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Résumé

Nous présentons une nouvelle méthode, appelée UTA GMS , pour le problème de rangement multicritère d'un ensemble d'actions A sur la base d'un ensemble de fonctions de valeurs additives calculé par régression ordinale. L'information préférentielle obtenue du décideur est un ensemble de comparaisons par paires sur un sous-ensemble A R ⊆ A d'actions, appelées actions de référence. Le modèle de préférence construit par régression ordinale est l'ensemble de toutes les fonctions de valeur additives compatibles avec l'information préférentielle. En utilisant ce modèle, il est possible de définir deux relations sur A : une relation de surclassement nécessaire qui est vraie pour deux actions a, b ∈ A ssi pour toute fonction de valeur compatible U on a U (a) ≥ U (b), et la relation de surclassement possible qui est vraie pour deux actions a, b ∈ A ssi il existe au moins une fonction de valeur compatible U telle que U (a) ≥ U (b). Ces deux relations définissent un classement possible et nécessaire des actions de A, et sont, respectivement, un préordre partiel, et une relation fortement complète et négativement transitive. La méthode UTA GMS est conçue pour être utilisée de façon interactive, avec un ensemble A R qui s'accroît de sorte que le décideur ajoute progressivement des comparaisons par paire. Lorsqu'aucune comparaison pas paire n'est fournie, le surclassement nécessaire correspond à la relation de dominance et le surclassement possible est une relation complète. Chaque nouvelle comparaison d'actions de référence ne correspondant pas à une situation de dominance enrichit la relation de surclassement nécessaire et appauvrit la relation de surclassement possible, de sorte qu'elles convergent à mesure que l'information préférentielle s'enrichit. En distinguant les conséquences nécessaires et possibles sur A

Introduction

We are considering a decision situation in which a finite set of alternatives (actions) A is evaluated on a family of n criteria g 1 , g 2 , . . . , g i , . . . , g n , with g i : A → R for all i ∈ G = {1, 2, . . . , n}. We assume, without loss of generality, that the greater g i (a), the better alternative a on criterion g i , for all i ∈ G. A decision maker (DM) is willing to rank the alternatives in A from the best to the worst, according to his/her preferences. The ranking can be complete or partial, depending on the preference information supplied by the DM and on the way of using this information. The family of criteria G is supposed to satisfy the following consistency conditions (see [START_REF] Roy | Aide Multicritère à la Décision: Méthodes et Cas[END_REF]):

• exhaustivity -any two alternatives having the same evaluations on all criteria from G should be considered indifferent,

• monotonicity -when comparing two alternatives, an improvement of one of them on at least one criterion from G should not deteriorate its comparison to the other alternative,

• non-redundancy -deletion of any criterion from G will contradict one of the two above conditions.

Such a decision problem is called multiple criteria ranking problem. It is known that the only information coming out from the formulation of this problem is the weak dominance relation. Let us recall that the weak dominance relation is a partial preorder: alternative a ∈ A is preferred to alternative b ∈ A (denotation a ≻ b) if and only if g i (a) ≥ g i (b) for all i ∈ G, with at least one strict inequality; moreover, a is indifferent to b (denotation a ∼ b) if and only if g i (a) = g i (b) for all i ∈ G; hence, for any two alternatives a, b ∈ A, one of the four situations may arise in the weak dominance relation: a ≻ b, a ≺ b, a ∼ b and a?b, where the last one means that a and b are incomparable. Usually, the weak dominance relation is very poor, i.e. the most frequent situation is a?b.

In order to enrich the weak dominance relation, multiple criteria decision aiding (MCDA) helps in construction of an aggregation model on the base of preference information provided by the DM. Such an aggregation model is called preference modelit induces a preference structure in set A whose proper exploitation permits to work out a ranking proposed to the DM.

The preference information may be either direct or indirect, depending if it specifies directly values of some parameters used in the preference model (e.g. trade-off weights, aspiration levels, discrimination thresholds, etc.), or if it specifies some examples of holistic judgments from which compatible values of the preference model parameters are induced. Direct preference information is used in the traditional aggregation paradigm, according to which the aggregation model is first constructed and then applied on set A to rank the alternatives. Indirect preference information is used in the disaggregation (or regression) paradigm, according to which the holistic preferences on a subset of alternatives A R ⊆ A are known first, and then a consistent aggregation model is inferred from this information to be applied on set A in order to rank the alternatives.

Presently, MCDA methods based on indirect preference information and the disaggregation paradigm are of increasing interest for they require relatively less cognitive effort from the DM. Indeed, the disaggregation paradigm is consistent with the "posterior rationality" postulated by March [START_REF] March | Bounded rationality, ambiguity and the engineering of choice[END_REF] and with the inductive learning used in artificial intelligence approaches (see [START_REF]Machine learning and datamining -Methods and applications[END_REF]). Typical applications of this paradigm in MCDA are presented in [START_REF] Srinivasan | Estimating the weights for multiple attributes in a composite criterion using pairwise judgments[END_REF], [START_REF] Pekelman | Mathematical programming models for the determination of attribute weights[END_REF], [START_REF] Jacquet-Lagrèze | Assessing a set of additive utility functions for multicriteria decision making: the UTA method[END_REF], [START_REF] Kiss | ELECCALC -an interactive software for modelling the decision maker's preferences[END_REF], [START_REF] Bana E Costa | MACBETH -an interactive path towards the construction of cardinal value fonctions[END_REF], [START_REF] Mousseau | Inferring an ELECTRE TRI model from assignment examples[END_REF], [START_REF] Greco | The use of rough sets and fuzzy sets in MCDM[END_REF], [START_REF] Greco | Rough sets theory for multicriteria decision analysis[END_REF], [START_REF] Greco | Decision rule approach[END_REF].

In this paper, we are considering the aggregation model in form of an additive value function:

U (a) = n i=1 u i (a) (1) 
where u i (a) ≥ 0, i = 1, . . . , n, are nondecreasing marginal value functions. While the additive value function involves compensation between criteria and requires rather strong assumption that criteria are independent in the sense of preferences [START_REF] Keeney | Decisions with multiple objectives: Preferences and value tradeoffs[END_REF], it is often used for its intuitive interpretation and relatively easy computation. The weighted-sum aggregation model, which is a particular case of the additive value function, is used even more frequently in spite of its simplistic form (see e.g. [START_REF] Bana E Costa | MACBETH -an interactive path towards the construction of cardinal value fonctions[END_REF], [START_REF] Saaty | The Analytic Hierarchy and Analytic Network Processes for the Measurement of Intangible Criteria and for Decision-Making[END_REF]).

