfying Assumptions H1–H5 with
γ ≥ 3/4. For m fixed in Mn, we consider Π̂m the estimator of the transition density Π previously
described. Then there exists C > 0 such that

E‖Π̂m − Π‖2
A ≤ C

{

d2
A(Π, Sm) +

D4γ+2
m

n

}

.

We do not prove this proposition because this result is included in Theorem 1 below, which is
proved in Section 6.

Now if Π belongs to a Besov space with regularity α, it is a common approximation property
of the wavelet spaces that d2(Π, Sm) ≤ CD−2α

m . So, choosing m1 such that Dm1 = n1/(2α+4γ+2),
we can obtain the minimum risk

E‖Π̂m1 − Π‖2
A ≤ Cn− 2α

2α+4γ+2 .

But this choice of m1 is impossible if α is unknown (it is a priori the case since Π is unknown).

That is why we have built an adaptive estimator via model selection. For our estimator Π̃, we can
state the following theorem.

Theorem 1. We consider a Markov chain and a noise satisfying Assumptions H1–H5 with γ >
3/4. We consider Π̃ the estimator of the transition density Π previously described with r > 2γ+3/2
and

pen(m) = K
D4γ+2

m

n
for some K > K0

where K0 is a constant depending on Φ1, ‖q‖∞ and f0. Then there exists C′ > 0 such that

E‖Π̃ − Π‖2
A ≤ C inf

m∈Mn

{d2
A(Π, Sm) + pen(m)} +

C′

n

with C = max(2 + 72f−1
0 ‖f‖∞,A1(1 + 2‖Π‖2

A), 12f−1
0 (1 + 2‖Π‖2

A)).
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Note that this result is non-asympotic, it is an advantage of the least square method with respect
to a quotient method.

All constants on which the penalty depends do not have the same status. The constants Φ1

and ‖q‖∞ are known, since the wavelet basis and the noise distribution are known. The constant
f0 is unknown but it can be estimated (see Remark 2). Then, even if it means replacing f0 by an

estimator f̂0, the penalty is computable. In particular the dependence coefficients of the sequence
do not appear at all in the penalty.

The condition γ > 3/4 is due to an additional term of order D
2γ+7/2
m /n (coming from the term

(1/n)
∑n

i=1QT 2(Yi) in the contrast) inside the penalty. If γ > 3/4, then 2γ + 7/2 < 4γ + 2 and
D4γ+2

m /n is the dominant term. If γ = 3/4, the result is still true but the constant in the penalty
also depends on ‖Π‖A. In the other cases the estimation is possible but the term D2γ+4

m /n is not
negligible any more and the order of the variance (and consequently the rate of convergence) must
be changed. This constraint γ > 3/4 is not restrictive since γ must be larger than 1/2 in order
that q be square integrable. Moreover in the case of a Gamma noise, q is not bounded if γ < 1.

We can now evaluate the rate of convergence of our estimator.

Corollary 1. We suppose that the restriction of Π to A belongs to the Besov space Bα
2,∞(A) with

α < r. Then, under the assumptions of Theorem 1,

E‖Π̃ − Π‖2
A = O(n− 2α

2α+4γ+2 ).

There is to our knowledge no lower bound for our precise estimation problem and such a study
is beyond the scope of the present work. But Clémençon (2003) proves the optimality of the rate

n− 2α
2α+4γ+2 in the case where f belongs to Bα

2,∞(R) and fΠ belong to Bα
2,∞(R2).

Nevertheless we remark that we obtain then the same rate of convergence with Π̃ as those
obtained with Π̂m1 where Dm1 = n1/(2+4γ+2α), but whitout requiring the knowledge of α. That is
why we can assert that this estimator is adaptive. Moreover our estimator is better than the one

of Clémençon (2003), which achieves only the rate (ln(n)/n)
2α

2α+4γ+2 . It is also an improvement of
the result of Lacour (2007b) because this rate is obtained without requiring that f has a regularity
α.

4.2. Sketch of proof of Theorem 1. We give in this section a sketch of proof of Theorem 1.
Let m ∈ Mn. We denote by Πm the orthogonal projection of Π on Sm. We have the following

bias-variance decomposition

E‖Π̃ − Π‖2
A = E‖Π̃ − Πm‖2

A + ‖Πm − Π‖2
A

The term ‖Π̃ − Πm‖2
A can be written in the following way

‖Π̃ − Πm‖2
A = ‖Π̃ − Πm‖2

A1{‖Π̂m̂‖≤kn} + ‖Π̃ − Πm‖2
A1{‖Π̂m̂‖>kn}

≤ ‖Π̂m̂ − Πm‖2
A + ‖Πm‖2

A1{‖Π̂m̂‖>kn}

since Π̃ = 0 on the set {‖Π̂m̂‖ > kn} and Π̃ = Π̂m̂ on the complement. The term ‖Πm‖2
A1{‖Π̂m̂‖>kn}

is easy to deal with, the main term is ‖Π̂m̂ − Πm‖2
A. But, on Γ, the definitions of Π̂m and m̂ lead

to the inequality

(7) γn(Π̂m̂) + pen(m̂) ≤ γn(Πm) + pen(m).

Letting Zn,m(T ) = 1
n

∑n
k=1[VT (Yk, Yk+1) −QTΠm(Yk)], a fast computation gives

γn(Π̂m̂) − γn(Πm) = Ψn(Π̂m̂ − Πm) − 2Zn,m(Π̂m̂ − Πm)
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so that (7) becomes

Ψn(Π̂m̂ − Πm) ≤ 2Zn,m(Π̂m̂ − Πm) + pen(m) − pen(m̂)

≤ 2‖Π̂m̂ − Πm‖f sup
T∈Bf (m,m̂)

Zn,m(T ) + pen(m) − pen(m̂)

where Bf (m, m̂) = {T ∈ Sm + Sm̂, ‖T ‖f = 1}. The main steps of the proof are then

(1) to control the term supT∈Bf (m,m̂) Zn,m(T ),

(2) to link the empirical “norm” Ψn with the L2 norm ‖.‖A.

• To deal with the supremum of the empirical process Zn,m(T ), we will use an inequality of
Talagrand stated in Lemma 5 (Section 6.8). This inequality is very powerful but can be applied
only to sum of independent random variables. That is why we split Zn,m(T ) into three processes
plus a bias term.

Zn,m(T ) = Z(1)
n (T ) − Z(2)

n (T ) + Z(3)
n (T ) +

∫∫

T (x, y)(Π − Πm)(x, y)f(x)dxdy

with






































Z(1)
n (T ) =

1

n

n
∑

k=1

VT (Yk, Yk+1) − E[VT (Yk, Yk+1)|X1, . . . , Xn+1]

Z(2)
n (T ) =

1

n

n
∑

k=1

QTΠm(Yk) − E[QTΠm(Yk)]

Z(3)
n (T ) =

1

n

n
∑

k=1

T (Xk, Xk+1) − E[T (Xk, Xk+1)]

For the first process Z
(1)
n , we get back to independent variables by remarking that, conditionally

to X1, . . . , Xn+1, the couples (Y2i−1, Y2i) are independent (see Proposition 3).
For the other processes, we use the mixing assumption H5 to build auxiliary variables X∗

i

which are approximation of the Xi’s and which constitute independent clusters of variables (see
Proposition 4).

• To pass from Ψn to the L2 norm, we introduce the following set

∆ = {∀T ∈ S ‖T ‖2
f ≤ 3

2
Ψn(T )}

We can easily prove (see Section 6.3) that ∆ ⊂ Γ. Then,

‖Π̂m̂ − Πm‖A1∆ ≤ 3

2
f−1
0 Ψn(Π̂m̂ − Πm)1Γ

It remains to prove that P (∆c) = P (∃T ∈ S,Ψn(T ) < (2/3)E[Ψn(T )]) is small enough. It is done
in Proposition 2.

5. Simulations

To illustrate the method, we compute our estimator Π̃ for different Markov processes with known
transition density. The estimation procedure contains several Fourier transforms, which can seem
heavy, but the computation of vϕjk

for all the basis functions can be done beforehand. Next, to

compute Π̃ from data Y1, . . . , Yn+1, we use the following steps (see Section 3.3):

• For each m, compute matrices Gm and Zm,
• Deduce the matrix Am,

• Select the m̂ which minimize γn(Π̂m) + pen(m) = −tAmZm + pen(m),

• Compute Π̃ using matrix Am̂.

We consider several kinds of Markov chains :
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• An autoregressive process denoted by AR and defined by:

Xn+1 = aXn + b+ εn+1

where the εn+1 are independent and identical distributed random variables, with centered
Gaussian distribution with variance σ2. For this process, the transition density can be
written 1/(σ

√
2π) exp(−(y − ax− b)2/2σ2). We consider the following parameter values :

(i) a = 2/3, b = 0, σ2 = 5/9, estimated on [−2, 2]2.
(ii) a = 0.5, b = 3, σ2 = 1, and then the process is estimated on [4, 8]2.

