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Robust multiple criteria ranking using a set of
additive value functions

Salvatore Greco Vincent Moussedy Roman Stowaski

Résumé

Nous présentons une nouvelle méthode, appelée®¥Apour le probléme de
rangement multicritere d'un ensemble d’actioAssur la base d’'un ensemble de
fonctions de valeurs additives calculé par régression ordinale. trivdton pré-
férentielle obtenue du décideur est un ensemble de comparaisons jgarguaiun
sous-ensembld” C A d’actions, appelées actions de référence. Le modele de pré-
férence construit par régression ordinale est 'ensemble de toutesnietiohs de
valeur additives compatibles avec I'information préférentielle. En utilisamhce
dele, il est possible de définir deux relations gur une relation de surclassement
nécessaire qui est vraie pour deux actions e A ssi pour toute fonction de valeur
compatible/ onal (a) > U(b), et larelation de surclassement possible qui est vraie
pour deux actions, b € A ssi il existe au moins une fonction de valeur compatible
U telle queU(a) > U(b). Ces deux relations définissent un classement possible et
nécessaire des actions deet sont, respectivement, un préordre partiel, et une rela-
tion fortement compléte et négativement transitive. La méthode®¥Ast concue
pour étre utilisée de facon interactive, avec un ensemblaui s'accroit de sorte
gue le décideur ajoute progressivement des comparaisons par pasgulaucune
comparaison pas paire n'est fournie, le surclassement nécessaggpond a la re-
lation de dominance et le surclassement possible est une relation complkdgeeCh
nouvelle comparaison d’actions de référence ne correspondaatypassituation de
dominance enrichit la relation de surclassement nécessaire et appmrelation de
surclassement possible, de sorte qu’elles convergent & mesure prenation pré-
férentielle s’enrichit. En distinguant les conséquences nécessajrassiiles surl
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Robust multiple criteria ranking using a set of additive eaflunctions

d’'informations de préférence, UTA'S répond & des questions relevant de I'analyse
de robustesse. De plus, la méthode aide le décideur aussi lorsquéfeesmres ne
peuvent pas étre représentées en termes de fonctions de valeureadditiméthode
est illustrée sur un exemple résolu avec le logiciel VisualUTA v1.0. Des sixtes
sont aussi proposeées.

Mots-clefs : Analyse de robustesse, Rangement multicritere, Régression ordinale,
Fonction de valeur additive

Abstract

We present a new method, called UT¥, for multiple criteria ranking of al-
ternatives from setd using a set of additive value functions which result from an
ordinal regression. The preference information provided by the ideaisaker is a
set of pairwise comparisons on a subset of alternati®sC A, called reference
alternatives. The preference model built via ordinal regression isaf aé additive
value functions compatible with the preference information. Using this model, on
can define two relations in the sét the necessary weak preference relation which
holds for any two alternatives, b from setA if and only if for all compatible value
functionsa is preferred td, and the possible weak preference relation which holds
for this pair if and only if for at least one compatible value functiois preferred to
b. These relations establish a necessary and a possible ranking oftalesrfiam
A, being, respectively, a partial preorder and a strongly complete agatinely
transitive relation. The UTEMS method is intended to be used interactively, with an
increasing subset’ and a progressive statement of pairwise comparisons. When no
preference information is provided, the necessary weak preferelat®n is a weak
dominance relation, and the possible weak preference relation is a congdeit.
Every new pairwise comparison of reference alternatives, for whigldtiminance
relation does not hold, is enriching the necessary relation and it is impoveyithe
possible relation, so that they converge with the growth of the prefeliafmena-
tion. Distinguishing necessary and possible consequences of pregergormation
on the all set of actions, UTAS answers questions of robustness analysis. More-
over, the method can support the decision maker also when his/hergnedestate-
ments cannot be represented in terms of an additive value function. Thedristh
illustrated by an example solved using the P¥® software. Some extensions of
the method are also presented.

Key words : Robustness analysis, Multiple criteria ranking, Ordinal regression ap-
proach, Additive value function

1 Introduction

We are considering a decision situation in which a finite $etiternatives (actions)
A is evaluated on a family of criteriagy, g2, ..., i, ..., gn, With g; : A — R for all
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ieG=1{12,...,n}. We assume, without loss of generality, that the greater, the
better alternative. on criteriong;, for all i € G. A decision maker (DM) is willing to
rank the alternatives id from the best to the worst, according to his/her preferenties
ranking can be complete or partial, depending on the preteraaformation supplied by
the DM and on the way of using this information. The family ateria G is supposed to
satisfy the following consistency conditions (see [24]):

e exhaustivity - any two alternatives having the same evadnaton all criteria from
(G should be considered indifferent,

e monotonicity - when comparing two alternatives, an improeat of one of them
on at least one criterion fro®@ should not deteriorate its comparison to the other
alternative,

e non-redundancy - deletion of any criterion fraghwill contradict one of the two
above conditions.

Such a decision problem is called multiple criteria rankprgblem. It is known
that the only information coming out from the formulationtbfs problem is the weak
dominance relation. Let us recall that the weak dominanietioe is a partial preorder:
alternativea € A is preferred to alternativé € A (denotationa > b) if and only if
gi(a) > g;(b) for all i € G, with at least one strict inequality; moreoveris indifferent
to b (denotationa ~ b) if and only if g;(a) = ¢;(b) for all : € G; hence, for any two
alternatives:, b € A, one of the four situations may arise in the weak dominanetioa:

a > b,a < b,a ~ banda?b, where the last one means thatndb are incomparable.
Usually, the weak dominance relation is very poor, i.e. tlestfrequent situation ig?b.

In order to enrich the weak dominance relation, multipldecia decision aiding
(MCDA) helps in construction of an aggregation model on theebaf preference in-
formation provided by the DM. Such an aggregation model iedgreference model -
it induces a preference structure in getvhose proper exploitation permits to work out a
ranking proposed to the DM.

The preference information may be either direct or indirdepending if it specifies
directly values of some parameters used in the preferendeinf@.g. trade-off weights,
aspiration levels, discrimination thresholds, etc.)f drapecifies some examples of holis-
tic judgments from which compatible values of the prefeeemodel parameters are in-
duced. Direct preference information is used in the traddl aggregation paradigm,
according to which the aggregation model is first constaieted then applied on set
to rank the alternatives.
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Indirect preference information is used in the disaggiiegdbr regression) paradigm,
according to which the holistic preferences on a subsetefrativesA” C A are known
first, and then a consistent aggregation model is inferrah fthis information to be ap-
plied on set4 in order to rank the alternatives.