We are using the additive aggregation model in the settings of the disaggregation paradigm, as it has been proposed in the UTA method (see [START_REF] Jacquet-Lagrèze | Assessing a set of additive utility functions for multicriteria decision making: the UTA method[END_REF]). In fact, our method generalizes the UTA method in two aspects:

• it takes into account all additive value functions (1) compatible with indirect preference information, while UTA is using only one such function,

• the marginal value functions of (1) are general non-decreasing functions, and not piecewise linear, as in UTA,

• the DM's ranking of reference alternatives does not need to be complete.

The preference information used by our method is provided in the form of a set of pairwise comparisons of some alternatives from a subset A R ⊆ A, called reference alternatives. The method is producing two rankings in the set of alternatives A, such that for any pair of alternatives a, b ∈ A:

• in the necessary ranking, a is ranked at least as good as b if and only if, U (a) ≥ U (b) for all value functions compatible with the preference information,

• in the possible ranking, a is ranked at least as good as b if and only if, U (a) ≥ U (b) for at least one value function compatible with the preference information.

The necessary ranking can be considered as robust with respect to the indirect preference information. Such robustness of the necessary ranking refers to the fact that any pair of alternatives compares in the same way whatever the additive value function compatible with the indirect preference information. Indeed, when no indirect preference information is given, the necessary ranking boils down to the weak dominance relation, and the possible ranking is a complete relation. Every new pairwise comparison of reference alternatives, for which the dominance relation does not hold, is enriching the necessary ranking and it is impoverishing the possible ranking, so that they converge with the growth of the preference information.

Another appeal of such an approach stems from the fact that it gives space for interactivity with the DM. Presentation of the necessary ranking, resulting from an indirect preference information provided by the DM, is a good support for generating reactions from the DM. Namely, (s)he could wish to enrich the ranking or to contradict a part of it. This reaction can be integrated in the indirect preference information in the next iteration.

The organization of the paper is the following. In the next section, we will outline the principle of the ordinal regression via linear programming, as proposed in the original UTA method (see [START_REF] Jacquet-Lagrèze | Assessing a set of additive utility functions for multicriteria decision making: the UTA method[END_REF]). In section 3, we give a brief overview of existing approaches to multiple criteria ranking using a set of additive value functions, and we provide motivations for our approach. The new UTA GMS method is presented in section 4. Some extensions are considered in section 5. Section 6 provides an illustrative example showing how the method can be applied in practice. The last section includes conclusions.

Ordinal regression via linear programming -principle of the UTA method

Let X i denote the evaluation scale of criterion g i , i ∈ G. Consequently, X = n i=1 X i is the evaluation space, and x, y ∈ X denote profiles of alternatives in this space. We consider a weak preference (outranking) relation on X that states for each pair of vectors x, y ∈ X: x y ⇔ "x is at least as good as y". This weak preference relation can be decomposed into its asymmetric and symmetric parts, as follows:

• x ≻ y ⇔ [x y and not(y x)] ⇔ "x is preferred to y",

• x ∼ y ⇔ [x y and y x] ⇔ "x is indifferent to y" >From a pragmatic viewpoint, it is reasonable to assume that X i = [α i , β i ], i.e. the evaluation scale on each criterion g i is bounded, such that α i < β i are the worst and the best (finite) evaluations, respectively. Thus, g i : A → X i , i ∈ G, therefore, each alternative a ∈ A is associated with an evaluation vector denoted by g(a) ∈ X.

The additive value function is defined on X such that for each a ∈ A

U (g(a)) = n i=1 u i (g i (a)), (2) 
where u i are non-decreasing marginal value functions, u i : X i → R, i = 1, . . . , n. For simplicity, we will write (2) as (1), i.e. U (a) = n i=1 u i (a).

In the following, we recall the principle of the UTA method as presented recently in [START_REF] Siskos | UTA Methods[END_REF]. The indirect preference information is given in the form of a complete preorder on a subset of reference alternatives A R ⊆ A, called reference preorder. The reference alternatives are usually those alternatives in set A for which the DM is ready to express holistic preferences. Let the set of reference alternatives A R = {a 1 , a 2 , ..., a m } be rearranged such that a k a k+1 , k = 1, ..., m -1, where m = |A R |. The disaggregation paradigm consists here in inferring an additive value function (1) ranking the reference alternatives in exactly the same way as it was done by the DM. Such a value function U is called compatible.

The ordinal regression consists in the inference of a compatible value function restoring the reference preorder. The transition from a reference preorder to a value function is done according to the following equivalence :

U (a k ) > U (a k+1 ) ⇔ a k ≻ a k+1 U (a k ) = U (a k+1 ) ⇔ a k ∼ a k+1 (3) 
for k = 1, ..., m -1.

In the UTA method, the marginal value functions u i are assumed to be piecewise linear, so that the intervals

[α i , β i ] are divided into γ i ≥ 1 equal sub-intervals: [x 0 i , x 1 i ], [x 1 i , x 2 i ], . . ., [x γ i -1 i , x γ i i ], where x j i = α i + j(β i -α i ) γ i
, j = 0, . . . , γ i , i = 1, . . . , n. The marginal value (see Figure 1) of an alternative a ∈ A is approximated by linear interpolation

u i (a) = u i (x j i ) + g i (a) -x j i x j+1 i -x j i u i (x j+1 i ) -u i (x j i ) , for g i (a) ∈ [x j i , x j+1 i ] (4) 
According to (4), the piecewise linear additive model is completely defined by the marginal values at the characteristic points, i.e. Therefore, a value function

u i (x 0 i ) = u i (α i ), u i (x 1 i ), u i (x 2 i ), . . . , u i (x γ i i ) = u i (β i ). u i g i u i (β i ) u i (x 3 i ) u i (g i (a)) u i (x 2 i ) u i (x 1 i ) 0 α i = x 0 i x 1 i x 2 i g i (a) x 3 i β i = x 4 i
U (a) = n i=1 u i (a) is compatible if it satisfies the follow- ing set of constraints U (a k ) > U (a k+1 ) ⇔ a k ≻ a k+1 U (a k ) = U (a k+1 ) ⇔ a k ∼ a k+1 k = 1, . . . , m -1 u i (x j+1 i ) -u i (x j i ) ≥ 0, i = 1, ..., n, j = 1, ..., γ i -1 u i (α i ) = 0, i = 1, ..., n n i=1 u i (β i ) = 1 (5)
To verify if a compatible value function U (a) = n i=1 u i (a) restoring the reference preorder on A R exists, one can solve the following linear programming problem, where u i (x j i ), i = 1, ..., n, j = 1, ..., γ i are unknown, and σ + (a), σ -(a), a ∈ A R are auxiliary variables:

