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We present a simple and efficient method to optimize within energy minimization the determinantal com-
ponent of the many-body wave functions commonly used in quantum Monte Carlo calculations. The approach
obtains the optimal wave function as an approximate perturbative solution of an effective Hamiltonian itera-
tively constructed via Monte Carlo sampling. The effectiveness of the method, as well as its ability to sub-
stantially improve the accuracy of quantum Monte Carlo calculations, are demonstrated by optimizing a large
number of parameters for the ground state of acetone and the difficult case of the 11Bu state of hexatriene.
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Over the last decade, quantum Monte Carlo �QMC� meth-
ods have been employed to accurately compute electronic
properties of large molecular and solid systems where con-
ventional quantum chemistry approaches are extremely dif-
ficult to apply.1 A crucial step in both the variational �VMC�
and the diffusion Monte Carlo �DMC� approach is the con-
struction of the trial wave function �T which is usually cho-
sen of the Jastrow–Slater form, that is �T=J�, where � is
a small expansion in Slater determinants and J the positive
Jastrow correlation factor.

Although considerable progress has been made �princi-
pally using the variance minimization approach2� in the con-
struction of optimal Jastrow factors, relatively little attention
has been given to the optimization of the determinantal part
of the wave function. Methods such as Hartree–Fock �HF� or
a small-scale configuration interaction �CI� are used as a
practical way of constructing the determinantal component,
which is generally not reoptimized when the Jastrow factor is
added. However, the determinantal part of the wave function
solely determines the DMC energy3 and often needs to be
reoptimized to obtain accurate results.4 A practical and
simple approach to calculate the optimal determinantal com-
ponent is therefore particularly important to a wide and suc-
cessful application of QMC methods.

In recent years, several methods to optimize the wave
function through energy minimization have been
proposed.4–16 A direct approach to energy minimization en-
tails computing the gradient and the Hessian of the energy
with respect to the desired parameters. The use of an esti-
mate of the Hessian characterized by reduced statistical
fluctuations9,10 yields a simple and robust optimization algo-
rithm for the Jastrow parameters. However, the Hessian with
respect to the orbital parameters in the determinant is af-
fected by higher statistical noise so that devising a stable
energy-minimization scheme is more difficult10: using a
modified Hessian still leads to large fluctuations, and is, for
instance, less stable than the simple stochastic reconfigura-
tion �SR� method11,12 so that, during the optimization, one
may have to switch to the inefficient SR to retain stability. To
date, the most successful method remains the energy fluctua-
tion potential �EFP� method,4,13–16 which determines the
optimal determinantal component as the solution of an
effective Hamiltonian iteratively constructed via Monte
Carlo sampling. The approach has been used to optimize the
orbitals,4,14 and the linear coefficients in front of the

determinants,4,15 and has been extended to excited states.4

The method is very stable and more efficient than the SR
approach but quite complex4: the construction of the starting
effective Hamiltonian as well as its update are computation-
ally very demanding steps, especially for large systems.

In this Rapid Communication, we propose a simple and
efficient optimization method for the determinantal compo-
nent of the wave function. The approach constructs the opti-
mal wave function via a perturbative scheme based on the
EFP method, and only requires easily accessible quantities
from the quantum chemical calculation used to set up the
starting wave function. The performance of the method is
demonstrated on acetone and on the 11Bu state of hexatriene,
which is particularly challenging for all conventional elec-
tronic structure approaches. First, we will briefly review the
EFP method.

The energy fluctuation potential method. Let us assume
that the trial wave function �T depends on a set of param-
eters ��k�. The derivatives of the energy with respect to the
parameters can be written as

�E

��k
= 2��EL − Ē��Ok − Ōk�� , �1�

where �·� denotes the average with respect to the square of
the trial wave function ��T�2, which can be computed by

Monte Carlo sampling. We defined Ē= �EL� and Ōk= �Ok�,
where

EL =
H�T

�T
and Ok =

1

�T

��T

��k
. �2�

For the optimal parameters, the derivatives of the energy
�Eq. �1�	 are zero, and the fluctuations of the local energy EL
and of the functions Ok are uncorrelated. This means that the
energy is stationary if the remaining fluctuations of the local
energy cannot be further reduced by adding some combina-
tion of the functions Ok. Hence, the minimization of the en-
ergy can be reformulated as a least-squares fit of the fluctua-
tions of the local energy with the functions Ok,
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�2 = 
�EL − V0 − �
k�0