Presently, MCDA methods based on indirect preference irdtion and the disag-
gregation paradigm are of increasing interest for they iregelatively less cognitive
effort from the DM. Indeed, the disaggregation paradignoissistent with the “posterior
rationality” postulated by March [18] and with the indu@ilearning used in artificial
intelligence approaches (see [19]). Typical applicatiohthis paradigm in MCDA are
presented in [29], [22], [10], [13], [1], [21], [7], [8], [9]

In this paper, we are considering the aggregation modelrin fof an additive value
function:

Ula) =) uia) (1)
=1
wherew;(a) > 0, i = 1,...,n, are nondecreasing marginal value functions. While the

additive value function involves compensation betweeteca and requires rather strong
assumption that criteria are independent in the sense tdrpreees [11], it is often used
for its intuitive interpretation and relatively easy congion. The weighted-sum aggre-
gation model, which is a particular case of the additive @dlinction, is used even more
frequently in spite of its simplistic form (see e.qg. [1], [R5

We are using the additive aggregation model in the settifighe disaggregation
paradigm, as it has been proposed in the UTA method (see. [19])act, our method
generalizes the UTA method in two aspects:

e it takes into account all additive value functions (1) coiifgea with indirect pref-
erence information, while UTA is using only one such funetio

¢ the marginal value functions of (1) are general non-deangdsinctions, and not
piecewise linear, as in UTA,

e the DM’s ranking of reference alternatives does not neecttodmplete.

The preference information used by our method is provideithénform of a set of
pairwise comparisons of some alternatives from a sul8et A, called reference alter-
natives. The method is producing two rankings in the settefadtivesA, such that for
any pair of alternatives, b € A:
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e inthenecessaryanking,a is ranked at least as goodigigand only if, U(a) > U(b)
for all value functions compatible with the preference informatio

e inthepossibleranking,a is ranked at least as good s and only if, U (a) > U(b)
for at least onevalue function compatible with the preference information

The necessary ranking can be considered as robust withctesg@e indirect prefer-
ence information. Such robustness of the necessary rardders to the fact that any pair
of alternatives compares in the same way whatever the ael@diue function compatible
with the indirect preference information. Indeed, when mdirect preference informa-
tion is given, the necessary ranking boils down to the weakidance relation, and the
possible ranking is a complete relation. Every new pairvaeismparison of reference
alternatives, for which the dominance relation does nodl higl enriching the necessary
ranking and it is impoverishing the possible ranking, sa tinay converge with the growth
of the preference information.

Another appeal of such an approach stems from the fact thatas space for inter-
activity with the DM. Presentation of the necessary rankimegulting from an indirect
preference information provided by the DM, is a good supfmrgenerating reactions
from the DM. Namely, (s)he could wish to enrich the rankindgacontradict a part of it.
This reaction can be integrated in the indirect preferenf®iination in the next iteration.

The organization of the paper is the following. In the nexttiem, we will outline
the principle of the ordinal regression via linear progranmgnas proposed in the original
UTA method (see [10]). In section 3, we give a brief overvieinegisting approaches
to multiple criteria ranking using a set of additive valuadtions, and we provide mo-
tivations for our approach. The new UFHS method is presented in section 4. Some
extensions are considered in section 5. Section 6 providdiiatrative example show-
ing how the method can be applied in practice. The last seatudes conclusions.

2 Ordinal regression via linear programming - principle
of the UTA method

Let X, denote the evaluation scale of criterign: € G. ConsequentlyX = [, X;
is the evaluation space, andy € X denote profiles of alternatives in this space. We
consider a weak preference (outranking) relatioron X that states for each pair of
vectorsz,y € X: x —~ y < “risatleastas good as. This weak preference relation
can be decomposed into its asymmetric and symmetric parts|laws:
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e >y & [xzyandnoty - x)] < “xis preferred ta)”,

e r~y & [xyandy x| & “xisindifferent toy”
>From a pragmatic viewpoint, it is reasonable to assumeXhat [«;, 3], i.e. the
evaluation scale on each criterignis bounded, such that; < 3; are the worst and the

best (finite) evaluations, respectively. Thys, A — X;, i € G, therefore, each alterna-
tive a € A is associated with an evaluation vector denoted(ay € X.

The additive value function is defined o such that for each € A

U(g(a)) = Y ui(gi(a)), (2)
=1
whereu; are non-decreasing marginal value functioms; X; — R, i = 1,...,n. For

simplicity, we will write (2) as (1), i.eU(a) = >, u;(a).

In the following, we recall the principle of the UTA method piesented recently in
[28]. The indirect preference information is given in thenmoof a complete preorder
on a subset of reference alternatié$ C A, called reference preorder. The reference
alternatives are usually those alternatives in&ébr which the DM is ready to express
holistic preferences. Let the set of reference alterngtié = {a;, ao, ..., a,,} be rear-
ranged such that, = a,,1, k = 1,....,m — 1, wherem = |A%|. The disaggregation
paradigm consists here in inferring an additive value fiomc{1) ranking the reference
alternatives in exactly the same way as it was done by the DWdh @& value functio/

is calledcompatible

The ordinal regression consists in the inference of a cailripatalue function restor-
ing the reference preorder. The transition from a refer@neerder to a value function is
done according to the following equivalence :

U(ak) > U(ak+1) & ag ~ A1
U(ak) = U(akH) & g~ Qg4

3)
fork=1,....,m— 1.
In the UTA method, the marginal value functions are assumed to be piecewise

linear, so that the intervalsy;, 3;] are divided intoy; > 1 equal sub-intervalsfz?, =],
[z}, 2?], ..., [a:;”_l,xzi], wherez! = «a; + j(ﬁ%al), j=20,...,7,i=1,...,n The

177
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marginal value (see Figure 1) of an alternative A is approximated by linear interpola-
tion

o) = ) + L (™) — ) for o) € o™ (4

According to (4), the piecewise linear additive model is pbetely defined by the
marginal values at the characteristic points, ig(x?) = w;(a;), wi(z}), wi(x?),...,

wi()") = ui(3:).

0 o - 1 2 53 gi4
=z, L LT gi(q) L ) Bi =
Figure 1: Piecewise linear marginal value function

It is also usual to suppose a kind of normalization suchwa&y;) = 0, Vi € GG, and

Yo ui(6;) = 1. This will bound the value functiof () in the interval [0,1].