• A radial Ornstein-Uhlenbeck process (in its discrete version). For j = 1, . . . , δ, we define

the processes: ξj
n+1 = aξj

n + βεj
n where the εj

n are i.i.d. standard Gaussian. The chain

is then defined by Xn =

√

∑δ
i=1(ξ

i
n)2. The transition density is given in Chaleyat-Maurel

and Genon-Catalot (2006) where this process is studied in detail:

π(x, y) = 1y>0 exp

(

−y
2 + a2x2

2β2

)

Iδ/2−1

(

axy

β2

)

ax

β2

( y

ax

)δ/2

and Iδ/2−1 is the Bessel function with index δ/2 − 1. This process (with here a = 0.5,

β = 3, δ = 3) is denoted by
√

CIR since its square is actually a Cox-Ingersoll-Ross process.
The estimation domain for this process is [2, 10]2.

• A Cox-Ingersoll-Ross process, which is exactly the square of the previous process. It
follows a Gamma density for invariant distribution with scale parameter l = 1/2ρ2 and
shape parameter a = δ/2. The transition density is

π(x, y) =
1

2β2
exp

(

−y + a2x

2β2

)

Iδ/2−1

(

a
√
xy

β2

)

( y

a2x

)δ/4−1/2

The used parameters are the following:
(iii) a = 3/4, b =

√

7/48 and δ = 4, estimated on [0.1, 3]2.
(iv) a = 1/3, b = 3/4 and δ = 2. This chain is estimated on [0, 2]2.

• An ARCH process defined by Xn+1 = sin(Xn) + (cos(Xn) + 3)εn+1 where the εn+1 are
i.i.d. standard Gaussian. The transition density of this chain is

π(x, y) = ϕ

(

y − sin(x)

cos(x) + 3

)

1

cos(x) + 3

and we estimate this process on [−5, 5]2.

For this last chain, the stationary density is not explicit. So we simulate n+ 500 variables and
we estimate only from the last n to ensure the stationarity of the process. For the other chains, it
is sufficient to simulate an initial variable X0 with density f .

We consider two different noises:

Laplace noise: In this case, the density of εi is given by

q(x) =
λ

2
e−λ|x|; q∗(x) =

λ2

λ2 + x2
; λ = 5.

The smoothness parameter is γ = 2 and we choose

pen(m) =
1

n

(

λ

2

)2(
Dm

4

)10

.

Gaussian noise: In this case, the density of εi is given by

q(x) =
1

λ
√

2π
e−

x2

2λ2 ; q∗(x) = e−
λ2x2

2 ; λ = 0.3.
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n 50 100 250 500 1000 noise

AR(i) 0.579 0.407 0.270 0.230 0.209 Lapl
0.599 0.480 0.313 0.272 0.245 Gauss

AR(ii) 0.389 0.294 0.195 0.155 0.139 Lapl
0.339 0.304 0.280 0.273 0.271 Gauss√

CIR 0.171 0.138 0.123 0.118 0.111 Lapl
0.199 0.169 0.150 0.142 0.139 Gauss

CIR(iii) 0.420 0.345 0.237 0.195 0.175 Lapl
0.337 0.302 0.276 0.245 0.209 Gauss

CIR(iv) 0.525 0.403 0.337 0.304 0.292 Lapl
0.369 0.345 0.344 0.327 0.321 Gauss

ARCH 0.312 0.287 0.261 0.185 0.150 Lapl
0.337 0.319 0.296 0.290 0.183 Gauss

Table 1. MISE E‖Π − Π̃‖2 averaged over N = 200 samples.

−5

0

5

−5

0

5
0

0.05

0.1

0.15

0.2

0.25

Figure 1. True Π (black) and estimator Π̃ (white) for process ARCH observed
through a Laplace noise, n = 500

This noise does not verify Assumption H1 but it is interesting to see if this assumption
is also necessary for practical purposes. Given the exponential regularity of this noise, we
consider the following penalty

pen(m) =
5

n
exp(λ2D2

m).

Table 1 presents the L2 risk of our estimator of the transition density for the 6 Markov chains
and the 2 noises. These results can be compared with those of Lacour (2007a) (Table 2) who studies

the processes AR(i),
√

CIR and ARCH but directly observed, i.e. without noise. The risk values
are then higher in our case, but with the same order, which is satisfactory. It is noticeable that
the estimation works pretty much the same with the Gaussian noise, but with a slower decrease of
the risk. It is a classical phenomenon in deconvolution problems, since the Gaussian noise is much
more regular than the Laplace noise.
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y= -0.44 x=1.12

Figure 2. Sections for the process AR(i) observed through a Laplace noise, n = 500

Figure 5 allows to visualize the result for the process ARCH observed through a Laplace noise:
the surfaces z = Π(x, y) and z = Π̃(x, y) are presented. We also give figures of sections of this

kind of surfaces. We can see on Figure 5 the curves z = Π(x,−0.44) versus z = Π̃(x,−0.44)

and the curves z = Π(1.12, y) versus z = Π̃(1.12, y) for the process AR(i). Generally, for a
multidimensional estimation, the mixed control of the directions does not allow to do as well as a
classical one-dimensionnal function estimation. Nevertheless the curves are here very close.

6. Detailed proofs

6.1. Proof of Lemma 1. • Using that

|
∑

k

ϕ2
jk(x)| ≤ C(ϕ)2j/2‖ϕjk‖∞ ≤ C′(ϕ)2j ,(8)

P1 holds if Φ1 ≥ 2C′(ϕ).
• The computation of vϕjk

gives

|vϕjk
(x)| ≤ 2j/2

2π

∫ |ϕ∗(v)|
|q∗(−v2j)|dv

Next, it follows from Assumption H1 that |vϕjk
(x)| ≤ C1,γ(2j)γ+1/2/2πk0 using Lemma 4 since

r > γ + 1. Then, for all x,
∑

k |vϕjk
(x)|2 ≤ 3.2jC2

1,γ
k−2
0

4π2 (2j)2γ+1 that establishes P4 with Φ1 ≥
3C2

1,γk
−2
0 /(4π2).

• To prove P5, we apply the Parseval equality. That yields
∫

|vϕjk
|2 =

1

2π

∫ |ϕ∗(v)|2
|q∗(−v2j)|2 dv.

Using H1 and given that 2r > 2γ+1, we obtain
∫

|vϕjk
|2 ≤ C2,2γ(2j)2γ/2πk2

0 And finally P5 holds

with Φ1 ≥ 3C2,2γk
−2
0 /(2π).

• We begin with computing |vϕjkϕjk′ (x)| by using that (ϕjkϕjk′ )∗ is equal to the convolution
product ϕ∗

jk ∗ ϕ∗
jk′ .

|vϕjkϕjk′ (x)| ≤
|ϕ∗(v/2j)||ϕ∗((u − v)/2j)|

|q∗(−u)| dudv

≤ k−1
0

2π
2j(2j)γ

∫∫

|ϕ∗(y)ϕ∗(x− y)|(x2 + 1)γ/2dxdy.
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Then Lemma 4 (Section 6.8) shows that

|vϕjkϕjk′ (x)| ≤ k−1
0

2π
(2j)γ+1Cr

[

∫

|x|>1

|x|1−r(x2 + 1)γ/2dx

+

∫

|x|≤1

(x2 + 1)γ/2dx
]

.

Hence, since r > γ + 2, there exists C > 0 such that |vϕjkϕjk′ (x)| ≤ C(2j)γ+1. The fact that ϕjk

and ϕjk′ have disjoint supports if k +N ≤ k′ −N + 1 or k′ +N ≤ k −N + 1 allows to prove P6
with Φ1 ≥ 3(4N − 3)C2.

• Applying Parseval’s equality,
∫

|vϕjkϕjk′ |2 =
2j

2π

∫ |(ϕjkϕjk′ )∗|2(2jv)

|q∗(−2jv)|2 dv.

But,using Lemma 4,

(9) |(ϕjkϕjk′ )∗(2jv)| ≤
∫

|ϕ∗(y)||ϕ∗(v − y)|dy ≤ Cr

[

|v|1−r
1|v|>1 + 1|v|≤1

]

Then, it follows that
∫

|vϕjkϕjk′ |2 ≤ k−2
0 2j

2π
C2

r

∫

(|v|2(1−r)
1|v|>1 + 1|v|≤1)((2

jv)2 + 1)γdv ≤ C(2j)2γ+1.

It is then sufficient to sum this quantity for all k, k′ by taking account of the superposition of the
supports to prove P7 as soon as Φ1 ≥ 3C(4N − 3).

