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Robust multiple criteria ranking using a set of
additive value functions

Salvatore Greco∗, Vincent Mousseau†, Roman Słowínski∗

Résumé

Nous présentons une nouvelle méthode, appelée UTAGMS, pour le problème de
rangement multicritère d’un ensemble d’actionsA sur la base d’un ensemble de
fonctions de valeurs additives calculé par régression ordinale. L’information pré-
férentielle obtenue du décideur est un ensemble de comparaisons par paires sur un
sous-ensembleAR ⊆ A d’actions, appelées actions de référence. Le modèle de pré-
férence construit par régression ordinale est l’ensemble de toutes les fonctions de
valeur additives compatibles avec l’information préférentielle. En utilisant cemo-
dèle, il est possible de définir deux relations surA : une relation de surclassement
nécessaire qui est vraie pour deux actionsa, b ∈ A ssi pour toute fonction de valeur
compatibleU on aU(a) ≥ U(b), et la relation de surclassement possible qui est vraie
pour deux actionsa, b ∈ A ssi il existe au moins une fonction de valeur compatible
U telle queU(a) ≥ U(b). Ces deux relations définissent un classement possible et
nécessaire des actions deA, et sont, respectivement, un préordre partiel, et une rela-
tion fortement complète et négativement transitive. La méthode UTAGMS est conçue
pour être utilisée de façon interactive, avec un ensembleAR qui s’accroît de sorte
que le décideur ajoute progressivement des comparaisons par paire. Lorsqu’aucune
comparaison pas paire n’est fournie, le surclassement nécessaire correspond à la re-
lation de dominance et le surclassement possible est une relation complète. Chaque
nouvelle comparaison d’actions de référence ne correspondant pasà une situation de
dominance enrichit la relation de surclassement nécessaire et appauvritla relation de
surclassement possible, de sorte qu’elles convergent à mesure que l’information pré-
férentielle s’enrichit. En distinguant les conséquences nécessaires etpossibles surA

∗LAMSADE, Université Paris-Dauphine, 75775 Paris cedex 16,France.
mousseau@lamsade.dauphine.fr

‡Faculty of Economics, University of Catania, Corso Italia,55, 95129 Catania, Italy,
salgreco@mbox.unict.it
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Robust multiple criteria ranking using a set of additive value functions

d’informations de préférence, UTAGMS répond à des questions relevant de l’analyse
de robustesse. De plus, la méthode aide le décideur aussi lorsque ses préférences ne
peuvent pas être représentées en termes de fonctions de valeurs additives. La méthode
est illustrée sur un exemple résolu avec le logiciel VisualUTA v1.0. Des extensions
sont aussi proposées.

Mots-clefs : Analyse de robustesse, Rangement multicritère, Régression ordinale,
Fonction de valeur additive

Abstract

We present a new method, called UTAGMS, for multiple criteria ranking of al-
ternatives from setA using a set of additive value functions which result from an
ordinal regression. The preference information provided by the decision maker is a
set of pairwise comparisons on a subset of alternativesAR ⊆ A, called reference
alternatives. The preference model built via ordinal regression is a set of all additive
value functions compatible with the preference information. Using this model, one
can define two relations in the setA: the necessary weak preference relation which
holds for any two alternativesa, b from setA if and only if for all compatible value
functionsa is preferred tob, and the possible weak preference relation which holds
for this pair if and only if for at least one compatible value functiona is preferred to
b. These relations establish a necessary and a possible ranking of alternatives from
A, being, respectively, a partial preorder and a strongly complete and negatively
transitive relation. The UTAGMS method is intended to be used interactively, with an
increasing subsetAR and a progressive statement of pairwise comparisons. When no
preference information is provided, the necessary weak preferencerelation is a weak
dominance relation, and the possible weak preference relation is a complete relation.
Every new pairwise comparison of reference alternatives, for which the dominance
relation does not hold, is enriching the necessary relation and it is impoverishing the
possible relation, so that they converge with the growth of the preferenceinforma-
tion. Distinguishing necessary and possible consequences of preference information
on the all set of actions, UTAGMS answers questions of robustness analysis. More-
over, the method can support the decision maker also when his/her preference state-
ments cannot be represented in terms of an additive value function. The method is
illustrated by an example solved using the UTAGMS software. Some extensions of
the method are also presented.

Key words : Robustness analysis, Multiple criteria ranking, Ordinal regression ap-
proach, Additive value function

1 Introduction

We are considering a decision situation in which a finite set of alternatives (actions)
A is evaluated on a family ofn criteria g1, g2, . . . , gi, . . . , gn, with gi : A → R for all
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i ∈ G = {1, 2, . . . , n}. We assume, without loss of generality, that the greatergi(a), the
better alternativea on criteriongi, for all i ∈ G. A decision maker (DM) is willing to
rank the alternatives inA from the best to the worst, according to his/her preferences. The
ranking can be complete or partial, depending on the preference information supplied by
the DM and on the way of using this information. The family of criteriaG is supposed to
satisfy the following consistency conditions (see [24]):

• exhaustivity - any two alternatives having the same evaluations on all criteria from
G should be considered indifferent,

• monotonicity - when comparing two alternatives, an improvement of one of them
on at least one criterion fromG should not deteriorate its comparison to the other
alternative,

• non-redundancy - deletion of any criterion fromG will contradict one of the two
above conditions.

Such a decision problem is called multiple criteria rankingproblem. It is known
that the only information coming out from the formulation ofthis problem is the weak
dominance relation. Let us recall that the weak dominance relation is a partial preorder:
alternativea ∈ A is preferred to alternativeb ∈ A (denotationa ≻ b) if and only if
gi(a) ≥ gi(b) for all i ∈ G, with at least one strict inequality; moreover,a is indifferent
to b (denotationa ∼ b) if and only if gi(a) = gi(b) for all i ∈ G; hence, for any two
alternativesa, b ∈ A, one of the four situations may arise in the weak dominance relation:
a ≻ b, a ≺ b, a ∼ b anda?b, where the last one means thata andb are incomparable.
Usually, the weak dominance relation is very poor, i.e. the most frequent situation isa?b.

In order to enrich the weak dominance relation, multiple criteria decision aiding
(MCDA) helps in construction of an aggregation model on the base of preference in-
formation provided by the DM. Such an aggregation model is called preference model -
it induces a preference structure in setA whose proper exploitation permits to work out a
ranking proposed to the DM.

The preference information may be either direct or indirect, depending if it specifies
directly values of some parameters used in the preference model (e.g. trade-off weights,
aspiration levels, discrimination thresholds, etc.), or if it specifies some examples of holis-
tic judgments from which compatible values of the preference model parameters are in-
duced. Direct preference information is used in the traditional aggregation paradigm,
according to which the aggregation model is first constructed and then applied on setA

to rank the alternatives.
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Indirect preference information is used in the disaggregation (or regression) paradigm,
according to which the holistic preferences on a subset of alternativesAR ⊆ A are known
first, and then a consistent aggregation model is inferred from this information to be ap-
plied on setA in order to rank the alternatives.

Presently, MCDA methods based on indirect preference information and the disag-
gregation paradigm are of increasing interest for they require relatively less cognitive
effort from the DM. Indeed, the disaggregation paradigm is consistent with the “posterior
rationality” postulated by March [18] and with the inductive learning used in artificial
intelligence approaches (see [19]). Typical applicationsof this paradigm in MCDA are
presented in [29], [22], [10], [13], [1], [21], [7], [8], [9].

