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Dans ce papier, nous nous intéressons à deux approches de robustesse : d'un côté une approche fondée sur la quasi-optimalité que nous appellerons dans cet article la β-robustesse et d'un autre côté l'α-robustesse lexicographique. Nous mettons en évidence quelques propriétés communes aux deux approches. En outre, nous établissons un lien entre la β-robustesse et l'α-robustesse lexicographique qui montre que la seconde approche peut être considérée comme une relaxation de la première.

Introduction

Pour répondre à la préoccupation de robustesse, des approches extrêmement variées peuvent être envisagées. Nous nous intéressons ici à une forme de réponse particulièrement étudiée dans la littérature actuelle illustrée notamment dans [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF][START_REF] Gupta | Robustness in sequential investment decisions[END_REF][START_REF] Kalaï R | Robust 1-median location problem on a tree[END_REF][START_REF] Kouvelis | Robust Discrete Optimization and its Applications[END_REF][START_REF] Mulvey | Robust optimization of largescale systems[END_REF][START_REF] Perny | An axiomatic approach to robustness in search problems with multiple scenarios[END_REF][START_REF] Rosenblatt | A robustness approach to facilities design[END_REF]. Ces approches se divisent en deux grandes familles : celles qui se basent sur l'optimisation d'un critère de robustesse et celles qui imposent des conditions de robustesse qu'une solution doit vérifier pour être considérée comme robuste [START_REF] Aloulou | Une nouvelle approche de robustesse : α-robustesse lexicographique[END_REF]. Dans ce travail, nous nous intéressons à deux approches de robustesse appartenant à la seconde famille. Nous nous limitons au cas où l'incertitude est représentée par un ensemble discret et fini de scénarios.

Dans la première approche, une solution est dite robuste si elle n'est pas très loin de l'optimum quel que soit le scénario considéré. Cette mesure de robustesse a été initialement introduite par Kouvelis et al. dans le cadre du problème d'aménagement d'usine [START_REF] Kouvelis | Algorithms for robust single and multiple period layout planning for manufacturing systems[END_REF]. Les auteurs cherchent à déterminer les solutions dont le coût est à moins de (100 + p)% de celui de la solution optimale pour tous les scénarios, p étant un réel positif fixé. Les solutions robustes sont donc celles dont le regret relatif est inférieur à p%. Dans [START_REF] Snyder | Facility location under uncertainty : A review[END_REF], Snyder appelle cette mesure de robustesse la p-robustesse. Ce concept de robustesse basé sur la proximité de l'optimum a été également repris par Gutiérrez et al. dans le cas du problème de conception de réseaux (network design problem) [START_REF] Gutiérrez | A robustness approach to uncapacitated network design problem[END_REF] et du problème d'approvisionnement international (international sourcing) [START_REF] Gutiérrez | A robustness approach to international sourcing[END_REF], ainsi que par Mulvey et al. en programmation mathématique [START_REF] Mulvey | Robust optimization of largescale systems[END_REF].

La seconde approche se fonde sur le fait qu'en situation d'incertitude pure, aucun scénario ne peut être distingué et donc l'ordre des scénarios n'a pas d'importance. Remarquons que l'ordre des scénarios n'a pas d'importance non plus dans la première approche. Néanmoins, la seconde approche va davantage plus loin en supposant que le vecteur de performance d'une solution (représentant les valeurs possibles que prend la solution pour les différents scénarios) est équivalent à tout vecteur obtenu par permutation, notamment le vecteur obtenu en ordonnant les performances de la pire à la meilleure. Une solution est alors considérée comme robuste, selon cette seconde approche, si chacune de ses performances réordonnées est proche de l'optimum. Cette approche, appelée α-robustesse lexicographique, a été proposée par Kalaï dans [START_REF] Kalaï R | Une nouvelle approche de robustesse : application à quelques problèmes d'optimisation[END_REF] et a été appliquée au problème de localisation 1-médian [START_REF] Kalaï R | Robust 1-median location problem on a tree[END_REF] ainsi qu'aux problèmes de sac à dos [START_REF] Kalaï | Lexicographic α-robust knapsack problem : Complexity results[END_REF] et de plus court chemin [START_REF] Kalaï | Lexicographic α-robust shortest path problem[END_REF].