M in → F = m k=1 (σ + (a k ) + σ -(a k )) s.t. U (a k ) + σ + (a k ) -σ -(a k ) ≥ U (a k+1 ) + σ + (a k+1 ) -σ -(a k+1 ) + ε ⇔ a k ≻ a k+1 U (a k ) + σ + (a k ) -σ -(a k ) = U (a k+1 ) + σ + (a k+1 ) -σ -(a k+1 ) ⇔ a k ∼ a k+1        k = 1, . . . , m -1 u i (x j+1 i ) -u i (x j i ) ≥ 0, i = 1, ..., n, j = 1, ..., γ i -1 u i (α i ) = 0, i = 1, ..., n n i=1 u i (β i ) = 1 σ + (a k ), σ -(a k ) ≥ 0, k = 1, ..., m (6) 
where ε is an arbitrarily small positive value so that

U (a k )+σ + (a k )-σ -(a k ) > U (a k+1 )+ σ + (a k+1 ) -σ -(a k+1 ) in case of a k ≻ a k+1 .
If the optimal value of the objective function of the program ( 6) is equal to zero (F * = 0), then there exists at least one value function U (a) = n i=1 u i (a) satisfying (5), i.e. compatible with the reference preorder on A R . In other words, this means that the corresponding polyhedron (5) of feasible solutions for u i (x j i ), i = 1, ..., n, j = 1, ..., γ i is not empty.

Let us remark that the transition from the preorder to the marginal value function exploits the ordinal character of the criterion scale X i . Note, however, that the scale of the marginal value function is a conjoint interval scale. More precisely, for the considered additive value function, the admissible transformations on the marginal value functions

u i (x i ) have the form u * i (x i ) = k × u i (x i ) + h i , h i ∈ R, i = 1, ..., n, k > 0, such that for all [x 1 , ..., x n ], [y 1 , ..., y n ] ∈ n i=1 X i n i=1 u i (x i ) ≥ n i=1 u i (y i ) ⇔ n i=1 u * i (x i ) ≥ n i=1 u * i (y i ).
An alternative way of representing the same preference model is:

U (a) = n i=1 w i ûi (a), where û(α i ) = 0, û(β i ) = 1, w i ≥ 0 ∀i ∈ G, and 
n i=1 w i = 1. (7) 
Note that the correspondence between ( 7) and ( 1) is such that w i = u i (β i ), ∀i ∈ G. Due to the cardinal character of the marginal value function scale, the parameters w i can be interpreted as tradeoff weights among marginal value functions ûi (a). We will use, however, the preference model ( 1) with normalization constraints bounding U (a) to the interval [0, 1].

When the optimal value of the objective function of the program ( 6) is greater than zero (F * > 0), then there is no value function U (a) = n i=1 u i (a) compatible with the reference preorder on A R . In such a case, three possible moves can be considered:

• increasing the number of linear pieces γ i for one or several marginal value function u i could make it possible to find an additive value function compatible with the reference preorder on A R ,

• revising the reference preorder on A R could lead to find an additive value function compatible with the new preorder,

• searching over the relaxed domain F ≤ F * + η could lead to an additive value function giving a preorder on A R sufficiently close to the reference preorder (in the sense of Kendall's τ ).

Existing approaches and motivations for a new method

Our work aims at generalizing the UTA method in order to consider the set of all value functions compatible with the indirect preference information rather than choosing a single value function within the set of compatible ones. The literature concerning MCDA methods involving a set of additive value functions can be viewed from three points of view:

• The methods are designed for different problem statements (problematics, see [START_REF] Roy | Multicriteria Methodology for Decision Aiding[END_REF]):

-choice of the best alternative (e.g. [START_REF] Barron | Selecting a best multiattribute alternative with partial information about attribute weights[END_REF], [START_REF] Koksalan | An approach for finding the most preferred alternative in the presence of multiple criteria[END_REF], [START_REF] Lahdelma | SMAA -Stochastic multiobjective acceptability analysis[END_REF], [START_REF] Dias | Additive Aggregation with Variable Interdependent Parameters: the VIP Analysis Software[END_REF], [START_REF] Salo | Preference ratio in multiattribute evaluation (PRIME) -elicitation and decision procedures under incomplete information[END_REF]), -sorting alternatives into predefined categories (e.g. [START_REF] Koksalan | An interactive approach for placing alternatives in preference classes[END_REF], [START_REF] Devaud | UTADIS: Une méthode de construction de fonctions d'utilité additives rendant compte de jugements globaux[END_REF]), -ranking of alternatives from the best to the worst (e.g. [START_REF] Jacquet-Lagrèze | Assessing a set of additive utility functions for multicriteria decision making: the UTA method[END_REF], [START_REF] Kirkwood | Ranking with partial information: A method and an application[END_REF])

• The methods also differ with respect to the kind of the set of value functions and the characteristics of these functions: linear (e.g. [START_REF] Koksalan | An approach for finding the most preferred alternative in the presence of multiple criteria[END_REF], [START_REF] Kirkwood | Ranking with partial information: A method and an application[END_REF]) or piecewise linear (e.g.

[3], [START_REF] Jacquet-Lagrèze | Assessing a set of additive utility functions for multicriteria decision making: the UTA method[END_REF], [START_REF] Devaud | UTADIS: Une méthode de construction de fonctions d'utilité additives rendant compte de jugements globaux[END_REF]) or monotone (e.g. [START_REF] Bana E Costa | MACBETH -an interactive path towards the construction of cardinal value fonctions[END_REF]) value functions.

• The sets of value functions can be:

-explicitly listed (e.g. [START_REF] Siskos | A way to deal with fuzzy preferences in multicriteria decision problems[END_REF]),

-defined from stated constraints on the functions (e.g. [START_REF] Barron | Selecting a best multiattribute alternative with partial information about attribute weights[END_REF], [START_REF] Lee | Dominance, potential optimality, imprecise information, and hierarchical structure in multi-criteria analysis[END_REF]),

-induced from holistic preference statements concerning alternatives (e.g. [START_REF] Koksalan | An interactive approach for placing alternatives in preference classes[END_REF], [START_REF] Weber | A method of multiattribute decision making with incomplete information[END_REF], [START_REF] Bana E Costa | MACBETH -an interactive path towards the construction of cardinal value fonctions[END_REF]).

A review of the literature and, particularly, of the methods based on the ordinal regression approach, shows that these methods fail to consider some important issues :

• If the polyhedron of value functions compatible with the stated preference information is not empty, then the choice of a single or few representative value functions is either arbitrary or left to the DM. In the latter case, the DM is supposed to know how to interpret the form of the marginal value functions in order to choose among them, which is not easy for most DMs. Therefore, it seems reasonable to accept existence of all value functions compatible with the preference information provided by the DM and to assess a preference relation in the set of alternatives A with respect to all these functions.

• In most methods, the class of value functions is limited to linear or piecewise linear marginal value functions. To specify the number of characteristic points (breakpoints) is arbitrary and restrictive. It is desirable to consider just monotone marginal value functions which do not involve any parametrization.