VkOk2� . �3�

A minimization of �2 with respect to the parameters Vk leads
to the following set of linear equations for m�0:

��E�Om� = �
k�0

Vk��Ok�Om� , �4�

where we have eliminated V0 from the other equations, and

�E=EL− Ē and �Om=Om− Ōm. Since the left-hand side of
these equations corresponds to the derivatives of the energy
�Eq. �1�	, the fitting parameters Vk are zero if, and only if, all
the derivatives of the energy are zero. In general, the param-
eters Vk that solve these linear equations will not be equal to
zero and can be used to improve the current trial wave func-
tion �T.

We focus here on the EFP procedure to optimize the de-
terminantal part � of the trial wave function �T,

�T = J� = J�
i

ciCi, �5�

where a spin-adapted configuration state function �CSF� Ci is
a linear combination of Slater determinants Di of single-
particle orbitals. Let us assume that the starting � is the
lowest solution �0

�0� of the CI Hamiltonian H�0�,

H�0� = �
i

Ei
�0���i

�0����i
�0�� , �6�

where the states �i
�0� span the same space as the CSFs. To

obtain the optimal coefficients ci or equivalently the best
solution in the basis of the eigenstates of H�0�, we consider
the variations of � with respect to the eigenstates other than
�0

�0�,

� = �0
�0� → �� = �0

�0� + �
k�0

�k�k
�0�, �7�

so that Ok=�k
�0� /�0

�0�. The quantities appearing in the linear
equations �Eq. �4�	 are sampled from �T=J�0

�0� and param-
eters Vk

�0� are used to construct a new Hamiltonian H�1� as

H�1� = H�0� + �
k�0

Vk
�0����0

�0����k
�0�� + h . c . � . �8�

This Hamiltonian is diagonalized, yielding a new set of
states, and the procedure is iterated until convergence.

If we also want to optimize the orbitals in the Slater de-
terminants, we can linearize the problem using a so-called
super-CI expansion to treat the CI and orbital variations on
the same footing: the CSFs occupied in the wave function
�Eq. �5�	 are augmented by all possible single excitations
from the occupied to a set of external orbitals, and the occu-
pied orbitals can be improved by using the natural orbitals of
the CI wave function in this augmented space.17 The EFP
scheme to optimize the determinantal component via a
super-CI approach4 is quite complex. The matrix elements of
the starting super-CI Hamiltonian must be extracted from the
available quantum chemical code, rendering the setup of the
approach highly nontrivial.18 Moreover, as the number of
singly excited CSFs increases with the number of CSFs in

the reference wave function and with the size of the basis
�i.e., with the number of available external orbitals�, both the
setup and the update steps quickly become computationally
too demanding.19

A simplified EFP approach. The basic idea of the scheme
proposed here is to avoid the explicit construction of the EFP
Hamiltonian by solving the problem perturbatively. For the
example given above, we obtain an improved wave function
�Eq. �7�	 not by diagonalizing the Hamiltonian �Eq. �8�	, but
approximately, to first order in the perturbation given by the
corrections Vk

�0�,

� = �0
�0� → �� = �0

�0� − �
k�0

Vk
�0�

Ek
�0� − E0

�0��k
�0�. �9�

It is simple to show that, in the absence of the Jastrow factor,
this is indeed the perturbative solution for H−H�0� since
Vk

�0�= ��k
�0� �H−H�0� ��0

�0��. This perturbative EFP scheme
can also be viewed as a generalization of the SR method11,12

which yields an improved wave function by applying the
operator 	−H to the current state and projecting the result
onto the space defined by the parametrization. The SR wave
function is constructed as in Eq. �9� but all the changes are
scaled by the same energy denominator while the EFP ap-
proach scales each correction appropriately, achieving sig-
nificantly faster convergence.4

Estimate of the energy denominators. The perturbative so-
lution of the EFP problem requires the knowledge of the
energy denominators appearing in Eq. �9�, which can be eas-
ily estimated with the use of quantities readily available from
the quantum chemical calculation used to set up the starting
wave function. We will first consider the optimization of the
orbital parameters.