En plus du fait d'appartenir à la famille d'approches imposant des conditions de robustesse, plusieurs points communs existent entre ces deux approches :

• Elles cherchent un ensemble de solutions et non pas une seule solution robuste.

• Elles peuvent donner un ensemble vide de solutions robustes, à la différence des approches fondées sur l'optimisation d'un critère de robustesse, comme par exemple le critère du coût ou du regret maximal. • Elles tiennent compte de la dimension subjective de la robustesse [START_REF] Vincke | Newsletters of the European Working Group «Multicriteria Aid for Decisions[END_REF] par le biais d'un seuil d'indifférence à fixer par le décideur. En effet, ce paramètre traduit la perception du décideur d'être "proche de l'optimum".

• Elles considèrent tous les scénarios pour déterminer les solutions robustes, à la différence de l'approche minmax qui ne tient compte que du pire scénario.

Le but de ce travail est de mettre en relation ces deux approches ayant des philosophies similaires. Par souci d'homogénéité et vu que la p-robustesse fait appel à un seuil relatif alors que la α-robustesse lexicographique utilise un seuil absolu, nous proposons de comparer cette dernière avec l'approche qui considère qu'une solution est robuste si son regret absolu (non relatif) est inférieur à un seuil β pour tous les scénarios. Nous appelons cette dernière approche la β-robustesse. Soulignons que la β-robustesse et la p-robustesse reflètent le même concept de robustesse, la seule différence réside dans le choix de la nature du seuil (absolu ou relatif).

Le reste de l'article est organisé comme suit. Dans la section 2, nous introduisons les notations utilisées le long de cet article ainsi qu'un exemple illustratif. La section 3 est dédiée à certaines propriétés vérifiées par les deux approches. Un lien entre la βrobustesse et la α-robustesse lexicographique est établi dans la section 4. La section 5 est consacrée aux conclusions.

Notations et exemple 2.1 Notations

Nous considérons un ensemble fini de solutions ou d'alternatives, X = {x 1 , x 2 , . . . , x n } et un nombre fini de scénarios S, avec |X| = n et |S| = q. Chaque alternative x ∈ X est évaluée pour le scénario s par une fonction f s (x) (par exemple le coût). Sans perte de généralité, nous allons supposer que les fonctions f s (.) sont à minimiser.

Notons f (x) le vecteur d'évaluations (f s 1 (x), f s 2 (x), . . . , f s q (x)) de la solution x pour les différents scénarios. Le vecteur de désutilité de x, noté f (x), est obtenu en réordonnant f (x) de la pire (c'est-à-dire la plus grande) évaluation à la meilleure (c'est-à-dire la plus petite) évaluation. On a donc :

f1 (x) ≥ f2 (x) ≥ . . . ≥ fq (x)
Notons que le vecteur de désutilité d'une solution x introduit un préordre complet sur l'ensemble des scénarios qui dépend de la solution x considérée. Soit x * s une solution optimale pour le scénario s (elle peut ne pas être unique) :

x * s = arg min x∈X f s (x) (1) 
De façon similaire, x * j est défini par rapport à la fonction fj (.) comme suit :

x * j = arg min x∈X fj (x) (2) 
A partir de ces solutions, nous définissons deux nouvelles solutions notées x * et x * vérifiant :

f s (x * ) = f s (x * s ) ∀s ∈ S (3) fj (x * ) = fj (x * j ) ∀j ∈ {1, . . . , q} (4) 
Si f est une fonction coût par exemple, la solution x * correspond à la solution dont le coût est minimum pour chacun des q scénarios, alors que la solution x * correspond à la solution dont le k ème plus grand coût est minimum pour tout k ∈ {1, . . . , q}. Signalons que, la plupart du temps, x * et x * ne sont pas des solutions réalisables mais correspondent à des solutions idéales. Elles jouent le rôle de points de référence auxquelles nous comparerons les solutions de X pour déterminer celles qui peuvent être considérées comme robustes.