6.2. Proof of Lemma 2. First we write that

VT (Yk, Yk+1) =
1

4π2

∫

eiYku+iYk+1v T ∗(u, v)

q∗(−u)q∗(−v)dudv

so that, by denoting X = (X1, . . . , Xn+1),

E[VT (Yk, Yk+1)|X] =
1

4π2

∫

E[eiYku+iYk+1v|X]
T ∗(u, v)

q∗(−u)q∗(−v)dudv.

By using the independence between (Xi) and (εi), we compute

E[eiYku+iYk+1v|X] = E[eiXku+iXk+1veiεkueiεk+1u|X]

= eiXku+iXk+1v
E[eiεku]E[eiεk+1v] = eiXku+iXk+1vq∗(−u)q∗(−v).

Then

E[VT (Yk, Yk+1)|X] =
1

4π2

∫

eiXku+iXk+1vT ∗(u, v)dudv = T (Xk, Xk+1).

We proceed in a similar way for Q. Since QT (Yk) = (1/2π)
∫

eiYkuT ∗(u, 0) (q∗(−u))−1du, then

E[QT (Yk)|X] =
1

2π

∫

E[eiYku|X]
T ∗(u, 0)

q∗(−u) du.

By using the independence between (Xi) and (εi), we compute

E[eiYku|X] = E[eiXkueiεku|X] = eiXku
E[eiεku] = eiXkuq∗(−u).

Thus

E[QT (Yk)|X] =
1

2π

∫

eiXkuq∗(−u)T
∗(u, 0)

q∗(−u) du =
1

2π

∫

eiXkuT ∗(u, 0)du.

By denoting by Ty the function x 7→ Ty(x) = T (x, y), we obtain

T ∗(u, 0) =

∫∫

e−ixuTy(x)dxdy =

∫

T ∗
y (u)dy
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and then

1

2π

∫

eiXkuT ∗(u, 0)du =
1

2π

∫∫

eiXkuT ∗
y (u)dydu

=

∫

Ty(Xk)dy =

∫

T (Xk, y)dy.

(10)

6.3. Proof of Theorem 1. We start with introducing some auxiliary variables whose existence is
ensured by Assumption H5 of mixing. In the case of arithmetical mixing, since θ > 8, there exists
a real c such that 0 < c < 3/8 and cθ > 3. We set in this case qn = ⌊nc⌋. In the case of geometrical
mixing, we set qn = ⌊c ln(n)⌋ where c is a real larger than 3/θ.

For the sake of simplicity, we suppose that n + 1 = 2pnqn, with pn an integer. Let for l =
0, . . . , pn−1, Al = (X2lqn+1, ..., X(2l+1)qn

), Bl = (X(2l+1)qn+1, ..., X(2l+2)qn
). As in Viennet (1997),

by using Berbee’s coupling Lemma, we can build a sequence (A∗
l ) such that

(11)











Al and A∗
l have the same distribution,

A∗
l and A∗

l′ are independent if l 6= l′,

P (Al 6= A∗
l ) ≤ βqn .

In the same way, we build (B∗
l ) and we define for any l ∈ {0, . . . , pn − 1},

A∗
l = (X∗

2lqn+1, ..., X
∗
(2l+1)qn

), B∗
l = (X∗

(2l+1)qn+1, ..., X
∗
(2l+2)qn

) so that the sequence (X∗
1 , . . . , X

∗
n)

is well defined. We can now define

Ω∗
X = {∀i, 1 ≤ i ≤ n+ 1 Xi = X∗

i }.

Le us recall that S is the space Sm with maximal dimension D2 ≤ n
1

4γ+2 . We now adopt the
notations

∆ = {∀T ∈ S ‖T ‖2
f ≤ 3

2
Ψn(T )}; Ω = ∆ ∩ Ω∗

X .

Let us fix m ∈ Mn. We denote by Πm the orthogonal projection of Π on Sm. Then we have the
decomposition

E‖Π̃ − Π‖2
A ≤ 2E

(

‖Π̃ − Πm‖2
1Ω1‖Π̂m̂‖≤kn

)

+ 2E

(

‖Π̃ − Πm‖2
1Ω1‖Π̂m̂‖>kn

)

+2E

(

‖Π̃ − Πm‖2
1Ωc

)

+ 2‖Πm − Π‖2
A

≤ 2E

(

‖Π̂m̂ − Πm‖2
1Ω

)

+ 2‖Πm‖2
E

(

1Ω1‖Π̂m̂‖>kn

)

+2E

(

[2‖Π̃‖ + 2‖Πm‖2]1Ωc

)

+ 2‖Πm − Π‖2
A.

Now, using the Markov inequality and the definition of Π̃,

E‖Π̃ − Π‖2
A ≤ 2E

(

‖Π̂m̂ − Πm‖2
1Ω

)

+ 2‖Π‖2
A

E(‖Π̂m̂‖2
1Ω)

k2
n

+4(k2
n + ‖Π‖2

A)E (1Ωc) + 2‖Πm − Π‖2
A.

But E(‖Π̂m̂‖2
1Ω) ≤ 2E(‖Π̂m̂ − Πm‖2

1Ω) + 2‖Πm‖2 and kn =
√
n, so

E‖Π̃ − Π‖2
A ≤ 2E

(

‖Π̂m̂ − Πm‖2
1Ω

)

(1 + 2‖Π‖2
A) +

4‖Π‖4
A

n

+4(n+ ‖Π‖2
A)P (Ωc) + 2‖Πm − Π‖2

A.

We now state the following proposition :
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Proposition 2. There exists C0 > 0 such that

P (Ωc) ≤ C0

n2
.

Hence

E‖Π̃ − Π‖2
A ≤ 2‖Πm − Π‖2

A + 2E

(

‖Π̂m̂ − Πm‖2
1Ω

)

(1 + 2‖Π‖2
A)

+
4

n
(‖Π‖4

A + C0(1 + ‖Π‖2
A)).

(12)

Now we have to bound E

(

‖Π̂m̂ − Πm‖2
1Ω

)

. The estimators Π̂m are defined by minimization

of the contrast on a set Γ defined in (6). Let us prove that this set Γ includes Ω. More precisely,
we prove that ∆ ⊂ Γ. For T =

∑

λ aλωλ ∈ Sm, the matrix Am = (aλ) of its coefficients in the

basis (ωλ(x, y)) verifies Ψn(T ) = tAmGmAm. Then, on ∆,

tAmGmAm ≥ 2

3
‖T ‖2

f ≥ 2

3
f0‖T ‖2.

Now, using P2, ‖T ‖2 = tAmAm and then tAmGmAm ≥ (2/3)f0
tAmAm. If µ is an eigenvalue of

Gm, there exists Am 6= 0 such that GmAm = µAm and then tAmGmAm = µtAmAm. Then, on ∆,

µtAmAm ≥ 2

3
f0

tAmAm.

Consequently µ ≥ (2/3)f0. So ∆ ⊂ Γ and Π̂m̂ minimizes the contrast on ∆.
We now observe that, for all functions T, S

γn(T ) − γn(S) = Ψn(T − S) − 2

n

n
∑

k=1

[V(T−S)(Yk, Yk+1) −Q(T−S)S(Yk)].

Then, since on ∆, γn(Π̂m̂) + pen(m̂) ≤ γn(Πm) + pen(m),

Ψn(Π̂m̂ − Πm) ≤ 2

n

n
∑

k=1

[V(Π̂m̂−Πm)(Yk, Yk+1) −Q(Π̂m̂−Πm)Πm
(Yk)]

+pen(m) − pen(m̂)

≤ 2Zn,m(Π̂m̂ − Πm) + pen(m) − pen(m̂)

≤ 2‖Π̂m̂ − Πm‖f sup
T∈Bf (m,m̂)

Zn,m(T ) + pen(m) − pen(m̂)

where

Zn,m(T ) =
1

n

n
∑

k=1

[VT (Yk, Yk+1) −QTΠm(Yk)]

and, for all m′, Bf (m,m′) = {T ∈ Sm + Sm′ , ‖T ‖f = 1}. Now let p(., .) be a function such that
for all m,m′, 12p(m,m′) ≤ pen(m) + pen(m′). Then

Ψn(Π̂m̂ − Πm) ≤ 1

3
‖Π̂m̂ − Πm‖2

f + 3[ sup
T∈Bf (m,m̂)

Z2
n,m(T ) − 4p(m, m̂)] + 2pen(m).