Therefore, a value functioli(a) = >, u;(a) is compatible if it satisfies the follow-
ing set of constraints

Ulag) > Ulagy1) © ar > agsa
Ulap) = Ulags1) © ak ~ apyq
k=1.....m—1

iy ’ ; ) . 5
ui(a:?“ —u(x]) >0,i=1,...,n, j=1,...,9—1 (5)
ui(a;)) =0,i=1,...,n

101



Robust multiple criteria ranking using a set of additive eaflunctions

To verify if a compatible value functiotV(a) = > | u;(a) restoring the reference
preorder- on AF exists, one can solve the following linear programming ot where
ui(mg),z’ =1,..,n, j =1,...,v are unknown, and*(a),o " (a),a € A" are auxiliary
variables:

Min— F =S, (0 (a) + o (@)
S.t.
Ular) + 0" (ax) — o~ (ar) >
Ulags1) + 0" (ap1) — 0 (arg1) +€ & ap = @
Ulag) + 0% (ar) — o (ar) =
Ulagsr) + 0" (ar1) — 0 (ag1) & ap ~ g
wi (2™ —ug(2)) >0, i=1,...,n, j=1,..,v —1
ui(e;) =0,i=1,...,n

(6)

wheres is an arbitrarily small positive value so thHatax)+o " (ar) —o~ (ax) > U(ags1)+
ot (ags1) — 0 (agy1) In case ofay, = ap1.

If the optimal value of the objective function of the progrdf) is equal to zero
(F* = 0), then there exists at least one value functiéfu) = > | u;(a) satisfying
(5), i.e. compatible with the reference preorder4dh In other words, this means that the
corresponding polyhedron (5) of feasible solutionsddr:?), i = 1,...,n, j =1, ...,
is not empty.

Let us remark that the transition from the preorgeto the marginal value function
exploits the ordinal character of the criterion scale Note, however, that the scale of
the marginal value function is a conjoint interval scale.r®lprecisely, for the considered
additive value function, the admissible transformationglee marginal value functions
u;(x;) have the formu} (z;) = k x u;(z;) + hy, hy € R, i =1,...,n, k > 0, such that for
all [x1, ...z, Y1, -y un) € Ty X

S wilw) =Y wiy) &Y up(xm) = ui(y).
=1 =1 =1 =1
An alternative way of representing the same preference hside

U(a) = wit(a), wherei(a;) =0, () =1, w; >0 Vie G, and > w; = 1.
im1 i-1
(7)
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Note that the correspondence between (7) and (1) is suchuthatu;(5;), Vi € G.
Due to the cardinal character of the marginal value funcsicade, the parametets can
be interpreted as tradeoff weights among marginal valuetioms @;(a). We will use,
however, the preference model (1) with normalization a@msts bounding/(a) to the
interval[0, 1].

When the optimal value of the objective function of the progr@®) is greater than
zero (F* > 0), then there is no value functidii(a) = >, u;(a) compatible with the
reference preorder ad”. In such a case, three possible moves can be considered:

e increasing the number of linear piecgdor one or several marginal value function
u; could make it possible to find an additive value function catiipe with the
reference preorder af?,

e revising the reference preorder d¥ could lead to find an additive value function
compatible with the new preorder,

e searching over the relaxed domaith < F* 4 n could lead to an additive value
function giving a preorder od” sufficiently close to the reference preorder (in the
sense of Kendall's).

3 Existing approaches and motivations for a new method

Our work aims at generalizing the UTA method in order to cdesithe set of all
value functions compatible with the indirect preferenderimation rather than choosing a
single value function within the set of compatible ones. Titeeature concerning MCDA
methods involving a set of additive value functions can leveid from three points of
view:

e The methods are designed for different problem statemprablematics, see [23]):

— choice of the best alternative.@.[2], [14], [16], [5], [26]),
— sorting alternatives into predefined categoreg.[15], [4]),
— ranking of alternatives from the best to the worsg([10], [12])

e The methods also differ with respect to the kind of the setatd® functions and the
characteristics of these functions: lineard. [14], [12]) or piecewise linearg(g.
[3], [10], [4]) or monotone €.9.[1]) value functions.

e The sets of value functions can be:
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— explicitly listed €.9.[27]),
— defined from stated constraints on the functiang.(2], [17]),
— induced from holistic preference statements concernitegradtives €.g.[15],

[31], [1]).

A review of the literature and, particularly, of the methdmssed on the ordinal re-
gression approach, shows that these methods fail to corssidee important issues :

e If the polyhedron of value functions compatible with thetstbpreference informa-
tion is not empty, then the choice of a single or few repredes value functions
is either arbitrary or left to the DM. In the latter case, thel 3 supposed to know
how to interpret the form of the marginal value functions ider to choose among
them, which is not easy for most DMs. Therefore, it seemsomgse to accept
existence of all value functions compatible with the prefee information pro-
vided by the DM and to assess a preference relation in thd aiemativesA with
respect to all these functions.

¢ In most methods, the class of value functions is limitedriedir or piecewise linear
marginal value functions. To specify the number of charsstie points (break-
points) is arbitrary and restrictive. Itis desirable to sioler just monotone marginal
value functions which do not involve any parametrization.

e Most methods require that the DM provides constraints onrdinge of weights
of linear marginal value functions, or on the range of vasirabf piecewise linear
marginal value functions. The DM may have, however, diffieslto analyze the
link between a specific value function and the resulting mamk This is why we
believe that the DM should be allowed to express preferemicemation in terms
of pairwise comparisons of alternatives rather than fiximg &bove constraints.
Providing preference information in this way is consisteith intuitive reasoning
of DMs.

e The methods based on ordinal regression are usually caoimgjdbe preference in-
formation provided by the DM as a whole. As a consequencs difficult for the
DM to associate a piece of his/her preference informatidh thie result and, there-
fore, to control the impact of each piece of information éspinovides on the result.
As such a control is desirable for a truly interactive pregesmdinal regression
methods should allow the DM to provide incrementally thefgnence information
by possibly small pieces.

In this paper, we intend to present a new ordinal regressiethoad that accounts for
all shortcomings listed above.
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4 The new UTA®™ method

4.1 Presentation of the method

The new UTAMS method is an ordinal regression method using a set of addiilue
functionsU (a) = >, u;(g:(a)) as a preference model. One of its characteristic features
is that it takes into account the set of all value functionspatible with the preference
information provided by the DM. Moreover, it considers geth@on-decreasing marginal
value functions instead of piecewise linear only.

We suppose the DM provides preference information in forpeafwise comparisons
of reference alternatives from C A. This preference information is a partial preorder
on A, denoted by~. A value function is calleccompatibleif it is able to restore the
partial preordeir-. Each compatible value function induces, moreover, a ranén the
whole setA.

In particular, for any two alternatives y € A, a compatible value function ranks
andy in one of the following wayszx > y, y > x, x ~ y. With respect tac,y € A, itis
thus reasonable to ask the following two questions:

e arex andy ranked in the same way by @lbmpatible value functions?

e is there at least oneompatible value function rankingat least as good as(or y
at least as good ag?