Soient α et β deux réels positifs. Dans ce qui suit, nous allons noter :

• R β l'ensemble des solutions β-robustes défini comme suit :

R β (X) = {x ∈ X : ∀s ∈ S, f s (x) -f s (x * s ) ≤ β} (5) 
• R α-lex l'ensemble des solutions α-robustes lexicographiques défini comme suit :

R α-lex (X) = {x ∈ X : ∀j ∈ {1, . . . , q}, fj (x) -fj (x * j ) ≤ α} (6) 
Dans la sous-section qui suit, nous illustrons ces deux ensembles par un exemple pour que le lecteur puisse mieux se les représenter.

Exemple

Considérons l'exemple indiqué dans le tableau 1 avec

X = {a 1 , a 2 , a 3 , a 4 } et S = {s 1 , s 2 } :
Le point idéal x * de ce jeu de données correspond à la solution qui prend les valeurs 1 dans le premier scénario et 3 dans le deuxième scénario. Cette solution ainsi que celles de l'ensemble X sont représentées dans la Figure 1, où les axes correspondent aux deux scénarios. Pour une valeur de β = 4 par exemple, l'ensemble robuste R β (X) est constitué de l'unique solution a 2 . En effet, a 2 est à moins de 4 unités du point de référence à la fois pour le premier et le second scénario. Afin de calculer l'ensemble R α-lex (X), les vecteurs de performance des différentes solutions doivent être réordonnés comme le montre le Tableau 2.

s 1 s 2 f s (a 1 ) 6 3 f s (a 2 ) 4 7 f s (a 3 ) 3 10 f s (a 4 ) 1 11 f s (x * ) 1 3
TAB. 1 -Evaluations des quatre solutions pour les deux scénarios

t t t t t - 6 - 6 ? f (a 1 ) f (a 2 ) f (a 3 ) f (a 4 ) f (x * ) s 2 s 1 β = 4
FIG. 1 -Evaluation des solutions dans les deux scénarios.

j = 1 j = 2 fj (a 1 ) 6 3 fj (a 2 ) 7 4 fj (a 3 ) 10 3 fj (a 4 ) 11 1 fj (x * ) 6 1
TAB. 2 -Evaluations réordonnées des quatre solutions

- - 6 ? 6 f (a 2 ) f (a 3 ) f (x * ) f (a 4 ) j = 1 α = 2 f (a 1 ) j = 2 t t t t t

FIG. 2 -Evaluations réordonnées des solutions.

La solution x * correspond maintenant au point idéal du jeu de données réordonné. Remarquons que les nouvelles dimensions ne correspondent plus forcément à un scénario en particulier. Par exemple, f1 (a 1 ) = 6 = f 1 (a 1 ) provient du premier scénario et f1 (a 2 ) = 7 = f 2 (a 2 ) provient du deuxième scénario. Ces solutions sont représentées dans la Figure 2. Pour une valeur α = 2 par exemple, l'ensemble robuste R α-lex (X) est constitué de l'unique solution a 1 . En effet, a 1 est à moins de 2 unités du point idéal x * à la fois pour la première et la deuxième composantes.

Les Figures 1 et 2 montrent une propriété intéressante des deux approches étudiées dans cet article et évoquée dans l'introduction. Pour une valeur β < 4 (resp. α < 2), l'ensemble R β (X) (resp. R α-lex (X)) est vide. En effet, les seuils β et α expriment un niveau de tolérance fixé par le décideur pour exprimer son point de vue quant à la robustesse d'une solution par rapport au point idéal. S'il fixe un seuil trop faible et si le point de référence n'est pas une solution réalisable, il n'y aura pas de solutions robustes selon ses exigences. Nous expliciterons, dans la section 3 les seuils minimaux garantissant l'existence de solutions robustes pour les deux approches, ainsi que plusieurs autres propriétés.

