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Performance of ESPRIT for estimating mixtures of
complex exponentials modulated by polynomials
Roland Badeau, Member, IEEE, Gaël Richard, Senior Member, IEEE, and Bertrand David, Member, IEEE

Abstract—High Resolution (HR) methods are known to provide
accurate frequency estimates for discrete spectra. The Polynomial
Amplitude Complex Exponentials (PACE) model, also called
quasipolynomial model in the literature, was presented as the
most general model tractable by HR methods. A subspace-
based estimation scheme was recently proposed, derived from
the classical ESPRIT algorithm. In this paper, we focus on the
performance of this estimator. We first present some asymptotic
expansions of the estimated parameters, obtained at the first
order under the assumption of a high signal-to-noise ratio.
Then the performance of the generalized ESPRIT algorithm for
estimating the parameters of this model is analyzed in terms of
bias and variance, and compared to the Cramér-Rao bounds.
This performance is studied in an asymptotic context, and it is
proved that the efficiency of undamped single poles estimators is
close to the optimality. Moreover, our results show that the best
performance is obtained for a proper dimensioning of the data.
To illustrate the practical capabilities of the generalized ESPRIT
algorithm, we finally propose an application to ARMA filter
synthesis, in the context of system conversion from continuous
time to discrete time.

Index Terms—ESPRIT, high resolution (HR), multiple eigen-
values, performance analysis, perturbation theory, polynomial
modulation.

I. INTRODUCTION

H
IGH Resolution (HR) methods, such as the well-known
ESPRIT algorithm [1], are very classical techniques for

estimating mixtures of complex exponentials in white noise.
However the underlying Exponential Sinusoidal Model (ESM),
although the most studied in the literature, is not the most
general model tractable by HR methods. Indeed the ESM only
accounts for systems with single poles, whereas one can find
examples of systems involving multiple poles, which generate
mixtures of complex exponentials modulated by polynomials,
as shown in [2]. For instance, critically damped harmonic
oscillators involve a double pole [3]. Laguerre functions are a
special case of signals with multiple poles (the exponentials
are modulated by Laguerre polynomials), often used in the
estimation of time delays [4], [5], and in biomedical engi-
neering, for modeling fluorescence decay [6]. Signals with
multiple poles also appear in quantum physics, as solutions
of the Schrödinger equation for hydrogen-like atoms [7], in
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laser physics, as transverse laser modes [8], and in finance,
for modeling the evolution of interest rates [9].

In order to estimate the parameters of this more general
Polynomial Amplitude Complex Exponentials (PACE) model,
also referred to as the quasipolynomial model [10] in the
literature, we proposed in [2] a generalization of the ESPRIT
algorithm for estimating multiple poles. The polynomial am-
plitude parameters can then be recovered by means of a Least
Squares (LS) method. The performance of an estimator is gen-
erally described in terms of bias and variance, the latter being
generally compared to the Cramér-Rao bound (CRB), in terms
of statistical efficiency [11]. An analysis of the Cramér-Rao
bounds for the frequencies and damping factors of complex
quasipolynomials in white noise was proposed in [10]. In [12],
we derive analytic expressions of the Cramér-Rao bounds for
the frequencies, damping factors, amplitudes and phases of
quasipolynomials in colored noise, and these expressions are
simplified in an asymptotic context. In particular, it is shown
that the CRB for the parameters associated to a multiple
pole present an exponential increase with the order of the
pole, which suggests that the practical estimation of the PACE
model is only possible if the exponentials are modulated by
polynomials of low order.

Unfortunately, in the case of HR methods, the bias and vari-
ance cannot be calculated analytically, because the extraction
of polynomial roots, or matrix eigenvalues, induces a complex
relationship between the statistics of the signal and those of the
estimators. In the case of the ESM however, asymptotic results
were obtained with the perturbation theory. These results rely
either on the hypothesis of a high window length (N → +∞,
in the case where all the poles are on the unit circle), or on the
hypothesis of a high signal-to-noise ratio (SNR→ +∞). For
instance, it was established in [13], [14] that the Prony [15]
and Pisarenko [16] methods are very inefficient: their variances
are much greater than the Cramér-Rao bounds. Conversely, the
Minimum Norm method [17], MUSIC [18], ESPRIT [1] and
Matrix Pencil [19] have an asymptotic efficiency close to 1, as
shown in [20]–[24]. More precisely, it was proved in [22], [23]
in the case of undamped sinusoids that MUSIC and ESPRIT
perform similarly, with a slight advantage for ESPRIT. This
was confirmed in [24] in the more general case of the ESM:
ESPRIT and Matrix Pencil are less sensitive to noise than
MUSIC.

In the case of the PACE model, it was shown in [2] that the
presence of noise scatters the multiple poles into several single
poles, forming the vertices of a regular polygon as a first order
approximation. However the original multiple pole can be
recovered by computing the arithmetic mean of the scattered
poles. Below, we analyze the performance of this approach in
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presence of colored noise and under the high SNR hypothesis,
in terms of first order perturbations. These developments are
utilized to show that the estimators proposed in [2] for the
PACE model are unbiased, and their variances are calculated
and compared to the Cramér-Rao bounds. Additionally, by
considering a high observation length and a white noise, it
is shown that the efficiency of the estimators is close to 1.
In particular, we generalize a result presented in [19], which
provides the ideal dimensioning of the data matrix in order to
improve the efficiency of single poles estimators. However, our
simulation results confirm that the practical estimation of the
parameters is only possible for poles of low order. To illustrate
the capabilities of our estimation method, we finally propose
an application to ARMA filter synthesis, in the context of
system conversion from continuous time to discrete time.

The paper is organized as follows. Section II describes the
PACE model and the estimation method introduced in [2].
Then the influence of an additive perturbation onto the esti-
mated frequencies, damping factors, amplitudes and phases is
studied in section III. Section IV analyzes the performance
of the estimators: their first order bias and variances are
calculated in section IV-A, then their asymptotic expansions
are derived in section IV-B (in the case of undamped single
poles). These developments are illustrated in section V-A,
where the variances of the estimators are compared to the
Cramér-Rao bounds, and the generalized ESPRIT algorithm
is applied to ARMA filter synthesis in section V-B. The
main conclusions of this paper are summarized in section VI.
Finally, the mathematical developments for the perturbation
analysis are provided in the Appendix.

II. GENERAL FRAMEWORK

In sections II-A and II-B, we summarize the basics of
the PACE model, also called quasipolynomial model, and the
generalized ESPRIT algorithm, which were presented in [2].

A. Polynomial Amplitude Complex Exponentials

Definition 1. Let K ∈ N
∗. For all k ∈ {0 . . . K − 1}, define

the partial order Mk ∈ N
∗, the frequency fk ∈

]
− 1

2 , 1
2

]
, the

damping (or amplifying) factor δk ∈ R, and the complex pole
zk = eδk+i2πfk . Suppose that the complex poles are distinct
from one another. Then a discrete signal s(t) satisfies the
PACE model of order r ,

∑K−1
k=0 Mk if and only if it can

be written in the form

s(t) =
K−1∑
k=0

αk[t] zk
t (1)

where ∀k ∈ {0, . . . , K − 1}, αk[t] is a complex polynomial
of order Mk − 1.