Having answers to these questions for all pairs of alteresatic,y) € A x A, one gets
anecessaryveak preference relation”, in casel/ (z) > U(y) for all compatible value
functions, and gossibleweak preference relation” in A, in caseU(z) > U(y) for at

least one compatible value function.

Let us remark that preference relatian¥ and—? are meaningful only if there exists
at least one compatible value function. Observe also ththisrcase, for any, y € A,

rmy=zz"y

and
r =y =not(y =" z).

In fact, if x 77 y, then for any compatible value functidn(z) > U(y) and, therefore,
x =~ y. Moreover, ifx = y, then for any compatible value functiédh(z) > U(y) and,
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consequently, there is no compatible value function suatitly) > U(z), which means
that noty =% .

Formally, a general additive compatible value functionnsaaditive value function
U(a) = >, u;(a) satisfying the following set of constraints:

U(a) >U(b) & a>D )
U§a§ :UEb§ o a~b }va’bEAR
u;(gi(ar;))) — wi(gi(ar-1)) >0, i=1,...,n, j=2,..,m (B
ui(gi(aﬁ(l))) > 07u2(gl<an(m))) < uz(ﬁz)7 L= 17 ey 1,
ui(a;) =0,i=1,...,n
?:1 ul(ﬁl) =1, J

wherer; is the permutation on the set of indices of alternatives fréfnthat reorders
them according to the increasing evaluation on critegigne.

gi(ar,)) < gilar2) < ..o < Gil@r,m-1)) < gi(ar,m))

Remark that, due to this formulation of the ordinal regresgimblem, no linear inter-
polation is required to express the marginal value of argregfce alternative. Thus, one
cannot expect that increasing the number of charactepstits will bring some “new”
compatible additive value functions. In consequence, €Aconsiders all compatible
additive value functions while classical UTA ordinal reggmn (6) deals with a subset of

the whole set of compatible additive value functions, maezisely the subset of piece-
wise linear additive value functions relative to the coesadl characteristic points.

4.2 Properties of the relations—" and =*

Binary relations=" and=* satisfy the following interesting properties.

Proposition 4.1. = D =¥

Proof. If U(z) > U(y) for all compatible value function§, i.e. z =% y, then there is at
least one compatible value functiéft such that/’(x) > U'(y), i.e.z = . O
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Proposition 4.2. Forall z,y € A, x =" yory =F x.

Proof. Let us denote by the set of value functions compatible with For allz,y € A,
U(z) > U(y) YU € U or U € U suchthat/ (y) > U(x) =z =N yory = x.

U

Let us observe that from Proposition 4.2, we can get theviatlg interesting corol-
lary.

Corollary 4.1. For all z,y € A,

1) not(z =N y) =y = x,

2) not(z =F y) =y =N .

Proof. 1) Sincer =" yory = =, if not(z =" y), theny =" z.

2) Sincer = yory =N x,if not (z =F y), theny =V .

Proposition 4.3. = is a partial preorder(i.e. reflexive and transitive

Proof. Forallz € A, U(xz) = U(x). This is true also for alU being compatible value
functions, such that =~ x. Let us suppose that far,y, ~ € A, we haver =" y and
y =~ 2. This means that for all compatible value functidisve havel (x) > U(y)
andU(y) > U(z), which implies that for all compatible value functiobs we have
U(z) >U(z),ie.x =V 2. O

Proposition 4.4. -* is strongly complete, i.evVz,y € A, = yory =¥ z, and
negatively transitive, i.evx,y, 2 € A, not(xr ==F y) and not( =F 2) = not(x =7 2)

Proof. Consider any compatible value functiéh For each pairc,y € A, it holds
U(x) > U(y) or U(y) > Ul(x), i.e. x =¥ yory = z; therefore=" is strongly
complete.

not(z =¥ y) means that there does not exist any compatible value funttisuch that
U(z) > Ul(y). not(y =F 2) means that there does not exist any compatible value functio
U such that/(y) > U(z). Therefore, there does not exist any compatible value fomct
U such that/(z) > U(z), which means thatot(z =" z). O
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Observe that while-" is negatively transitive, it is not necessarily transitive. it is
possible that for,y, 2 € A, x =F y,y =F 2z but notz =F 2. This can happen because
there could exist one compatible value functiérsuch that’/(z) > U(y) and one com-
patible value functio/’ such that/’(y) > U’(z), however, there could be no compatible
value function/” such thatV” (z) > U"(z).

Notice that it is impossible to infer™ from = or vice versa, since¥ and=* are
not dual, i.e.x =V y < noty =7 z) does not hold as one could expect. In fact, in case
for x,y € A, U(x) = U(y) for all compatible value function&, we haver =" y and
y =F .

>From the two weak preference relations’ and’=*, one can get preference, indif-
ference and incomparability, in a usual way, i.e.

1) from the necessary weak preference relatidhone obtains:

o preferencexr =" y < 2 =" yand noty =" z)

e indifference:x ~V y < =V yandy =V

e incomparability:x?"Vy < not(z =" y) and noty =" z)
2) from the possible weak preference relatigh one obtains:

e preferencexr ="y < 2z =" yand noty =" )

e indifference:x ~* y < x = yandy = z

Observe that in case ¢f”, incomparability is not considered because, for propmsiti
4.3,=" is strongly complete.

The preference relations obtained frgmt constitute the necessary ranking, and the
preference relations obtained frant” constitute the possible ranking; they are presented
to the DM as end results of the UPXS method at the current stage of interaction.

4.3 Computation of the relations>=" and ="

In order to compute binary realtions” and =" we can proceed as follows. For
all alternativesr,y € A, let ; be a permutation of the indices of alternatives from set
AR U {z,y} that reorders them according to increasing evaluation ibericm g;, i.e.

gi(am)) < gilan,2) < . < gilar,w-1)) < 9i(Ory(w))

where
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o if ANN{z,y}=0,thenw=m+2
o if AN {z,y} ={z}orAn{z,y} ={y}, thenw =m+1
o if AN {z,y} = {z,y}, thenw = m.
Then, we can fix the characteristic pointsugfg;), i = 1, ..., n, in
9 =i g =glang) for j=1 .0, ¢g*=4

Let us consider the following séf(z, y) of ordinal regression constraints, with=
1,...n, j=1,..,w+ 1asvariables:

Ul)>Ub)+e & a=b R
Ul)) =U®M) & anb f700EA
wi(gh) —uwi(gl ™) >0, i=1,.,n, j=1,.,w+1 » (E(z,y))
ui(g?) =0,71=1,...,n
?:1 uz(g;u—i_ ) = 17

wheree is an arbitrarily small positive value as in (6).

