
ha
l-

00
18

00
01

, v
er

si
on

 1
 -

 1
7 

O
ct

 2
00

7

Transient random walks in random environment
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Summary. We consider a transient random walk (Xn) in random envi-
ronment on a Galton–Watson tree. Under fairly general assumptions, we
give a sharp and explicit criterion for the asymptotic speed to be positive.
As a consequence, situations with zero speed are revealed to occur. In such
cases, we prove that Xn is of order of magnitude nΛ, with Λ ∈ (0, 1). We
also show that the linearly edge reinforced random walk on a regular tree
always has a positive asymptotic speed, which improves a recent result of
Collevecchio [1].
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1 Introduction

1.1 Random walk in random environment

Let ν be an N∗-valued random variable (with N∗ := {1, 2, · · ·}) and (Ai, i ≥ 1) be a random

variable taking values in RN∗

+ . Let qk := P (ν = k), k ∈ N∗. We assume q0 = 0, q1 < 1,

and m :=
∑

k≥0 kqk < ∞. Writing V := (Ai, i ≤ ν), we construct a Galton–Watson tree as

follows.
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Let e be a point called the root. We pick a random variable V (e) := (A(ei), i ≤ ν(e))

distributed as V , and draw ν(e) children to e. To each child ei of e, we attach the random

variable A(ei). Suppose that we are at the n-th generation. For each vertex x of the n-th

generation, we pick independently a random vector V (x) = (A(xi), i ≤ ν(x)) distributed as

V , associate ν(x) children (xi, i ≤ ν(x)) to x, and attach the random variable A(xi) to the

child xi. This leads to a Galton–Watson tree T of offspring distribution q, on which each

vertex x 6= e is marked with a random variable A(x).

We denote by GW the distribution of T. For any vertex x ∈ T, let
←
x be the parent of x

and |x| its generation (|e| = 0). In order to make the presentation easier, we artificially add

a parent
←
e to the root e. We define the environment ω by ω(

←
e , e) = 1 and for any vertex

x ∈ T\{
←
e},

• ω(x, xi) = A(xi)

1+
∑ν(x)

i=1 A(xi)
, ∀ 1 ≤ i ≤ ν(x),

• ω(x,
←
x) = 1

1+
∑b

i=1 A(xi)
.

For any vertex y ∈ T, we define on T the Markov chain (Xn, n ≥ 0) starting from y by

P y
ω(X0 = y) = 1,

P y
ω(Xn+1 = z |Xn = x) = ω(x, z) .

Given T, (Xn, n ≥ 0) is a T-valued random walk in random environment (RWRE). We note

from the construction that ω(x, .), x 6=
←
e are independent.

Following [11], we also suppose that A(x), x ∈ T, |x| ≥ 1, are identically distributed. Let

A denote a random variable having the common distribution. We assume the existence of

α > 0 such that ess sup(A) ≤ α and ess sup( 1
A
) ≤ α. The following criterion is known.

Theorem A (Lyons and Pemantle [11]) The walk (Xn) is transient if inf [0,1] E[At] > 1
m

,

and is recurrent otherwise.

When T is a regular tree, Menshikov and Petritis [14] obtain the transience/recurrence

criterion by means of a relationship between the RWRE and Mandelbrot’s multiplicative

cascades; Hu and Shi [8],[9] characterize different asymptotics of the walk in the recurrent

case, revealing a wide range of regimes.

Throughout the paper, we assume that the walk is transient (i.e., inf [0,1] E[At] > 1
m

according to Theorem A). Given the transience, natural questions arise concerning the rate
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of escape of the walk. The law of large numbers says that there exists a deterministic v ≥ 0

(which can be zero) such that

lim
n→∞

|Xn|

n
= v, a.s.

This was proved by Gross [7] when T is a regular tree, and by Lyons et al. [13] when A is

deterministic; their arguments can be easily extended in the general case (i.e., when T is a

Galton–Watson tree and A is random).