The polynomial αk[t] can be decomposed onto the polyno-
mial basis of falling factorials:

Definition 2 (Falling factorial). For all m ∈ Z, the falling

factorial of order m is the polynomial1

Fm[X] =





0 if m < 0
1 if m = 0

1
m!

m−1∏
m′=0

(X − m′) if m > 0.

In this basis, equation (1) can be rewritten in the form

s(t) =

K−1∑

k=0

Mk−1∑

m=0

α
(m)
k Fm[t] zk

t−m (2)

where ∀k ∈ {0 . . . K − 1}, ∀m ∈ {0,Mk − 1}, α
(m)
k is a

complex amplitude. Define the real amplitude a
(m)
k =

∣∣∣α(m)
k

∣∣∣,
and the phase2 φ

(m)
k = ℑ

(
ln

(
α

(m)
k

))
.

The PACE model can be characterized by means of matrix
analysis. Indeed, the samples of the discrete signal s(t) can
be arranged into a Hankel data matrix with n > r rows and
l ≥ r columns:

S =




s(t − l + 1) · · · s(t − 1) s(t)
s(t − l + 2) · · · s(t) s(t + 1)

... · · ·
...

...
s(t − l + n) · · · s(t + n − 2) s(t + n − 1)


 . (3)

In particular, the range space of S can be characterized by
the generalized Pascal and Pascal-Vandermonde matrices.

Definition 3 (Generalized Pascal matrices). Let z ∈ C and
M ∈ N

∗. The generalized Pascal matrix denoted Cn
M (z) is an

n×M matrix whose coefficients are Cn
M (z)(i,j) = Fj [i] z

i−j

for all i ∈ {0 . . . n − 1} and j ∈ {0 . . . M − 1}.

Example 4. If M = 3 and n = 6,

C6
3(z) =




1 0 0
z 1 0
z2 2 z 1
z3 3 z2 3 z
z4 4 z3 6 z2

z5 5 z4 10 z3




.

Definition 5 (Pascal-Vandermonde matrices). The n × r
Pascal-Vandermonde matrix is the matrix formed by concate-
nating the generalized Pascal matrices Cn

k = Cn
Mk

(zk):

V n =
[
Cn

0 , . . . , Cn
(K−1)

]
.

Based on the above definitions, the following proposition,
which is proved in [2], shows a factorization of the Hankel
data matrix3:

1Note that this definition does not match the classical definition of the
falling factorial [25], [26], from which the multiplicative factor 1

m!
is missing.

2In the whole paper, the notation ln(.) denotes the determination of the
complex logarithm which corresponds to an angle lying in ] − π, π[.

3In linear systems realization theory, state space representations also lead
to low-rank factorizations of Hankel matrices [27].
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Proposition 1 (Factorization of the data matrix). An n × l
Hankel matrix S of the form (3) where s(t) is the signal

defined in equation (2) can be factorized in the form

S = V n D V lT (4)

where V n and V l are the n×r and l×r Pascal-Vandermonde

matrices, and D is an r × r block-diagonal matrix

D = diag(H0 . . . H(K−1))

whose kth block Hk is an Mk × Mk upper anti-triangular

Hankel matrix (in the particular case Mk = 1, Hk =
zt−l+1
k α

(0)
k ).

B. Estimation of the model parameters

Proposition 1 shows that the matrix S has rank r, and that
its range space, called signal subspace, is also spanned by the
Pascal-Vandermonde matrix V n.

1) Rotational Invariance Property: The ESPRIT method
relies on a particular property of Vandermonde matrices known
as rotational invariance [1], which reflects the invariance of
the signal subspace to time shifts. Theorem 2, shown in [2],
generalizes this property to Pascal-Vandermonde matrices.

Theorem 2 (Rotational Invariance Property of Pascal-Vander-
monde matrices). Let V n

↓ be the matrix extracted from V n by

deleting the last row. Similarly, let V n
↑ be the matrix extracted

from V n by deleting the first row. Then V n
↓ and V n

↑ span the

same subspace, and

V n
↑ = V n

↓ J (5)

where J is the r × r block-diagonal matrix

J = diag
(
J0, . . . ,J (K−1)

)
(6)

whose kth block Jk is the Mk × Mk Jordan block whose

diagonal coefficients are equal to zk.

The interesting fact in theorem 2 is that equation (5)
involves a Jordan matrix4 J , which characterizes the poles zk

and their multiplicity Mk. As shown below, the generalized
ESPRIT algorithm consists in computing J as a by-product
of the Jordan canonical decomposition of a so-called spectral

matrix.
2) The generalized ESPRIT method: In practice, the Pascal-

Vandermonde matrix V n is unknown. Nevertheless, it was
shown in [2] that in presence of white noise an n × r
orthonormal matrix W spanning the signal subspace can be
estimated by computing the left dominant r-dimensional sin-
gular subspace of the noisy data matrix, or by using subspace
tracking methods [29]–[31]. Since W and V n span the same
subspace, there is an r × r invertible matrix G such that

V n = W G. (7)

Substituting equation (7) into equation (5) shows that W

satisfies an equation similar to equation (5): W ↑ = W ↓ Φ

4See [28, pp. 121–142] for a definition of Jordan canonical decomposition.

where Φ, herein called the spectral matrix, is defined by its
Jordan canonical decomposition:

Φ , G J G−1. (8)

It can be noticed that ∀t ∈ Z, the spectral matrix Φ, which
depends on the observation window {t−l+1, . . . , t+n−1}, is
similar to the unique Jordan matrix J . Finally, the generalized
ESPRIT algorithm consists in:

• estimating a basis W of the signal subspace, via singular
value decomposition for instance5,

• computing the spectral matrix6
Φ = W

†
↓W ↑.

• computing the eigenvalues of Φ from which the estimated
poles and their multiplicities can be extracted.

Note that in a noisy context, the estimated spectral matrix
does not have multiple eigenvalues in practice, and the gen-
eralized ESPRIT algorithm cannot be applied as it is. This
problem will be discussed in section A in the Appendix.

3) Estimation of the complex amplitudes: The complex

amplitudes are estimated by means of the LS method. Let V̂
N

be the N × r Pascal-Vandermonde matrix defined from the
estimated poles, and ŝ the N -dimensional vector containing
the successive samples of the observed signal. Then the LS-
estimate of the vector α = [α0, . . . ,αK−1]

T (with αk =[
α

(0)
k , . . . , α

(Mk−1)
k

]T

) containing the complex amplitudes is

α̂ = V̂
N†

ŝ. (9)

III. PERTURBATION ANALYSIS

The objective here is to measure the performance of the
estimators presented above in terms of bias and dispersion.
Unfortunately, it is not possible to establish analytic formulae
in the general case, because of the eigen or singular value de-
compositions. However, asymptotic results could be obtained
by using the perturbation theory in the case of the sinusoidal
model [23] and in the case of the ESM model [24], under the
hypothesis of a high signal-to-noise ratio. We propose below to
apply the perturbation theory in the more general framework of
the PACE model, in order to finally derive the first and second
moments of the estimators. First, we analyze the perturbation
induced onto the frequencies and damping factors, from which
we derive the perturbation induced onto the amplitudes and
phases. The detailed mathematical developments can be found
in the Appendix.