Propriétés des ensembles

R β (X) et R α-lex (X)
Dans cette section, nous mettons en évidence certaines propriétés vérifiées par les deux ensembles de solutions robustes R α-lex (X) et R β (X). Pour se référer génériquement aux deux ensembles, nous les notons R ou encore R(Y ) pour spécifier qu'ils sont définis sur un sous-ensemble Y ⊆ X.

Propriété 1 Soit a ∈ X. Si f s (a) ≤ f s (x) pour tout x ∈ X et s ∈ S, alors a ∈ R(X).

Preuve:

Remarque préliminaire : Soient x et y deux solutions de X. Podinovskii démontre dans [START_REF] Podinovskii | Multi-criterion problems with uniform equivalent criteria[END_REF] que fj (x) ≤ fj (y) pour tout j si et seulement si il existe deux permutations σ et π telles que f σ(s) (x) ≤ f π(s) (y) pour tout s. En particulier, si f s (x) ≤ f s (y) pour tout s ∈ S alors ∀j ∈ {1, . . . , q}, fj (x) ≤ fj (y).

Par définition de a, f s (a) = f s (x * s ) pour tout s ∈ S. Donc a ∈ R β (X). Par ailleurs et d'après le résultat de Podinovskii, on a ∀k ≤ q, fk (a) ≤ fk (x) pour tout x ∈ X. Donc, ∀k, fk (a) = fk (x * k ) et a ∈ R α-lex (X).

On comprend bien que la propriété 1 est une propriété souhaitée dans tout ensemble de solutions robustes. En effet, s'il existe dans X une solution qui domine toutes les autres, c'est-à-dire une même solution qui est optimale dans tous les scénarios, il est évident que cette solution doit être considérée comme robuste. Dans ce cas particulier, les ensembles R β (X) et R α-lex (X) sont non vides quel que soit le seuil choisi.

Propriété 2 Les ensembles R β (X) et R α-lex (X) sont monotones respectivement par rapport à β et à α, i.e. : β ≤ β ′ ⇒ R β (X) ⊆ R β ′ (X) α ≤ α ′ ⇒ R α-lex (X) ⊆ R α ′ -lex (X) Preuve: x ∈ R β (X) ⇒ ∀s ∈ S, f s (x) -f s (x * s ) ≤ β ≤ β ′ ⇒ x ∈ R β ′ (X). x ∈ R α-lex (X) ⇒ ∀k ≤ q, fk (x) -fk (x * k ) ≤ α ≤ α ′ ⇒ x ∈ R α ′ -lex (X).
Les paramètres β et α caractérisent le degré d'exigence du décideur par rapport à une solution idéale. Il est clair que plus cette exigence est faible (et donc plus le paramètre est grand), plus il y a de solutions qui répondent aux préférences du décideur.

Il peut arriver que, pour des seuils β ou α trop petits, aucune solution dans X ne vérifie la condition de robustesse requise. Par conséquent, les ensembles R β (X) et R α-lex (X) peuvent être vides. Notons β min le seuil minimum pour lequel R β (X) est non vide et α min le seuil minimum pour lequel R α-lex (X) est non vide. Soulignons que ces seuils minimaux dépendent de l'ensemble X. En toute rigueur, ils doivent être notés β min (X) et α min (X). Néanmoins, par souci de simplicité, nous n'utiliserons ces dernières notations que s'il y a possibilité de confusion. Il est évident que, suite à la propriété de monotonie

(propriété 2), les ensembles R β (X) et R α-lex (X) restent non vides pour tout β ≥ β min et tout α ≥ α min . Proposition 1 β min = min x∈X max s∈S (f s (x) -f s (x * s )) α min = min x∈X max 1≤j≤q ( fj (x) -fj (x * j )) Preuve: x ∈ R β (X) ⇔ ∀s ∈ S, f s (x) -f s (x * s ) ≤ β ⇔ max s∈S (f s (x) -f s (x * s )) ≤ β Donc, β min = min x∈X max s∈S (f s (x) -f s (x * s )
). Pour α min , même preuve que précédemment en remplaçant f s (.) par fj (.), x * s par x * j et β par α.