We are interested in determining whether v > 0.

When A is deterministic, it is shown by Lyons et al. [13] that the transient random

walk always has positive speed. Later, an interesting large deviation principle is obtained in

Dembo et al. [3]. In the special case of non-biased random walk, Lyons et al. [12] succeed in

computing the value of the speed.

We recall two results for RWRE on Z (which can be seen as a half line-tree). The first

one gives a necessary and sufficient condition for RWRE to have positive asymptotic speed.

Theorem B (Solomon [16]) If T = Z, then

E

[
1

A

]
< 1 ⇐⇒ lim

n→∞

Xn

n
> 0 a.s.

When the transient RWRE has zero speed, Kesten, Kozlov and Spitzer in [10] prove that

the walk is of polynomial order. To this end, let κ ∈ (0, 1] be such that E
[

1
Aκ

]
= 1. Under

some mild conditions on A,

• if κ < 1, then Xn

nκ converges in distribution.

• If κ = 1, then ln(n)Xn

n
converges in probability to a positive constant.

The aim of this paper is to study the behaviour of the transient random walk when T is

a Galton–Watson tree. Let Leb represent the Lebesgue measure on R and let

Λ := Leb

{
t ∈ R : E[At] ≤

1

q1

}
.(1.1)

If q1 = 0, then we define Λ := ∞. Notice that this definition is similar to the definition of

κ in the one-dimensional setting. Our first result, which is a (slightly weaker) analogue of

Solomon’s criterion for Galton–Watson tree T, is stated as follows.
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Theorem 1.1 Assume inf [0,1] E[At] > 1
m

, and let Λ be as in (1.1).

(a) If Λ < 1, the walk has zero speed.

(b) If Λ > 1, the walk has positive speed.

Corollary 1.2 Assume inf [0,1] E[At] > 1
m

. If T is a regular tree, then the walk has positive

speed.

Theorem 1.1 extends Theorem B, except for the “critical case” Λ = 1.

Corollary 1.2 says there is no Kesten–Kozlov–Spitzer-type regime for RWRE when the

tree is regular. Our next result exhibits such a regime for Galton–Watson trees T.

Theorem 1.3 Assume inf [0,1] E[At] > 1
m

, and Λ ≤ 1. Then

lim
n→∞

ln(|Xn|)

ln(n)
= Λ a.s.

Since Λ > 0, the walk is proved to be of polynomial order. As expected, Λ plays the

same role as κ.

1.2 Linearly edge reinforced random walk

The reinforced random walk is a model of random walk introduced by Coppersmith and

Diaconis [2] where the particle tends to jump to familiar vertices. We consider the case

where the graph is a b-ary tree T, that is a tree where each vertex has b children (b ≥ 2).

At each edge (x, y), we initially assign the weight π(x, y) = 1. If we know the weights and

the position of the walk at time n, we choose an edge emanating from Xn with probability

proportional to its weight. The weight of the edge crossed by the walk then increases by a

constant δ > 0. This process is called the Linearly Edge Reinforced Random Walk (LERRW).

Pemantle in [15] proves that there exists a real δ0 such that the LERRW is transient if δ < δ0

and recurrent if δ > δ0 (δ0 = 4, 29.. for the binary tree). We focus, from now on, on the case

δ = 1, so that the LERRW almost surely is transient. Recently, Collevecchio in [1] shows

that when b ≥ 70 the LERRW has a positive speed v which verifies 0 < v ≤ b
b+2

. We propose

to extend the positivity of the speed to any b ≥ 2.

Theorem 1.4 The linearly edge reinforced random walk on a b-ary tree has positive speed.
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We rely on a correspondence between RWRE and LERRW, explained in [15]. By means

of a Polya’s urn model, Pemantle shows that the LERRW has the distribution of a certain

RWRE, such that for any y 6=
←
e , the density of ω(y, z) on (0, 1) is given by

• f0(x) = b
2
(1 − x)

b
2
−1 if z =

←
y ,

• f1(x) =
Γ( b

2
+1)

Γ( 1
2
)Γ( b+1

2
)
x−

1
2 (1 − x)

b−1
2 if z is a child of y.