Suppose that the PACE signal s(t) is corrupted by a
perturbation ε∆s(t) (where ε << 1), so that the observed
signal is s(t) + ε∆s(t). In other terms, the n× l Hankel data
matrix S is corrupted by an additive perturbation ε∆S, where
∆S is the n×l Hankel matrix containing the samples of ∆s(t),
so that the observed matrix is

S(ε) = S + ε∆S. (10)

5In linear systems realization theory, Ho’s algorithm is a well-known
method for identifying a state space representation [27]. The use of the
singular value decomposition in this context was early proposed in [32].

6In the whole paper, the symbol † denotes the Moore-Penrose pseudo-
inverse.
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Then suppose that the generalized ESPRIT algorithm is
applied to the perturbed matrix S(ε) instead of the exact
matrix S. In section A in the Appendix, it is shown that
the perturbed subspace weighting matrix W (ε) (section A1),
spectral matrix Φ(ε) (section A2), poles zk(ε), frequencies
fk(ε) and damping factors δk(ε) (section A3) are C∞ func-
tions of ε in the neighborhood of ε = 0, leading to the first
order expansions in proposition 3.

Proposition 3 (Perturbation of the frequencies and damp-
ing factors). Let7 δk(ε) = ℜ (ln(zk(ε))) and fk(ε) =
1
2π ℑ (ln(zk(ε))). Then the functions ε 7→ δk(ε) and ε 7→
fk(ε) are C∞ and admit the first order expansions:

{
δk(ε) = δk + ε∆δk + O

(
ε2

)

fk(ε) = fk + ε∆fk + O
(
ε2

)
.

(11)

The first order perturbations ∆δk and ∆fk are of the form





∆δk = 1
Mk

ℜ

(
uk

H∆s

zk α
(Mk−1)

k

)

∆fk = 1
2π Mk

ℑ

(
uk

H∆s

zk α
(Mk−1)

k

)
,

(12)

where the vectors ∆s = [∆s(t − l + 1), . . . , ∆s(t + n − 1)]
T

and uk (whose coefficients, defined in equation (45) in the

Appendix, depend on the model parameters) have dimension

N = n + l − 1.

Knowing the influence of a perturbation of the data onto the
estimated poles, it is then possible to analyze the perturbation
induced onto the amplitudes and phases, obtained from these
poles by the least squares method. More precisely, it is shown
in section B2 in the Appendix that the complex amplitudes
α

(m)
k (ε), real amplitudes a

(m)
k (ε) and phases φ

(m)
k (ε) are C∞

functions of ε in the neighborhood of ε = 0, leading to the
first order expansions in proposition 4.

Proposition 4 (Perturbation of the amplitudes and phases). Let

a
(m)
k (ε) = |α

(m)
k (ε)| and φ

(m)
k (ε) = 1

2π ℑ
(
ln(α

(m)
k (ε))

)
. If

a
(m)
k 6= 0, then the functions ε 7→ a

(m)
k (ε) and ε 7→ φ

(m)
k (ε)

are C∞ in the neighborhood of ε = 0, and admit the first

order expansion:

{
a
(m)
k (ε) = a

(m)
k + ε∆a

(m)
k + O

(
ε2

)

φ
(m)
k (ε) = φ

(m)
k + ε∆φ

(m)
k + O

(
ε2

)
.

(13)

The first order perturbations ∆a
(m)
k and ∆φ

(m)
k are of the

form 



∆a
(m)
k = a

(m)
k ℜ

(
b
(m)
k

H
∆s

α
(m)
k

)

∆φ
(m)
k = ℑ

(
b
(m)
k

H
∆s

α
(m)
k

)
,

(14)

where the vectors b
(m)
k (whose coefficients, defined in section B

in the Appendix, depend on the model parameters) have

dimension N .

7It is supposed here that all frequencies lie between − 1
2

and 1
2

.

IV. PERFORMANCE OF THE ESTIMATORS

Here we aim at exploiting the results of the perturbation
analysis in section III to derive the first and second moments
of the generalized ESPRIT estimators [2] in the case of a high
signal-to-noise ratio. The most remarkable property shown
below is that the asymptotic efficiency of the estimators of all
parameters associated to single undamped poles is minimum if
and only if the number of rows n and the number of columns l
of the data matrix satisfy either n = 2l or l = 2n. In practice,
this result allows to properly dimension the data matrix when
the length of the observation window N = n + l − 1 is fixed.

From now on, we suppose that ∆s(t) is a circular complex
stationary process of variance 1. Then the stationary pro-
cess ε∆s(t) can be viewed as a complex noise of variance
σ2 = ε2 << 1. Using vector notations, we can write
s(ε) = s + ε∆s, where the vectors s(ε), s and ∆s contain
the N successive samples of the corresponding signals in the
observation window {t− l + 1 . . . t + n− 1}. The covariance
matrix Γ , E

[
∆s ∆sH

]
of the circular complex random

vector ∆s is an N × N Toeplitz matrix, whose diagonal
coefficients are equal to 1. In the particular case of white noise,
Γ is equal to the identity.

Section IV-A presents the first order performance analysis,
which is then simplified in section IV-B in an asymptotic
context. The proofs of the results presented in this section
can be found in the Appendix.

A. First order performance

The following proposition gives the variances of the es-
timated poles ẑk, damping (or amplifying) factors δ̂k and
frequencies f̂k, obtained by applying the generalized ESPRIT
algorithm [2] to the perturbed signal ŝ = s(ε).

Proposition 5. The estimator ẑk = zk(ε) of the pole zk is

unbiased at the first order, and its variance is of the form

var (ẑk) ∼
σ2

(
Mk a

(Mk−1)
k

)2 uk
H
Γuk. (15)

where the vector uk is defined in equation (45). In the same

way, the estimators δ̂k = δk(ε) and f̂k = fk(ε) of the damping

factor δk and of the frequency fk are unbiased at the first

order. Moreover, their respective variances are of the form

var(δ̂k) ∼
σ2 e−2δk

2
(
Mk a

(Mk−1)
k

)2 uk
H
Γuk (16)

var(f̂k) ∼
1

4π2
var(δ̂k). (17)

The variances of δ̂k and f̂k are derived from their first
order expansions, presented in section A3 in the Appendix.
A remarkable similitude can be noticed between their expres-
sions and the Cramér-Rao bounds in equations (9) and (10).
However equations (16) and (17) are not self-explanatory,
because they involve many auxiliary variables, via the vectors
uk. It will be shown in section IV-B that under some additional
hypotheses, they can be simplified.
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These variances satisfy the following properties8:
• if the noise is white (Γ = IN ), the variances of δ̂k and

f̂k depend on the frequencies only by their differences9,
• if zk is a single pole, the variances of δ̂k and f̂k do not

depend on any phase, and they are inversely proportional

to a
(0)
k

2
, but they do not depend on any other amplitude10.