De manière similaire, il existe un seuil à partir duquel chaque solution est robuste. Remarquons que, d'après la proposition 1, l'ensemble R β min (X) correspond exactement à l'ensemble des solutions optimales suivant le critère du regret maximal.

Propriété 3 Les ensembles R β (X) et R α-lex (X) vérifient la propriété suivante : Si Y ⊆ X alors R(X) ∩ Y ⊆ R(Y ) Preuve: Soient Y une partie de X et a une solution telle que a ∈ R β (X) ∩ Y . On a donc f s (a)-f s (x * s ) ≤ β, ∀s ∈ S. Posons x * s (Y ) = arg min x∈Y f s (x). Par définition de x * s , on a f s (x * s (Y )) ≥ f s (x * s ). Donc, pour tout s ∈ S, f s (a) -f s (x * s (Y )) ≤ β, ce qui signifie a ∈ R β (Y ). Idem pour R α-lex (X).
Cette propriété est appelée propriété de Chernoff [START_REF] Moulin | Choice functions over a finite set : a summary[END_REF] ou encore condition d'hérédité [START_REF] Aleskerov | Utility maximization, choice and preference[END_REF] en théorie de choix social. Elle signifie qu'une solution robuste sur un ensemble reste robuste sur une partie de cet ensemble. En d'autres termes, si une alternative n'est pas considérée comme robuste par rapport à une partie de X, elle ne peut être considérée robuste par rapport à l'ensemble X.

En particulier, si a ∈ R(X), on peut alors déduire de cette propriété que R(X) ⊆ R(X \{a}) (il suffit de considérer Y = X \{a} dans la propriété 3). Il est donc intéressant de remarquer que, lorsqu'une solution de X n'appartenant pas à l'ensemble robuste est enlevée, l'ensemble robuste risque de s'agrandir. Soulignons que cela ne se produit que si l'on enlève une solution x telle qu'il existe s pour lequel f s (x) = f s (x * s ), respectivement il existe j pour lequel fj (x) = fj (x * j ). agissant de la sorte, on modifie le point de référence. Comme les ensembles sont définis par rapport à ces points de référence, la modification de ces points influence l'ensemble des solutions robustes.

Pour résumer, si on réduit l'ensemble de solutions, une solution robuste reste robuste (si elle n'est pas enlevée) et une solution non robuste peut devenir robuste. Si, en revanche, on augmente l'ensemble de solutions, une solution initialement non robuste reste non robuste tandis qu'une solution robuste peut cesser de l'être. Cela peut même se produire lorsque l'ensemble des solutions est enrichi d'une seule solution qui ne sera pas considérée comme robuste. Imaginons que, dans l'exemple de la section 2, la solution f (a 5 ) = (8, 2) est ajoutée. Dès lors, l'ensemble des solutions β-robustes devient vide pour β = 4 alors qu'il contenait initialement la solution a 2 . D'autre part, si dans la propriété de Chernoff, on considère le cas particulier Y = R(X), il en découle le résultat suivant :

Propriété 4 R α-lex (X) et R β (X) sont idempotents, i.e. : R(R(X)) = R(X)
L'idempotence des ensembles R β (X) et R α-lex (X) implique qu'ils sont minimaux en un certain sens, puisqu'en ré-appliquant la démarche de recherche de solutions robustes à ces ensembles, on ne peut pas les réduire.

Les ensembles de solutions β-robustes et α-robustes lexicographiques vérifient une autre propriété faisant référence à deux sous-ensembles de X.