Consequently, we only have to prove the positivity of the speed of this RWRE.

With the notation of Section 1.1, A is not bounded in this case, which means Theorem

1.1 does not apply. To overcome this difficulty, we prove the following result.

Theorem 1.5 Let T be a b-ary tree and assume that inf [0,1] E[At] > 1
b

and

E




(

b∑

i=1

Ai

)−1


 < ∞ .

Then the RWRE has positive speed.

Since the RWRE associated with the LERRW satisfies the assumptions of Theorem 1.5

as soon as b ≥ 3, Theorem 1.4 follows immediately in the case b ≥ 3. The case of the binary

tree is dealt with separately.

The rest of the paper is organized as follows. We prove Theorem 1.5 in Section 2. In

Section 3, we prove the upper bound in Theorem 1.3. Some technical results are presented

in Section 4, and are useful in Section 5 in the proof of the lower bound in Theorem 1.3.

In Section 6, we prove Theorem 1.1. The proof of Theorem 1.4 for the binary tree is the

subject of Section 7. Finally, Section 8 is devoted to the computation of parameters used in

the proof of Theorem 1.3.

2 The regular case, and the proof of Theorem 1.5

We begin the section by giving some notation. Let P denote the distribution of ω condition-

ally on T, and Px the law defined by Px(·) :=
∫

P x
ω (·)P(dω). We emphasize that P x

ω , P and

Px depend on T. We respectively associate the expectations Ex
ω, E, Ex. We denote also by
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Q and Qx the measures:

Q(·) :=

∫
P(·)GW (dT) ,

Qx(·) :=

∫
Px(·)GW (dT) .

For sake of brevity, we will write P and Q for Pe and Qe.

Define for x, y ∈ T, and n ≥ 1,

Zn := #{x ∈ T : |x| = n} ,

x ≤ y ⇔ ∃ p ≥ 0, ∃x = x0, . . . , xp = y ∈ T such that ∀ 0 ≤ i < p , xi =
←
xi+1 .

If x ≤ y, we denote by [[x, y]] the set {x0, x1, . . . , xp}, and say that x < y if moreover x 6= y.

Define for x 6=
←
e , and n ≥ 1,

Tx := inf {k ≥ 0 : Xk = x} ,

T ∗x := inf {k ≥ 1 : Xk = x} ,

β(x) := P x
ω (T←

x
= ∞) .

We observe that β(x), x ∈ T\{
←
e}, are identically distributed under Q. We denote by β a

generic random variable distributed as β(x). Since the walk is supposed transient, β > 0

Q-almost surely, and in particular EQ[β] > 0.

We still consider a general Galton–Watson tree. We prove that the number of sites visited

at a generation has a bounded expectation under Q.

Lemma 2.1 There exists a constant c1 such that for any n ≥ 0,

EQ



∑

|x|=n

1I{Tx<∞}


 ≤ c1 .

Proof. By the Markov property, for any n ≥ 0,

∑

|x|=n

P e
ω(Tx < ∞)β(x) =

∑

|x|=n

P e
ω(Tx < ∞, Xk 6=

←
x ∀k > Tx) ≤ 1 .

The last inequality is due to the fact that there is at most one regeneration time at the n-th

generation. Since P e
ω(Tx < ∞) is independent of β(x), we obtain:

1 ≥ EQ




∑

|x|=n

P e
ω(Tx < ∞)β(x)



 =
∑

|x|=n

EQ [P e
ω(Tx < ∞)]EQ[β].
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In view of the identity EQ

[∑
|x|=n 1I{Tx<∞}

]
=
∑
|x|=n EQ [P e

ω(Tx < ∞)], the lemma follows

immediately. �

Let us now deal with the case of the regular tree. We suppose in the rest of the section

that there exists b ≥ 2 such that ν(x) = b for any x ∈ T \ {
←
e}.