Proposition 6 below gives the variances of the estimated
complex amplitudes α̂, real amplitudes â

(m)
k and phases φ̂

(m)
k ,

obtained by means of the Least Squares (LS) method [2].

Proposition 6. The estimator α̂ = α(ε) of the vector of

complex amplitudes α is unbiased at first order, and its

covariance matrix is of the form

cov (α̂) ∼ σ2 BH
ΓB, (18)

where the N × r matrix B is defined in equation (53). In the

same way, the estimators â
(m)
k = a

(m)
k (ε) and φ̂

(m)
k = φ

(m)
k (ε)

of the real-valued amplitude a
(m)
k and the phase φ

(m)
k are

unbiased at first order. Moreover, their respective variances

are of the form

var(â
(m)
k ) ∼

σ2

2
b
(m)
k

H
Γ b

(m)
k (19)

var(φ̂
(m)
k ) ∼

1

a
(m)
k

2 var(â
(m)
k ), (20)

where the vectors b
(m)
k , introduced in proposition 4, are the

columns of the matrix B.

As for proposition 5, the variances of α̂k, âk and φ̂k

are obtained from their first order expansions, presented in
section B2 in the Appendix.

B. Asymptotic performance

Let us suppose that the noise is white (Γ = IN ) and that all
poles are on the unit circle (∀k ∈ {0 . . . K − 1}, δk → 0). We
present below some asymptotic expansions of the estimator
variances with respect to n, l and N .

Corollary 7. If zk is a single pole, the variances of the

estimators δ̂k and f̂k admit the expansions

var(δ̂k)∼
σ2

max(n, l)2 min(n, l)a
(0)
k

2 + O

(
1

N4

)
(21)

var(f̂k)∼
σ2

4π2 max(n, l)2 min(n, l)a
(0)
k

2 + O

(
1

N4

)
.(22)

Both of them are minimal for n = 2l = 2
3 (N + 1) or for

l = 2n = 2
3 (N + 1) (if N equals 2 modulo 3), and these

minima admit the asymptotic expansions

var(δ̂k) ∼
27

4

σ2

N3 a
(0)
k

2

var(f̂k) ∼
27

4

σ2

4π2N3a
(0)
k

2 .

8These properties can be proved by a thorough analysis of the particular
structure of the vector uk , defined in equation (45).

9This property is also satisfied by the Cramér-Rao bounds [12].
10In the case of the Cramér Rao bounds, this property also applies to

multiple poles [12].

The proof of corollary 7 relies on the first order expansion
of the vector uk involved in equations (16) and (17), which
admits a simple closed form. Attention must be paid to the fact
that expressions (21) and (22) are only valid for a single pole.
If zk is a multiple pole, these variances cannot be formulated in
such a simple way and are function of the complex amplitudes
associated to zk for all indices m ∈ {0 . . . Mk−1} (the optimal
values of n and l are also function of these amplitudes in
this case). These variances can be compared to the asymptotic
Cramér-Rao bounds given in equations (13) and (15):

Under the above hypotheses, the asymptotic efficiency of
the estimators of all damping factors and all frequencies
associated to the single poles is the same one, independent
from the model parameters, and equal to 9/8 = 1.125 if
n = 2l or l = 2n.

In this way, the results obtained in [19] about the Matrix Pencil
method (in the particular case of a single complex sinusoid) are
recovered. Figure 1-a represents the ratio between the Cramér-
Rao bound and the variance of the estimators in a logarithmic
scale, as a function of the ratio n

N+1 . Thus it can be verified

that the maximum is reached at n = N+1
3 and n = 2(N+1)

3 as
expected. Besides, the performance collapses when n becomes
too high or too small.
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Fig. 1. Efficiency of the estimators

The following corollary is the analogue of corollary 7 for
the real-valued amplitudes and phases.

Corollary 8. If zk is a single pole, the variances of the

estimators â
(0)
k and φ̂

(0)
k admit the expansions

var(â
(0)
k ) ∼ σ2

2

(
1
N + N2

2 max(n,l)2 min(n,l)

)
+ O

(
1

N2

)
(23)

var(φ̂
(0)
k ) ∼ σ2

2a
(0)
k

2

(
1
N + N2

2 max(n,l)2 min(n,l)

)
+ O

(
1

N2

)
.

(24)
Both of them are minimal for n = 2l = 2

3 (N + 1) or for

l = 2n = 2
3 (N + 1) (if N equals 2 modulo 3), and these
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minima admit the asymptotic expansions

var(â
(0)
k ) ∼

35

16

σ2

N

var(φ̂
(0)
k ) ∼

35

16

σ2

Na
(0)
k

2 .

The proof of corollary 8 relies on the first order expansions
of the vectors b

(m)
k involved in equations (19) and (20),

which admit a simple closed form. Again, attention must
be paid to the fact that expressions (23) and (24) are only
valid for a single pole. These variances can be compared to
the asymptotic Cramér-Rao bounds given in equations (16)
and (17):

Under the above hypotheses, the asymptotic efficiency of
the estimators of all the real-valued amplitudes and phases
associated to single poles is the same one, independent from
the model parameters, and equal to 35/32 = 1.09375 if
n = 2l or l = 2n.

This efficiency is even better than that of the estimators δ̂k and
f̂k. It can also be noticed that the optimum is obtained for the
same values of n and l as in the previous case. Figure 1-b
represents the ratio between the Cramér-Rao bound and the
variance of the estimators in a logarithmic scale, as a function
of the ratio n

N+1 . Again, the maximum is reached at n = N+1
3

and n = 2(N+1)
3 , and the performance collapses when n

becomes too high or too small. The similitude between the
curves represented in figures 1-a and 1-b is noticeable. This
could be explained by the fact that the estimation of the
amplitudes and the phases directly relies on the estimation
of the frequencies and the damping factors.

V. SIMULATION RESULTS

A. Dependence of the variances with respect to the PACE

parameters

This section illustrates the variations of the estimators
variances with respect to the parameters of the PACE model.
Note that propositions 5, 6 and corollaries 7, 8 show a rather
simple dependency on the amplitudes and the variance σ2.
Therefore we focus here on the dependency on the frequency
gap between two components (section V-A1), the damping
factor (section V-A2), the spectral flatness of the noise (sec-
tion V-A3), and the order of a pole (section V-A4). For these
simulations, the same synthetic signals as those introduced
in [12] are used. In the figures below, the solid lines represent
the theoretical variance of the frequency estimators or that of
the damping factor estimators, which are equivalent according
to (17). In the same way, the dashed lines represent the
theoretical relative variance of the amplitude estimators, which
is equal to that of the phase estimators, according to (20).