Propriété 5 Les ensembles R β (X) et R (X) vérifient la propriété suivante : ∀Y 1 , Y 2 ⊆ X, R(Y 1 ) ∩ R(Y 2 ) ⊆ R(Y 1 ∪ Y 2 ) Preuve: a ∈ R β (Y 1 ) ∩ R β (Y 2 ) ⇒ f s (a) -min y 1 ∈Y 1 f s (y 1 ) ≤ β ∀s ∈ S f s (a) -min y 2 ∈Y 2 f s (y 2 ) ≤ β ∀s ∈ S Comme min z∈Y 1 ∪Y 2 f s (z) = min{min y 1 ∈Y 1 f s (y 1 ), min y 2 ∈Y 2 f s (y 2 )}, on en déduit que f s (a) -min z∈Y 1 ∪Y 2 f s (z) ≤ β, ∀s ∈ S. Ce qui implique a ∈ R(Y 1 ∪ Y 2 ).
La preuve est similaire pour R α-lex (X). [START_REF] Moulin | Choice functions over a finite set : a summary[END_REF]. Elle signifie que si une solution est robuste sur deux sous-ensembles séparément, alors elle reste robuste sur l'union de ces deux sous-ensembles.

Cette propriété est appelée propriété d'expansion

En théorie du choix social, les propriétés de Chernoff et d'expansion sont importantes car elles caractérisent les fonctions de choix rationalisables par une relation ayant une partie asymétrique acyclique (voir théorème de Sen [START_REF] Moulin | Choice functions over a finite set : a summary[END_REF][START_REF] Sen | Choice functions and revealed preferences[END_REF]) 1 . Une fonction de choix est une fonction qui, à tout sous-ensemble non vide Y ⊆ X, associe un sous-ensemble non vide C(Y ) ⊆ Y . Une fonction de choix est dite rationalisable lorsqu'il existe une relation binaire S telle que l'ensemble des éléments maximaux de cette relation correspond à l'ensemble de choix. En fait, d'après Moulin [START_REF] Moulin | Choice functions over a finite set : a summary[END_REF], cette relation binaire correspond à la relation de base S associée à la fonction de choix et définie comme suit :

xSy ssi x ∈ C({x, y}) (7) 
où C({x, y}) indique la fonction de choix appliquée au sous-ensemble {x, y}.

Notons que les ensembles R β (X) et R α-lex (X) ne correspondent pas toujours à des fonctions de choix, même s'ils ne sont pas vides sur X. En effet, considérons l'exemple de la section 2.2 pour

Y = {a 1 , a 4 } et β = β min (X) = 4. On a R β (Y ) = ∅ alors que R β (X) = {a 2 }. La même constatation peut être faite sur l'exemple pour l'ensemble R α-lex (X) en prenant Y = {a 2 , a 4 } et α = α min (X) = 2.
Néanmoins, il existe un seuil à partir duquel chacun de ces deux ensembles robustes correspond à une fonction de choix. Notons β c le seuil tel que :

∀Y ⊆ X, Y = ∅ ⇒ R β c (Y ) = ∅ (8) 
De même, notons α c le seuil tel que :

∀Y ⊆ X, Y = ∅ ⇒ R α c -lex (Y ) = ∅ (9) 
Il est clair que β c ≥ β min (X) et α c ≥ α min (X). Dans l'exemple de la section 2.2, on a β c = 5 > β min (X) et α c = 3 > α min (X). D'après la définition de β c et α c , nous avons :

Proposition 2 β c = max Y ⊆X,Y =∅ β min (Y ) α c = max Y ⊆X,Y =∅ α min (Y ) Preuve: On a ∀Y ⊆ X, Y = ∅, β ≥ β c ≥ β min (Y ) ⇒ R β (Y ) = ∅.
Ce qui démontre que ∀β ≥ β c , R β (X) est une fonction de choix. Il est clair que β c est le plus petit seuil vérifiant cette propriété. Idem pour α c . Si β ≥ β c et α ≥ α c , alors les ensembles R β (X) et R α-lex (X) sont des fonctions de choix rationalisables par les relations de base suivantes :

xS β y ⇔ x ∈ R β ({x, y}) (10) ⇔ f s (x) -min{f s (x), f s (y)} ≤ β, ∀s ∈ S (11) ⇔ f s (x) -f s (y) ≤ β, ∀s ∈ S ( 12 
)
xS α y ⇔ x ∈ R α-lex ({x, y}) (13) ⇔ fj (x) -min{ fj (x), fj (y)} ≤ α, ∀j ∈ {1, . . . , q} (14) 
⇔ fj (x) -fj (y) ≤ α, ∀j ∈ {1, . . . , q} (15) 
Notons qu'en plus d'avoir une partie asymétrique acyclique, les relations S β et S α sont complètes [START_REF] Moulin | Choice functions over a finite set : a summary[END_REF]. Les ensembles R β (X) et R α-lex (X) correspondent respectivement aux éléments maximaux de S β et S α .