So, using the definition of ∆ ⊃ Ω,

‖Π̂m̂ − Πm‖2
f1Ω ≤ 3

2
Ψn(Π̂m̂ − Πm)1Ω

≤ 1

2
‖Π̂m̂ − Πm‖2

f1Ω +
9

2

∑

m′∈Mn

[ sup
T∈Bf (m,m′)

Z2
n,m(T ) − 4p(m,m′)]1Ω + 3pen(m)
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Thus
1

2
‖Π̂m̂ − Πm‖2

f1Ω ≤ 9

2

∑

m′∈Mn

[ sup
T∈Bf (m,m′)

Z2
n,m(T ) − 4p(m,m′)]1Ω + 3pen(m)

And using Assumption H3,

(13) ‖Π̂m̂ − Πm‖2
A1Ω ≤ 9f−1

0

∑

m′∈Mn

[ sup
T∈Bf (m,m′)

Z2
n,m(T ) − 4p(m,m′)]1Ω + 6f−1

0 pen(m)

Now, by denoting EX the expectation conditionally to X1, . . . , Xn+1, the process Zn,m(T ) can
be split in the following way :

Zn,m(T ) = Z(1)
n (T ) − Z(2)

n (T ) + Z(3)
n (T ) +

∫∫

T (x, y)(Π − Πm)(x, y)f(x)dxdy

with






































Z(1)
n (T ) =

1

n

n
∑

k=1

VT (Yk, Yk+1) − EX [VT (Yk, Yk+1)]

Z(2)
n (T ) =

1

n

n
∑

k=1

QTΠm(Yk) − E[QTΠm(Yk)]

Z(3)
n (T ) =

1

n

n
∑

k=1

T (Xk, Xk+1) − E[T (Xk, Xk+1)]

Then, by introducing functions p1(., .), p2(., .) and p3(., .)

sup
T∈Bf (m,m′)

Z2
n,m(T ) − 4p(m,m′) ≤ 4 sup

T∈Bf (m,m′)

(Z(1)
n (T )2 − p1(m,m

′))

+4 sup
T∈Bf(m,m′)

(Z(2)
n (T )2 − p2(m,m

′)) + 4 sup
T∈Bf (m,m′)

(Z(3)
n (T )2 − p3(m,m

′))

+4((p1 + p2 + p3)(m,m
′) − p(m,m′)) + 4 sup

T∈Bf (m,m′)

‖(Π − Πm)1A‖2
f‖T ‖2

f

We now employ the following propositions.

Proposition 3. Let p1(m,m
′) = K1D

4γ+2
m′′ /n where m′′ = max(m,m′). Then, if r > 2γ + 1/2,

there exists a positive constant C1 such that

∑

m′∈Mn

E

([

sup
T∈Bf (m,m′)

Z(1)
n (T )2 − p1(m,m

′)

]

+

)

≤ C1

n
.

Proposition 4. Let p2(m,m
′) = p

(1)
2 (m,m′)+p(2)

2 (m,m′) with p
(1)
2 (m,m′) = K2‖Π‖2

A D
2γ+7/2
m′′ /n

and p
(2)
2 (m,m′) = K2‖Π‖2

A(
∑

k βk)D3
m′′/n where m′′ = max(m,m′). Then, if r > 2γ + 3/2, there

exists a positive constant C2 such that

∑

m′∈Mn

E

([

sup
T∈Bf (m,m′)

Z(2)
n (T )2 − p2(m,m

′)

]

+

1Ω

)

≤ C2

n
.

Proposition 5. Let p3(m,m
′) = K3

∑

k β2kD
2
m′′/n where m′′ = max(m,m′). Then, there exists

a positive constant C3 such that

∑

m′∈Mn

E

([

sup
T∈Bf (m,m′)

Z(3)
n (T )2 − p3(m,m

′)

]

+

1Ω

)

≤ C3

n
.
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The two first propositions are proved in Sections 6.6 and 6.7. The last proposition is proved in
Lacour (2007b) Section 6.5 (for an other basis but only the property P3 ‖

∑

jk ϕ
2
jk‖∞ ≤ Φ1Dm is

used).
Then we get

∑

m′∈Mn

E

([

sup
T∈Bf (m,m′)

Z2
n,m(T ) − 4p(m,m′)

]

1Ω

)

≤ 4
C1 + C2 + C3

n

+4‖(Π− Πm)1A‖2
f + 4

∑

m′∈Mn

((p1 + p2 + p3)(m,m
′) − p1(m,m

′)).

But, if γ > 3/4, 4γ + 2 > 2γ + 7/2 and there exists m2 such that for all m′ > m2, p1(m,m
′) >

p2(m,m
′) + p3(m,m

′). That implies that
∑

m′∈Mn

(p1(m,m
′) + p2(m,m

′) + p3(m,m
′) − 2p1(m,m

′))

≤
∑

m′≤m2

(p2(m,m
′) + p3(m,m

′) − p1(m,m
′)) ≤ C(m2)

n
.

Thus in the case γ > 3/4, we choose p = 2p1 and

∑

m′∈Mn

E

([

sup
T∈B(m′)

Z2
n,m(T ) − 4p(m,m′)

]

1Ω

)

≤ 4
C1 + C2 + C3 + C(m2)

n

+4‖f‖∞,A1‖Π − Πm‖2
A

(14)

If γ = 3/4, we choose p = 2(p1 + p
(1)
2 ). Since there exists m2 such that for all m′ > m2,

p1(m,m
′) + p

(1)
2 (m,m′) > p

(2)
2 (m,m′) + p3(m,m

′), we can write
∑

m′∈Mn

(p1(m,m
′) + p2(m,m

′) + p3(m,m
′) − 2p(m,m′))

≤
∑

m′≤m2

(p
(2)
2 (m,m′) + p3(m,m

′) − p1(m,m
′) − p

(1)
2 (m,m′)) ≤ C(m2)

n

and (14) holds.
Finally, combining (12), (13) and (14), we obtain

E‖Π̃ − Π‖2
A ≤ 2‖Πm − Π‖2

A +
4

n
(‖Π‖4

A + C0(1 + ‖Π‖2
A))

+2(1 + 2‖Π‖2
A)9f−1

0

[

4
C1 + C2 + C3 + C(m2)

n
+ 4‖f‖∞,A1‖Π − Πm‖2

A

]

+2(1 + 2‖Π‖2
A)6f−1

0 pen(m).

Then, by letting C = max(2 + 72f−1
0 ‖f‖∞,A1(1 + 2‖Π‖2

A), 12f−1
0 (1 + 2‖Π‖2

A)),

E‖Π̃ − Π‖2
A ≤ C inf

m∈Mn

(‖Πm − Π‖2
A + pen(m)) +

C′

n

We still have to verify that 12p(m,m′) ≤ pen(m) + pen(m′). But, if γ > 3/4,

12p(m,m′) = 24K1
D4γ+2

m′′

n
= 24K1

dim(Sm + Sm′)4γ+2

n
≤ pen(m) + pen(m′)

with pen(m) ≥ 24K1D
4γ+2
m /n. And if γ = 3/4,

12p(m,m′) = 24(K1 +K2‖Π‖2
A)
D5

m′′

n
≤ pen(m) + pen(m′)
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with pen(m) ≥ 24(K1 +K2‖Π‖2
A)D4γ+2

m /n.

6.4. Proof of Corollary 1. It follows from Meyer (1990) Chapter 6, Section 10 that Π belongs to
Bα

2,∞if and only if supj≥J 22jα(
∑

k,l |ajkl|2)1/2 <∞ with ajkl =
∫

Π(x, y)ϕjk(x)ϕjl(y)dxdy. Then

d2
A(Π, Sm) =

∑

j>m

∑

k,l

|ajkl|2 ≤ C
∑

j>m

2−4jα ≤ C′D−2α
m

Since d2
A(Π, Sm) = O(D−2α

m ), Theorem 1 becomes

E‖Π̃ − Π‖2
A ≤ C′′ inf

m∈Mn

{D−2α
m +

D4γ+2
m

n
}.

with C′′ a positive constant. By setting Dm1 the integer part of n1/(4γ+2α+2), then

E‖Π̃ − Π‖2
A ≤ C′′{D−2α

m1
+
D4γ+2

m1

n
} = O(n− 2α

4γ+2α+2 ).

6.5. Proof of Proposition 2. We first remark that P (Ω∗c
ρ ) ≤ P (Ω∗c

X ) + P (∆c ∩ Ω∗
X). In the

geometric case βqn ≤ e−θc ln(n) ≤ n−θc and in the other case βqn ≤ (qn)−θ ≤ n−θc. Then

P (Ω∗c
X ) ≤ 2pnβqn ≤ n1−cθ.

But, cθ > 3 and so P (Ω∗c
X ) ≤ n−2. We still have to bound P (∆c ∩Ω∗

X). To do this, we observe that
if ω ∈ ∆c, then there exists T in S such that ‖T ‖2

f > (3/2)Ψn(T ) and then ‖T ‖2
f > (3/2)EXΨn(T ).