1) Variation of the variances with respect to frequency

gaps: We consider a signal of length N = 200, composed
of two undamped components (K = 2) of same order
M0 = M1 = 1, in white noise (Γ = IN and σ2 = 1).
These components have zero phases, and same amplitudes,

such that SNR(0)
0 = SNR(0)

1 = 50 dB. Figures 2-a and 2-b
show the variations of the variances of the estimators obtained
with n = 2

3 (N + 1), with respect to the frequency gap
∆f = |f1 − f0| ∈ ]0, 0.5] (f0 was set to 0). The diamonds
represent the empirical variance, obtained by averaging 100
runs of the ESPRIT algorithm. They match the theoretical
variance, which confirms the validity of our perturbation
analysis for this SNR. The variation rate of the variances is
similar to that of the Cramér Rao bounds [12]: it is broken at
∆f = 1

N = 5 10
−3, which corresponds to the resolution limit

of Fourier analysis. At this limit point, the relative variance of
the amplitude estimate is still lower than -60 dB, which shows
the good resolution of the ESPRIT algorithm. The efficiencies
of both estimators are represented in figure 2-c. It can be
noticed that they remain close to 1, even when the frequency
gap tends to zero.
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(a) Variance for the frequencies (dB)
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(b) Relative Variance for the amplitudes (dB)
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−1

0
(c) Efficiency (−dB)

Frequency gap

Fig. 2. Variation of the variances with respect to the frequency gap

2) Variation of the variances with respect to the damping

factor: We consider a signal of length N = 100, composed
of one component (K = 1) of order M0 = 1, in white noise
(Γ = IN and σ2 = 1). This component has zero frequency
and phase, and an amplitude such that SNR(0)

0 = 50 dB.
Figures 3-a and 3-b show the variations of the variances of
the estimators obtained with n = 2

3 (N + 1), with respect to
the damping factor δ0. The diamonds represent the empirical
variance, obtained by averaging 500 runs of the ESPRIT algo-
rithm. They no longer exactly match the theoretical variance
for negative values of delta, which shows the validity limit
of our perturbation analysis with respect to the high SNR
hypothesis. Again, these variations are very similar to those
of the Cramér-Rao bounds illustrated in [12]. The efficiencies
of both estimators are represented in figure 3-c. They remain
close to 1 whatever the value of the damping factor is.

3) Variation of the variances with respect to the spectral

flatness of the noise: We consider a signal of length N = 100,
composed of one undamped component (K = 1) of order
M0 = 1, in colored noise. This component has a zero phase,
a normalized frequency equal to 0.05, and an amplitude such
that SNR(0)

0 = 50 dB. The noise is obtained by filtering a
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Fig. 3. Variation of the variances with respect to the damping factor

white noise by the filter of transfer function Ha(z) = 1
1−a z−1

(where 0 ≤ a < 1), such that Γ = Toeplitz(1, a, a2 . . . aN−1).
The Spectral Flatness (SF) measure of the noise is defined as

SF(a) =
exp

(∫ 1

0
ln

(
|Ha(ei2πf )|2

)
df

)

∫ 1

0
|Ha(ei2πf )|2df

.

By tuning the parameter a, it is possible to make the spectral
flatness map the range ]0, 1] (the case SF= 1 corresponds to
white noise). Figure 4 illustrates the variations of the variances
of the estimators obtained with n = 2

3 (N + 1), with respect
to the spectral flatness of the noise. As expected, figure 4-c
shows that the efficiency degrades when the spectral flatness
decreases (note that the ESPRIT algorithm explicitly relies
on the white noise assumption). In other respects, figures 4-a
and 4-b show that the variances admit a maximum when
SF ≃ 0.5. At this point, the theoretical and the empirical
variances (obtained by averaging 1000 runs) no longer match
in figure 4-b, which shows the validity limit of our perturbation
analysis for this SNR. In the range SF ∈ [0.5, 1], the variances
decrease when the spectral flatness increases, as expected. In
the range SF ∈]0.02, 0.5], we observe the inverse phenomenon.
Indeed, as mentioned in [12], the power spectral density of
the noise becomes a sharp peak when SF becomes low, and
converges to a spectral line when SF→ 0. Therefore the
problem of estimating the single undamped component in
colored noise becomes close to the problem of estimating two
undamped components without noise. However, contrary to
what is observed in [12] in the case of the Cramér-Rao bounds,
we note that the variances are stationary in the interval SF
∈]0, 0.02]. This is because the ESPRIT algorithm is applied
with an "erroneous" model order (K = 1 instead of 2)11.

4) Variation of the variances with respect to the pole order:

We consider a signal of length N = 20, composed of one
undamped component (K = 1) of order M0 ∈ {1 . . . 4},
in white noise (Γ = IN and σ2 = 1). This component has

11The impact of an erroneous modeling order on the estimated parameters
was studied in [33].
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Fig. 4. Variation of the variances with respect to the spectral flatness of the
noise

zero phases, and amplitudes such that SNR(M0−1)
0 = 50 dB,

and ∀m < M0 − 1, SNR(m)
0 = 0. The corresponding pole

is z0 = 1. Figures 5-a and 5-b show the variations of the
variances of the estimators obtained with n = 2

3 (N + 1),
with respect to the pole order M0. They confirm the results
obtained for the Cramér-Rao bounds [12]: estimating multiple
poles is all the more difficult as their order is high. Actually
this estimation is no longer possible in this case if M0 > 4.
Besides, the empirical variance (obtained by averaging 100
runs) and the theoretical variance no longer exactly match for
M0 ≥ 4, which shows the validity limit of our perturbation
analysis for this SNR (we observed that they match again
if the SNR becomes greater than 80 dB). In other respects,
figure 5-c shows that the efficiency rapidly degrades when
M0 increases. We may infer that the arithmetic mean of the
scattered eigenvalues is not a sufficiently reliable estimator
for a pole of high multiplicity. Some ideas to improve this
estimator are suggested in [34].
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Fig. 5. Variation of the variances with respect to the pole order
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B. Application to ARMA filter synthesis

As shown in section V-A4, estimating multiple poles is a
difficult task. In order to illustrate the practical capabilities
of the generalized ESPRIT algorithm in presence of multiple
poles, we propose below an application to ARMA filter
synthesis, in the context of system conversion from continuous
time to discrete time.

1) Principle: We consider continuous time systems defined
by an ordinary differential equation (ODE) with real-valued
coefficients (below τ denotes the continuous time, in seconds)

a0ỹ(τ)+a1ỹ
′(τ)+ . . .+apỹ

(p)(τ) = b0x̃(τ)+ . . .+bqx̃
(q)(τ),

whose transfer function can be written in the form

H̃(ρ) =

q∑
k=0

bkρk

p∑
k=0

akρk

,

where ρ = i2πν and ν denotes the frequency, in Hertz. More-
over, we suppose that x̃(τ) and ỹ(τ) satisfy the conditions of
the Nyquist-Shannon sampling theorem: ∃T > 0 such that the
Fourier transforms X̃(ν) and Ỹ (ν) are zero outside the range
[− 1

2T , 1
2T ], and we consider the discrete signals x(t) = x̃(tT )

and y(t) = ỹ((t−t0)T ) for all t ∈ Z (where t0 ∈ R), obtained
by sampling x(τ) and y(τ) at the frequency 1/T . Then it is
well known that y(t) can be obtained from x(t) by applying
the discrete filter of frequency response

H(ei2πf ) = H̃

(
i2π

f

T

)
e−i2πt0f =

q∑
k=0

bk

(
i2π f

T

)k

p∑
k=0

ak

(
i2π f

T

)k
e−i2πt0f

where f ∈
[
− 1

2 , 1
2

]
is the normalized frequency. It can

be noticed that the time delay t0 can be chosen such that
H(ei2π 1

2 ) = H(e−i2π 1
2 ). In this case, if the denominator

is never zero, the 1-periodic function f 7→ H(ei2πf ) is
continuous and piecewise continuously differentiable, which
proves that h(t) = O( 1

t2 ), thus the discrete filter h is stable.
The impulse response h(t) can then be obtained by numer-
ically computing the inverse discrete time Fourier transform
of H(ei2πf ). However this impulse response h(t) is generally
infinite, and we aim at approximating it by an AutoRegressive
Moving Average (ARMA) filter g(t).