Proposition 3 ∀β ≥ β c , R β (X) = {x ∈ X : ∀y ∈ X xS β y} ∀α ≥ α c , R α-lex (X) = {x ∈ X : ∀y ∈ X xS α y}
Une interprétation de ce résultat est qu'au-delà d'un certain seuil, une solution robuste ne dépend plus du contexte (l'ensemble X entier) mais uniquement des évaluations par paire. En effet, une solution peut être éliminée dès lors qu'elle n'est pas robuste par rapport à une autre.

En plus des points communs énumérés dans l'introduction, nous venons de voir que les deux ensembles de solutions robustes se comportent de façon similaire par rapport à certaines propriétés. Cette ressemblance entre la β-robustesse et l'α-robustesse lexicographique suggère de chercher un lien entre ces deux approches, ce que nous nous proposons de faire dans la section qui suit.

4 Liens entre R β (X) et R α-lex (X)
Dans cette section, nous établissons une relation entre l'ensemble des solutions βrobustes R β (X) et l'ensemble des solutions α-robustes lexicographiques R α-lex (X).

Pour donner une idée intuitive du résultat, regardons l'évolution des ensembles R β (X) et R α-lex (X) en fonction des seuils β et α dans l'exemple de la section 2.2. Le Tableau 3 représente cette évolution pour des seuils variant de 1 à 8. Par exemple, pour β = α = 4, R β (X) = {a 2 } et R α-lex (X) = {a 1 , a 2 , a 3 }. Dans cet exemple, il apparaît que pour des seuils β et α égaux, l'ensemble R β (X) est inclus dans l'ensemble R α-lex (X) quelle que soit la valeur de ces paramètres. Par monotonie de l'ensemble des solutions β-robustes, cette constatation reste valable pour β ≤ α.

Valeur du seuil R β (X) R α-lex (X) 0 -1 ∅ ∅ 2 ∅ {a 1 } 3 ∅ {a 1 , a 2 } 4 {a 2 } {a 1 , a 2 , a 3 } 5 -6 {a 1 , a 2 } {a 1 , a 2 , a 3 , a 4 } = X 7 {a 1 , a 2 , a 3 } {a 1 , a 2 , a 3 , a 4 } = X 8 {a 1 , a 2 , a 3 , a 4 } = X {a 1 , a 2 , a 3 , a 4 } = X
TAB. 3 -Les ensembles R β (X) and R α-lex (X) en fonction du seuil Nous démontrons dans ce qui suit que cette relation est toujours vérifiée.

Théorème 1 Si β ≤ α alors R β (X) ⊆ R α-lex (X).
Preuve: Soit x ∈ R β (X). On a :

∀s ∈ S, f s (x) ≤ f s (x * ) + β (16) 
La solution x * étant celle définie par l'équation [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF]. Grâce au résultat de Podinovskii énoncé dans la preuve de la propriété 1, nous pouvons déduire que :

∀j ≤ q, fj (x) ≤ fj (x * ) + β. (17) 
Nous allons maintenant montrer que, pour tout k ≤ q :

fk (x * ) ≤ fk (x * k ). (18) 
Par définition de x * , nous avons, pour tout x ∈ X :

∀s ∈ S : f s (x * ) ≤ f s (x). (19) 
Cette inégalité est vraie en particulier pour

x = x * k = arg min x∈X fk (x), k étant fixé : ∀s ∈ S : f s (x * ) ≤ f s (x * k ). (20) 
Nous pouvons déduire que :

∀j ≤ q : fj (x * ) ≤ fj (x * k ). (21) 
Ceci étant vrai pour tout j, c'est vrai pour j = k, ce qui démontre l'inégalité [START_REF] Sen | Choice functions and revealed preferences[END_REF]. Etant données l'inégalité [START_REF] Rosenblatt | A robustness approach to facilities design[END_REF] et le fait que β ≤ α, il s'en suit que :

∀j ≤ q, fj (x) ≤ fj (x * j ) + α. (22) 
Par conséquent, x ∈ R α-lex (X).