The above set of constraints depends on the pair of alteesatiy € A because their
evaluationsg;(z) and g;(y) give coordinates for two ofw + 1) characteristic points
of marginal value function;(g;), for each: = 1,...,n. Note that for allx,y € A,

E(z,y) = E(y, v).
Let us suppose that the polyhedron defined by the set of edmsti~(x, y) is not
empty. In this case we have that:
2Ny d(z,y) >0

where: d(z,y) = Min{U(z) —U(y)}

s.t. setE(x, y) of constraints ®)
and
v 2"y & D(r,y) =0
where : D(z,y) = Maz{U(z) —U(y)} 9)

s.t. setE(x, y) of constraints

What are the relations betweerf” and =" with respect to computation? In other
words, is it necessary to calculatér, y) and D(z,y) for all z,y € A? Proposition 4.5
gives a technical result useful for answering this question
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Proposition 4.5. For all =,y € A, the following equivalences hold:

d(z,y) 2 0 D(y,z) <0
D(z,y) 20 d(y,z) <0
d(z,y) =0« D(y,z) =0

Proof. The proof results from the following equalities:
d(:L', y) = lenstE(z,y){U(x) - U<y)} = _Max.s.t.E(y7x){U(y) - U(I)} = _D(ya I) O

According to Proposition 4.5, the relation™ can be computed using eithéfz, i)
or D(z,y), as shown in Tables 1 and 2. A similar remark concerns théaelzg” which
can be computed using eithéfz, y) or D(x,y), as shown in Tables 3 and 4.

‘ y =N not(y =V x)
| d(y,#) >0 [ d(y,z) =0 [ d(y,x) <0
d(z,y) >0 z =y
N )
T~ d(xz,y) =0 x~Yy =Ny
notx =" y) | d(z,y) <0 y =N y =" x?y

Table 1: Necessary ranking computed in termg(af, y)

not( =" y) 2Ny
D(y,x) >0 | D(y,x) =0 [ D(y,x) <0
notly =" z) | D(z,y) >0 x?y x =Ny x ="y
N — ToN N
y =N o D(x,y) =0 y - x~y
D(z,y) <0 y>="x

Table 2: Necessary ranking computed in term®eof:, y)

‘ y =T x not(y =% x)
| d(y,z) > 0] d(y,z) =0 [ d(y,x) <0

d(xz,y) >0
~P )

Y Td(ry) =0
notx =" ) | d(z,y) <0

Table 3: Possible ranking computed in termsl@f, )
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not(z " y) 2"y
D(y,x) >0 | D(y,z) =0 ] D(y,x) <0
notly =" x) | D(x,y) >0 x~Ty x~Ty ="y
Y= D(z,y) =0 wwiy e~y
~ D(z,y) <0 y>="x

Table 4: Possible ranking computed in termdxf:, y)

Remark 4.1. In the absence of any pairwise comparison of reference aiteres, the
necessary weak preference relatipff boils down to the weak dominance relationin

A (aAb iff g;(a) > ¢;(b), i = 1,..,n). Each pairwise comparison provided by the DM,
for which the dominance relation does not hold, contributesrtrich=?, i.e. it makes
the relation—" true for at least one more pair of alternatives.

Remark 4.2. In the absence of any pairwise comparison of reference atenes, the
possible weak preference relatigri’ is a complete relation such that for any pair, b) €
Ax A

e a P bandb =" a < (not(aAb) and notbAa)) or (aAb andbAa)

e a P bandnoth =" a) < aAband notbAa)

Each pairwise comparison provided by the DM, for which the d@mce relation does
not hold, contributes to impoverigh”, i.e., it makes the relation” false for at least one
more pair of alternatives.

4.4 Analysis of incompatibility

Let us consider now the case where there is no value funcbampatible with the
preference information. We say, this is the case of incoibiit. In such a case, the
polyhedron generated by constraifitd” is empty. Therefore, the polyhedrons generated
by constraintsF (z, y), for all z,y € A, are also empty in this case. Such a case may
occur in one of the following situations:

¢ the preferences of the DM do not match the additive model,

e the DM may have made an error in his/her statements; for ekastpting that
a > bwhile bAa,
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e the statements provided by the DM are contradictory bechiséeer preferences
are unstable, some hidden criteria are taken into account, .

In such a case, the DM may want either to pursue the analytisswch an incompat-
ibility or to identify its reasons in order to remove it andetefore, to define a new set of
pairwise comparisong’ whose corresponding constrairté'” generate a non empty
polyhedron. Let us consider below the two possible solgtion

4.4.1 Situation where incompatibility is accepted

If the DM wants to pursue the analysis with the incompatiilne/she has to accept
that some of his/her pairwise comparisons of referencenatizes will not be reproduced
by any value function. Note that, from a formal viewpointthe polyhedron generated
by E4™ is empty, then-" and=* are meaningless. Thus, the acceptance of the incon-
sistency means that the DM does not change the prefererareniaion represented by
~ and computed(z,y) and D(z,y) on a new set of constrainfs4” differing from the
original setE“4"” by an additional constraint on the acceptable total error:

)

arb }Va,beAR
an~b
2,...,m

whered > F*, with F* = min ) _,r(c"(a) + 0~ (a)) subject toEA", such that the
resulting new set of constrainfg“” is not empty.

On the basis of2’*", for any pair(z,y) € A, the set of constraintg”(z,y) can be
built as the union of the constrainfs4” and the constraints relative to the breakpoints
introduced by those alternativesy that possibly do not belong ta”. Then preference
relations—'" and'"” can be computed by minimizing and maximizitigz) — U (y) sub-
jectto E'(z,y), rather than ta”(z, y), respectively. In other words, in this casiz, y)
andD(z,y) are computed considering (z, y) rather than®(z, y).
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Obviously, the necessary and possible rankings resultimg these computations
will not fully restore the provided pairwise comparisons, ithere is at least one couple
x,y € Af* such that

e z = y, butitis false that for all the compatible value functidiiéz) > Ul(y) (in
other words, there exists a compatible value function shahlt(x) < U(y) and
thus notf ="V v)), or

e = > y, but it is false that for all the compatible value functidigr) > U(y) (in
other words, there exists also a value function such tha) > U(x) and thus
y 2" ).

Next result will state that-"" and='"" maintain all the main properties of preference
relations—" and=*.

Proposition 4.6.

° >_/NC>_/P

e ~'Vis a complete preorder (i.e. transitive and strongly corntgle

e ~'"is strongly complete.