It is well known that the general rational transfer function
of a stable ARMA filter can be decomposed in the form

G(z) =
M0−1∑
m=0

α
(m)
0 z−m +

∑
0<|zk|<1

Mk−1∑
m=0

α
(m)
k

(1−zkz−1)(1+m)

+
∑

1<|zk|<+∞

Mk−1∑
m=0

β
(m)
k

(−z/zk)(1+m)

(1−z/zk)(1+m)

(25)
where for all k ∈ {0 . . . K−1} zk is a pole of multiplicity Mk

(here we assume z0 = 0). This transfer function corresponds
to the impulse response

g(t) =
∑

0≤|zk|<1

Mk−1∑

m=0

α
(m)
k Fm(t)zt−m

k

for all t ≥ 0, and

g(t) =
∑

1<|zk|<+∞

Mk−1∑

m=0

(−1)(1+m)β
(m)
k Fm(|t| − 1)z

−|t|
k

for all t < 0.
Thus both the causal and anticausal parts of g(t) satisfy a

PACE model12. Following this remark, we can find an ARMA
filter g which approximates the discrete filter h by applying the
generalized ESPRIT algorithm to the impulse response h(t) on
two appropriately chosen finite intervals.

2) Example: The ARMA filter synthesis method could be
successfully used for designing differentiator or integrator
filters. Here it is applied to the continuous time system

ỹ(τ) + 3ỹ′(τ) + 3ỹ′′(τ) + ỹ′′′(τ) = x̃(τ) − x̃′(τ), (26)

with parameters T = 1 and13 t0 ≃ 2.3924. The impulse and
the frequency response of the corresponding discrete filter h
are represented in figure 6.
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Fig. 6. Impulse and frequency response of the discrete filter

Equation (26) shows that the continuous time filter contains
a triple pole at ρ = −1. When synthesizing the corresponding
ARMA filter, we thus expect to find a triple pole at z =
e

ρ
T = 1/e. Figure 7 represents the estimated poles of the

causal part of g in the complex plane, obtained by applying
the ESPRIT algorithm with N = 128, n = (N + 1)/3 =
43, and14 r = 15. As expected, we observe a triple pole in
the neighborhood of 1/e ≃ 0.3679 (which is scattered into
three single eigenvalues forming the vertices of an equilateral
triangle). We also observe a double pole in the neighborhood
of 0, which corresponds to the polynomial part of the transfer
function in equation (25). Finally, we obtained an ARMA filter
g with 26 poles and 27 zeros. The approximation error for

12Note that the causal part generally contains a multiple pole z0 = 0,
whereas the anticausal part never contains a pole at z = ∞.

13The fractional part of the delay t0 was chosen in order to make the
frequency response H(ei2πf ) continuous, and the integer part of t0 was
chosen as the smallest integer such that the anticausal part of the estimated
filter g has no pole at z = ∞.

14The order r was selected by means of Information Theoretic Criteria [35].
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the impulse response was max
n∈[−128,128]

|h(n)− g(n)| < 5 10
−8,

and the approximation error for the frequency response was
max

f∈[− 1
2 , 1

2 ]
|20 log10 H(ei2πf ) − 20 log10 G(ei2πf )| < 10

−5.

Fig. 7. Poles of the causal part of the ARMA filter

VI. CONCLUSIONS

In this paper, the performance of the generalized ESPRIT
algorithm for estimating the parameters of the PACE model,
also called quasipolynomial model, was investigated in the
context of high SNRs. This work was based on the analysis
of the first order perturbations induced by an additive noise. In
particular, it was shown that the perturbation of the estimated
poles is not sensitive to the particular choice of the orthonor-
mal subspace weighting matrix. In other respects, the presence
of noise scatters multiple poles into several single eigenvalues,
forming the vertices of a regular polygon. However it was
proved that the estimation of multiple poles can be improved
by calculating the arithmetic mean of the scattered eigenvalues.

Then it was shown that the estimators of all the parameters
obtained in this way are unbiased, and their variances were
calculated and compared to the Cramér-Rao bounds. By sup-
posing that the noise is white, that all poles are on the unit
circle, and that the SNR, n and l → +∞, it was shown that
the efficiency of single poles estimators is close to 1. More
precisely, the asymptotic efficiency of the estimators of all
damping factors and frequencies is the same one, independent
from the model parameters, and equal to 9/8 = 1.125 if
n = 2l or l = 2n. In other respects, the asymptotic efficiency
of the estimators of all the real-valued amplitudes and phases
is the same one, independent from the model parameters, and
equal to 35/32 = 1.09375 if n = 2l or l = 2n.

However, our simulation results showed that the variances
of the estimators associated to a multiple pole present an
exponential increase with the order of the pole. Thus the
practical estimation of the PACE model parameters is only
possible if the exponentials are modulated by polynomials of
low order. Nevertheless, some recent advances in linear algebra
computations, such as the techniques proposed in [34], offer

interesting outlooks for improving the estimation of multiple
poles.

APPENDIX

The following developments lead to propositions 3 and 4 pre-
sented in section III. The exhaustive proofs of these results
are presented in a supporting document which is available at
http://www.tsi.enst.fr/˜rbadeau/.

A. Perturbation of the frequencies and damping factors

Below, we successively derive the following first order expansions:
• W (ε) = W + ε∆W + O(ε2), where the expression of ∆W

is a linear function of ∆S (proposition 9);
• Φ(ε) = Φ + ε∆Φ + O(ε2), where the expression of ∆Φ is a

linear function of ∆W (proposition 10);
• zk(ε) = zk + ε∆zk + O(ε2), where the expression of ∆zk is

a linear function of ∆Φ (proposition 12);

•

{
δk(ε) = δk + ε∆δk + O(ε2)
fk(ε) = fk + ε∆fk + O(ε2)

where the expressions of

∆δk and ∆fk are functions of ∆zk (corollary 3).
Finally, successive substitutions lead to the expressions of ∆δk and
∆fk as functions of the additive perturbation ∆s.

1) Perturbation of the signal subspace: Here we analyze the
influence of a perturbation of the data onto the signal subspace. For
all ε, let Π(ε) be the n×n projector onto the r-dimensional dominant
subspace of the n×n positive semidefinite matrix S(ε) S(ε)H . If W
is orthonormal, Π(0) = W W H . Then the perturbation theory shows
that the function ε 7→ Π(ε) is C∞ in a neighborhood of ε = 0. In
the literature, the asymptotic performance analysis of some subspace-
based algorithms was performed by investigating the perturbation of
this projector at the first order [36]. However we are interested here
in the perturbation of the subspace weighting matrix W , which is
analyzed in the following proposition.