The simplest case is given by a trial wave function con-
structed from a single closed-shell determinant as �T=JD0,
where D0 is a determinant of Hartree-Fock or density func-
tional Kohn-Sham orbitals which we want to reoptimize in
the presence of the Jastrow factor. We assume here that we
have chosen HF orbitals but all the following considerations
equally apply to the case of density functional orbitals. The
set of occupied and virtual HF orbitals, and the atomic basis
on which they are expanded, span the same space so that we
can express the variations of one orbital with respect to the
expansion coefficients in terms of the variations with respect
to the other orbitals. To optimize the M occupied orbitals 
i
in D0, we only need to consider the variations with respect to
the N−M virtual orbitals as


i → 
i� = 
i + �
j=M+1

N

cij
 j , �10�

where we only mix orbitals of the same symmetry. The cor-
responding first-order change in the wave function is

�T → �T� = JD0 + �
i=1

M

�
j=M+1

N

cijJC0
i→j , �11�

where C0
i→j =D0

i�→j�+D0
i�→j� is the CSF of the two determi-

nants obtained by substituting the orbital 
i with orbital 
 j
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for the up and down spins, respectively. It is simple to show
that Oi→j =C0

i→j /D0.
Following the EFP procedure, we sample from �T the

quantities appearing in the linear equations �Eq. �4�	 and ob-
tain the corrections Vi→j corresponding to the functions Oi→j.
We can then obtain an improved determinantal component in
analogy to Eq. �9� as

�� = D0 − �
i=1

M

�
j=M+1

N
Vi→j

�Ei→j C0
i→j , �12�

where we assign an energy scale �Ei→j to the variation cor-
responding to the single excitation C0

i→j. We now make the
key observation that, to first order, this is equivalent to the
much simpler step of constructing an improved set of occu-
pied single-particle orbitals as


i� = 
i − �
j=M+1

N
Vi→j

�Ei→j 
 j , �13�

which can be used in a new single-determinant wave func-
tion �T� =JD0�. We then proceed iteratively by sampling a
new set of Vi→j from the wave function �T� and updating the
orbitals as in Eq. �13� until convergence.

To estimate the energy denominators �Ei→j, we note that
the starting HF orbitals are canonical orbitals obtained by
diagonalizing the Fock matrix so that the corresponding ei-
genvalues have a physical interpretation via the Koopman’s
theorem. Minus the eigenvalues of the occupied and the vir-
tual orbitals are an approximation to the ionization potentials
�IP� and the electron affinities �EA�, respectively. The energy
associated with the promotion of one electron from orbital 
i
to orbital 
 j can therefore be estimated as the difference
IP−EA, namely

�Ei→j � Ei→j − EHF � � j − �i, �14�

where �i and � j are the eigenvalues corresponding to orbitals

i and 
 j. We do not find it necessary at successive iterations
to update the parameters �Ei→j, which are therefore kept
fixed at the starting HF values.

In Fig. 1, we compare the convergence of the proposed
method, denoted by “perturbative EFP,” with the EFP and the
SR methods for the orbital optimization of a single closed-
shell Jastrow-Slater wave function for the ground state of

acetone �C3H6O�. To demonstrate the robustness of the
method, we construct a poor starting determinantal compo-
nent from a set of unconverged HF orbitals obtained by di-
agonalizing the Fock matrix built from the Huckel orbitals. A
simple electron-electron and electron-nucleus Jastrow factor
is employed, and the 473 orbital parameters are optimized by
including all 130 virtual orbitals. The starting unconverged
eigenvalues are used as estimates for the energy denomina-
tors �Eq. �14�	. The SR optimization is performed with the
critical value of 	 estimated as in Ref. 4, and converges to
the optimal wave function only after 40 steps. The perturba-
tive EFP approach converges in only two steps as the EFP
method, with a computational effort as low as the one of the
SR method. Interestingly, the perturbative method is success-
ful even when using the eigenvalues of the starting Huckel
orbitals to roughly estimate the energies �Ei→j. Finally, if we
start from converged HF orbitals, the energy gain from the
optimization is of 12±1 and 5±1 mhartree in VMC and
DMC, respectively.

