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Abstract: This paper proposes an original approach for modelling ferromagnetic sheet in inverse problem. It is 
realised with layers of tangential dipoles. This distribution is built thanks to measurements on sensors located in 
the interior of the device. The problem being ill-posed, we propose a new regularisation method to obtain a 
physical solution by injection of direct problem (DPI). It’s then easy to compute the field everywhere around the 
device where sensors can’t be placed. Moreover, the permanent magnetisation of the shell can be identified and 
systems with fewer equations than unknowns can be solved. 
 

GENERAL FORMULATION OF THE DIRECT PROBLEM 
 

Let’s consider a ferromagnetic shell placed in an external inductor field H0, the earth magnetic field for 
example.  The magnetisation M of the sheet can be divided in two parts: An induced one, due to the reaction of 
the material to the inductor field and a permanent one due to the magnetic history of the material. This device 
creates a local perturbation of the field, which can be expressed in terms of reduced scalar potential.   

H = H0 + Hred = H0 –  grad ϕred (1) 
If the thickness e of the sheet is small and µr its relative permeability high, we can consider that induced the 
magnetisation Mi is parallel to the shell and constant through it [1]. We can assume that it’s the case for the 
permanent magnetisation Mp too. We can then model the plate by a median surface S, where tangential dipoles p 
are located. They are directly linked to the magnetisation by the following equation [2]: 

p =pind + pper = e M =e ( Mper +Mind)  (2) 
Where Mper and Mind are respectively the permanent and the induced magnetisations. The advantage of this 
formulation is its validity everywhere in the air region (i.e. outside and inside the device). The local field 
perturbation can then be expressed by the following expression: 
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Where Q is a point of the air-region and S a point of the median surface S.   
 

CALCULATION OF THE INDUCED MAGNETISATION 

 
In this section, we are interested by the calculation of unknown pind by knowing the induced field, the 

permeability of the material and geometry of the device.  We have developed a  3D formulation based on [3]. 
Let’s assume that the structure is meshed in N elements. The distribution is reduced to discrete dipoles by 
condensing the magnetisation at the center of each element. By applying a collocation method, we obtain the 
following equations:  
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Where G is the 1/4πr Green’s function, Li is the line contour of element i and nLi the external normal to L. By 
writing this equation on each element, we obtain, by projecting it on a basis of vectors, a square system of 2N 
unknowns. 

Cx=d (5) 
The expressions for field in the air region becomes then: 
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Figure 1: Example of a discrete distribution of tangential induced dipoles for a hull of a ship placed in a longitudinal inductor field. 

 
INVERSE PROBLEM 

 
The aim of our work is, from measurements of the field in the air, to determine the dipoles distribution. 

There are M tri-axis sensors located inside the structure. Thanks to an equivalent equation of (6), we can build a 
system where the unknowns are the sum of permanent and the induced ones. 

A x = A (xind + xper) = b (7) 
Where A is a (3M×2N) matrix. Unfortunately, small measurements inaccuracies give us contradictory equations, 
such as A is very close to singularity. The problem is then ill posed and need to be regularised. Classical 
approaches like Tikhonov’s regularisation or truncation of the single value decomposition have failed and the 
solutions obtained were divergent. The main idea of the regularisation technique is to add to the system to solve 
some known information. The unknown x is composed by xper, that we try to identify and xind

 that we are able to 
express. Our new approach called Direct Problem Injection (DPI) is to solve both the inverse problem and a part 
of the direct problem. We are going then to minimise the following norm: 

    
 Ax − b  +α  Cx− d  (8) 

The system to solve becomes, in the least-square sense: 
x=(ATA+αCTC)-1(ATb+αCTd) (9) 

Notice that if α=0, we only solve the system built thanks to measurements and if α is high, we only solve the 
problem of the induced magnetisation. The good parameter is between these two limits and its choice is made 
with the L-curve [4]. To validate our approach, we have realised inversions with measurements simulated by 
finite elements method. The device is placed in an external field and some parts of it have a permanent state 
magnetisation. These numerical tests lead to very promising results (figure 2).  
 

CONCLUSION  
 

 We are especially interested by the magnetic the magnetic anomaly created by ferromagnetic ship. Once 
the distribution have been obtained, it’s easy to compute the field everywhere in the air and in peculiar outside of 
the hull where sensors can be placed. Moreover, our new technique of regularisation allows us to inverse dipoles 
system (where classical method have failed) and to solve systems with fewer equations than unknowns. Our 
method isn’t restricted to ferromagnetic plates and can be applied easily to volume device.  

                        
  
 
References 
[1] X. Brunotte, G. Meunier "Line Element for efficient computation of the magnetic field created by thin iron plates", IEEE Trans. 

Magn.,Vol. 26, September 1990, pp 2196-2198, 
[2] E. Durand, "Magnétostatique", Masson et Cie, 1968. 
[3] A. Vishnevski, I. Krasnov, A. Lapokov"Calculation of static magnetization for thin-walled constructions by boundary element 

method", IEEE Trans. Magn.,Vol. 29, September 1993, pp 2152-2155. 
[4] P.C. Hansen, D.P O’leary,  "The use of  the L-curve in the regularisation of discretisation of discrete ill-posed problem" SIAM, J. Sci. 

Comput. 14,  1993, pp 1487-1503. 

Figure 2: Identification of a permanent magnetisation 
 (60 sensors simulated by FEM-288 dipoles) 

 

Figure 3: Indentification of a permanent magnetisation by 
measurements on a real mok-up of a ship (4.6m lengh)  regularised 
by the induced magnetisation created by the earth magnetic field. 