• Most methods require that the DM provides constraints on the range of weights of linear marginal value functions, or on the range of variation of piecewise linear marginal value functions. The DM may have, however, difficulties to analyze the link between a specific value function and the resulting ranking. This is why we believe that the DM should be allowed to express preference information in terms of pairwise comparisons of alternatives rather than fixing the above constraints. Providing preference information in this way is consistent with intuitive reasoning of DMs.

• The methods based on ordinal regression are usually considering the preference information provided by the DM as a whole. As a consequence, it is difficult for the DM to associate a piece of his/her preference information with the result and, therefore, to control the impact of each piece of information (s)he provides on the result. As such a control is desirable for a truly interactive process, ordinal regression methods should allow the DM to provide incrementally the preference information by possibly small pieces.

In this paper, we intend to present a new ordinal regression method that accounts for all shortcomings listed above.

The new UTA GMS method 4.1 Presentation of the method

The new UTA GMS method is an ordinal regression method using a set of additive value functions U (a) = n i=1 u i (g i (a)) as a preference model. One of its characteristic features is that it takes into account the set of all value functions compatible with the preference information provided by the DM. Moreover, it considers general non-decreasing marginal value functions instead of piecewise linear only.

We suppose the DM provides preference information in form of pairwise comparisons of reference alternatives from A R ⊆ A. This preference information is a partial preorder on A R , denoted by . A value function is called compatible if it is able to restore the partial preorder . Each compatible value function induces, moreover, a ranking on the whole set A.

In particular, for any two alternatives x, y ∈ A, a compatible value function ranks x and y in one of the following ways: x ≻ y, y ≻ x, x ∼ y. With respect to x, y ∈ A, it is thus reasonable to ask the following two questions:

• are x and y ranked in the same way by all compatible value functions?

• is there at least one compatible value function ranking x at least as good as y (or y at least as good as x)?

Having answers to these questions for all pairs of alternatives (x, y) ∈ A × A, one gets a necessary weak preference relation N , in case U (x) ≥ U (y) for all compatible value functions, and a possible weak preference relation P in A, in case U (x) ≥ U (y) for at least one compatible value function.

Let us remark that preference relations N and P are meaningful only if there exists at least one compatible value function. Observe also that in this case, for any x, y ∈ A R , x y ⇒ x N y and

x ≻ y ⇒ not (y P x).

In fact, if x y, then for any compatible value function U (x) ≥ U (y) and, therefore, x N y. Moreover, if x ≻ y, then for any compatible value function U (x) > U (y) and, consequently, there is no compatible value function such that U (y) ≥ U (x), which means that not y P x.

Formally, a general additive compatible value function is an additive value function U (a) = n i=1 u i (a) satisfying the following set of constraints:

U (a) > U (b) ⇔ a ≻ b U (a) = U (b) ⇔ a ∼ b ∀a, b ∈ A R u i (g i (a τ i (j) )) -u i (g i (a τ i (j-1) )) ≥ 0, i = 1, ..., n, j = 2, ..., m u i (g i (a τ i (1) )) ≥ 0, u i (g i (a τ i (m) )) ≤ u i (β i ), i = 1, ..., n, u i (α i ) = 0, i = 1, ..., n n i=1 u i (β i ) = 1,                (E A R )
where τ i is the permutation on the set of indices of alternatives from A R that reorders them according to the increasing evaluation on criterion g i , i.e.

g i (a τ i (1) ) ≤ g i (a τ i (2) ) ≤ . . . ≤ g i (a τ i (m-1) ) ≤ g i (a τ i (m) )
Remark that, due to this formulation of the ordinal regression problem, no linear interpolation is required to express the marginal value of any reference alternative. Thus, one cannot expect that increasing the number of characteristic points will bring some "new" compatible additive value functions. In consequence, UTA GMS considers all compatible additive value functions while classical UTA ordinal regression (6) deals with a subset of the whole set of compatible additive value functions, more precisely the subset of piecewise linear additive value functions relative to the considered characteristic points.

Properties of the relations N and P

Binary relations N and P satisfy the following interesting properties. Proof. If U (x) ≥ U (y) for all compatible value functions U , i.e. x N y, then there is at least one compatible value function U ′ such that U ′ (x) ≥ U ′ (y), i.e. x P y. Proposition 4.2. For all x, y ∈ A, x N y or y P x.

Proof. Let us denote by U the set of value functions compatible with . For all x, y ∈ A, U (x) ≥ U (y) ∀U ∈ U or ∃U ∈ U such that U (y) > U (x) ⇒ x N y or y P x.

Let us observe that from Proposition 4.2, we can get the following interesting corollary.

Corollary 4.1. For all x, y ∈ A,

1) not (x N y) ⇒ y P x, 2) not (x P y) ⇒ y N x.
Proof.

1) Since x N y or y P x, if not (x N y), then y P x.

2) Since x P y or y N x, if not (x P y), then y N x.

Proposition 4.3. N is a partial preorder (i.e. reflexive and transitive)

Proof. For all x ∈ A, U (x) = U (x). This is true also for all U being compatible value functions, such that x N x. Let us suppose that for x, y, z ∈ A, we have x N y and y N z. This means that for all compatible value functions U we have U (x) ≥ U (y) and U (y) ≥ U (z), which implies that for all compatible value functions U we have U (x) ≥ U (z), i.e. x N z.

Proposition 4.4. P is strongly complete, i.e. ∀x, y ∈ A, x P y or y P x, and negatively transitive, i.e. ∀x, y, z ∈ A, not(x P y) and not(y P z) ⇒ not(x P z)

Proof. Consider any compatible value function U . For each pair x, y ∈ A, it holds U (x) ≥ U (y) or U (y) ≥ U (x), i.e. x P y or y P x; therefore P is strongly complete. not(x P y) means that there does not exist any compatible value function U such that U (x) ≥ U (y). not(y P z) means that there does not exist any compatible value function U such that U (y) ≥ U (z). Therefore, there does not exist any compatible value function U such that U (x) ≥ U (z), which means that not(x P z).

Observe that while P is negatively transitive, it is not necessarily transitive, i.e. it is possible that for x, y, z ∈ A, x P y, y P z but not x P z. This can happen because there could exist one compatible value function U such that U (x) ≥ U (y) and one compatible value function U ′ such that U ′ (y) ≥ U ′ (z), however, there could be no compatible value function U ′′ such that U ′′ (x) ≥ U ′′ (z).

Notice that it is impossible to infer N from P or vice versa, since N and P are not dual, i.e. x N y ⇔ not(y P x) does not hold as one could expect. In fact, in case for x, y ∈ A, U (x) = U (y) for all compatible value functions U , we have x N y and y P x.