In this paper, we are considering the aggregation model in form of an additive value
function:

U(a) =
n

∑

i=1

ui(a) (1)

whereui(a) ≥ 0, i = 1, . . . , n, are nondecreasing marginal value functions. While the
additive value function involves compensation between criteria and requires rather strong
assumption that criteria are independent in the sense of preferences [11], it is often used
for its intuitive interpretation and relatively easy computation. The weighted-sum aggre-
gation model, which is a particular case of the additive value function, is used even more
frequently in spite of its simplistic form (see e.g. [1], [25]).

We are using the additive aggregation model in the settings of the disaggregation
paradigm, as it has been proposed in the UTA method (see [10]). In fact, our method
generalizes the UTA method in two aspects:

• it takes into account all additive value functions (1) compatible with indirect pref-
erence information, while UTA is using only one such function,

• the marginal value functions of (1) are general non-decreasing functions, and not
piecewise linear, as in UTA,

• the DM’s ranking of reference alternatives does not need to be complete.

The preference information used by our method is provided inthe form of a set of
pairwise comparisons of some alternatives from a subsetAR ⊆ A, called reference alter-
natives. The method is producing two rankings in the set of alternativesA, such that for
any pair of alternativesa, b ∈ A:
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• in thenecessaryranking,a is ranked at least as good asb if and only if,U(a) ≥ U(b)
for all value functions compatible with the preference information,

• in thepossibleranking,a is ranked at least as good asb if and only if,U(a) ≥ U(b)
for at least onevalue function compatible with the preference information.

The necessary ranking can be considered as robust with respect to the indirect prefer-
ence information. Such robustness of the necessary rankingrefers to the fact that any pair
of alternatives compares in the same way whatever the additive value function compatible
with the indirect preference information. Indeed, when no indirect preference informa-
tion is given, the necessary ranking boils down to the weak dominance relation, and the
possible ranking is a complete relation. Every new pairwisecomparison of reference
alternatives, for which the dominance relation does not hold, is enriching the necessary
ranking and it is impoverishing the possible ranking, so that they converge with the growth
of the preference information.

Another appeal of such an approach stems from the fact that itgives space for inter-
activity with the DM. Presentation of the necessary ranking, resulting from an indirect
preference information provided by the DM, is a good supportfor generating reactions
from the DM. Namely, (s)he could wish to enrich the ranking orto contradict a part of it.
This reaction can be integrated in the indirect preference information in the next iteration.

The organization of the paper is the following. In the next section, we will outline
the principle of the ordinal regression via linear programming, as proposed in the original
UTA method (see [10]). In section 3, we give a brief overview of existing approaches
to multiple criteria ranking using a set of additive value functions, and we provide mo-
tivations for our approach. The new UTAGMS method is presented in section 4. Some
extensions are considered in section 5. Section 6 provides an illustrative example show-
ing how the method can be applied in practice. The last section includes conclusions.

2 Ordinal regression via linear programming - principle
of the UTA method

Let Xi denote the evaluation scale of criteriongi, i ∈ G. Consequently,X =
∏n

i=1 Xi

is the evaluation space, andx, y ∈ X denote profiles of alternatives in this space. We
consider a weak preference (outranking) relation% on X that states for each pair of
vectorsx, y ∈ X: x % y ⇔ “x is at least as good asy”. This weak preference relation
can be decomposed into its asymmetric and symmetric parts, as follows:
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• x ≻ y ⇔ [x % y and not(y % x)] ⇔ “x is preferred toy”,

• x ∼ y ⇔ [x % y andy % x] ⇔ “x is indifferent toy”

>From a pragmatic viewpoint, it is reasonable to assume thatXi = [αi, βi], i.e. the
evaluation scale on each criteriongi is bounded, such thatαi < βi are the worst and the
best (finite) evaluations, respectively. Thus,gi : A 7→ Xi, i ∈ G, therefore, each alterna-
tive a ∈ A is associated with an evaluation vector denoted byg(a) ∈ X.

The additive value function is defined onX such that for eacha ∈ A

U(g(a)) =
n

∑

i=1

ui(gi(a)), (2)

whereui are non-decreasing marginal value functions,ui : Xi 7→ R, i = 1, . . . , n. For
simplicity, we will write (2) as (1), i.e.U(a) =

∑n

i=1 ui(a).

In the following, we recall the principle of the UTA method aspresented recently in
[28]. The indirect preference information is given in the form of a complete preorder
on a subset of reference alternativesAR ⊆ A, called reference preorder. The reference
alternatives are usually those alternatives in setA for which the DM is ready to express
holistic preferences. Let the set of reference alternatives AR = {a1, a2, ..., am} be rear-
ranged such thatak % ak+1, k = 1, ...,m − 1, wherem = |AR|. The disaggregation
paradigm consists here in inferring an additive value function (1) ranking the reference
alternatives in exactly the same way as it was done by the DM. Such a value functionU
is calledcompatible.

The ordinal regression consists in the inference of a compatible value function restor-
ing the reference preorder. The transition from a referencepreorder to a value function is
done according to the following equivalence :

U(ak) > U(ak+1) ⇔ ak ≻ ak+1

U(ak) = U(ak+1) ⇔ ak ∼ ak+1
(3)

for k = 1, ...,m − 1.

In the UTA method, the marginal value functionsui are assumed to be piecewise
linear, so that the intervals[αi, βi] are divided intoγi ≥ 1 equal sub-intervals:[x0

i , x
1
i ],

[x1
i , x

2
i ], . . ., [xγi−1

i , x
γi

i ], wherex
j
i = αi + j(βi−αi)

γi

, j = 0, . . . , γi, i = 1, . . . , n. The
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marginal value (see Figure 1) of an alternativea ∈ A is approximated by linear interpola-
tion

ui(a) = ui(x
j
i ) +

gi(a) − x
j
i

x
j+1
i − x

j
i

(

ui(x
j+1
i ) − ui(x

j
i )

)

, for gi(a) ∈ [xj
i , x

j+1
i ] (4)

According to (4), the piecewise linear additive model is completely defined by the
marginal values at the characteristic points, i.e.ui(x

0
i ) = ui(αi), ui(x

1
i ), ui(x

2
i ), . . . ,

ui(x
γi

i ) = ui(βi).

ui

gi

ui(βi)

ui(x
3
i )

ui(gi(a))

ui(x
2
i )

ui(x
1
i )

0
αi = x0

i x1
i x2

i gi(a) x3
i βi = x4

i

b

b

b

b

b

Figure 1: Piecewise linear marginal value function

It is also usual to suppose a kind of normalization such asui(αi) = 0, ∀i ∈ G, and
∑n

i=1 ui(βi) = 1. This will bound the value functionU(a) in the interval [0,1].

Therefore, a value functionU(a) =
∑n

i=1 ui(a) is compatible if it satisfies the follow-
ing set of constraints

U(ak) > U(ak+1) ⇔ ak ≻ ak+1

U(ak) = U(ak+1) ⇔ ak ∼ ak+1

}

k = 1, . . . ,m − 1

ui(x
j+1
i ) − ui(x

j
i ) ≥ 0, i = 1, ..., n, j = 1, ..., γi − 1

ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1

(5)
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To verify if a compatible value functionU(a) =
∑n

i=1 ui(a) restoring the reference
preorder% onAR exists, one can solve the following linear programming problem, where
ui(x

j
i ), i = 1, ..., n, j = 1, ..., γi are unknown, andσ+(a), σ−(a), a ∈ AR are auxiliary

variables:

Min → F =
∑m

k=1 (σ+(ak) + σ−(ak))
s.t.