Proof: ="~ and>'" are built using the value functions satisfying constraifit§", in the
same way ag"¥ and=" are built using the value functions satisfying constraifits'.
Thus the proof is analogous to the proof of Propositions4t3.and 4.4. O

4.4.2 Situation where incompatibility is not accepted

If the DM does not want to pursue the analysis with the incdibpity, it is necessary
to identify the troublesome pairwise comparisons respbador this incompatibility, so
as to remove some of them. Remark that there may exist sewsabfspairwise com-
parisons which, once removed, make 8&{* of constraints non-empty. Hereafter, we
outline the main steps of a procedure which identifies thete s

Recall that the pairwise comparisons of reference alterestire represented in the
ordinal regression constraini*" by linear constraints. Hence, identifying the trouble-
some pairwise comparisons of reference alternatives arsatifinding a minimal subset
of constraints that, once removed frafit", leads to a set of constraints generating a
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non-empty polyhedron of compatible value functions. Thenidication procedure is to
be performed iteratively since there may exist severalmahisubsets of this kind.

Let associate with each pairwise comparison of refererteenaltivess andb a new
binary variablev, ;. Using these binary variables, we rewrite the first two c@msts of
setEA" as follows:

a>=bs U(a) —U(b) + Muvg,, >0
b L U@ =U®) + Mgy >0 (10)
“ U(b) — Ula) + Mgy > 0

whereM > 1. Remarkthat i, , = 1, then the corresponding constraint is satisfied what-
ever the value function is, which is equivalent to elimipatof this constraint. Therefore,
identifying a minimal subset of troublesome pairwise corgmas can be performed by
solving the following mixed 0-1 linear program:

Min — f =3, ean, azb Vab
S. t.
a-bsUa) —UD)+ Mugy, > ¢
U(a) = U(b) + Muvap >0 3 Va,be AR
{ —U(a) + Mvgp >0 (11)
( —ui(gi(an(j-1))) > 0,i=1,...,n, j=2,...,m
uiggi(an(l))) > 0, (gi(armm))) < ui(ﬁi), 1=1,...,n,

The optimal solution of (11) indicates one of the subsetsralkest cardinality being
the cause of incompatibility. Alternative subsets of thisdkcan be found by solving
(11) with additional constraint that forbids finding agdne tsame solution. Let* be the
optimal value of the objective function of (11) angl, the values of the binary variables
at the optimum. Let als§; = {(a,b) € A" x A" : a Z bandv}, = 1}. The additional
constraint has then the form

S <1 (12)

(a,b)ESl

Continuing in this way, we can identify other subsets, pdgsali of them. These
subsets of pairwise comparisons are to be presented to thad\lernative solutions for
removing incompatibility. Such procedure has been desdrib [20].
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5 Extensions

5.1 Specification of pairwise comparisons with gradual confidence
levels

The UTA®MS method presented in the previous section is intended toostihe DM
in an interactive process. Indeed, defining a large set ofvs comparisons of reference
alternatives can be difficult for the DM. Therefore, one wayaduce the difficulty of this
task would be to permit the DM an incremental specificatiopaifwise comparisons.
This way of proceeding allows the DM to control the evolutadrthe necessary and pos-
sible weak preference relations.

Another way of reducing the difficulty of the task is to extethé UTA®MS method
so as to account for different confidence levels assigneaitovige comparisons. Let
~1 C 79 C ... C =, be embedded sets of DM’s partial preorders of referencenalte
tives. To each set of partial preorderg,t = 1,...s, corresponds a set of constraints
EA"™ generating a polyhedron of compatible value functidtys’. PolyhedronsPA",

t = 1,...s, are embedded in the inverse order of the related partialrgees—,, i.e.
PA" D P D . D PA". We suppose tha®A" + () and, therefore, due to the fact that
partial preorderg, are embedded?” # (), forallt = 1,...,s. If PA" = ()we consider

only embedded partial preorders uritj} with p = maz {t : P{‘R # (Z)} and relabep by

s. Forallz,y € A, we say that there is a necessary weak preference relatienedf,
denoted byr =" y (t = 1,..., s), if for all value functionsU compatible with the partial
preorder—,, we haveU(z) > U(y). Analogously, for allz,y € A, we say that there is
a possible weak preference relation of leyedlenoted by: =7 v (t = 1, ..., s), if for at
least one value functioli compatible with the partial preordey;, we havel/ () > U(y).

In order to compute possible and necessary weak preferetatéons=” and =%,
we can proceed as follows. For ally € A, set of constraint#,(z,y) can be obtained
from setEtAR by adjoining the constraints relative to the breakpointoniuced by those
alternativesr, y that possibly do not belong td”. For eacht = 1,...,s, and binary

preference relations? and=!", we have

~t !

2Ny & di(z,y) >0

where: dy(x,y) = Min{U(z)—U(y)}

s.t. setl,(z, y) of constraints (13)

and
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7y < Di(z,y) >0

where : Dy(x,y) = Maz{U(z)—U(y)}

s.t. setF,;(z, y) of constraints (14)

Each time we pass fromr; ;to;,,t =1,...,s — 1, we add toE,;“_R1 and, conse-
quently, toE;_(z, ), new constraints concerning pairs b) € A% x A", such that, =,
b but nota 7, 1 b, thus the computations @f (z,y) andD,(x,y), forallz,y € A x A
proceed iteratively.

The following result states that binary preference refatio¥ and=”,t =1,...,s,
inherit properties of-" and=”.

Proposition 5.1.

N~wP
e T, CxZ/,

e ~Nis a complete preorder (i.e. transitive and strongly cortgle

o ~Iis strongly complete and negatively transitive.
Proof. Analogous to the proof of Propositions 4.1, 4.3 and 4.4 O

An important property of preference relations’ and=”, ¢ = 1, ..., s is stated by
the following proposition.

Proposition 5.2.

=Nand=l,t=1,...,s, are nested partial preorders: , C =N and=" > =F |,
t=2,...,s.