Proposition 9 (Perturbation of the signal subspace). There exists an
infinity15 of C∞ functions ε 7→ W (ε) defined in a neighborhood of
ε = 0 and with values in the group of complex orthonormal matrices
U

n×r , which span the r-dimensional dominant subspace of S(ε)
(i.e. such that W (0) = W and W (ε) W (ε)H = Π(ε)). Each C∞

function ε 7→ W (ε) admits a first order expansion

W (ε) = W + ε∆W + O(ε2). (27)

The first order perturbation ∆W can be decomposed as

∆W = ∆W
⊥ − W A, (28)

where the r×r matrix A , ∆W HW is antihermitian and the n×r
matrix ∆W ⊥ is orthogonal to span(W ):

∆W ⊥ =
(
In − W W H

)
∆S S† W . (29)

The proof of proposition 9 relies on the implicit definition of W (ε)
as the unique minimum point of a cost function J . Equations (27)
to (29) are thus derived by zeroing the first derivative of J .

Proof of proposition 9:
It can be verified that the function

W (ε) , Π(ε)W
(
W

H
Π(ε)W

)− 1
2

satisfies all the properties mentioned in proposition 9. It is also clear
that any function of the form W (ε)Θ(ε), where ε 7→ Θ(ε) is a C∞

function, whose values belong to the group of orthonormal matrices

15All these functions are obtained by right-multiplying any of them by
a C∞ function, with values in the group of complex orthonormal matrices
U

r×r , and reaching the value Ir at ε = 0.
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Or(C), and which reaches the value Ir at ε = 0, also satisfies these
properties. Lastly, if ε 7→ W ′(ε) is an other function satisfying all
these properties, then Π(ε) = W (ε) W (ε)H = W ′(ε) W ′(ε)H .
Therefore W ′(ε) = W (ε)Θ(ε), where Θ(ε) , W (ε)HW ′(ε) is
a C∞ function, whose values belong to the group of orthonormal
matrices Or(C) since W (ε) and W ′(ε) are two orthonormal bases
of the same subspace, and which reach the value W HW = Ir at
ε = 0. Then note that according to [37], any orthonormal matrix
W (ε) spanning the principal subspace of the matrix S(ε)S(ε)H

minimizes the function

J :
C

n×r → R

U 7→ 1
2

∥∥S(ε) − U UH S(ε)
∥∥2

F
.

Consequently, the gradient ∇J (U ) is zero at U = W (ε). However
it can be verified16 that ∇J (U ) =

(
−2S(ε)S(ε)H + S(ε)S(ε)H

UU
H + UU

H
S(ε)S(ε)H

)
U .

Let W (ε) = W + ε∆W +O(ε2) be the first order expansion of
the function ε 7→ W (ε). Then

∇J (W (ε)) = ε∇J (1) + O(ε2) (30)

where

∇J (1) = −
(
In − W W H

)
∆S SH W

+∆W
(
W HS SHW

)
+ W N

(31)

and

N ,
(
W HS SHW

) (
W H∆W + ∆W HW

)

+∆W HW
(
W HS SHW

)
.

(32)

However, the first order expansion of the orthonormality condition
W (ε)HW (ε) = Ir shows that W H∆W + ∆W HW = 0(r×r),
which means that the matrix A , ∆W HW is antihermitian.
Thus N = A

(
W HS SHW

)
. Since ∇J (W (ε)) = 0(n×r),

equations (30) to (32) yield

∆W =
(
In − W W

H
)

∆SS
H

W
(
W

H
SS

H
W

)−1

− W A.

Finally, by noting that SH W
(
W HS SHW

)−1
= S† W , equa-

tions (27) to (29) can be derived.
2) Perturbation of the spectral matrix: The following propo-

sition complements the result of proposition 9 by showing how the
spectral matrix is perturbed.

Proposition 10 (Perturbation of the spectral matrix). Suppose that
the matrix W ↓ is full-rank. Then in the neighborhood of ε = 0,
W ↓(ε) is also full-rank. Moreover, the function

Φ(ε) , W (ε)†↓ W (ε)↑ (33)

is C∞, and admits the first order expansion:

Φ(ε) = Φ + ε∆Φ + O(ε2). (34)

The first order perturbation ∆Φ can be written in the form

∆Φ = ∆Φ
⊥ + AΦ − ΦA, (35)

where the r × r matrix ∆Φ
⊥ is defined as

∆Φ
⊥ = −W

†
↓∆W ⊥

↓ Φ + ΦW
†
↑∆W ⊥

↑ . (36)

16To compute ∇J (U), the following derivation rule has to be applied: if
M is a constant n × r matrix, ∇trace

(
ℜ

(
UHM

))
= M. As a conse-

quence, if C is a constant n × n hermitian matrix, ∇trace
(
UHCU

)
=

2CU.

Equations (34) to (36) are obtained by substituting equations (27)
to (29) into the first order expansion of equation (33) which defines
Φ(ε).

In the following step, the estimated poles are defined as the
eigenvalues of the perturbed spectral matrix Φ(ε). In order to
compute their first order expansion, we first need to introduce the
matrix J(ε) , G−1

Φ(ε)G, which is similar to Φ(ε); thus the
estimated poles can also be viewed as the eigenvalues of J(ε). Note
however that J(ε) is generally no longer a Jordan matrix when ε > 0.
The following corollary provides the first order expansion of this
matrix. Let us define the vectors v↑ and v↓ of same dimension r
as the conjugate transpose of the first and last row of the matrix
V n respectively, and consider the r × r positive definite matrix
Z = V nHV n.

Corollary 11. Let J(ε) = G−1
Φ(ε)G. The function ε 7→ J(ε) is

C∞ in a neighborhood of ε = 0, and admits the expansion

J(ε) = J + ε∆J + O(ε2) (37)

where the first order perturbation ∆J = G−1∆ΦG can be written
in the following form (where A′ = G−1A G):

∆J = ∆J⊥ + A′J − JA′. (38)

Moreover, the matrix ∆J⊥ = G−1∆Φ
⊥ G has rank 2:

∆J
⊥ = v

′
↓e↓

H∆S V
l†T

D
−1

J − J v
′
↑e↑

H∆S V
l†T

D
−1 (39)

where the l × r Pascal-Vandermonde matrix V l and the r × r
block-diagonal matrix D were introduced in proposition 1, the r-
dimensional vectors v′

↓ and v′
↑ are defined as

v
′
↓ =

Z−1v↓

1 − vH
↓ Z−1v↓

v
′
↑ =

Z−1v↑

1 − vH
↑ Z−1v↑

,

and the n-dimensional vectors e↓ and e↑ are defined as

e↓ = [0 . . . 0, 1]T − V
n
Z

−1
v↓

e↑ = [1, 0 . . . 0]T − V
n
Z

−1
v↑.

Corollary 11 is derived from proposition 10 by means of the basis
change (7).

3) Perturbation of the poles: Finally, we focus in this section
on the perturbation of the poles. Theoretically, they are obtained by
computing the Jordan form of the spectral matrix Φ. In practice,
contrary to Φ, the perturbed spectral matrix does not have multiple
eigenvalues: multiple poles are scattered into several single eigenval-
ues.