U(ak) + σ+(ak) − σ−(ak) ≥
U(ak+1) + σ+(ak+1) − σ−(ak+1) + ε ⇔ ak ≻ ak+1

U(ak) + σ+(ak) − σ−(ak) =
U(ak+1) + σ+(ak+1) − σ−(ak+1) ⇔ ak ∼ ak+1















k = 1, . . . ,m − 1

ui(x
j+1
i ) − ui(x

j
i ) ≥ 0, i = 1, ..., n, j = 1, ..., γi − 1

ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1
σ+(ak), σ−(ak) ≥ 0, k = 1, ...,m

(6)

whereε is an arbitrarily small positive value so thatU(ak)+σ+(ak)−σ−(ak) > U(ak+1)+
σ+(ak+1) − σ−(ak+1) in case ofak ≻ ak+1.

If the optimal value of the objective function of the program(6) is equal to zero
(F ∗ = 0), then there exists at least one value functionU(a) =

∑n

i=1 ui(a) satisfying
(5), i.e. compatible with the reference preorder onAR. In other words, this means that the
corresponding polyhedron (5) of feasible solutions forui(x

j
i ), i = 1, ..., n, j = 1, ..., γi

is not empty.

Let us remark that the transition from the preorder% to the marginal value function
exploits the ordinal character of the criterion scaleXi. Note, however, that the scale of
the marginal value function is a conjoint interval scale. More precisely, for the considered
additive value function, the admissible transformations on the marginal value functions
ui(xi) have the formu∗

i (xi) = k × ui(xi) + hi, hi ∈ R, i = 1, ..., n, k > 0, such that for
all [x1, ..., xn], [y1, ..., yn] ∈

∏n

i=1 Xi

n
∑

i=1

ui(xi) ≥
n

∑

i=1

ui(yi) ⇔
n

∑

i=1

u∗

i (xi) ≥
n

∑

i=1

u∗

i (yi).

An alternative way of representing the same preference model is:

U(a) =
n

∑

i=1

wiûi(a), whereû(αi) = 0, û(βi) = 1, wi ≥ 0 ∀i ∈ G, and
n

∑

i=1

wi = 1.

(7)
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Note that the correspondence between (7) and (1) is such thatwi = ui(βi), ∀i ∈ G.
Due to the cardinal character of the marginal value functionscale, the parameterswi can
be interpreted as tradeoff weights among marginal value functions ûi(a). We will use,
however, the preference model (1) with normalization constraints boundingU(a) to the
interval [0, 1].

When the optimal value of the objective function of the program (6) is greater than
zero (F ∗ > 0), then there is no value functionU(a) =

∑n

i=1 ui(a) compatible with the
reference preorder onAR. In such a case, three possible moves can be considered:

• increasing the number of linear piecesγi for one or several marginal value function
ui could make it possible to find an additive value function compatible with the
reference preorder onAR,

• revising the reference preorder onAR could lead to find an additive value function
compatible with the new preorder,

• searching over the relaxed domainF ≤ F ∗ + η could lead to an additive value
function giving a preorder onAR sufficiently close to the reference preorder (in the
sense of Kendall’sτ ).

3 Existing approaches and motivations for a new method

Our work aims at generalizing the UTA method in order to consider the set of all
value functions compatible with the indirect preference information rather than choosing a
single value function within the set of compatible ones. Theliterature concerning MCDA
methods involving a set of additive value functions can be viewed from three points of
view:

• The methods are designed for different problem statements (problematics, see [23]):

– choice of the best alternative (e.g. [2], [14], [16], [5], [26]),

– sorting alternatives into predefined categories (e.g. [15], [4]),

– ranking of alternatives from the best to the worst (e.g. [10], [12])

• The methods also differ with respect to the kind of the set of value functions and the
characteristics of these functions: linear (e.g. [14], [12]) or piecewise linear (e.g.
[3], [10], [4]) or monotone (e.g. [1]) value functions.

• The sets of value functions can be:
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– explicitly listed (e.g. [27]),

– defined from stated constraints on the functions (e.g. [2], [17]),

– induced from holistic preference statements concerning alternatives (e.g.[15],
[31], [1]).

A review of the literature and, particularly, of the methodsbased on the ordinal re-
gression approach, shows that these methods fail to consider some important issues :

• If the polyhedron of value functions compatible with the stated preference informa-
tion is not empty, then the choice of a single or few representative value functions
is either arbitrary or left to the DM. In the latter case, the DM is supposed to know
how to interpret the form of the marginal value functions in order to choose among
them, which is not easy for most DMs. Therefore, it seems reasonable to accept
existence of all value functions compatible with the preference information pro-
vided by the DM and to assess a preference relation in the set of alternativesA with
respect to all these functions.

• In most methods, the class of value functions is limited to linear or piecewise linear
marginal value functions. To specify the number of characteristic points (break-
points) is arbitrary and restrictive. It is desirable to consider just monotone marginal
value functions which do not involve any parametrization.

• Most methods require that the DM provides constraints on therange of weights
of linear marginal value functions, or on the range of variation of piecewise linear
marginal value functions. The DM may have, however, difficulties to analyze the
link between a specific value function and the resulting ranking. This is why we
believe that the DM should be allowed to express preference information in terms
of pairwise comparisons of alternatives rather than fixing the above constraints.
Providing preference information in this way is consistentwith intuitive reasoning
of DMs.

• The methods based on ordinal regression are usually considering the preference in-
formation provided by the DM as a whole. As a consequence, it is difficult for the
DM to associate a piece of his/her preference information with the result and, there-
fore, to control the impact of each piece of information (s)he provides on the result.
As such a control is desirable for a truly interactive process, ordinal regression
methods should allow the DM to provide incrementally the preference information
by possibly small pieces.

In this paper, we intend to present a new ordinal regression method that accounts for
all shortcomings listed above.
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4 The new UTAGMS method

4.1 Presentation of the method

The new UTAGMS method is an ordinal regression method using a set of additive value
functionsU(a) =

∑n

i=1 ui(gi(a)) as a preference model. One of its characteristic features
is that it takes into account the set of all value functions compatible with the preference
information provided by the DM. Moreover, it considers general non-decreasing marginal
value functions instead of piecewise linear only.

We suppose the DM provides preference information in form ofpairwise comparisons
of reference alternatives fromAR ⊆ A. This preference information is a partial preorder
on AR, denoted by%. A value function is calledcompatibleif it is able to restore the
partial preorder%. Each compatible value function induces, moreover, a ranking on the
whole setA.

In particular, for any two alternativesx, y ∈ A, a compatible value function ranksx
andy in one of the following ways:x ≻ y, y ≻ x, x ∼ y. With respect tox, y ∈ A, it is
thus reasonable to ask the following two questions:

• arex andy ranked in the same way by allcompatible value functions?

• is there at least onecompatible value function rankingx at least as good asy (or y

at least as good asx)?

Having answers to these questions for all pairs of alternatives(x, y) ∈ A × A, one gets
a necessaryweak preference relation%N , in caseU(x) ≥ U(y) for all compatible value
functions, and apossibleweak preference relation%P in A, in caseU(x) ≥ U(y) for at
least one compatible value function.

Let us remark that preference relations%N and%P are meaningful only if there exists
at least one compatible value function. Observe also that inthis case, for anyx, y ∈ AR,

x % y ⇒ x %N y

and
x ≻ y ⇒ not (y %P x).