Lemma 2.2 If E
[

1∑b
i=1 Ai

]
< ∞, then

E

[
1

β

]
< ∞ .

Proof. Notice that E
[

1
max1≤i≤b Ai

]
< ∞. For any n ≥ 0, call vn the vertex defined by iteration

in the following way:

• v0 = e

• vn ≤ vn+1 and A(vn+1) = max{A(y), y is a child of vn}.

The Markov property tells that

β(x) =
b∑

i=1

ω(x, xi)β(xi) +
b∑

i=1

ω(x, xi)(1 − β(xi))β(x) ,

from which it follows that for any vertex x,

1

β(x)
= 1 +

1
∑b

i=1 A(xi)β(xi)
≤ 1 + min

1≤i≤b

1

A(xi)β(xi)
.(2.1)

Let C(vn) := {y is a child of vn, y 6= vn+1} be the set of children of vn different from vn+1.

Take C > 0 and define for any n ≥ 1 the event

En := {∀k ∈ [0, n − 1] , ∀y ∈ C(vk) , (A(y)β(y))−1 > C} .

We extend the definition to n = 0 by Ec
0 := ∅. Notice that the sequence of events is

decreasing. Using equation (2.1) yields

1IEn

β(vn)
≤ (1 + C) +

1IEn+1

A(vn+1)β(vn+1)
.(2.2)

On the other hand, by the i.i.d. property of the environment, we have

P(En) = P(E1)
n .
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By choosing C such that P(E1) < 1 and using the Borel–Cantelli lemma, we have 1IEn
= 0

from some n0 ≥ 0 almost surely. Iterate equation (2.2) to obtain

1

β(e)
≤ (1 + C)

(
1 +

∑

n≥1

B(n)

)

where B(n) = 1IEn

∏n
k=1

1
A(vk)

. Hence

E

[
1

β

]
≤ (1 + C)

(
1 +

∑

n≥1

E [B(n)]

)
.

We observe that E[B(n)] = {E [1IE1A(v1)
−1]}

n
. When C tends to infinity, E [1IE1A(v1)

−1]

tends to zero since E[A(v1)
−1] < ∞. Choose C such that E [1IE1A(v1)

−1] < 1 to complete

the proof. �

For x ∈ T and n ≥ −1, let

N(x) :=
∑

k≥0

1I{Xk=x} ,

Nn :=
∑

|x|=n

N(x) ,

τn := inf {k ≥ 0 : |Xk| = n} .

In words, N(x) and Nn denote, respectively, the time spent by the walk at x and at the

n-th generation, and τn stands for the first time the walk reaches the n-th generation. A

consequence of the law of large numbers is that

lim
n→∞

τn

n
=

1

v
Q - a.s.

Our next result gives an upper bound for the expected value of Nn.

Proposition 2.3 Suppose that E
[

1∑b
i=1 A(xi)

]
< ∞. There exists a constant c2 such that for

all n ≥ 0, we have

E

[
n∑

k=0

Nk

]
≤ c2 n .

Proof. By the strong Markov property, P x
ω (N(x) = ℓ) = {P x

ω (T ∗x < ∞)}ℓ−1P x
ω (T ∗x = ∞), for

ℓ ≥ 1. Accordingly,

Ee
ω

[
n∑

k=0

Nk

]
=

∑

0≤|x|≤n

P e
ω(Tx < ∞)Ex

ω[N(x)] =
∑

0≤|x|≤n

P e
ω(Tx < ∞)

1 − P x
ω (T ∗x < ∞)

.
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We observe that 1 − P x
ω (T ∗x < ∞) ≥