More precisely, it was shown in [2] that if Mk > 1:

• the first order perturbation of the pole zk is homogeneous and
isotropic, so that the Mk perturbed eigenvalues z

(m)
k (ε) form

the vertices of a regular polynomial of order Mk in the complex
plan;

• the perturbation of the scattered eigenvalues is of order ε
1

Mk ,
which suggests that multiple poles are more sensitive to pertur-
bations than single poles.

In fact it is possible to overcome this problem by no longer
considering the eigenvalues z

(m)
k (ε) as Mk distinct estimators of the

same pole zk, but rather by forming a single estimator of this pole
by averaging the z

(m)
k (ε). The following proposition shows that the

arithmetic mean zk(ε) of the scattered eigenvalues admits a series
expansion.
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Proposition 12 (Perturbation of the poles). Let zk(ε) =

1
Mk

Mk−1∑
m=0

z
(m)
k (ε) ∀k ∈ {0 . . . K−1}. Then the function ε 7→ zk(ε)

is C∞ and admits the first order expansion

zk(ε) = zk + ε∆zk + O
(
ε2

)
(40)

where ∆zk is the complex number

∆zk =
1

Mk

trace
(
∆J

⊥
k

)
. (41)

Here, ∆J⊥
k is the sub-block of dimension Mk × Mk extracted from

the matrix ∆J⊥, which is associated to zk
17. The complex number

∆zk can also be written in the form

∆zk = 1

Mk α
(Mk−1)

k

(
e↓

H∆S f ↓k − e↑
H∆S f ↑k

)
. (42)

The l-dimensional vectors f ↓k and f ↑k are defined18 as

{
f ↓k = α

(Mk−1)
k V l†T

D−1J v′
↓k

f ↑k = α
(Mk−1)
k V l†T

D−1J v′
↑k,

(43)

where v′
↓k and v′

↑k are the r-dimensional vectors whose coefficients

are equal to those of v′
↓ and v′

↑ inside the kth sub-block19, and zero
outside this sub-block.

Equation (42) is derived by substituting equation (39) into equa-
tion (41). It can be noticed that the antihermitian matrix A, introduced
in proposition 9, is no longer involved in proposition 12. We can
conclude that the performance of the generalized ESPRIT algorithm
is not sensitive to the particular choice of the orthonormal basis W (ε)
(at the first order).

Since the matrix ∆S is Hankel and contains the samples of the
PACE signal, the right member of equation (42) contains linear
combinations of ∆s(τ) for τ ∈ {t − l + 1 . . . t + n − 1}. Therefore
equation (42) can also be written as a scalar product:

∆zk =
1

Mk α
(Mk−1)
k

uk
H∆s (44)

where for all τ ∈ [0, . . . , n+ l−2], the coefficient of index τ in uk

is20

uk(τ) =

n−1∑

υ=0

(
e↓(υ)f∗

↓k(τ − υ) − e↑(υ)f∗
↑k(τ − υ)

)
1{τ−l<υ≤τ}.

(45)
Equation (45) involves two convolution products, which are due to
the Hankel matrix / vector products in equation (42).

Finally, proposition 3 in section III shows how the perturbation of
the poles affects the frequencies and damping factors.

B. Perturbation of the amplitudes and phases

Below, we successively derive the following first order expansions:
• V N (ε) = V N + ε∆V N + O(ε2), where the expression of

∆V N is a linear function of the ∆zk’s (lemma 13);
• α(ε) = α + ε∆α + O(ε2), where the expression of ∆α is a

linear function of ∆s (proposition 14);

•

{
ak(ε) = ak + ε∆ak + O(ε2)
φk(ε) = φk + ε∆φk + O(ε2)

where the expressions of

∆ak and ∆φk are functions of ∆α (corollary 4).

17This corresponds to the rows and columns of indices
∑k−1

k′=0
Mk′ to∑k

k′=0 Mk′ − 1.
18It can be verified that if Mk = 1, the vectors f↓k and f↑k do not

depend on any complex amplitude.
19This corresponds to the coefficients of indices

∑k−1
k′=0

Mk′ to∑k
k′=0 Mk′ − 1.
20Here the function 1(.) is one if its argument is true and zero otherwise.

1) Perturbation of the Pascal-Vandermonde matrix:

Lemma 13 (Perturbation of the Pascal-Vandermonde matrix). Let
V N (ε) be the N × r Pascal-Vandermonde matrix associated to
the estimated poles {z0(ε), . . . , zK−1(ε)} defined in proposition 12.

Then the function ε 7→ V N (ε) is C∞ in the neighborhood of ε = 0,
and admits the first order expansion:

V N (ε) = V N + ε ∆V N + O(ε2) (46)

where the matrix ∆V N can be written in the form

∆V N = V
N

∆Z (47)

where V
N

is the N × (r + K) Pascal-Vandermonde matrix ob-

tained by concatenating the generalized Pascal matrices C
N

k =
CN

Mk+1(zk) of dimension N × (Mk + 1), and

∆Z = diag(∆Z0, . . . , ∆ZK−1) (48)

is a (r + K) × r matrix whose diagonal blocks

∆Zk = ∆zk ×

[
0(1×Mk)

diag(1, 2, . . . , Mk)

]
(49)

have dimension (Mk + 1) × Mk.

Lemma 13 is proved by substituting the first order expansion of
the poles (40) into the expression of the Pascal-Vandermonde matrix,
and by extracting the terms of order 1.

2) Perturbation of the amplitudes and phases: The perturba-
tion of the complex-valued amplitudes can be derived from lemma 13.
Let

s = [s(t − l + 1), . . . , s(t + n − 1)]T

be the N -dimensional vector containing the samples of the PACE
signal. For all ε ∈ R, the N -dimensional observed vector is s(ε) =
s + ε ∆s.

Proposition 14 (Perturbation of the complex-valued amplitudes). The
perturbed LS estimate defined in equation (9) can be written in the
form

α(ε) = V
N (ε)†s(ε). (50)

Then the function ε 7→ α(ε) is C∞ in the neighborhood of ε = 0,
and admits the first order expansion:

α(ε) = α + ε ∆α + O(ε2). (51)

The r-dimensional vector ∆α satisfies

∆α = BH ∆s (52)

where the r × N matrix

B
H = V

N †


IN − V

N




B0

...
BK−1





 (53)

involves the (Mk + 1) × N matrices Bk, of rank 1:

Bk =

[
0,

1

Mk

α
(0)
k

α
(Mk−1)
k

, . . . ,
Mk − 1

Mk

α
(Mk−2)
k

α
(Mk−1)
k

, 1

]T

u
H
k . (54)

Equations (51) to (54) are obtained by substituting equations (46)
to (49) into the first order expansion of equation (50).

Finally, proposition 4 in section III shows how the perturbation of
the complex-valued amplitudes influences the real-valued amplitudes
and phases. The vector b

(m)
k is the column of B associated to the

pole zk at index m, i.e. the column of index m +
k−1∑
k′=0

Mk′ . The

derivation of equation (14) from equation (52) is straightforward.
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