In fact, if x % y, then for any compatible value functionU(x) ≥ U(y) and, therefore,
x %N y. Moreover, ifx ≻ y, then for any compatible value functionU(x) > U(y) and,
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consequently, there is no compatible value function such thatU(y) ≥ U(x), which means
that noty %P x.

Formally, a general additive compatible value function is an additive value function
U(a) =

∑n

i=1 ui(a) satisfying the following set of constraints:

U(a) > U(b) ⇔ a ≻ b

U(a) = U(b) ⇔ a ∼ b

}

∀a, b ∈ AR

ui(gi(aτi(j))) − ui(gi(aτi(j−1))) ≥ 0, i = 1, ..., n, j = 2, ...,m
ui(gi(aτi(1))) ≥ 0, ui(gi(aτi(m))) ≤ ui(βi), i = 1, ..., n,

ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1,































(EAR

)

whereτi is the permutation on the set of indices of alternatives fromAR that reorders
them according to the increasing evaluation on criteriongi, i.e.

gi(aτi(1)) ≤ gi(aτi(2)) ≤ . . . ≤ gi(aτi(m−1)) ≤ gi(aτi(m))

Remark that, due to this formulation of the ordinal regression problem, no linear inter-
polation is required to express the marginal value of any reference alternative. Thus, one
cannot expect that increasing the number of characteristicpoints will bring some “new”
compatible additive value functions. In consequence, UTAGMS considers all compatible
additive value functions while classical UTA ordinal regression (6) deals with a subset of
the whole set of compatible additive value functions, more precisely the subset of piece-
wise linear additive value functions relative to the considered characteristic points.

4.2 Properties of the relations%N and %P

Binary relations%N and%P satisfy the following interesting properties.

Proposition 4.1. %P ⊇ %N

Proof. If U(x) ≥ U(y) for all compatible value functionsU , i.e. x %N y, then there is at
least one compatible value functionU ′ such thatU ′(x) ≥ U ′(y), i.e. x %P y.
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Proposition 4.2. For all x, y ∈ A, x %N y or y %P x.

Proof. Let us denote byU the set of value functions compatible with%. For allx, y ∈ A,

U(x) ≥ U(y) ∀U ∈ U or ∃U ∈ U such thatU(y) > U(x) ⇒ x %N y or y %P x.

Let us observe that from Proposition 4.2, we can get the following interesting corol-
lary.

Corollary 4.1. For all x, y ∈ A,

1) not(x %N y) ⇒ y %P x,

2) not(x %P y) ⇒ y %N x.

Proof. 1) Sincex %N y or y %P x, if not (x %N y), theny %P x.

2) Sincex %P y or y %N x, if not (x %P y), theny %N x.

Proposition 4.3. %N is a partial preorder(i.e. reflexive and transitive)

Proof. For all x ∈ A, U(x) = U(x). This is true also for allU being compatible value
functions, such thatx %N x. Let us suppose that forx, y, z ∈ A, we havex %N y and
y %N z. This means that for all compatible value functionsU we haveU(x) ≥ U(y)
and U(y) ≥ U(z), which implies that for all compatible value functionsU we have
U(x) ≥ U(z), i.e. x %N z.

Proposition 4.4. %P is strongly complete, i.e.∀x, y ∈ A, x %P y or y %P x, and
negatively transitive, i.e.∀x, y, z ∈ A, not(x %P y) and not(y %P z) ⇒ not(x %P z)

Proof. Consider any compatible value functionU . For each pairx, y ∈ A, it holds
U(x) ≥ U(y) or U(y) ≥ U(x), i.e. x %P y or y %P x; therefore%P is strongly
complete.
not(x %P y) means that there does not exist any compatible value function U such that
U(x) ≥ U(y). not(y %P z) means that there does not exist any compatible value function
U such thatU(y) ≥ U(z). Therefore, there does not exist any compatible value function
U such thatU(x) ≥ U(z), which means thatnot(x %P z).

107



Robust multiple criteria ranking using a set of additive value functions

Observe that while%P is negatively transitive, it is not necessarily transitive, i.e. it is
possible that forx, y, z ∈ A, x %P y, y %P z but notx %P z. This can happen because
there could exist one compatible value functionU such thatU(x) ≥ U(y) and one com-
patible value functionU ′ such thatU ′(y) ≥ U ′(z), however, there could be no compatible
value functionU ′′ such thatU ′′(x) ≥ U ′′(z).

Notice that it is impossible to infer%N from %P or vice versa, since%N and%P are
not dual, i.e.x %N y ⇔ not(y %P x) does not hold as one could expect. In fact, in case
for x, y ∈ A, U(x) = U(y) for all compatible value functionsU , we havex %N y and
y %P x.

>From the two weak preference relations%N and%P , one can get preference, indif-
ference and incomparability, in a usual way, i.e.

1) from the necessary weak preference relation%N one obtains:

• preference:x ≻N y ⇔ x %N y and not(y %N x)

• indifference:x ∼N y ⇔ x %N y andy %N x

• incomparability:x?Ny ⇔ not(x %N y) and not(y %N x)

2) from the possible weak preference relation%P one obtains:

• preference:x ≻P y ⇔ x %P y and not(y %P x)

• indifference:x ∼P y ⇔ x %P y andy %P x

Observe that in case of%P , incomparability is not considered because, for proposition
4.3,%P is strongly complete.

The preference relations obtained from%N constitute the necessary ranking, and the
preference relations obtained from%P constitute the possible ranking; they are presented
to the DM as end results of the UTAGMS method at the current stage of interaction.

4.3 Computation of the relations%N and %P

In order to compute binary realtions%P and%N we can proceed as follows. For
all alternativesx, y ∈ A, let πi be a permutation of the indices of alternatives from set
AR ∪ {x, y} that reorders them according to increasing evaluation on criteriongi, i.e.

gi(aπi(1)) ≤ gi(aπi(2)) ≤ ... ≤ gi(aπi(ω−1)) ≤ gi(aπi(ω))

where
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• if AR ∩ {x, y} = ∅, thenω = m + 2

• if AR ∩ {x, y} = {x} or AR ∩ {x, y} = {y}, thenω = m + 1

• if AR ∩ {x, y} = {x, y}, thenω = m.

Then, we can fix the characteristic points ofui(gi), i = 1, ..., n, in

g0
i = αi, g

j
i = gi(aπi(j)) for j = 1, ..., ω, gω+1

i = βi

Let us consider the following setE(x, y) of ordinal regression constraints, withi =
1, ..., n, j = 1, ..., ω + 1 as variables:

U(a) ≥ U(b) + ε ⇔ a ≻ b

U(a) = U(b) ⇔ a ∼ b

}

∀a, b ∈ AR

ui(g
j
i ) − ui(g

j−1
i ) ≥ 0, i = 1, ..., n, j = 1, ..., ω + 1

ui(g
0
i ) = 0, i = 1, ..., n

∑n

i=1 ui(g
ω+1
i ) = 1,























(E(x, y))

whereε is an arbitrarily small positive value as in (6).

The above set of constraints depends on the pair of alternativesx, y ∈ A because their
evaluationsgi(x) and gi(y) give coordinates for two of(ω + 1) characteristic points
of marginal value functionui(gi), for eachi = 1, . . . , n. Note that for allx, y ∈ A,
E(x, y) = E(y, x).