But EXΨn(T ) = 1
n

∑n
k=1

∫

T 2(Xk, y)dy. So P (∆c ∩ Ω∗
X) ≤ P (∆′c ∩ Ω∗

X) with

∆′ = {∀T ∈ S ‖T ‖2
f ≤ 3

2

1

n

n
∑

k=1

∫

T 2(Xk, y)dy}.

Let us remark that (1/n)
∑n

k=1

∫

T 2(Xk, y)dy − ‖T ‖2
f = νn(T 2) with

νn(T ) =
1

n

n
∑

i=1

∫

[T (Xi, y) − E(T (Xi, y))]dy.

Hence
P (∆′c ∩ Ω∗

X) ≤ P (sup
T∈B

|νn(T 2)|1Ω∗
X
> 1/3)

with B = {T ∈ S ‖T ‖f = 1}.
A function T in S can be written T (x, y) =

∑m0

j=J

∑

kl ajklϕjk(x)ϕjl(y) where m0 is such that
S = Sm0 . Then

νn(T 2)1Ω∗
X

=
∑

jkk′ l

ajklajk′lν̄n(ϕjkϕjk′ )

where

(15) ν̄n(u) =
1

n

n
∑

i=1

[u(X∗
i ) − E(u(X∗

i ))].

Let bjk = (
∑

l a
2
jkl)

1/2, then |νn(T 2)| ≤ ∑

jkk′ bjkbjk′ |ν̄n(ϕjkϕjk′ )| and, if T ∈ B,
∑

jk b
2
jk =

∑

jkl a
2
jkl = ‖T ‖2 ≤ f−1

0

Thus,

sup
T∈B

|νn(T 2)| ≤ f−1
0 sup

P

b2
jk

=1

∑

jkk′

bjkbjk′ |ν̄n(ϕjkϕjk′ )|.

For the sake of simplicity, we denote λ = (j, k) and λ′ = (j, k′) so that

sup
T∈B

|νn(T 2)| ≤ f−1
0 sup

P

b2λ=1

∑

λλ′

bλbλ′ |ν̄n(ϕλϕλ′)|.
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Lemma 3. Let Bλ,λ′ = ‖ϕλϕλ′‖∞ and Vλ,λ′ = ‖ϕλϕλ′‖2. Let, for any symmetric matrix (Aλ,λ′ )

ρ̄(A) = sup
P

a2
λ=1

∑

λ,λ′

|aλaλ′ |Aλ,λ′

and L(ϕ) = max{ρ̄2(V ), ρ̄(B)}. Then there exists Φ0 > 0 such that L(ϕ) ≤ Φ0D2.

This lemma is proved in Baraud et al. (2001) for an orthonormal basis verifying ‖
∑

λ ϕ
2
λ‖∞ ≤

Φ0D, that is ensured by property P3.

Now let x =
f2
0

24‖f‖∞,A1L(ϕ)
and

D =

{

∀λ∀λ′ |ν̄n(ϕλϕλ′)| ≤
[

Bλ,λ′x+ Vλ,λ′

√

2‖f‖∞,A1x

]}

.

On D:

sup
T∈B

|νn(T 2)| ≤ f−1
0 sup

P

b2λ=1

∑

λ,λ′

bλbλ′

[

Bλ,λ′x+ Vλ,λ′

√

2‖f‖∞,A1x

]

≤ f−1
0

[

ρ̄(B)x + ρ̄(V )
√

2‖f‖∞,A1x

]

≤ f0
24‖f‖∞,A1

ρ̄(B)

L(ϕ)
+

1√
12

(

ρ̄2(V )

L(ϕ)

)1/2

≤ 1

24
+

1

2
√

3
<

1

3
.

Then P

(

sup
T∈B

|νn(T 2)| > 1/3

)

≤ P (Dc). But ν̄n(u) = ν̄n,1(u)/2 + ν̄n,2(u)/2 with

ν̄n,s(u) =
1

pn

pn−1
∑

l=0

Yl,s(u) s = 1, 2

with















Yl,1(u) =
1

qn

∑(2l+1)qn

i=2lqn+1[u(X
∗
i ) − E(u(X∗

i ))],

Yl,2(u) =
1

qn

∑(2l+2)qn

i=2(2l+1)qn+1[u(X
∗
i ) − E(u(X∗

i ))].

To bound P (ν̄n,1(ϕλϕλ′) ≥ Bλ,λ′x + Vλ,λ′

√

2‖f‖∞,A1x), we will use the Bernstein inequality

given in Birgé and Massart (1998). A fast computation gives E|Yl,1(ϕλϕλ′ )|p ≤ 2p−2(Bλ,λ′)p−2(
√

‖f‖∞,A1Vλ,λ′ )2.
And then

P (|ν̄n,s(ϕλϕλ′ )| ≥ Bλ,λ′x+ Vλ,λ′

√

2‖f‖∞,A1x) ≤ 2e−pnx.

Let C = f2
0 [48‖f‖∞,A1]

−1, so that x = 2C/L(ϕ). Given that P (∆c∩Ω∗
X) ≤ P (Dc) ≤

∑

λ,λ′ P
(

|ν̄n(ϕλϕλ′ )| > Bλ,λ′x+ Vλ,λ

P (∆c ∩ Ω∗
X) ≤ 4D2 exp

{

−
2pnC

L(ϕ)

}

≤ 4n1/(2γ+1) exp

{

−C
n

qnL(ϕ)

}

.

But L(ϕ) ≤ Φ0D2 ≤ Φ0n
1/(2γ+1) and qn ≤ n1/2 so

P (∆c ∩ Ω∗
X) ≤ 4n1/(2γ+1) exp

{

− C

Φ0
n

2γ−1
2(2γ+1)

}

≤ C′

n2

because γ > 1/2.
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6.6. Proof of Proposition 3. First we need to isolate even terms from odd terms in Z
(1)
n (T ) to

avoid overlaps: Z
(1)
n (T )1Ω∗ =

1

2
(Z

(1,1)
n (T ) + Z

(1,2)
n (T )) with























Z(1,1)
n (T ) =

1

n

n
∑

i=1,i odd

VT (Yi, Yi+1) − EX [VT (Yi, Yi+1)]

Z(1,2)
n (T ) =

1

n

n
∑

i=1,i even

VT (Yi, Yi+1) − EX [VT (Yi, Yi+1)]

It is sufficient to deal with the first term only, as the second one is similar. For each i, let
Ui = (Y2i−1, Y2i), then

Z(1,1)
n (T ) =

1

n/2

n/2
∑

i=1

{VT (Ui) − EX [VT (Ui)]} .

Notice that conditionally to X1, . . . , Xn, the Ui’s are independent. Thus we can use the Talagrand
inequality recalled in Lemma 5 to bound

E

([

sup
T∈Bf (m,m′)

Z(1,1)
n (T )2 − p1(m,m

′)

]

+

)

.

We first remark that Property P1 entails Bf (m,m′) ⊂ Sm′′ with m′′ = max(m,m′). Then, if T
belongs to Bf (m,m′),

T (x, y) =

m′′
∑

j=J

∑

kl

ajklϕjk(x)ϕjl(y)

with
∑

jkl a
2
jkl = ‖T ‖2 ≤ f−1

0 .

• Let us bound ‖VT ‖∞ for T in Bf (m,m′). If T (x, y) =
∑

jkl ajklϕjk(x)ϕjl(y),

|VT (x, y)|2 ≤
∑

jkl

a2
jkl

∑

jkl

|Vϕjk⊗ϕjl
(x, y)|2.

Then, since Vs⊗t(x, y) = vs(x)vt(y),

sup
T∈Bf (m,m′)

|VT (x, y)|2 ≤ f−1
0

∑

jkl

|vϕjk
(x)vϕjl

(y)|2.

But, according to Property P4, ‖∑k |vϕjk
|2‖∞ ≤ Φ1(2

j)2γ+2. So

sup
T∈Bf (m,m′)

‖VT ‖2
∞ ≤ f−1

0 Φ2
1

m′′
∑

j=J

(2j)4γ+4 ≤ f−1
0 Φ2

1

24γ+4

24γ+4 − 1
D4γ+4

m′′

and M1 = f
−1/2
0 Φ1

√

24γ+4/(24γ+4 − 1)D2γ+2
m′′ .