∑b
i=1 ω(x, xi) β(xi). Since P e

ω(Tx < ∞) is independent

of (ω(x, xi)β(xi), 1 ≤ i ≤ b), we have

E

[
n∑

k=0

Nk

]
≤

∑

0≤|x|≤n

E [P e
ω(Tx < ∞)]E



(

b∑

i=1

ω(e, ei)β(ei)

)−1



= E



∑

0≤|x|≤n

P e
ω(Tx < ∞)


E



(

b∑

i=1

ω(e, ei)β(ei)

)−1

 .(2.3)

Since
∑b

i=1 ω(e, ei) β(ei) ≥ {mini=1...b β(ei)}
∑b

i=1 ω(e, ei), it follows that

E

[
n∑

k=0

Nk

]
≤ E




∑

0≤|x|≤n

P e
ω(Tx < ∞)



E

[
1

1 − ω(e,
←
e )

]
E

[(
min
i=1...b

β(ei)
)−1
]

.

By definition, 1

1−ω(e,
←
e )

= 1+ 1∑b
i=1 A(ei)

, which implies that E
[

1

1−ω(e,
←
e )

]
< ∞. Notice also that

E
[
(mini=1...b β(ei))

−1 ] ≤ bE[ 1
β
] < ∞ by Lemma 2.2. Finally, use Lemma 2.1 to complete the

proof. �

We are now able to prove the positivity of the speed.

Proof of Theorem 1.5. We note that τn ≤
∑n

k=−1 Nk and that N−1 ≤ N0. By Proposition 2.3,

we have E[τn] ≤ 2c2 n. Fatou’s lemma yields that E[lim infn→∞
τn

n
] ≤ 2c2. Since limn→∞

τn

n
=

1
v
, then v > 0. �

3 Proof of Theorem 1.3: upper bound

This section is devoted to the proof of the upper bound in Theorem 1.3, which is equivalent

to the following:

Proposition 3.1 We have

lim inf
n→∞

ln(τn)

ln(n)
≥

1

Λ
Q − a.s.

3.1 Basic facts about regenerative times

We recall some basic facts about regenerative times for the transient RWRE. These facts can

be found in [7] in the case of regular trees, and in [13] in the case of biased random walks

on Galton–Watson trees.
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Let

D(x) := inf
{

k ≥ 1 : Xk−1 = x, Xk =
←
x
}

, (inf ∅ := ∞) .

We define the first regenerative time

Γ1 := inf
{
k > 0 : ν(Xk) ≥ 2, D(Xk) = ∞, k = τ|Xk|

}

as the first time when the walk reaches a generation by a vertex having more than two

children and never returns to its parent. We define by iteration

Γn := inf
{
k > Γn−1 : ν(Xk) ≥ 2, D(Xk) = ∞, k = τ|Xk|

}

for any n ≥ 2 and we denote by S(.) the conditional distribution Q(. | ν(e) ≥ 2, D(e) = ∞).

Fact Assume that the walk is transient.

(i) For any n ≥ 1, Γn < ∞ Q-a.s.

(ii) Under Q, (Γn+1 − Γn, |XΓn+1| − |XΓn
|), n ≥ 1 are independent and distributed as

(Γ1, |XΓ1|) under the distribution S.

(iii) We have ES[ |XΓ1| ] < ∞.

We feel free to omit the proofs of (i) and (ii), since they easily follow the lines in [7]

and [13]. To prove (iii), we will show that ES[ |XΓ1| ] = 1/EQ[β]. For any n ≥ 0, we have,

conditionally on |XΓ1 |,

Q

(
∃k ≥ 2 : |XΓk

| = n
∣∣∣ |XΓ1|

)
= 1I{|XΓ1

|≤n}Q

(
∃k ≥ 2 : |XΓk

| − |XΓ1 | = n − |XΓ1|
∣∣∣ |XΓ1 |

)
.

By the renewal theorem (see chapter XI of [6] for instance) and the fact that 1I{|XΓ1
|≤n} tends

to 1 Q-almost surely, we obtain that

lim
n→∞

Q

(
∃k ≥ 2 : |XΓk

| = n
∣∣∣ |XΓ1 |

)
= 1/ES[ |XΓ1| ] .