Let us suppose that the polyhedron defined by the set of constraintsE(x, y) is not
empty. In this case we have that:

x %N y ⇔ d(x, y) ≥ 0

where: d(x, y) = Min{U(x) − U(y)}
s.t. setE(x, y) of constraints

(8)

and

x %P y ⇔ D(x, y) ≥ 0

where : D(x, y) = Max{U(x) − U(y)}
s.t. setE(x, y) of constraints

(9)

What are the relations between%P and%N with respect to computation? In other
words, is it necessary to calculated(x, y) andD(x, y) for all x, y ∈ A? Proposition 4.5
gives a technical result useful for answering this question.
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Proposition 4.5. For all x, y ∈ A, the following equivalences hold:

d(x, y) ≥ 0 ⇔ D(y, x) ≤ 0
D(x, y) ≥ 0 ⇔ d(y, x) ≤ 0
d(x, y) = 0 ⇔ D(y, x) = 0

Proof. The proof results from the following equalities:
d(x, y) = Mins.t.E(x,y){U(x)−U(y)} = −Maxs.t.E(y,x){U(y)−U(x)} = −D(y, x)

According to Proposition 4.5, the relation%N can be computed using eitherd(x, y)
or D(x, y), as shown in Tables 1 and 2. A similar remark concerns the relation %P which
can be computed using eitherd(x, y) or D(x, y), as shown in Tables 3 and 4.

y %N x not(y %N x)
d(y, x) > 0 d(y, x) = 0 d(y, x) < 0

x %N y
d(x, y) > 0 x ≻N y

d(x, y) = 0 x ∼N y x ≻N y

not(x %N y) d(x, y) < 0 y ≻N x y ≻N x x?y

Table 1: Necessary ranking computed in terms ofd(x, y)

not(x %N y) x %N y

D(y, x) > 0 D(y, x) = 0 D(y, x) < 0

not(y %N x) D(x, y) > 0 x?y x ≻N y x ≻N y

y %N x
D(x, y) = 0 y ≻N x x ∼N y

D(x, y) < 0 y ≻N x

Table 2: Necessary ranking computed in terms ofD(x, y)

y %P x not(y %P x)
d(y, x) > 0 d(y, x) = 0 d(y, x) < 0

x %P y
d(x, y) > 0 x ≻P y

d(x, y) = 0 x ∼P y x ∼P y

not(x %P y) d(x, y) < 0 y ≻P x x ∼P y x ∼P y

Table 3: Possible ranking computed in terms ofd(x, y)
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not(x %P y) x %P y

D(y, x) > 0 D(y, x) = 0 D(y, x) < 0

not(y %P x) D(x, y) > 0 x ∼P y x ∼P y x ≻P y

y %P x
D(x, y) = 0 x ∼P y x ∼P y

D(x, y) < 0 y ≻P x

Table 4: Possible ranking computed in terms ofD(x, y)

Remark 4.1. In the absence of any pairwise comparison of reference alternatives, the
necessary weak preference relation%N boils down to the weak dominance relation∆ in
A (a∆b iff gi(a) ≥ gi(b), i = 1, .., n). Each pairwise comparison provided by the DM,
for which the dominance relation does not hold, contributes to enrich%N , i.e. it makes
the relation%N true for at least one more pair of alternatives.

Remark 4.2. In the absence of any pairwise comparison of reference alternatives, the
possible weak preference relation%P is a complete relation such that for any pair(a, b) ∈
A × A

• a %P b andb %P a ⇔ (not(a∆b) and not(b∆a)) or (a∆b andb∆a)

• a %P b and not(b %P a) ⇔ a∆b and not(b∆a)

Each pairwise comparison provided by the DM, for which the dominance relation does
not hold, contributes to impoverish%P , i.e., it makes the relation%P false for at least one
more pair of alternatives.

4.4 Analysis of incompatibility

Let us consider now the case where there is no value function compatible with the
preference information. We say, this is the case of incompatibility. In such a case, the
polyhedron generated by constraintsEAR

is empty. Therefore, the polyhedrons generated
by constraintsE(x, y), for all x, y ∈ A, are also empty in this case. Such a case may
occur in one of the following situations:

• the preferences of the DM do not match the additive model,

• the DM may have made an error in his/her statements; for example stating that
a ≻ b while b∆a,

111



Robust multiple criteria ranking using a set of additive value functions

• the statements provided by the DM are contradictory becausehis/her preferences
are unstable, some hidden criteria are taken into account, ...

In such a case, the DM may want either to pursue the analysis with such an incompat-
ibility or to identify its reasons in order to remove it and, therefore, to define a new set of
pairwise comparisonsB′R whose corresponding constraintsE ′AR

generate a non empty
polyhedron. Let us consider below the two possible solutions.

4.4.1 Situation where incompatibility is accepted

If the DM wants to pursue the analysis with the incompatibility, he/she has to accept
that some of his/her pairwise comparisons of reference alternatives will not be reproduced
by any value function. Note that, from a formal viewpoint, ifthe polyhedron generated
by EAR

is empty, then%N and%P are meaningless. Thus, the acceptance of the incon-
sistency means that the DM does not change the preference information represented by
% and computesd(x, y) andD(x, y) on a new set of constraintsE ′AR

differing from the
original setEAR

by an additional constraint on the acceptable total error:

U(a) + σ+(a) − σ−(a) > U(b) + σ+(b) − σ−(b) ⇔ a ≻ b

U(a) + σ+(a) − σ−(a) = U(b) + σ+(b) − σ−(b) ⇔ a ∼ b

}

∀a, b ∈ AR

ui(gi(aτi(j))) − ui(gi(aτi(j−1))) ≥ 0, i = 1, ..., n, j = 2, ...,m
ui(gi(aτi(1))) ≥ 0, ui(gi(aτi(m))) ≤ ui(βi), i = 1, ..., n,

ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1,
σ+(a) ≥ 0, σ−(a) ≥ 0, ∀a ∈ AR

∑

a∈AR(σ+(a) + σ−(a)) ≤ δ















































(E ′AR

)

whereδ > F ∗, with F ∗ = min
∑

a∈AR(σ+(a) + σ−(a)) subject toEAR

, such that the
resulting new set of constraintsE ′AR

is not empty.

On the basis ofE ′AR

, for any pair(x, y) ∈ A, the set of constraintsE ′(x, y) can be
built as the union of the constraintsE ′AR

and the constraints relative to the breakpoints
introduced by those alternativesx, y that possibly do not belong toAR. Then preference
relations%′N and%′P can be computed by minimizing and maximizingU(x)−U(y) sub-
ject toE ′(x, y), rather than toE(x, y), respectively. In other words, in this case,d(x, y)
andD(x, y) are computed consideringE ′(x, y) rather thanE(x, y).
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Obviously, the necessary and possible rankings resulting from these computations
will not fully restore the provided pairwise comparisons, i.e. there is at least one couple
x, y ∈ AR such that

• x % y, but it is false that for all the compatible value functionsU(x) ≥ U(y) (in
other words, there exists a compatible value function such thatU(x) < U(y) and
thus not(x %′N y)), or

• x ≻ y, but it is false that for all the compatible value functionsU(x) > U(y) (in
other words, there exists also a value function such thatU(y) ≥ U(x) and thus
y %′P x).

Next result will state that%′N and%′P maintain all the main properties of preference
relations%N and%P .

Proposition 4.6.

• %′N⊆%′P ,

• %′N is a complete preorder (i.e. transitive and strongly complete),

• %′P is strongly complete.