• To compute H2 we write

EX [ sup
T∈Bf (m,m′)

Z(1,1)
n (T )2] ≤ f−1

0

∑

jkl

EX [Z(1,1)
n (ϕjk ⊗ ϕjl)

2]

≤ f−1
0

∑

jkl

VarX





1

n

n
∑

i=1,i odd

vϕjk
(Yi)vϕjl

(Yi+1)





≤ f−1
0

∑

jkl

1

n
VarX

(

vϕjk
(Y1)vϕjl

(Y2)
)

≤ f−1
0

n

∑

jkl

EX [|vϕjk
(Y1)|2|vϕjl

(Y2)|2](16)
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Here VarX denotes the variance conditionally to X1, . . . , Xn+1. Now, for any function G, the
following relation holds

EX [|G|2(Y1, Y2)] = EX [|G|2(X1 + ε1, X2 + ε2)]

=

∫∫

|G|2(X1 + z1, X2 + z2)q(z1)q(z2)dz1dz2

=

∫∫

|G|2(u1, u2)q(u1 −X1)q(u2 −X2)du1du2 ≤ ‖q‖2
∞‖G‖2

Then, coming back to (16),

EX

[

sup
T∈Bf (m,m′)

Z(1,1)
n (T )2

]

≤ f−1
0

n
‖q‖2

∞
∑

jkl

‖vϕjk
⊗ vϕjl

‖2

≤ f−1
0 ‖q‖2

∞
n

∑

j

(

∑

k

‖vϕjk
‖2

)2

≤ Φ2
1f

−1
0 ‖q‖2

∞
n

m′′
∑

j=J

(2j)4γ+2,

using P5. Then H2 = Φ2
1f

−1
0 ‖q‖2

∞24γ+2/(24γ+2 − 1)
D4γ+2

m′′

n
.

• We still have to find v. First

VarX(VT (Yi, Yi+1)) ≤ EX |VT (Yi, Yi+1)|2 ≤ ‖q‖2
∞‖VT ‖2

We now observe that ‖VT ‖2 = ‖V ∗
T ‖2/(4π2) and then

‖VT ‖2 =
1

4π2

∫∫
∣

∣

∣

∣

T ∗(u, v)

q∗(−u)q∗(−v)

∣

∣

∣

∣

2

dudv

≤ 1

4π2

√

∫∫ |T ∗(u, v)|2
|q∗(−u)q∗(−v)|4 dudv

√

∫∫

|T ∗(u, v)|2dudv

≤ 1

4π2

√

√

√

√

∑

jkl

a2
jkl

∑

jkl

∫∫ |ϕ∗
jk(u)ϕ∗

jl(v)|2
|q∗(−u)q∗(−v)|4 dudv

√

4π2‖T ‖2

For T ∈ Bf (m,m′),

‖VT ‖2 ≤ f
−1/2
0

2π

√

√

√

√f−1
0

∑

j

∑

kl

∫ |ϕ∗
jk(u)|2

|q∗(−u)|4 du
∫ |ϕ∗

jl(u)|2
|q∗(−u)|4 du.

But (ϕjk)∗(u) = 2−j/2eiuk/2j

ϕ∗(u/2j) and then
∫ |ϕ∗

jk(u)|2
|q∗(−u)|4 du ≤

∫

2−j|ϕ∗(u/2j)|2
|q∗(−u)|4 du

≤
∫ |ϕ∗(v)|2

|q∗(−v2j)|4 dv ≤ k−4
0 (2j)4γ

∫

|ϕ∗(v)|2(v2 + 1)2γdv

Since r > 2γ + 1/2, Lemma 4 gives

∑

(k,l)∈Λj

∫ |ϕ∗
jk(u)|2

|q∗(−u)|4 du
∫ |ϕ∗

jl(u)|2
|q∗(−u)|4 du ≤ 3.22jC2

2,4γk
−8
0 (2j)8γ

Then

‖VT ‖2 ≤ C2,4γf
−1
0 k−4

0

2π

√

√

√

√

m′′
∑

j=J

3(2j)8γ+2 ≤ C2,4γf
−1
0 k−4

0

2π

(

3.28γ+2

28γ+2 − 1

)1/2

D4γ+1
m′′
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and v = ‖q‖2
∞C2,4γf

−1
0 k−4

0

√
3.28γ+2D4γ+1

m′′ /(2π
√

28γ+2 − 1).
We can now apply inequality (19)

E[ sup
T∈Bf (m,m′)

|Z(1,1)
n (T )|2 − 6H2]+ ≤ C

(

v

n
e−k1

nH2

v +
M2

1

n2
e−k2

nH
M1

)

≤ C′
(

D4γ+1
m′′

n
e−k′

1Dm′′ +
D4γ+4

m′′

n2
e−k′

2

√
n/Dm′′

)

.

But there exists a positive constant K such that
∑

m′∈Mn

D4γ+1
m′′ e−k′

1Dm′′ ≤ K.

Moreover, since Dm′′ ≤ n
1

4γ+2 , D4γ+4
m′′ e−k′

2

√
n/Dm′′ /n ≤ n1/(2γ+1)e−k′

2nγ/(2γ+1)

so that
∑

m′∈Mn

D4γ+4
m′′ e−k′

2

√
n/Dm′′ /n2 ≤ K ′/n.

Then, setting K1 = 6Φ2
1f

−1
0 ‖q‖2

∞24γ+2/(24γ+2 − 1),

∑

m′∈Mn

E[ sup
T∈Bf (m,m′)

|Z(1,1)
n (T )|2 −K1

D4γ+2
m′′

n
]+ ≤ C′′

n

and the proposition is proved.

6.7. Proof of Proposition 4. Since Πm belongs to Sm, it can be written

Πm(x, y) =

m
∑

j′=J

∑

(k′,l′)∈Λj′

bj′k′l′ϕj′k′ (x)ϕj′l′(y)

with
∑

j′k′l′ b
2
j′k′l′ = ‖Πm‖2 ≤ ‖Π‖2

A. From the embedding Bf (m,m′) ⊂ Sm′′ (where m′′ =

max(m,m′)), we have, if T belongs to Bf (m,m′),

T (x, y) =

m′′
∑

j=J

∑

(k,l)∈Λj

ajklϕjk(x)ϕjl(y)

with
∑

jkl a
2
jkl = ‖T ‖2 ≤ f−1

0 .

We use the Talagrand inequality (19) in Lemma 5. But the variables Yi are not independent.
We shall use the following approximation variables

∀1 ≤ i ≤ n+ 1 Y ∗
i = X∗

i + εi.

These variables have the same properties (see (11)) that the X∗
i s. More precisely, let, for l =

0, . . . , pn−1, Cl = (Y2lqn+1, ..., Y(2l+1)qn
), Dl = (Y(2l+1)qn+1, . . . , Y(2l+2)qn

), C∗
l = (Y ∗

2lqn+1, ..., Y
∗
(2l+1)qn

),

D∗
l = (Y ∗

(2l+1)qn+1, ..., Y
∗
(2l+2)qn

). Then, since Al and A∗
l have the same distribution and the se-

quences (εi) and (Xi) are independent, Cl and C∗
l have the same distribution. Moreover the

construction of A∗
l via Berbee’s coupling Lemma implies that C∗

l and C∗
l′ are independent if l 6= l′.

Now we split Z
(2)
n into two terms: Z

(2)
n (T )1Ω = (1/2)Z

(2,1)
n (T ) + (1/2)Z

(2,2)
n (T ) where



























Z(2,1)
n (T ) =

1

pn

pn−1
∑

l=0

1

qn

(2l+1)qn
∑

i=2lqn+1

QTΠm(Y ∗
i ) − E[QTΠm(Y ∗

i )]

Z(2,2)
n (T ) =

1

pn

pn−1
∑

l=0

1

qn

(2l+2)qn
∑

i=(2l+1)qn+1

QTΠm(Y ∗
i ) − E[QTΠm(Y ∗

i )]
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Then we apply Talagrand’s inequality to Z
(2,1)
n (T ).

• Let us first compute M1. We have to bound ‖QTΠm‖∞ for T in Bf (m,m′). By linearity of Q

QTΠm(x) =
∑

jkl

ajkl

∑

j′k′l′

bj′k′l′Qϕjkϕj′k′⊗ϕjlϕj′l′
(x)

Then, since Qs⊗t(x) = vs(x)
∫

t(y)dy, using the Schwarz inequality,

|QTΠm(x)|2 ≤
∑

a2
jklb

2
j′k′l′

∑

|vϕjkϕj′k′ (x)

∫

ϕjlϕj′l′ |2

≤ f−1
0 ‖Π‖2

A

∑

jkk′ l

|vϕjkϕjk′ (x)|2

since the ϕjl are orthonormal. The property P6 gives then

‖QTΠm‖2
∞ ≤ f−1

0 ‖Π‖2
AΦ1

m′′
∑

j=J

(2j)2γ+32j

so that M1 = f
−1/2
0 ‖Π‖A

√

Φ122γ+4/(22γ+4 − 1)Dγ+2
m′′ .