Proof. + =Y, y, x,y € A, means that/(z) > U(y) for all value functions/ satisfy-
ing £/\"}. Since each value functidii satisfyingE;\" satisfies alsd;!", we have that
U(z) > U(y) for all value functiond’ satisfyingE"", from which we get: ==V y. Thus
vy =y g ie gy, S

v =P y, z,y € A, means that there exists at least one value fundtiosatisfying
EA" such thatl/(z) > U(y). Let us denote one of these value functionslby Since
each value functio® satisfyingEA" satisfies alsd;'}, we have that/* satisfiesE;""].
Therefore, fromU*(x) > U*(y), we getr =F, y. Thus,z =F vy = = =F, y, i.e.
T 2% O
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Let \; be the confidence level assigned to pairwise comparisonsecoing pairs
(a,b) € AR x AE such thats =, b but nota =, 1 b, o= 0,t = 1,....8, 1 =
A1 > A2 > ... > Ag > 0. Using partial preorderg, ... =, and corresponding
A1, A2, ..., As, @ Valued binary preference relatiétl’ : A x A — [0, 1] or, more pre-
cisely, RN : A x A — {\, \a,..., )\, 0}, can be built as follows: for alt,y € A

e if there exists one (t = 1,.. ., s) such thatr =Y y,
thenRY (z,y) = max {\,t =1,...,s,such thatc =Yy}

e ifthere existsnd (t = 1,. .., s) for whichz =V y, thenR™ (x,y) = 0.

Analogously, a valued binary preference relatiBi : A x A — [0, 1] or, more
precisely,R” : A x A — {1 —A;,1—Xy,...,1 =\, 1}, can be built as follows: for all
T,y €A

e ifthereexistsone(t =1,.. s) such thatr =7 v,
thenR” (z,y) = min {1 — )\t, =1,...,s,such that nofz =/ y)}

o if x =P yforallt(t=1,...,s),thenR?(x,y) = 1.
Proposition5.3. Forall z,y € A
RN(z,y) = M+ & 2 22 yVr > t* and not(z 2 y) Vr < t*;

RP(z,y) =1\ &z 2F yV¥r <t and not(z =F ) vr > t*.

Proof. SinceRN(x y) = maz {\,t=1,...,s,suchthat: = y} then RN (2,7) = A\
implies = =% y. Taking into account that for Proposition 527N | y = = =N y, we
havex >N y Vr > t*. Moreover,RY(z,y) = A\ |mpI|es not(x >T y) Vr such that
Ar > )\t* Taklng into accountthat, > \,,; (t = 1,...,s—1), we get thatR™ (x, y) = -

implies not(z =Y y) Vr < t*. Thus, we proved that

RN(z,y) = M = 2 22 oy Vr > t* and notz =Y o) Vr < t*.

Forallz,y € A, x = y Vr > t*andnot(z =Y y) Vr < t* = t* = min{t, t =
1,...,s,suchthatr =V y}. (i)

Remembering that, > A\, (t =1,...,s — 1), from (i) we get
A= = max {)\t,t =1,...,s,such thaty =V y} ,
and for the definition oY (x,y), R (z,y) = . Thus we proved that
=N yvr >t and not(z Y y) Vr < t* = RN (2,y) = A\,
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which concludes the proof of
RN(z,y) = M+ & 2 22 y Vr > t* and notz 2 ) Vr < t*.
Analogous proof holds for
RP(z,y) =1\ &z 2l yVr <t and not(z =7 y) Vr > t*.

L]
Proposition 5.3 says thdt" (z,y) = \; means that: =~ y holds only forr > t,
while, for definition, R (z,y) = 0 means thatr = y does not hold for any (¢ =

1,...,s). Proposition 5.3 says also that’ (z,y) = 1 — \; means that =% y hols only
for r < t, while, for definition,R”(z,y) = 1 means that =" yforallt (t = 1,...,s).

It is interesting to investigate the properties of valuethby relations?” andR” (for
an introduction to valued binary relations and their prtipsrsee [6]). Let us remind that
a valued binary relatiof® defined on aseX,i.e. R: X x X — [0,1],is

o reflexive, ifforallz € X, R(x,z) =1,
e min-transitive, if for allz, y, z € X, min(R(z,y), R(y,2)) < R(z, z),
e strongly complete, if for alk, y € X, maz(R(z,y), R(y,z)) = 1,

e negatively transitive, if for alke, y, z € X, min((1 — R(z,y)), (1 — R(y,2))) <
(1= R(z,2)).

A valued binary relation which is reflexive and min-transgtis called fuzzy partial pre-
order.

Proposition 5.4. Valued binary relation?” is reflexive and min-transitive and, there-
fore, it is a fuzzy partial preorder. Valued binary relatidef’ is strongly complete and
negatively transitive.

Proof. For allz € A, for all value functiond/ compatible with the partial preorder,,
we havel/ (x) = U(x), which impliesz =Y z andR¥ (z,z) = 1, i.e. R is reflexive.

Forallz,y, 2 € X, two cases are possible:
a)min(R™ (z,y), RV (y, 2)) = 0,
b) min(RY (x,y), R¥(y, 2)) > 0.
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Considering that alway&” (z, z) > 0, in case a),
R¥(z,2) > min(R" (z,y), R (y,2)). (i)
In case b), for the definition a®”, we have that

min(RN (z,y), RN (y,2)) =

= min {ma:c {)\t,t =1,...,s,such that; =V y} ,
max {)\t,t —1,...,s,such thaty =" z}} =

=maz {\,t =1,...,s,suchthat =, yandy =, z} .
Thus, ifmin(RN(as,y),RN(y,z)) =\, thenU(z) > U(y) andU(y) > U(z) for all
value functiond/ compatible with>—,.. Thus, for all value function§ compatible with
=, we havel (x) > U(z) and, consequently, =Y z. This implies that
R¥(z,2) = max{\,t=1,...,s suchthat =" z}
> A =min(RY(z,y ),RN(y, z)). (i)

For (i) and(ii), valued binary relatio®” is min-transitive.

Let us suppose that = y, 2,y € A. In this case, for Proposition 5.2,=% y for all ¢
t=1,. 5) and, thereforeRP(x y) = 1. If, instead, not:{ =% y), then for Proposi-
tion 4. 2 y =N 2 and, therefore, for Property 4,=7 z. In consequence for Proposition
52,y =Fx for all ¢ (t=1,...,s)and, thusR?(y,z) = 1. This proves completeness of
valued binary relatio”.

Forallz,y, = € X, two cases are possible:
a)mazx(R" (z,y), R"(y, 2)) = 1,
b) max(RN (x,y), RN (y,2)) < 1.

In casea) we have thaf?”(z,y) = 1 or R”(y, 2) = 1, and thusl — R”(z,y) = 0 or
1 — RP(y, =) = 0, such thatnin((1 — R”(z,vy)), (1 — R (y,2))) = 0 and considering
that always — R”(z, 2) > 0, we get

min((1 — R"(z,y)),(1 = R"(y,2))) <1 - R"(z,2).

In caseb), R (z,y) < 1 andRF(y, z) < 1, for definition of R

1— R(z,y) =1—min{l—\,t=1,...,s,suchthatnotz =/ y)}) =
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= max {)\t,t =1,...,s,such that notz =" y)})

as well as

1-RP(y,2) =1—min{l—\,t=1,...,s,suchthatnoty = z)}) =

=max {\,t=1,...,s,suchthatnoty = 2)}).