Proof: %′N and%′P are built using the value functions satisfying constraintsE ′AR

, in the
same way as%N and%P are built using the value functions satisfying constraintsEAR

.
Thus the proof is analogous to the proof of Propositions 4.1,4.3 and 4.4.

4.4.2 Situation where incompatibility is not accepted

If the DM does not want to pursue the analysis with the incompatibility, it is necessary
to identify the troublesome pairwise comparisons responsible for this incompatibility, so
as to remove some of them. Remark that there may exist several sets of pairwise com-
parisons which, once removed, make setEAR

of constraints non-empty. Hereafter, we
outline the main steps of a procedure which identifies these sets.

Recall that the pairwise comparisons of reference alternatives are represented in the
ordinal regression constraintsEAR

by linear constraints. Hence, identifying the trouble-
some pairwise comparisons of reference alternatives amounts at finding a minimal subset
of constraints that, once removed fromEAR

, leads to a set of constraints generating a
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non-empty polyhedron of compatible value functions. The identification procedure is to
be performed iteratively since there may exist several minimal subsets of this kind.

Let associate with each pairwise comparison of reference alternativesa andb a new
binary variableva,b. Using these binary variables, we rewrite the first two constraints of
setEAR

as follows:

a ≻ b ⇔ U(a) − U(b) + Mva,b > 0

a ∼ b ⇔

{

U(a) − U(b) + Mva,b ≥ 0
U(b) − U(a) + Mva,b ≥ 0

(10)

whereM > 1. Remark that ifva,b = 1, then the corresponding constraint is satisfied what-
ever the value function is, which is equivalent to elimination of this constraint. Therefore,
identifying a minimal subset of troublesome pairwise comparisons can be performed by
solving the following mixed 0-1 linear program:

Min → f =
∑

a,b∈AR: a%b va,b

s. t.
a ≻ b ⇔ U(a) − U(b) + Mva,b ≥ ε

a ∼ b ⇔

{

U(a) − U(b) + Mva,b ≥ 0
U(b) − U(a) + Mva,b ≥ 0







∀a, b ∈ AR

ui(gi(aτi(j))) − ui(gi(aτi(j−1))) ≥ 0, i = 1, ..., n, j = 2, ...,m
ui(gi(aτi(1))) ≥ 0, ui(gi(aτi(m))) ≤ ui(βi), i = 1, ..., n,

ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1,

(11)

The optimal solution of (11) indicates one of the subsets of smallest cardinality being
the cause of incompatibility. Alternative subsets of this kind can be found by solving
(11) with additional constraint that forbids finding again the same solution. Letf ∗ be the
optimal value of the objective function of (11) andv∗

a,b the values of the binary variables
at the optimum. Let alsoS1 = {(a, b) ∈ AR × AR : a % b andv∗

a,b = 1}. The additional
constraint has then the form

∑

(a,b)∈S1

va,b ≤ f ∗ − 1 (12)

Continuing in this way, we can identify other subsets, possibly all of them. These
subsets of pairwise comparisons are to be presented to the DMas alternative solutions for
removing incompatibility. Such procedure has been described in [20].
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5 Extensions

5.1 Specification of pairwise comparisons with gradual confidence
levels

The UTAGMS method presented in the previous section is intended to support the DM
in an interactive process. Indeed, defining a large set of pairwise comparisons of reference
alternatives can be difficult for the DM. Therefore, one way to reduce the difficulty of this
task would be to permit the DM an incremental specification ofpairwise comparisons.
This way of proceeding allows the DM to control the evolutionof the necessary and pos-
sible weak preference relations.

Another way of reducing the difficulty of the task is to extendthe UTAGMS method
so as to account for different confidence levels assigned to pairwise comparisons. Let
%1 ⊆ %2 ⊆ ... ⊆ %s be embedded sets of DM’s partial preorders of reference alterna-
tives. To each set of partial preorders%t, t = 1, . . . s, corresponds a set of constraints
EAR

t generating a polyhedron of compatible value functionsPAR

t . PolyhedronsPAR

t ,
t = 1, . . . s, are embedded in the inverse order of the related partial preorders%t, i.e.
PAR

1 ⊇ PAR

2 ⊇ ... ⊇ PAR

s . We suppose thatPAR

s 6= ∅ and, therefore, due to the fact that
partial preorders%t are embedded,PAR

t 6= ∅, for all t = 1, . . . , s. If PAR

s = ∅ we consider

only embedded partial preorders until%p with p = max
{

t : PAR

t 6= ∅
}

and relabelp by

s. For all x, y ∈ A, we say that there is a necessary weak preference relation oflevel t,
denoted byx %N

t y (t = 1, ..., s), if for all value functionsU compatible with the partial
preorder%t, we haveU(x) ≥ U(y). Analogously, for allx, y ∈ A, we say that there is
a possible weak preference relation of levelt, denoted byx %P

t y (t = 1, ..., s), if for at
least one value functionU compatible with the partial preorder%t, we haveU(x) ≥ U(y).

In order to compute possible and necessary weak preference relations%P
t and%N

t ,
we can proceed as follows. For allx, y ∈ A, set of constraintsEt(x, y) can be obtained
from setEAR

t by adjoining the constraints relative to the breakpoints introduced by those
alternativesx, y that possibly do not belong toAR. For eacht = 1, . . . , s, and binary
preference relations%N

t and%P
t , we have

x %N
t y ⇔ dt(x, y) ≥ 0

where: dt(x, y) = Min{U(x) − U(y)}
s.t. setEt(x, y) of constraints

(13)

and
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x %P
t y ⇔ Dt(x, y) ≥ 0

where : Dt(x, y) = Max{U(x) − U(y)}
s.t. setEt(x, y) of constraints

(14)

Each time we pass from%t−1 to %t, t = 1, . . . , s − 1, we add toEAR

t−1 and, conse-
quently, toEt−1(x, y), new constraints concerning pairs(a, b) ∈ AR ×AR, such thata %t

b but nota %t−1 b, thus the computations ofdt(x, y) andDt(x, y), for all x, y ∈ A × A

proceed iteratively.

The following result states that binary preference relations%N
t and%P

t , t = 1, . . . , s,
inherit properties of%N and%P .

Proposition 5.1.

• %N
t ⊆%P

t ,

• %N
t is a complete preorder (i.e. transitive and strongly complete),

• %P
t is strongly complete and negatively transitive.

Proof. Analogous to the proof of Propositions 4.1, 4.3 and 4.4

An important property of preference relations%N
t and%P

t , t = 1, . . . , s is stated by
the following proposition.

Proposition 5.2.

%N
t and%P

t , t = 1, . . . , s, are nested partial preorders:%N
t−1 ⊆ %N

t and%P
t ⊇ %P

t−1,
t = 2, . . . , s.