• Now, we compute H2. For T ∈ Bf (m,m′),

|Z(2,1)
n (T )|2 ≤

∑

jkl

a2
jkl

∑

jkl

|Z(2,1)
n (ϕjk ⊗ ϕjl)|2

Thus

E

[

sup
T∈Bf (m,m′)

Z(2,1)
n (T )2

]

≤ f−1
0

∑

jkl

E

[

Z(2,1)
n (ϕjk ⊗ ϕjl)

2
]

≤ f−1
0

∑

jkl

Var





1

pn

pn−1
∑

l=0

1

qn

(2l+1)qn
∑

i=2lqn+1

Q(ϕjk⊗ϕjl)Πm
(Y ∗

i )





The variables (C∗
l ) are independent and identically distributed so

E

[

sup
T∈Bf (m,m′)

Z(2,1)
n (T )2

]

≤ f−1
0

∑

jkl

1

pn
Var

[

1

qn

qn
∑

i=1

Q(ϕjk⊗ϕjl)Πm
(Y ∗

i )

]

But, on Ω, C1 and C∗
1 have the same distribution, so that

Var

[

1

qn

qn
∑

i=1

Q(ϕjk⊗ϕjl)Πm
(Y ∗

i )

]

= Var

[

1

qn

qn
∑

i=1

Q(ϕjk⊗ϕjl)Πm
(Yi)

]

.

But, coming back to the definition of QT , for i1 6= i2,

Cov(Q(ϕjk⊗ϕjl)Πm
(Yi1 ), Q(ϕjk⊗ϕjl)Πm

(Yi2 ))

=
1

4π2

∫∫

E(eiYi1ue−iYi2v)
[(ϕjk ⊗ ϕjl)Πm]∗(u, 0)

q∗(−u)
[(ϕjk ⊗ ϕjl)Πm]∗(−v, 0)

q∗(v)
dudv

=
1

4π2

∫∫

E(eiXi1ue−iXi2v)[(ϕjk ⊗ ϕjl)Πm]∗(u, 0)[(ϕjk ⊗ ϕjl)Πm]∗(−v, 0)dudv

since E(eiεi1ue−iεi2v) = q∗(−u)q∗(v). Now using (10),

cov(Q(ϕjk⊗ϕjl)Πm
(Yi1 ), Q(ϕjk⊗ϕjl)Πm

(Yi2 ))

= cov(

∫

(ϕjk ⊗ ϕjl)Πm(Xi1 , y)dy,

∫

(ϕjk ⊗ ϕjl)Πm(Xi2 , y)dy)
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It implies that

Var

[

1

qn

qn
∑

i=1

Q(ϕjk⊗ϕjl)Πm
(Yi)

]

≤ 1

q2n

qn
∑

i=1

Var[Q(ϕjk⊗ϕjl)Πm
(Yi)]

+Var

[

1

qn

qn
∑

i=1

∫

(ϕjk ⊗ ϕjl)Πm(Xi, y)dy

]

And then

(17) E

[

sup
T∈Bf (m,m′)

Z(2,1)
n (T )2

]

≤ f−1
0

∑

jkl

1

pnqn
Var[Q(ϕjk⊗ϕjl)Πm

(Y1)]

+ f−1
0

∑

jkl

1

pn
Var

[

1

qn

qn
∑

i=1

∫

(ϕjk ⊗ ϕjl)Πm(Xi, y)dy

]

For the second term in (17), we use Lemma 6 to write

∑

jkl

Var

[

1

qn

qn
∑

i=1

∫

(ϕjk ⊗ ϕjl)Πm(Xi, y)dy

]

≤ 4
∑

k βk

qn
‖
∑

jkl

|
∫

(ϕjk ⊗ ϕjl)Πm(Xi, y)dy|2‖∞

But
∫

(ϕjk ⊗ ϕjl)Πm(Xi, y)dy =
∑

k′

bjk′lϕjkϕjk′ (Xi)

so that

∑

jkl

|
∫

(ϕjk ⊗ ϕjl)Πm(Xi, y)dy|2 ≤ ‖Π‖2
A

∑

jkk′l

|ϕjkϕjk′ (Xi)|2 ≤ ‖Π‖2
AΦ2

1D
3
m′′

using property P3. Therefore

∑

jkl

Var

[

1

qn

qn
∑

i=1

∫

(ϕjk ⊗ ϕjl)Πm(Xi, y)dy

]

≤ 4
∑

k βk

qn
‖Π‖2

AΦ2
1D

3
m′′

Then we have bound the second term in (17) by 2f−1
0

∑

k βk‖Π‖2
AΦ2

1D
3
m′′/n.

For the first term in (17), we bound
∑

jkl E[|Q(ϕjk⊗ϕjl)Πm
(Y1)|2]:

∑

jkl

E[|Q(ϕjk⊗ϕjl)Πm
(Y1)|2] ≤

∑

j′k′l′

b2j′k′l′

∑

jkl

∑

j′k′l′

|
∫

ϕjlϕj′l′ |2E|vϕjkϕj′k′ (Y1)|2

≤ ‖Π‖2
A

∑

jkk′

2j
E|vϕjkϕjk′ (Y1)|2

But E|vϕjkϕjk′ (Y1)|2 =
∫

|vϕjkϕjk′ (x)|2p(x)dx where p is the density of Y1. Since p = q ∗ f ,

|p(x)| ≤ ‖q‖∞ for all x. Then

E|vϕjkϕjk′ (Y1)|2 ≤ ‖q‖∞
∫

|vϕjkϕjk′ (x)|2dx
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and

∑

jkl

E[|Q(ϕjk⊗ϕjl)Πm
(Y1)|2] ≤ ‖Π‖2

A‖q‖∞
m′′
∑

j=J

2j
∑

kk′

∫

|vϕjkϕjk′ (x)|2dx

≤ ‖Π‖2
A‖q‖∞Φ1

m′′
∑

j=J

(2j)2γ+3 ≤ ‖Π‖2
A‖q‖∞Φ1

22γ+3

22γ+3 − 1
D2γ+3

m′′ ,

applying Property P7. We finally obtain

E

[

sup
T∈Bf (m,m′)

Z(2,1)
n (T )2

]

≤ 2f−1
0 ‖Π‖2

A‖q‖∞Φ1
22γ+3

22γ+3 − 1

D2γ+3
m′′

n
+ 2f−1

0

∑

k

βk‖Π‖2
AΦ2

1

D3
m′′

n

Since the order of nH2 has to be larger than the one of v, we choose

H2 = 2f−1
0 ‖Π‖2

AΦ1 max(‖q‖∞22γ+3/(22γ+3 − 1),Φ1)

[

D
2γ+7/2
m′′

n
+ (
∑

k

βk)
D3

m′′

n

]

.

• Lastly, using Lemma 6 again,

Var(
1

qn

(2l+1)qn
∑

i=2lqn+1

Q2
TΠm

(Y ∗
i )) = Var(

1

qn

(2l+1)qn
∑

i=2lqn+1

Q2
TΠm

(Yi))

≤ 4

qn
E[|QTΠm |2(Y1)b(Y1)] ≤

4

qn
‖QTΠm‖∞(E[|QTΠm |2(Y1)])

1/2(E[b2(Y1)])
1/2

≤ 4
√

2
∑

k(k + 1)βk

qn
‖QTΠm‖∞(E[|QTΠm |2(Y1)])

1/2(18)

We have already proved that ‖QTΠm‖∞ ≤ f
−1/2
0 ‖Π‖A

√

Φ122γ+4/(22γ+4 − 1)Dγ+2
m′′ .

Now we need a sharp bound on E[|QTΠm(Y1)|2]. We have

E[|QTΠm(Y1)|2] ≤ ‖q‖∞
∫

|QTΠm |2 =
‖q‖∞
2π

∫
∣

∣

∣

∣

(TΠm)∗(u, 0)

q∗(−u)

∣

∣

∣

∣

2

du

Then it follows from the Schwarz inequality that

E[|QTΠm(Y1)|2] ≤
‖q‖∞
2π

√

∫ |(TΠm)∗(u, 0)|2
|q∗(−u)|4 du

√

∫

|(TΠm)∗(u, 0)|2du

We will evaluate the two terms under the square roots. First observe that

(TΠm)∗(u, 0) =
∑

jkl

∑

j′k′l′

ajklbj′k′l′(ϕjkϕj′k′ )∗(u)(ϕjlϕj′l′)
∗(0)