The dominated convergence yields then

lim
n→∞

Q (∃k ≥ 2 : |XΓk
| = n) = 1/ES[ |XΓ1| ] .

It remains to notice that on the other hand,

Q (∃k ∈ N : |XΓk
| = n) = Q (D(Xτn

) = ∞) = EQ[β] . �
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If we denote for any n ≥ 0 by u(n) the unique integer such that Γu(n) ≤ τn < Γu(n)+1,

then Fact yields that limn→∞
n

u(n)
= ES[ |XΓ1| ]. In turn, we deduce that

lim inf
n→∞

ln(τn)

ln(n)
≥ lim inf

n→∞

ln(Γn)

ln(n)
Q - a.s.(3.1)

Let for λ ∈ [0, 1] and n ≥ 0,

S(n, λ) :=

n∑

k=1

(Γk − Γk−1)
λ ,

by taking Γ0 := 0. Then (Γn)λ ≤ S(n, λ) since λ ≤ 1, which gives, by the law of large

numbers,

lim sup
n→∞

(Γn)λ

n
≤ lim

n→∞

S(n, λ)

n
= ES[Γ

λ
1 ] Q - a.s.(3.2)

3.2 Proof of Proposition 3.1

We construct a RWRE on the half-line as follows; suppose that T = {−1, 0, 1, . . .}. This

would correspond to the case where q1 = 1, e = 0,
←
e = −1. Marking each integer i ≥ 0

with i.i.d. random variables A(i), we thus define a one-dimensional RWRE as we defined it

in the case of a Galton–Watson tree. We call (Rn)n≥0 this RWRE. We still use the notation

P i
ω and Pi to name the quenched and the annealed distribution of (Rn) with R0 = i. For

i ≥ −1 and a ∈ R+, define Ti := inf{n ≥ 0 : Rn = i} and

p (i, a) := P0(T−1 ∧ Ti > a) ,(3.3)

where b ∧ c := min{b, c}. We give two preliminary results.

Lemma 3.2 Let Λ be as in (1.1). Then

lim inf
a→∞

{
sup
i≥0

ln (qi
1p (i, a))

ln(a)

}
≥ −Λ .

Proof. See Section 8. �

We return to our general RWRE (Xn)n≥0 on a general Galton–Watson tree T.

Lemma 3.3 We have

lim inf
a→∞

ln( S (Γ1 > a) )

ln(a)
≥ −Λ .
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Proof. For any x ∈ T, let h(x) be the unique vertex such that

x ≤ h(x), ν(h(x)) ≥ 2 , ∀ y ∈ T, x ≤ y < h(x) ⇒ ν(y) = 1 .

In words, h(x) is the oldest descendent of x such that ν(h(x)) ≥ 2 (and can be x itself if

ν(x) ≥ 2). We observe that Γ1 ≥ T ∗e ∧ Th(X1). Moreover, {ν(e) ≥ 2, D(e) = ∞} ⊃ E1 ∪ E2

where

E1 := {ν(e) ≥ 2} ∩
{

X1 6=
←
e , T ∗e < Th(X1), XT ∗e +1 /∈ {

←
e , X1}

}
∩ {Xn 6= e, ∀n ≥ T ∗e + 1} ,

E2 := {ν(e) ≥ 2} ∩
{

X1 6=
←
e , Th(X1) < T ∗e

}
∩

{
Xn 6=

←−

h(X1), ∀n ≥ Th(X1) + 1

}
.

It follows that

S(Γ1 > a) ≥
1

Q(ν(e) ≥ 2, D(e) = ∞)
(Q(T ∗e > a, E1) + Q(Th(X1) > a, E2)) .(3.4)

We claim that

Q(T ∗e > a, E1) = c3 Q(T←
e

< Th(e), 1 + T←
e

> a) .(3.5)

Indeed, write

P e
ω(T ∗e > a, E1) =

∑

ei 6=ej

P e
ω

(
T ∗e < Th(ei), X1 = ei, XT ∗e +1 = ej , D(ej) = ∞, T ∗e > a

)
.