Proof. x %N
t−1 y, x, y ∈ A, means thatU(x) ≥ U(y) for all value functionsU satisfy-

ing EAR

t−1. Since each value functionU satisfyingEAR

t satisfies alsoEAR

t−1, we have that
U(x) ≥ U(y) for all value functionsU satisfyingEAR

t , from which we getx %N
t y. Thus

x %N
t−1 y ⇒ x %N

t y, i.e. %N
t−1 ⊆ %N

t .
x %P

t y, x, y ∈ A, means that there exists at least one value functionU satisfying
EAR

t such thatU(x) ≥ U(y). Let us denote one of these value functions byU∗. Since
each value functionU satisfyingEAR

t satisfies alsoEAR

t−1, we have thatU∗ satisfiesEAR

t−1.
Therefore, fromU∗(x) ≥ U∗(y), we getx %P

t−1 y. Thus,x %P
t y ⇒ x %P

t−1 y, i.e.
%P

t−1 ⊇ %P
t .
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Let λt be the confidence level assigned to pairwise comparisons concerning pairs
(a, b) ∈ AR × AR, such thata %t b but not a %t−1 b, %0= ∅, t = 1, ..., s, 1 =
λ1 > λ2 > . . . > λs > 0. Using partial preorders%1, . . . %s and corresponding
λ1, λ2, . . . , λs, a valued binary preference relationRN : A × A → [0, 1] or, more pre-
cisely,RN : A × A → {λ1, λ2, . . . , λs, 0}, can be built as follows: for allx, y ∈ A

• if there exists onet (t = 1, . . . , s) such thatx %N
t y,

thenRN(x, y) = max
{

λt, t = 1, . . . , s, such thatx %N
t y

}

• if there exists not (t = 1, . . . , s) for whichx %N
t y, thenRN(x, y) = 0.

Analogously, a valued binary preference relationRP : A × A → [0, 1] or, more
precisely,RP : A × A → {1 − λ1, 1 − λ2, . . . , 1 − λs, 1}, can be built as follows: for all
x, y ∈ A

• if there exists onet (t = 1, . . . , s) such thatx %P
t y,

thenRP (x, y) = min
{

1 − λt, t = 1, . . . , s, such that not(x %P
t y)

}

• if x %P
t y for all t (t = 1, . . . , s), thenRP (x, y) = 1.

Proposition 5.3. For all x, y ∈ A

RN(x, y) = λt∗ ⇔ x %N
r y ∀r ≥ t∗ and not(x %N

r y) ∀r < t∗;

RP (x, y) = 1 − λt∗ ⇔ x %P
r y ∀r < t∗ and not(x %P

r y) ∀r ≥ t∗.

Proof. SinceRN(x, y) = max
{

λt, t = 1, . . . , s, such thatx %N
t y

}

, then RN(x, y) = λt∗

implies x %N
t∗ y. Taking into account that, for Proposition 5.2,x %N

t−1 y ⇒ x %N
t y, we

havex %N
r y ∀r ≥ t∗. Moreover,RN(x, y) = λt∗ implies not(x %N

r y) ∀r such that
λr > λt∗. Taking into account thatλt > λt+1 (t = 1, ..., s−1), we get thatRN(x, y) = λt∗

implies not(x %N
r y) ∀r < t∗. Thus, we proved that

RN(x, y) = λt∗ ⇒ x %N
r y ∀r ≥ t∗ and not(x %N

r y) ∀r < t∗.

For all x, y ∈ A, x %N
r y ∀r ≥ t∗ and not(x %N

r y) ∀r < t∗ ⇒ t∗ = min{t, t =
1, . . . , s, such thatx %N

t y}. (i)

Remembering thatλt > λt+1 (t = 1, ..., s − 1), from (i) we get

λt∗ = max
{

λt, t = 1, . . . , s, such thatx %N
t y

}

,

and for the definition ofRN(x, y), RN(x, y) = λt∗. Thus we proved that

x %N
r y ∀r ≥ t∗ and not(x %N

r y) ∀r < t∗ ⇒ RN(x, y) = λt∗ ,
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which concludes the proof of

RN(x, y) = λt∗ ⇔ x %N
r y ∀r ≥ t∗ and not(x %N

r y) ∀r < t∗.

Analogous proof holds for

RP (x, y) = 1 − λt∗ ⇔ x %P
r y ∀r < t∗ and not(x %P

r y) ∀r ≥ t∗.

Proposition 5.3 says thatRN(x, y) = λt means thatx %N
r y holds only forr ≥ t,

while, for definition,RN(x, y) = 0 means thatx %N
t y does not hold for anyt (t =

1, . . . , s). Proposition 5.3 says also thatRP (x, y) = 1 − λt means thatx %P
r y hols only

for r < t, while, for definition,RP (x, y) = 1 means thatx %P
t y for all t (t = 1, . . . , s).

It is interesting to investigate the properties of valued binary relationsRN andRP (for
an introduction to valued binary relations and their properties see [6]). Let us remind that
a valued binary relationR defined on a setX, i.e. R : X × X → [0, 1], is

• reflexive, if for allx ∈ X, R(x, x) = 1,

• min-transitive, if for allx, y, z ∈ X, min(R(x, y), R(y, z)) ≤ R(x, z),

• strongly complete, if for allx, y ∈ X, max(R(x, y), R(y, x)) = 1,

• negatively transitive, if for allx, y, z ∈ X, min((1 − R(x, y)), (1 − R(y, z))) ≤
(1 − R(x, z)).

A valued binary relation which is reflexive and min-transitive is called fuzzy partial pre-
order.

Proposition 5.4. Valued binary relationRN is reflexive and min-transitive and, there-
fore, it is a fuzzy partial preorder. Valued binary relationRP is strongly complete and
negatively transitive.

Proof. For all x ∈ A, for all value functionsU compatible with the partial preorder%s,
we haveU(x) = U(x), which impliesx %N

s x andRN(x, x) = 1, i.e. RN is reflexive.

For allx, y, z ∈ X, two cases are possible:

a)min(RN(x, y), RN(y, z)) = 0,

b) min(RN(x, y), RN(y, z)) > 0.
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Considering that alwaysRN(x, z) ≥ 0, in case a),

RN(x, z) ≥ min(RN(x, y), RN(y, z)). (i)

In case b), for the definition ofRN , we have that

min(RN(x, y), RN(y, z)) =

= min
{

max
{

λt, t = 1, . . . , s, such thatx %N
t y

}

,

max
{

λt, t = 1, . . . , s, such thaty %N
t z

}}

=

= max
{

λt, t = 1, . . . , s, such thatx %N
t y andy %N

t z
}

.

Thus, if min(RN(x, y), RN(y, z)) = λr, thenU(x) ≥ U(y) andU(y) ≥ U(z) for all
value functionsU compatible with%r. Thus, for all value functionsU compatible with
%r we haveU(x) ≥ U(z) and, consequently,x %N

r z. This implies that

RN(x, z) = max
{

λt, t = 1, . . . , s, such thatx %N
t z

}

≥ λr = min(RN(x, y), RN(y, z)). (ii)

For (i) and(ii), valued binary relationRN is min-transitive.

Let us suppose thatx %P
s y, x, y ∈ A. In this case, for Proposition 5.2,x %P

t y for all t

(t = 1, . . . , s) and, therefore,RP (x, y) = 1. If, instead, not (x %P
s y), then for Proposi-

tion 4.2,y %N
s x and, therefore, for Property 1,y %P

s x. In consequence, for Proposition
5.2,y %P

t x for all t (t = 1, . . . , s) and, thus,RP (y, x) = 1. This proves completeness of
valued binary relationRP .

For allx, y, z ∈ X, two cases are possible:

a)max(RP (x, y), RP (y, z)) = 1,

b) max(RN(x, y), RN(y, z)) < 1.

In casea) we have thatRP (x, y) = 1 or RP (y, z) = 1, and thus1 − RP (x, y) = 0 or
1 − RP (y, z) = 0, such thatmin((1 − RP (x, y)), (1 − RP (y, z))) = 0 and considering
that always1 − RP (x, z) ≥ 0, we get

min((1 − RP (x, y)), (1 − RP (y, z))) ≤ 1 − RP (x, z).