=
∑

jkk′ l

ajklbjk′l(ϕjkϕjk′ )∗(u)

since (ϕjlϕj′l′)
∗(0) =

∫

ϕjlϕj′l′ = 1j=j′,l=l′ . Then
∫

|(TΠm)∗(u, 0)|2du ≤
∑

jkk′ l

a2
jklb

2
jk′l

∑

jkk′l

∫

|(ϕjkϕjk′ )∗(u)|2du

≤ 2πf−1
0 ‖Π‖2

A

∑

jkk′ l

∫

|(ϕjkϕjk′ )(u)|2du

≤ 2πf−1
0 ‖Π‖2

A

∑

j

2j‖
∑

k′

|ϕjk′ |2‖∞
k′+2N−2
∑

k=k′−2N+2

∫

|ϕjk′ |2
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by taking account of the superposition of the supports. Using now (8)
∫

|(TΠm)∗(u, 0)|2du ≤ 2πf−1
0 ‖Π‖2

A

∑

j

2jC′(ϕ)2j(4N − 3)

≤ 2πf−1
0 ‖Π‖2

AΦ1(4N − 3)
2

3
D2

m′′

Now
∫ |(TΠm)∗(u, 0)|2

|q∗(−u)|4 du ≤
∑

jkk′ l

a2
jklb

2
jk′l

∑

jkk′l

∫ |(ϕjkϕjk′ )∗(u)|2
|q∗(−u)|4 du

≤ f−1
0 ‖Π‖2

A

∑

jkk′ l

∫

2j |(ϕjkϕjk′ )∗(2jv)|2
|q∗(−2jv)|4 dv

Hence, inequality (9) and Assumption H1 show that
∫ |(TΠm)∗(u, 0)|2

|q∗(−u)|4 du

≤ f−1
0 ‖Π‖2

A

∑

jkk′ l

∫

2jC2
r

[

|v|2(1−r)
1|v|>1 + 1|v|≤1

]

k−4
0 ((2jv)2 + 1)2γdv

≤ f−1
0 ‖Π‖2

AC
2
r k

−4
0 C

∑

jkk′ l

(2j)4γ+1

with C =
∫ [

|v|2(1−r)
1|v|>1 + 1|v|≤1

]

(v2 + 1)2γdv <∞ as soon as r > 2γ + 3/2. Then

∫ |(TΠm)∗(u, 0)|2
|q∗(−u)|4 du ≤ f−1

0 ‖Π‖2
AC

2
rk

−4
0 C

m
∑

j=J

∑

k′l

k′+2N−2
∑

k=k′−2N+2

(2j)4γ+1

≤ f−1
0 ‖Π‖2

AC
2
rk

−4
0 C3(4N − 3)

24γ+3

24γ+3 − 1
D4γ+3

m′′

Finally

E[|QTΠm(Y1)|2] ≤
‖q‖∞
π

f−1
0 ‖Π‖2

A(4N − 3)Crk
−2
0

√

C
24γ+3

24γ+3 − 1
πΦ1D

2γ+5/2
m′′

Then (18) gives

v =

√

2
∑

k

(k + 1)βk‖q‖∞f−1
0 ‖Π‖2

Ak
−1
0 C(γ, r,N,Φ1)

D
2γ+13/4
m′′

qn
.

Then replacing n by pn in inequality (19) gives

E[ sup
T∈Bf (m,m′)

|Z(2,1)
n (T )|2 − 6H2]+ ≤ C

(

v

pn
e−k1

pnH2

v +
M2

1

p2
n

e−k2
pnH
M1

)

≤ C′
(

D
2γ+13/4
m′′

n
e−k′

1D
1/4

m′′ +
D2γ+4

m′′ q2n
n2

e
−k′

2

√
n

qnD
1/4

m′′

)

where C′ and k′1 depend on r,N, γ,Φ1, f0, ‖Π‖A, ‖q‖∞,
∑

k(k + 1)βk and
∑

k βk. But there exists
a positive constant K such that

∑

m′∈Mn

D
2γ+13/4
m′′ e−k′

1D
1/4

m′′ ≤ K.
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Moreover D
1/4
m′′ ≤ n1/8 and qn ≤ nc with c+ 1/8 < 1/2, which involves

∑

m′∈Mn

E

[

sup
T∈Bf (m,m′)

|Z(2,1)
n (T )|2 −K2‖Π‖2

A

(

D
2γ+7/2
m′′

n
+ (
∑

k

βk)
D3

m′′

n

)]

+

≤ C′′

n

withK2 = 12f−1
0 Φ1 max(‖q‖∞22γ+3/(22γ+3−1),Φ1). Thus, if p2(m,m

′) = p
(1)
2 (m,m′)+p(2)

2 (m,m′)

with p
(1)
2 (m,m′) = K2‖Π‖2

AD
2γ+7/2
m′′ /n and p

(2)
2 (m,m′) = K2‖Π‖2

A (
∑

k βk)D3
m′′/n, then

∑

m′∈Mn

E

([

sup
T∈Bf (m,m′)

Z(2)
n (T )2 − p2(m,m

′)

]

+

1Ω

)

≤ C2

n
.

6.8. Technical Lemmas.

Lemma 4. If |ϕ∗(x)| ≤ k3(x
2 + 1)−r/2 for all real x then

• if s and α are reals such that sr > α+ 1
∫

|ϕ∗(x)|s(x2 + 1)α/2dx ≤ Cs,α <∞

• if r > 1
∫

|ϕ∗(y)ϕ∗(x− y)|dy ≤ Cr(|x|1−r
1|x|>1 + 1|x|≤1)

Proof of Lemma 4:
• For the first point, it is sufficient to observe that the function (x2 + 1)(−rs+α)/2 is integrable

if −rs+ α > −1.
• By changing the variable (y = xu), we get

∫

|ϕ∗(y)ϕ∗(x− y)|dy =

∫

|ϕ∗(xu)ϕ∗(x(1 − u))|xdu

≤
∫

|u|>1/3 and |1−u|>1/3

k3|xu|−rk3|x(1 − u)|−r|x|du

+

∫

|u|≤1/3

k2
3 |x(1 − u)|−r|x|du+

∫

|1−u|≤1/3

k2
3 |xu|−r|x|du

≤ k2
33

r|x|1−2r

∫

|u|>1/3

du

|u|r + k2
3 |x|1−r 2

3

∣

∣

∣

∣

3

2

∣

∣

∣

∣

r

+ k2
3 |x|1−r 2

3

∣

∣

∣

∣

3

2

∣

∣

∣

∣

r

≤ k2
3

[

2.32r−1

r − 1
|x|1−2r + 22−r3r−1|x|1−r

]

Thus, if |x| > 1,
∫

|ϕ∗(y)ϕ∗(x − y)|dy ≤ Cr|x|1−r and if |x| ≤ 1,
∫

|ϕ∗(y)ϕ∗(x − y)|dy ≤ Cr with
Cr = k2

3(2.3
2r−1/(r − 1) + 22−r3r−1).

Lemma 5. Let T1, . . . , Tn be independent random variables and

νn(r) = (1/n)
n
∑

i=1

[r(Ti) − E(r(Ti)],

for r belonging to a countable class R of measurable functions. Then, for ǫ > 0,

E[sup
r∈R

|νn(r)|2 − 6H2]+ ≤ C

(

v

n
e−k1

nH2

v +
M2

1

n2
e
−k2

nH
M1

)

(19)

with k1 = 1/6, k2 = 1/(21
√

2) and C a universal constant and where

sup
r∈R

‖r‖∞ ≤M1, E

(

sup
r∈R

|νn(r)|
)

≤ H, sup
r∈R

1

n

n
∑

i=1

Var(r(Ti)) ≤ v.
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Usual density arguments allow to use this result with non-countable class of functions R.
Proof of Lemma 5: We apply the Talagrand concentration inequality given in Klein and Rio

(2005) to the functions si(x) = r(x) − E(r(Ti)) and we obtain

P (sup
r∈R

|νn(r)| ≥ H + λ) ≤ exp

(

− nλ2

2(v + 4HM1) + 6M1λ

)

.

Then we modify this inequality following Birgé and Massart (1998) Corollary 2 p.354. It gives

P (sup
r∈R

|νn(r)| ≥ (1 + η)H + λ) ≤ exp

(

−n
3

min

(

λ2

2v
,
min(η, 1)λ

7M1

))

.

To find inequality (19) we use the formula E[X ]+ =
∫∞
0
P (X ≥ t)dt with X = supr∈R |νn(r)|2 −

6H2.

Lemma 6. (Viennet (1997)) Let (Ti) a strictly stationary process with β-mixing coefficients βk.
Then there exists a function b such that

E[b(T1)] ≤
∑

k

βk and E[b2(T1)] ≤ 2
∑

k

(k + 1)βk

and for all function ψ (such that E[ψ2(T1)] <∞) and for all N

Var(
N
∑

i=1

ψ(Ti)) ≤ 4NE[|ψ|2(T1)b(T1)].

In particular, for functions (ψλ),
∑

λ Var(
∑N

i=1 ψλ(Ti)) ≤ 4N(
∑

k βk)‖
∑

λ |ψλ|2‖∞.
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