By gradually applying the strong Markov property at times T ∗e + 1, T ∗e and at time 1, this

yields

P e
ω(T ∗e > a, E1) =

∑

ei 6=ej

ω(e, ei)P
ei
ω

(
Te < Th(ei), 1 + Te > a

)
ω(e, ej)β(ej).

Since ω(e, ei)ω(ej), β(ej) and P ei
ω

(
Te < Th(ei), 1 + Te > a

)
are independent under P, this

leads to

P(T ∗e > a, E1) =
∑

ei 6=ej

E [ω(e, ei)ω(e, ej)] P
ei
(
Te < Th(ei), 1 + Te > a

)
E [β(ej)] .

By the Galton–Watson property,

Q(T ∗e > a, E1) = EQ



1I{ν(e)≥2}

∑

ei 6=ej

ω(e, ei)ω(e, ej)



Qe
(
T←

e
< Th(e), 1 + T←

e
> a
)
EQ [β] ,
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which gives (3.5). Similarly,

Q(Th(X1) > a, E2) = c4Q
(
T←

e
> Th(e), 1 + Th(e) > a

)
.(3.6)

Finally, by (3.4), (3.5) and (3.6) we get

S(Γ1 > a) ≥ c5 Q
(
1 + T←

e
∧ Th(e) > a

)
.

Conditionally on | h(e)|, the walk |Xn|, 0 ≤ n ≤ T←
e
∧ Th(e) has the distribution of the walk

Rn, 0 ≤ n ≤ T−1 ∧ T|h(e)|, as defined at the beginning of this section. For any n ≥ 0, since

GW (|h(e)| = n) = qn
1 (1 − q1), it follows that Q

(
1 + T←

e
∧ Th(e) > a

)
≥ qn

1 (1 − q1)p (n, a).

Finally,

lim inf
a→∞

ln (S (Γ1 > a))

ln(a)
≥ lim inf

a→∞

{
sup
n≥0

ln (qn
1 p (n, a))

ln(a)

}
.

Applying Lemma 3.2 completes the proof. �

We now have all of the ingredients needed for the proof of Proposition 3.1.

Proof of Proposition 3.1. If Λ ≥ 1, Proposition 3.1 trivially holds since τn ≥ n. We suppose

that Λ < 1, and let Λ < λ < 1. Let Mn := max{Γk − Γk−1, k = 2, . . . n}. We have

Q

(
Mn ≤ n

1
λ

)
= Q

(
Γ2 − Γ1 ≤ n

1
λ

)n

. By Lemma 3.3, Q

(
Γ2 − Γ1 ≤ n

1
λ

)
≤ 1 − n−1+ε for

some ε > 0 and large n. Consequently,
∑

n≥1 Q

(
Mn ≤ n

1
λ

)
< ∞, and the Borel-Cantelli

lemma tells that Q-almost surely and for sufficiently large n, Mn ≥ n
1
λ , which in turn

implies that lim infn→∞
Γn−Γ1

n
1
λ

≥ 1. We proved then that lim infn→∞
ln(Γn)
ln(n)

≥ 1
Λ
. Therefore,

by equation (3.1),

lim inf
n→∞

ln(τn)

ln(n)
≥

1

Λ
Q - a.s. �

4 Technical results

We give, in this section, some tools needed in our proof of the lower bound in Theorem 1.3.

Zn stands as before for the size of the n-th generation of T.