>From the two weak preference relations N and P , one can get preference, indifference and incomparability, in a usual way, i.e. 1) from the necessary weak preference relation N one obtains:

• preference: x ≻ N y ⇔ x N y and not(y N x)

• indifference: x ∼ N y ⇔ x N y and y N x • incomparability: x? N y ⇔ not(x N y) and not(y N x)
2) from the possible weak preference relation P one obtains:

• preference: x ≻ P y ⇔ x P y and not(y P x)

• indifference: x ∼ P y ⇔ x P y and y P x Observe that in case of P , incomparability is not considered because, for proposition 4.3, P is strongly complete.

The preference relations obtained from N constitute the necessary ranking, and the preference relations obtained from P constitute the possible ranking; they are presented to the DM as end results of the UTA GMS method at the current stage of interaction.

Computation of the relations N and P

In order to compute binary realtions P and N we can proceed as follows. For all alternatives x, y ∈ A, let π i be a permutation of the indices of alternatives from set A R ∪ {x, y} that reorders them according to increasing evaluation on criterion g i , i.e.

g i (a π i (1) ) ≤ g i (a π i (2) ) ≤ ... ≤ g i (a π i (ω-1) ) ≤ g i (a π i (ω) )
where

• if A R ∩ {x, y} = ∅, then ω = m + 2 • if A R ∩ {x, y} = {x} or A R ∩ {x, y} = {y}, then ω = m + 1 • if A R ∩ {x, y} = {x, y}, then ω = m.
Then, we can fix the characteristic points of u i (g i ), i = 1, ..., n, in

g 0 i = α i , g j i = g i (a π i (j) ) for j = 1, ..., ω, g ω+1 i = β i
Let us consider the following set E(x, y) of ordinal regression constraints, with i = 1, ..., n, j = 1, ..., ω + 1 as variables:

U (a) ≥ U (b) + ε ⇔ a ≻ b U (a) = U (b) ⇔ a ∼ b ∀a, b ∈ A R u i (g j i ) -u i (g j-1 i ) ≥ 0, i = 1, ..., n, j = 1, ..., ω + 1 u i (g 0 i ) = 0, i = 1, ..., n n i=1 u i (g ω+1 i ) = 1,            (E(x, y))
where ε is an arbitrarily small positive value as in [START_REF] Fodor | Fuzzy preference modelling and multicriteria decision support[END_REF].

The above set of constraints depends on the pair of alternatives x, y ∈ A because their evaluations g i (x) and g i (y) give coordinates for two of (ω + 1) characteristic points of marginal value function u i (g i ), for each i = 1, . . . , n. Note that for all x, y ∈ A, E(x, y) = E(y, x).

Let us suppose that the polyhedron defined by the set of constraints E(x, y) is not empty. In this case we have that:

x N y ⇔ d(x, y) ≥ 0 where: d(x, y) = M in{U (x) -U (y)} s.t. set E(x, y) of constraints (8) 
and

x P y ⇔ D(x, y) ≥ 0 where : D(x, y) = M ax{U (x) -U (y)} s.t. set E(x, y) of constraints (9) 
What are the relations between P and N with respect to computation? In other words, is it necessary to calculate d(x, y) and D(x, y) for all x, y ∈ A? Proposition 4.5 gives a technical result useful for answering this question. Proposition 4.5. For all x, y ∈ A, the following equivalences hold:

d(x, y) ≥ 0 ⇔ D(y, x) ≤ 0 D(x, y) ≥ 0 ⇔ d(y, x) ≤ 0 d(x, y) = 0 ⇔ D(y, x) = 0
Proof. The proof results from the following equalities:

d(x, y) = M in s.t.E(x,y) {U (x)-U (y)} = -M ax s.t.E(y,x) {U (y)-U (x)} = -D(y, x)
According to Proposition 4.5, the relation N can be computed using either d(x, y) or D(x, y), as shown in Tables 1 and2. A similar remark concerns the relation P which can be computed using either d(x, y) or D(x, y), as shown in Tables 3 and4.

y N x not(y N x) d(y, x) > 0 d(y, x) = 0 d(y, x) < 0 x N y d(x, y) > 0 x ≻ N y d(x, y) = 0 x ∼ N y x ≻ N y not(x N y) d(x, y) < 0 y ≻ N x y ≻ N x x?y
Table 1: Necessary ranking computed in terms of d(x, y) not(x N y)

x N y D(y, x) > 0 D(y, x) = 0 D(y, x) < 0 not(y N x) D(x, y) > 0

x?y

x ≻ N y x ≻ N y y N x D(x, y) = 0 y ≻ N x x ∼ N y D(x, y) < 0 y ≻ N x
Table 2: Necessary ranking computed in terms of D(x, y)

y P x not(y P x) d(y, x) > 0 d(y, x) = 0 d(y, x) < 0 x P y d(x, y) > 0 x ≻ P y d(x, y) = 0
x ∼ P y x ∼ P y not(x P y) d(x, y) < 0 y ≻ P x x ∼ P y x ∼ P y Table 3: Possible ranking computed in terms of d(x, y) not(x P y)

x P y D(y, x) > 0 D(y, x) = 0 D(y, x) < 0 not(y P x) D(x, y) > 0

x ∼ P y x ∼ P y x ≻ P y y P x D(x, y) = 0 x ∼ P y x ∼ P y D(x, y) < 0 y ≻ P x 

Analysis of incompatibility

Let us consider now the case where there is no value function compatible with the preference information. We say, this is the case of incompatibility. In such a case, the polyhedron generated by constraints E A R is empty. Therefore, the polyhedrons generated by constraints E(x, y), for all x, y ∈ A, are also empty in this case. Such a case may occur in one of the following situations:

• the preferences of the DM do not match the additive model,

• the DM may have made an error in his/her statements; for example stating that a ≻ b while b∆a,

• the statements provided by the DM are contradictory because his/her preferences are unstable, some hidden criteria are taken into account, ... In such a case, the DM may want either to pursue the analysis with such an incompatibility or to identify its reasons in order to remove it and, therefore, to define a new set of pairwise comparisons B ′R whose corresponding constraints E ′A R generate a non empty polyhedron. Let us consider below the two possible solutions.