Remarquons que la démonstration reste vraie si on considère non pas l'ensemble X entier, mais seulement un sous-ensemble non vide

Y ⊆ X. Ainsi, si β ≤ α alors R β (Y ) ⊆ R α-lex (Y ).
Il découle du théorème 1 que les seuils α min et β min vérifient la relation suivante :

Corollaire 1 α min ≤ β min Preuve: Supposons que α min > β min et choisissons β = α = β min . On a donc R β (X) = ∅ et R α-lex (X) = ∅ ce qui contredit le théorème 1.
Les seuils β c et α c , définis respectivement par les équations (8) et [START_REF] Kalaï | Lexicographic α-robust knapsack problem : Complexity results[END_REF], vérifient ce qui suit :

Corollaire 2 α c ≤ β c Preuve: Supposons que β = α = β c . On a donc : ∀Y ⊆ X, Y = ∅ R β (X) = ∅ D'après le théorème 1, ceci implique que : ∀Y ⊆ X, Y = ∅ R α-lex (X) = ∅ Par conséquent, α c ≤ α = β c .
Le théorème 1 indique que l'α-robustesse lexicographique, tout en ayant beaucoup de propriétés communes avec la β-robustesse, est moins "sévère" que cette dernière puisqu'elle donne des solutions pour des seuils plus faibles que ceux exigés par la seconde approche. Cette caractéristique semble donner un argument en défaveur de l'α-robustesse lexicographique puisque, généralement, on cherche à réduire un ensemble de choix et non à l'augmenter. Néanmoins, rappelons que le seuil β min , donnant le plus petit ensemble de solutions β-robustes non vide, n'est autre que le regret maximal minimal. Cette valeur peut être importante dans certains cas ; dans l'exemple de la section 2.2, β min est deux fois plus grand que α min . Il n'est donc pas toujours possible de trouver des solutions βrobustes pour des seuils raisonnables, d'où l'intérêt d'avoir une approche similaire qui donne des solutions pour des seuils plus faibles.

Conclusion

Dans cet article, nous avons voulu mettre en évidence la similitude entre l'α-robustesse lexicographique et la β-robustesse sur la base d'un certain nombre de propriétés. De plus, nous avons pu établir un lien direct entre ces deux approches qui suggère que la première approche est en quelque sorte une relaxation de la seconde.

Ce travail de comparaison entre les deux approches ne constitue qu'un premier pas dans cette direction. Nous nous interrogeons, par exemple, sur les problèmes pour lesquels les deux seuils minimaux α min et β min sont différents. La réponse à cette question pourrait donner plus de crédibilité à l'α-robustesse lexicographique si de tels problèmes étaient nombreux. Il faudrait aussi étudier davantage la relation de base qui rationalise les deux ensembles, dans un but algorithmique par exemple. Finalement, une caractérisation axiomatique des deux ensembles de solutions robustes permettra de pouvoir clairement les distinguer.

De manière plus générale, nous pensons qu'il est utile d'élargir ce type de comparaison à d'autres approches de robustesse existantes. En effet, cela permettra de mieux guider un analyste ou un décideur dans le choix de l'approche robuste la plus appropriée dans une application concrète.

Pour que cette relation acyclique soit quasi-transitive, il faut qu'elle vérifie, en plus des propriétés de Chernoff et d'expansion, une troisième propriété appelée propriété d'Aizermann. Cette dernière stipule que si R(X) ⊆ Y ⊆ X alors R(Y ) ⊆ R(X). La propriété d'Aizermann n'est vérifiée ni pour R α-lex ni pour R β , comme le montre le contre-exemple suivant : f(x)=(6,3,3), f(y)=(4,4,4) et f(z)=(5,2,2).