Thus,
min((1 — RP(z,y)), (1 — R"(y, 2)))

min {maaj {)\t,t =1,...,s,such that notx =" )} ,
max {)\t,t —=1,...,s,such that noty =" z)}}

max {)\t,t =1,...,s,such that notz =" 4) and not(y =" z)} ,

max{\,t=1,...,s,suchthat U(y) > U(z) andU(z) > U(y)
for all value functiond/ compatible with —;}.

If min((1 — RP(x,y)),(1 — RP(y, 2))) = A\, thenU(x) < U(z) for all value functions
compatible with-,., which means that there does not exist any value funéfi@@mpat-

ible with 7, such thatU () > U(z). Thus,min{t,t = 1,...,s, such that nofz ="
z)} < rand, therefore,

maz{\,t=1,...,s, suchthatnotz =" 2)} > A,.

Since
maz{\,t=1,...,s, suchthatnofz =" 2)} =

=1—min{l —\,t=1,...,s,suchthatnatr =" 2)} =1 — R”(x, 2),

we conclude thatl — RF(z, 2)) > A\, = min((1 — R (z,y)), (1 — RF(y,2))).
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5.2 Accounting for intensity of preference

Another preference information that can be provided by theddncerns the intensity
of preference among two pairs of reference alternativeserGiwo pairs of alternatives
(xz,y) €7 and(w, z) €7, such that: - y andw > z, the DM can state : & is preferred
toy at least as much as is preferred to:”. Such statement means that for all compatible
value functiond/:

Ulx) = Uly) > U(w) = U(z). (15)

To account for the above preference information, it is sigfficto include condition
(15) in setE4" of constraints. Of course, consequently, condition (15 vé included
in constraintsF (z, y) for all z,y € A.

Converselyyz, y, w, z € A, itis possible to check whether or not condition
Uz) = Uly) > U(w) = U(2) (16)

holds for all compatible value functiors.

In order to do so, it is sufficient to check the feasibility ohstraints?(x, y) and (16).
Such information may enrich the DM’s knowledge of his/hefprences.

6 lllustrative example

In this section, we illustrate how a decision aiding procems be supported by the
UTACMS method. The computations of this example were performatjusie VISUAL-
UTA software (see [30]). We consider the following hypotbalt decision problem.
AGRITEC is a medium size firm (350 persons approx.) producorgestools for agri-
culture. The C.E.O., MBecault, intends to double the production and multiply eigor
by 4 within 5 years. Therefore, he wants to hire a new intéonat sales manager. A
recruitment agency has interviewed 17 potential candsdadgich have been evaluated
on 3 criteria (sales management experience, internatexgdrience, human qualities)
evaluated on a [0,100] scale. The evaluations of candi@aégsrovided in Table 5. With-
out any further information, the computed partial preorgd@r corresponds to the weak
dominance relation\ on the set of alternatives (See Figure 2).

The C.E.O. has attended 4 interviews and can express a cdnfidgement about
theses candidates: Ferret and Frechet are equally goodhyFsuless acceptable than
Ferret and Frechet, and Fleichman is even less acceptad-thurny. This means that
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the initial reference ranking is the following: FerretFrechet- Fourny - Fleichman.
For this initial preference information, the partial préer=?" has been computed using
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Critl| Crit2 | Crit 3
Alexievich 4 16 63
Bassama 28 18 28
Calvet 26 40 44
Dubois 2 2 68
El Mrabat 18 17 14
Feeret 35 62 25
Fleichman 7 55 12
Fourny 25 30 12
Frechet 9 62 88
Martin 0 24 73
Petron 6 15 100
Psorgos 16 9 0
Smith 26 17 17
Varlot 62 43 0
Yu 1 32 64

Table 5: Evaluation Table

Considering this first result, MBecault is willing to add further preference informa-
tion. This results in the following new reference rankingriet~ Frechet- Martin >~
Fourny ~ El Mrabat~ Fleichman. However, as he did not attend the interview of El
Mrabat and Martin, his opinion about the relative rankingledse candidates is not as
certain as the initial preference information.

It appears that for the provided information, no additivéueafunction fits the last
reference ranking. The analysis of this incompatibilitye@ls that the statement Ferret
~ Frechet cannot be represented together with the stateroanty= El Mrabat by an
additive value function. In other words, it is necessaryNtrBecault to revise one of
these statements. As he did not interview El Mrabat, he ésdiol remove him from the
reference ranking which becomes FerrefFrechet- Martin - Fourny > Fleichman.
This reference ranking is compatible with a representaipan additive value function.
Figure 4 represents two nested partial preorders:

e bold arrows represent partial preordel obtained for the most certain preference
information only, i.e., Ferret Frechet- Fourny> Fleichman,

e dashed arrows represent partial preordérobtained for the consistent preference
information composed of the most certain preference inédion and the less confi-
dent preference information about Martin, i.e., Fexrdtrechet- Martin = Fourny
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>~ Fleichman.
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Figure 4: Nested partial preorderg’ (bold) and=3’ (dashed)

The interactive process can be pursued,Bdcault adding in iteratiom some new
pairwise comparisons of reference alternatives, thusleimg the resulting partial pre-
order=¥, until it is decisive enough for the C.E.O. to make his choice.

~t

7 Conclusion

The new UTAMS method presented in this paper is an ordinal regressionauetip-
porting multiple criteria ranking of alternatives; it isstinguished from previous methods
of this kind by the following new features:

¢ the method considers general additive value functionerdtian piecewise linear
ones,

¢ the final rankings are defined using all value functions cdrleawith the provided
preference information,

e the method provides two final rankings: the necessary rgnklantifies “sure”
preference statements while the possible ranking idestipessible” preference
statements,
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e distinguishing necessary and possible consequences rgf aflivalue functions
compatible with preference information, UFAS includes a kind of robustness
analysis instead of using a single “best-fit” value function

e the necessary and possible preference relations congithet rASMS have several
properties of general interest for MCDA,

e when the DM provides preference information that cannotdprasented by an
additive model, the method identifies which pieces of thermfation underly this
impossibility,

¢ the method does not require the DM to interpret (and even &ipkhe marginal
value functions,

e the DM can assign confidence levels to pieces of prefererfoemiation, which
yields a valued necessary preference (proved to be a fuztiglgareorder) and a
valued possible preference (proved to be a strongly compled negatively transi-
tive valued binary relation).

We envisage the following future developments of the prestmethodology:

e application to multicriteria sorting problems,
e application to group decision problems,

e application to interactive multiobjective optimization.
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