Situation where incompatibility is accepted

If the DM wants to pursue the analysis with the incompatibility, he/she has to accept that some of his/her pairwise comparisons of reference alternatives will not be reproduced by any value function. Note that, from a formal viewpoint, if the polyhedron generated by E A R is empty, then N and P are meaningless. Thus, the acceptance of the inconsistency means that the DM does not change the preference information represented by and computes d(x, y) and D(x, y) on a new set of constraints E ′A R differing from the original set E A R by an additional constraint on the acceptable total error:

U (a) + σ + (a) -σ -(a) > U (b) + σ + (b) -σ -(b) ⇔ a ≻ b U (a) + σ + (a) -σ -(a) = U (b) + σ + (b) -σ -(b) ⇔ a ∼ b ∀a, b ∈ A R u i (g i (a τ i (j) )) -u i (g i (a τ i (j-1) )) ≥ 0, i = 1, ..., n, j = 2, ..., m u i (g i (a τ i (1) )) ≥ 0, u i (g i (a τ i (m) )) ≤ u i (β i ), i = 1, ..., n, u i (α i ) = 0, i = 1, ..., n n i=1 u i (β i ) = 1, σ + (a) ≥ 0, σ -(a) ≥ 0, ∀a ∈ A R a∈A R (σ + (a) + σ -(a)) ≤ δ                        (E ′A R )
where δ > F * , with F * = min a∈A R (σ + (a) + σ -(a)) subject to E A R , such that the resulting new set of constraints E ′A R is not empty.

On the basis of E ′A R , for any pair (x, y) ∈ A, the set of constraints E ′ (x, y) can be built as the union of the constraints E ′A R and the constraints relative to the breakpoints introduced by those alternatives x, y that possibly do not belong to A R . Then preference relations ′N and ′P can be computed by minimizing and maximizing U (x)-U (y) subject to E ′ (x, y), rather than to E(x, y), respectively. In other words, in this case, d(x, y) and D(x, y) are computed considering E ′ (x, y) rather than E(x, y).

Obviously, the necessary and possible rankings resulting from these computations will not fully restore the provided pairwise comparisons, i.e. there is at least one couple x, y ∈ A R such that

• x
y, but it is false that for all the compatible value functions U (x) ≥ U (y) (in other words, there exists a compatible value function such that U (x) < U (y) and thus not(x ′N y)), or • x ≻ y, but it is false that for all the compatible value functions U (x) > U (y) (in other words, there exists also a value function such that U (y) ≥ U (x) and thus y ′P x).

Next result will state that ′N and ′P maintain all the main properties of preference relations N and P . Proposition 4.6.

• ′N ⊆ ′P ,
• ′N is a complete preorder (i.e. transitive and strongly complete),

• ′P is strongly complete.

Proof: ′N and ′P are built using the value functions satisfying constraints E ′A R , in the same way as N and P are built using the value functions satisfying constraints E A R . Thus the proof is analogous to the proof of Propositions 4.1, 4.3 and 4.4.

Situation where incompatibility is not accepted

If the DM does not want to pursue the analysis with the incompatibility, it is necessary to identify the troublesome pairwise comparisons responsible for this incompatibility, so as to remove some of them. Remark that there may exist several sets of pairwise comparisons which, once removed, make set E A R of constraints non-empty. Hereafter, we outline the main steps of a procedure which identifies these sets.

Recall that the pairwise comparisons of reference alternatives are represented in the ordinal regression constraints E A R by linear constraints. Hence, identifying the troublesome pairwise comparisons of reference alternatives amounts at finding a minimal subset of constraints that, once removed from E A R , leads to a set of constraints generating a non-empty polyhedron of compatible value functions. The identification procedure is to be performed iteratively since there may exist several minimal subsets of this kind.

Let associate with each pairwise comparison of reference alternatives a and b a new binary variable v a,b . Using these binary variables, we rewrite the first two constraints of set E A R as follows:

a ≻ b ⇔ U (a) -U (b) + M v a,b > 0 a ∼ b ⇔ U (a) -U (b) + M v a,b ≥ 0 U (b) -U (a) + M v a,b ≥ 0 (10) 
where M > 1. Remark that if v a,b = 1, then the corresponding constraint is satisfied whatever the value function is, which is equivalent to elimination of this constraint. Therefore, identifying a minimal subset of troublesome pairwise comparisons can be performed by solving the following mixed 0-1 linear program:

M in → f = a,b∈A R : a b v a,b s. t. a ≻ b ⇔ U (a) -U (b) + M v a,b ≥ ε a ∼ b ⇔ U (a) -U (b) + M v a,b ≥ 0 U (b) -U (a) + M v a,b ≥ 0    ∀a, b ∈ A R u i (g i (a τ i (j) )) -u i (g i (a τ i (j-1) )) ≥ 0, i = 1, ..., n, j = 2, ..., m u i (g i (a τ i (1) )) ≥ 0, u i (g i (a τ i (m) )) ≤ u i (β i ), i = 1, ..., n, u i (α i ) = 0, i = 1, ..., n n i=1 u i (β i ) = 1, (11) 
The optimal solution of (11) indicates one of the subsets of smallest cardinality being the cause of incompatibility. Alternative subsets of this kind can be found by solving [START_REF] Keeney | Decisions with multiple objectives: Preferences and value tradeoffs[END_REF] with additional constraint that forbids finding again the same solution. Let f * be the optimal value of the objective function of ( 11) and v * a,b the values of the binary variables at the optimum. Let also

S 1 = {(a, b) ∈ A R × A R : a b and v * a,b = 1}.
The additional constraint has then the form

(a,b)∈S 1 v a,b ≤ f * -1 (12) 
Continuing in this way, we can identify other subsets, possibly all of them. These subsets of pairwise comparisons are to be presented to the DM as alternative solutions for removing incompatibility. Such procedure has been described in [START_REF] Mousseau | Resolving inconsistencies among constraints on the parameters of an MCDA model[END_REF].

Extensions

Specification of pairwise comparisons with gradual confidence levels

The UTA GMS method presented in the previous section is intended to support the DM in an interactive process. Indeed, defining a large set of pairwise comparisons of reference alternatives can be difficult for the DM. Therefore, one way to reduce the difficulty of this task would be to permit the DM an incremental specification of pairwise comparisons. This way of proceeding allows the DM to control the evolution of the necessary and possible weak preference relations.

Another way of reducing the difficulty of the task is to extend the UTA GMS method so as to account for different confidence levels assigned to pairwise comparisons. Let 1 ⊆ 2 ⊆ ... ⊆ s be embedded sets of DM's partial preorders of reference alternatives. To each set of partial preorders t , t = 1, . . . s, corresponds a set of constraints E A R t generating a polyhedron of compatible value functions P A R t . Polyhedrons P A R t , t = 1, . . . s, are embedded in the inverse order of the related partial preorders t , i.e.

P A R 1 ⊇ P A R 2 ⊇ ... ⊇ P A R
s . We suppose that P A R s = ∅ and, therefore, due to the fact that partial preorders t are embedded, P A R t = ∅, for all t = 1, . . . , s. If P A R s = ∅ we consider only embedded partial preorders until p with p = max t : P A R t = ∅ and relabel p by s. For all x, y ∈ A, we say that there is a necessary weak preference relation of level t, denoted by x N t y (t = 1, ..., s), if for all value functions U compatible with the partial preorder t , we have U (x) ≥ U (y). Analogously, for all x, y ∈ A, we say that there is a possible weak preference relation of level t, denoted by x P t y (t = 1, ..., s), if for at least one value function U compatible with the partial preorder t , we have U (x) ≥ U (y).