In caseb), RP (x, y) < 1 andRP (y, z) < 1, for definition ofRP

,
1 − RP (x, y) = 1 − min

{

1 − λt, t = 1, . . . , s, such that not(x %P
t y)

}

) =
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= max
{

λt, t = 1, . . . , s, such that not(x %P
t y)

}

)

as well as

1 − RP (y, z) = 1 − min
{

1 − λt, t = 1, . . . , s, such that not(y %P
t z)

}

) =

= max
{

λt, t = 1, . . . , s, such that not(y %P
t z)

}

).

Thus,

min((1 − RP (x, y)), (1 − RP (y, z)))

=

min
{

max
{

λt, t = 1, . . . , s, such that not(x %P
t y)

}

,

max
{

λt, t = 1, . . . , s, such that not(y %P
t z)

}}

=

max
{

λt, t = 1, . . . , s, such that not(x %P
t y) and not(y %P

t z)
}

,

=

max{λt, t = 1, . . . , s, such that, U(y) > U(x) andU(z) > U(y)

for all value functionsU compatible with %t}.

If min((1 − RP (x, y)), (1 − RP (y, z))) = λr, thenU(x) < U(z) for all value functions
compatible with%r, which means that there does not exist any value functionU compat-
ible with %r such thatU(x) ≥ U(z). Thus,min{t, t = 1, . . . , s, such that not(x %P

t

z)} ≤ r and, therefore,

max{λt, t = 1, . . . , s, such that not(x %P
t z)} ≥ λr.

Since

max{λt, t = 1, . . . , s, such that not(x %P
t z)} =

= 1 − min{1 − λt, t = 1, . . . , s, such that not(x %P
t z)} = 1 − RP (x, z),

we conclude that(1 − RP (x, z)) ≥ λr = min((1 − RP (x, y)), (1 − RP (y, z))).
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5.2 Accounting for intensity of preference

Another preference information that can be provided by the DM concerns the intensity
of preference among two pairs of reference alternatives. Given two pairs of alternatives
(x, y) ∈% and(w, z) ∈%, such thatx ≻ y andw ≻ z, the DM can state : “x is preferred
to y at least as much asw is preferred toz”. Such statement means that for all compatible
value functionsU :

U(x) − U(y) > U(w) − U(z). (15)

To account for the above preference information, it is sufficient to include condition
(15) in setEAR

of constraints. Of course, consequently, condition (15) will be included
in constraintsE(x, y) for all x, y ∈ A.

Conversely,∀x, y, w, z ∈ A, it is possible to check whether or not condition

U(x) − U(y) > U(w) − U(z) (16)

holds for all compatible value functionsU .

In order to do so, it is sufficient to check the feasibility of constraintsE(x, y) and (16).
Such information may enrich the DM’s knowledge of his/her preferences.

6 Illustrative example

In this section, we illustrate how a decision aiding processcan be supported by the
UTAGMS method. The computations of this example were performed using the VISUAL-
UTA software (see [30]). We consider the following hypothetical decision problem.
AGRITEC is a medium size firm (350 persons approx.) producing some tools for agri-
culture. The C.E.O., Mr Becault, intends to double the production and multiply exports
by 4 within 5 years. Therefore, he wants to hire a new international sales manager. A
recruitment agency has interviewed 17 potential candidates which have been evaluated
on 3 criteria (sales management experience, internationalexperience, human qualities)
evaluated on a [0,100] scale. The evaluations of candidatesare provided in Table 5. With-
out any further information, the computed partial preorder%N

0 corresponds to the weak
dominance relation∆ on the set of alternatives (See Figure 2).

The C.E.O. has attended 4 interviews and can express a confident judgement about
theses candidates: Ferret and Frechet are equally good, Fourny is less acceptable than
Ferret and Frechet, and Fleichman is even less acceptable than Fourny. This means that
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Figure 2: Partial preorder%N
0 corresponding to the weak dominance relation∆

the initial reference ranking is the following: Ferret∼ Frechet≻ Fourny≻ Fleichman.
For this initial preference information, the partial preorder%N

1 has been computed using
UTAGMS (See Figure 3).

Figure 3: Partial preorder%N
1
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Crit 1 Crit 2 Crit 3
Alexievich 4 16 63
Bassama 28 18 28
Calvet 26 40 44
Dubois 2 2 68
El Mrabat 18 17 14
Feeret 35 62 25
Fleichman 7 55 12
Fourny 25 30 12
Frechet 9 62 88
Martin 0 24 73
Petron 6 15 100
Psorgos 16 9 0
Smith 26 17 17
Varlot 62 43 0
Yu 1 32 64

Table 5: Evaluation Table

Considering this first result, Mr Becault is willing to add further preference informa-
tion. This results in the following new reference ranking: Ferret∼ Frechet≻ Martin ≻
Fourny∼ El Mrabat≻ Fleichman. However, as he did not attend the interview of El
Mrabat and Martin, his opinion about the relative ranking ofthese candidates is not as
certain as the initial preference information.

It appears that for the provided information, no additive value function fits the last
reference ranking. The analysis of this incompatibility reveals that the statement Ferret
∼ Frechet cannot be represented together with the statement Fourny∼ El Mrabat by an
additive value function. In other words, it is necessary forMr Becault to revise one of
these statements. As he did not interview El Mrabat, he decides to remove him from the
reference ranking which becomes Ferret∼ Frechet≻ Martin ≻ Fourny≻ Fleichman.
This reference ranking is compatible with a representationby an additive value function.
Figure 4 represents two nested partial preorders:

• bold arrows represent partial preorder%N
1 obtained for the most certain preference

information only, i.e., Ferret∼ Frechet≻ Fourny≻ Fleichman,

• dashed arrows represent partial preorder%N
2 obtained for the consistent preference

information composed of the most certain preference information and the less confi-
dent preference information about Martin, i.e., Ferret∼ Frechet≻ Martin≻ Fourny
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≻ Fleichman.

Figure 4: Nested partial preorders%N
2 (bold) and%N

3 (dashed)

The interactive process can be pursued, Mr Becault adding in iterationt some new
pairwise comparisons of reference alternatives, thus enriching the resulting partial pre-
order%N

t , until it is decisive enough for the C.E.O. to make his choice.

7 Conclusion

The new UTAGMS method presented in this paper is an ordinal regression method sup-
porting multiple criteria ranking of alternatives; it is distinguished from previous methods
of this kind by the following new features:

• the method considers general additive value functions rather than piecewise linear
ones,

• the final rankings are defined using all value functions compatible with the provided
preference information,

• the method provides two final rankings: the necessary ranking identifies “sure”
preference statements while the possible ranking identifies “possible” preference
statements,

124



Annales du LAMSADE no 7

• distinguishing necessary and possible consequences of using all value functions
compatible with preference information, UTAGMS includes a kind of robustness
analysis instead of using a single “best-fit” value function,

• the necessary and possible preference relations considered in UTAGMS have several
properties of general interest for MCDA,

• when the DM provides preference information that cannot be represented by an
additive model, the method identifies which pieces of the information underly this
impossibility,

• the method does not require the DM to interpret (and even lookat) the marginal
value functions,

• the DM can assign confidence levels to pieces of preference information, which
yields a valued necessary preference (proved to be a fuzzy partial preorder) and a
valued possible preference (proved to be a strongly complete and negatively transi-
tive valued binary relation).

We envisage the following future developments of the presented methodology:

• application to multicriteria sorting problems,

• application to group decision problems,

• application to interactive multiobjective optimization.
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