The procedure is not very different if the wave function is
constructed from a spin-unrestricted determinant. The varia-
tions of an occupied orbital �Eq. �10�	 are now with respect
to the virtual orbitals of the same spin, and the excitation
energies are estimated as �Ei,→j,�� j,−�i, where  is the
spin of the varied orbital. The case of a restricted open-shell
determinant is instead more complicated since the final or-
bitals and eigenvalues of a restricted open-shell Hartree-Fock
calculation are not uniquely defined. Among the many con-
structions available in the literature, we find that the one by
Guest and Saunders20 yields eigenvalues which, on average,
well approximate the excitation energies in Eq. �14�. Note
that closed-to-open-shell excitations must also be included in
Eq. �10� to allow full orbital variation.

For a multideterminant wave function from a complete-
active-space self-consistent-field �CASSCF� calculation, a
set of canonical orbitals is usually defined as diagonalizing
the closed, active, and virtual blocks of the so-called gener-
alized Fock matrix. However, to obtain a good estimate of
the closed-shell-to-active and active-to-virtual excitation en-
ergies, the eigenvalues must be properly adjusted since the
energy of an active orbital should be different for excitations
into or out of it, i.e., closer to an electron affinity or to an
ionization potential, respectively. Therefore, for these excita-
tions, we follow Ref. 21 to define �Ei→j �Ei→j −ECASSCF as

�Ei→j � � j − �i +
�

2
�� j j + 2 − �ii� , �15�

where � is a CASSCF eigenvalue, � is the single-particle
density matrix, and � is an average difference between the
electron affinity and the ionization potential of the active
orbitals, chosen of the order of 0.3–0.5 hartree.

Finally, we consider the simultaneous optimization of or-
bitals and CI coefficients. The simplest approach is to alter-
nate between an orbital optimization step with the perturba-
tive EFP method and a CI calculation in the basis of the
CSFs multiplied by the Jastrow factor.8 Alternatively, we can
use the perturbative EFP method for orbital and CI param-
eters and sample the quantities in Eq. �4� for both variations.

FIG. 1. Convergence of the VMC energy of acetone with the
perturbative EFP, the EFP, and the SR method to optimize the 473
orbital parameters. The starting determinantal component is from an
unconverged HF calculation. The runs are of 16�105steps. The
statistical errors are smaller than the symbol size.
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The corrections Vk for the CI coefficients are computed in
the basis of the CI states obtained in a starting CI calculation,
and the energy denominators �Eq. �9�	 estimated using the CI
energies.

In Table I, we demonstrate the performance of the method
on the 11Bu state of trans-hexatriene �C6H8� which represents
a challenge for all electronic structure approaches: CASPT2

yields a vertical excitation energy of only 5.01 eV �Ref. 24�
while the TDDFT energies range between 4.42 and 4.64 eV,
depending on the functional employed.25 For the single-
determinant closed-shell ground state, the VMC energy is
improved by about 10 mhartree when otimizing the HF or-
bitals while, differently from acetone, the DMC energy is not
significantly affected.26 The excited state is mainly an exci-
tation from the highest occupied �LUMO� to the lowest un-
occupied �HOMO� orbital and is well described by a two-
determinant singlet wave function. A CASSCF wave
function of two electrons in two orbitals, denoted by
CAS�2,2�, gives a DMC vertical excitation energy 0.4 eV
higher than the experimental value. Employing B3LYP orbit-
als partially improves the result but only the fully optimized
wave function yields an excitation energy in perfect agree-
ment with experiments. Finally, we note that the excited state
does not have multiconfigurational character, and using an
unoptimized multideterminant wave function yields signifi-
cantly worse QMC energies: a CASSCF wave function of six
electrons in six orbitals, where we keep the leading five
CSFs, yields an energy of −38.438�1� and
−38.560�2� hartree in VMC and DMC, respectively. Upon
optimization of both orbitals and CI coefficients, we recover
the best energies of Table I.
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