In order to compute possible and necessary weak preference relations P t and N t , we can proceed as follows. For all x, y ∈ A, set of constraints E t (x, y) can be obtained from set E A R t by adjoining the constraints relative to the breakpoints introduced by those alternatives x, y that possibly do not belong to A R . For each t = 1, . . . , s, and binary preference relations N t and P t , we have 

x N t y ⇔ d t (x,
Each time we pass from t-1 to t , t = 1, . . . , s -1, we add to E A R t-1 and, consequently, to E t-1 (x, y), new constraints concerning pairs (a, b) ∈ A R × A R , such that a t b but not a t-1 b, thus the computations of d t (x, y) and D t (x, y), for all x, y ∈ A × A proceed iteratively.

The following result states that binary preference relations N t and P t , t = 1, . . . , s, inherit properties of N and P . Proposition 5.1.

• N t ⊆ P t ,
• N t is a complete preorder (i.e. transitive and strongly complete), Let λ t be the confidence level assigned to pairwise comparisons concerning pairs (a, b) ∈ A R × A R , such that a t b but not a t-1 b, 0 = ∅, t = 1, ..., s, 1 = λ 1 > λ 2 > . . . > λ s > 0. Using partial preorders 1 , . . . s and corresponding λ 1 , λ 2 , . . . , λ s , a valued binary preference relation R N : A × A → [0, 1] or, more precisely, R N : A × A → {λ 1 , λ 2 , . . . , λ s , 0}, can be built as follows: for all x, y ∈ A

• P t is
• if there exists one t (t = 1, . . . , s) such that x N t y, then R N (x, y) = max λ t , t = 1, . . . , s, such that x N t y • if there exists no t (t = 1, . . . , s) for which x N t y, then R N (x, y) = 0.

Analogously, a valued binary preference relation R P : A × A → [0, 1] or, more precisely, R P : A × A → {1λ 1 , 1λ 2 , . . . , 1λ s , 1}, can be built as follows: for all x, y ∈ A

• if there exists one t (t = 1, . . . , s) such that x P t y, then R P (x, y) = min 1λ t , t = 1, . . . , s, such that not (x P t y) • if x P t y for all t (t = 1, . . . , s), then R P (x, y) = 1.

Proposition 5.3. For all x, y ∈ A R N (x, y) = λ t * ⇔ x N r y ∀r ≥ t * and not (x N r y) ∀r < t * ; R P (x, y) = 1λ t * ⇔ x P r y ∀r < t * and not (x P r y) ∀r ≥ t * .

Proof. Since R N (x, y) = max λ t , t = 1, . . . , s, such that x N t y , then R N (x, y) = λ t * implies x N t * y. Taking into account that, for Proposition 5.2, x N t-1 y ⇒ x N t y, we have x N r y ∀r ≥ t * . Moreover, R N (x, y) = λ t * implies not (x N r y) ∀r such that λ r > λ t * . Taking into account that λ t > λ t+1 (t = 1, ..., s-1), we get that R N (x, y) = λ t * implies not (x N r y) ∀r < t * . Thus, we proved that R N (x, y) = λ t * ⇒ x N r y ∀r ≥ t * and not(x N r y) ∀r < t * .

For all x, y ∈ A, x N r y ∀r ≥ t * and not (x N r y) ∀r < t * ⇒ t * = min{t, t = 1, . . . , s, such that x N t y}. (i) Remembering that λ t > λ t+1 (t = 1, ..., s -1), from (i) we get λ t * = max λ t , t = 1, . . . , s, such that x N t y , and for the definition of R N (x, y), R N (x, y) = λ t * . Thus we proved that

x N r y ∀r ≥ t * and not (x N r y)

∀r < t * ⇒ R N (x, y) = λ t * ,
Considering that always R N (x, z) ≥ 0, in case a),

R N (x, z) ≥ min(R N (x, y), R N (y, z)). (i)
In case b), for the definition of R N , we have that min(R N (x, y), R N (y, z)) = = min max λ t , t = 1, . . . , s, such that x N t y , max λ t , t = 1, . . . , s, such that y N t z = = max λ t , t = 1, . . . , s, such that x N t y and y N t z . Thus, if min(R N (x, y), R N (y, z)) = λ r , then U (x) ≥ U (y) and U (y) ≥ U (z) for all value functions U compatible with r . Thus, for all value functions U compatible with r we have U (x) ≥ U (z) and, consequently, x N r z. This implies that

R N (x, z) = max λ t , t = 1, . . . , s, such that x N t z ≥ λ r = min(R N (x, y), R N (y, z)). (ii)
For (i) and (ii), valued binary relation R N is min-transitive. Let us suppose that x P s y, x, y ∈ A. In this case, for Proposition 5.2, x P t y for all t (t = 1, . . . , s) and, therefore, R P (x, y) = 1. If, instead, not (x P s y), then for Proposition 4.2, y N s x and, therefore, for Property 1, y P s x. In consequence, for Proposition 5.2, y P t x for all t (t = 1, . . . , s) and, thus, R P (y, x) = 1. This proves completeness of valued binary relation R P . For all x, y, z ∈ X, two cases are possible:

a) max(R P (x, y), R P (y, z)) = 1, b) max(R N (x, y), R N (y, z)) < 1.
In case a) we have that R P (x, y) = 1 or R P (y, z) = 1, and thus 1 -R P (x, y) = 0 or 1 -R P (y, z) = 0, such that min((1 -R P (x, y)), (1 -R P (y, z))) = 0 and considering that always1 -R P (x, z) ≥ 0, we get min((1 -R P (x, y)), (1 -R P (y, z))) ≤ 1 -R P (x, z).

In case b), R P (x, y) < 1 and R P (y, z) < 1, for definition of R P , 1 -R P (x, y) = 1min 1λ t , t = 1, . . . , s, such that not (x P t y) ) = = max λ t , t = 1, . . . , s, such that not (x P t y) )

as well as for all value functions U compatible with t }.

1 -R P (y, z) = 1 -min 1 -λ t ,
If min((1 -R P (x, y)), (1 -R P (y, z))) = λ r , then U (x) < U (z) for all value functions compatible with r , which means that there does not exist any value function U compatible with r such that U (x) ≥ U (z). Thus, min{t, t = 1, . . . , s, such that not (x P t z)} ≤ r and, therefore,

max{λ t , t = 1, . . . , s, such that not (x P t z)} ≥ λ r . Since max{λ t , t = 1, . . . , s, such that not (x P t z)} = = 1 -min{1 -λ t , t = 1, . . . , s, such that not(x P t z)} = 1 -R P (x, z),
we conclude that (1 -R P (x, z)) ≥ λ r = min((1 -R P (x, y)), (1 -R P (y, z))).

Accounting for intensity of preference

Another preference information that can be provided by the DM concerns the intensity of preference among two pairs of reference alternatives. Given two pairs of alternatives (x, y) ∈ and (w, z) ∈ , such that x ≻ y and w ≻ z, the DM can state : "x is preferred to y at least as much as w is preferred to z". Such statement means that for all compatible value functions U :

U (x) -U (y) > U (w) -U (z). (15) 
To account for the above preference information, it is sufficient to include condition [START_REF] Koksalan | An interactive approach for placing alternatives in preference classes[END_REF] in set E A R of constraints. Of course, consequently, condition (15) will be included in constraints E(x, y) for all x, y ∈ A.

Conversely, ∀x, y, w, z ∈ A, it is possible to check whether or not condition

U (x) -U (y) > U (w) -U (z) (16) 
holds for all compatible value functions U .

In order to do so, it is sufficient to check the feasibility of constraints E(x, y) and ( 16). Such information may enrich the DM's knowledge of his/her preferences.

Illustrative example

In this section, we illustrate how a decision aiding process can be supported by the UTA GMS method. The computations of this example were performed using the VISUAL-UTA software (see [30]). We consider the following hypothetical decision problem. AGRITEC is a medium size firm (350 persons approx.) producing some tools for agriculture. The C.E.O., M r Becault, intends to double the production and multiply exports by 4 within 5 years. Therefore, he wants to hire a new international sales manager. A recruitment agency has interviewed 17 potential candidates which have been evaluated on 3 criteria (sales management experience, international experience, human qualities) evaluated on a [0,100] scale. The evaluations of candidates are provided in Table 5. Without any further information, the computed partial preorder N 0 corresponds to the weak dominance relation ∆ on the set of alternatives (See Figure 2). The C.E.O. has attended 4 interviews and can express a confident judgement about theses candidates: Ferret and Frechet are equally good, Fourny is less acceptable than Ferret and Frechet, and Fleichman is even less acceptable than Fourny. This means that For this initial preference information, the partial preorder N 1 has been computed using UTA GMS (See Figure 3). Considering this first result, M r Becault is willing to add further preference information. This results in the following new reference ranking: Ferret ∼ Frechet ≻ Martin ≻ Fourny ∼ El Mrabat ≻ Fleichman. However, as he did not attend the interview of El Mrabat and Martin, his opinion about the relative ranking of these candidates is not as certain as the initial preference information.

It appears that for the provided information, no additive value function fits the last reference ranking. The analysis of this incompatibility reveals that the statement Ferret ∼ Frechet cannot be represented together with the statement Fourny ∼ El Mrabat by an additive value function. In other words, it is necessary for M r Becault to revise one of these statements. As he did not interview El Mrabat, he decides to remove him from the reference ranking which becomes Ferret ∼ Frechet ≻ Martin ≻ Fourny ≻ Fleichman. This reference ranking is compatible with a representation by an additive value function. Figure 4 represents two nested partial preorders:

• bold arrows represent partial preorder N 1 obtained for the most certain preference information only, i.e., Ferret ∼ Frechet ≻ Fourny ≻ Fleichman, dashed arrows represent partial preorder N 2 obtained for the consistent preference information composed of the most certain preference information and the less confident preference information about Martin, i.e., Ferret ∼ Frechet ≻ Martin ≻ Fourny ≻ Fleichman. The interactive process can be pursued, M r Becault adding in iteration t some new pairwise comparisons of reference alternatives, thus enriching the resulting partial preorder N t , until it is decisive enough for the C.E.O. to make his choice.

Conclusion

The new UTA GMS method presented in this paper is an ordinal regression method supporting multiple criteria ranking of alternatives; it is distinguished from previous methods of this kind by the following new features:

• the method considers general additive value functions rather than piecewise linear ones,

• the final rankings are defined using all value functions compatible with the provided preference information,

• the method provides two final rankings: the necessary ranking identifies "sure" preference statements while the possible ranking identifies "possible" preference statements,

• distinguishing necessary and possible consequences of using all value functions compatible with preference information, UTA GMS includes a kind of robustness analysis instead of using a single "best-fit" value function,

• the necessary and possible preference relations considered in UTA GMS have several properties of general interest for MCDA,

• when the DM provides preference information that cannot be represented by an additive model, the method identifies which pieces of the information underly this impossibility,

• the method does not require the DM to interpret (and even look at) the marginal value functions,

• the DM can assign confidence levels to pieces of preference information, which yields a valued necessary preference (proved to be a fuzzy partial preorder) and a valued possible preference (proved to be a strongly complete and negatively transitive valued binary relation).

We envisage the following future developments of the presented methodology:

• application to multicriteria sorting problems,

• application to group decision problems,

• application to interactive multiobjective optimization.
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which concludes the proof of R N (x, y) = λ t * ⇔ x N r y ∀r ≥ t * and not(x N r y) ∀r < t * .

Analogous proof holds for R P (x, y) = 1λ t * ⇔ x P r y ∀r < t * and not (x P r y) ∀r ≥ t * .

Proposition 5.3 says that R N (x, y) = λ t means that x N r y holds only for r ≥ t, while, for definition, R N (x, y) = 0 means that x N t y does not hold for any t (t = 1, . . . , s). Proposition 5.3 says also that R P (x, y) = 1λ t means that x P r y hols only for r < t, while, for definition, R P (x, y) = 1 means that x P t y for all t (t = 1, . . . , s).

It is interesting to investigate the properties of valued binary relations R N and R P (for an introduction to valued binary relations and their properties see [START_REF] Fodor | Fuzzy preference modelling and multicriteria decision support[END_REF]). Let us remind that a valued binary relation R defined on a set X, i.e. R :

• min-transitive, if for all x, y, z ∈ X, min(R(x, y), R(y, z)) ≤ R(x, z),

• strongly complete, if for all x, y ∈ X, max(R(x, y), R(y, x)) = 1,

• negatively transitive, if for all x, y, z ∈ X, min((1 -R(x, y)), (1 -R(y, z))) ≤

(1 -R(x, z)).

A valued binary relation which is reflexive and min-transitive is called fuzzy partial preorder.

Proposition 5.4. Valued binary relation R N is reflexive and min-transitive and, therefore, it is a fuzzy partial preorder. Valued binary relation R P is strongly complete and negatively transitive.

Proof. For all x ∈ A, for all value functions U compatible with the partial preorder s , we have U (x) = U (x), which implies x N s x and R N (x, x) = 1, i.e. R N is reflexive.

For all x, y, z ∈ X, two cases are possible: a) min(R N (x, y), R N (y, z)) = 0, b) min(R N (x, y), R N (y, z)) > 0.