Lemma 4.1 For every b, n ≥ 1, we have

EGW [Zn1I{Zn≤b}] ≤ bnbqn−b
1 .
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Proof. If Zn ≤ b, then there are at most b vertices before the n-th generation having more

than one child. Therefore,

GW (Zn ≤ b) ≤ Cb
nq

n−b
1 ≤ nbqn−b

1

and we conclude since EGW [Zn1I{Zn≤b}] ≤ bGW (Zn ≤ b). �

Lemma 4.2 Let βi, i ≥ 1 be independent random variables distributed as β. There exists

b0 ≥ 1 such that

EQ




(

1
∑b0

i=1 βi

)2


 < ∞ .

Proof. Let T(i), i ≥ 1 be independent Galton–Watson trees of distribution GW . We equip

independently each T(i) with an environment of distribution P so that we can look at the

random variable β(e(i)) where e(i) is the root of T(i). Then β(e(i)), i ≥ 1 are independent

random variables distributed as β.

Let c6 > 0 be such that η := Q( 1
β

> c6) < 1. Recall that 1
α
≤ A(x) ≤ α, ∀x ∈ T,

Q-almost surely. Let R(i) := inf{n ≥ 0 : ∃y ∈ T(i), |y| = n, 1
β(y)

≤ c6} be the first generation

in T(i) where a vertex verifies 1
β(y)

≤ c6, and let y(i) be such a vertex y. Recall from equation

(2.1) that
1

β(x)
≤ 1 +

1

A(xj)β(xj)

for any child xj of a vertex x. By iterating the inequality on the path [[e(i), y(i)]], we obtain

1

β(e(i))
≤ 1 +

∑

z∈]]e,y(i)[[

H(z) +
H(y(i))

β(y(i))

where H(z) =
∏

v∈]]e(i),z]]
1

A(v)
≤ α|z| for every z ∈ T by the bound assumption on A. Since

1
β(y(i))

≤ c6, this implies

1

β(e(i))
≤ c7 αR(i)

,

for some constant c7. There exist constants c8 and c9 such that for any b ≥ 1,

(
1

∑b
i=1 β(e(i))

)2

≤ c8 c
min1≤i≤b R(i)

9 .(4.1)
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We observe that

EQ

[
c
min1≤i≤b R(i)

9

]
=

∞∑

n=0

cn
9 Q( min

1≤i≤b
R(i) = n)

≤
∞∑

n=0

cn
9 Q(R(1) ≥ n)b .(4.2)

We have, for any n ≥ 1, Q(R(1) ≥ n) ≤ Q
(
∀|x| = n − 1, 1

β(x)
> c6

)
. Recall that η := Q( 1

β
>

c6) < 1. By independence,

Q

(
∀|x| = n − 1,

1

β(x)
> c6

)
= EGW [ηZn−1 ] .

Let q1 < a < 1. There exists a constant c10 such that EGW

[
ηZℓ
]
≤ c10 aℓ+1 for any ℓ ≥ 0.

Choose b0 such that c9a
b0 < 1. Then by (4.2), EQ

[
c
min1≤i≤b0

R(i)

9

]
< ∞, which completes the

proof in view of (4.1). �

Define for any u, v ∈ T such that u ≤ v and for any n ≥ 1:

p1(u, v) = P u
ω

(
T←

u
= ∞ , T ∗u = ∞ , Tv = ∞

)
,(4.3)

ν(u, n) = # {x ∈ T : u ≤ x, | x − u| = n} .(4.4)

Lemma 4.3 For all n ≥ 2 and k ∈ {1, 2}, we have

EQ



∑

|u|=n

1I{Zn>b0}

[p1(e, u)]k


 < ∞ .(4.5)

Proof. Let n ≥ 2 and k ∈ {1, 2} be fixed integers and ñ := inf{ℓ ≥ 1 : Zℓ > b0}. Notice

that {Zn > b0} = {ñ ≤ n}. For any u ∈ T such that |u| ≥ ñ, let ũ ∈ T be the unique

vertex such that |ũ| = ñ and ũ ≤ u that is the ancestor of u at generation ñ. We have by

the Markov property,

p1(e, u) ≥
∑

|y|=ñ−1

P e
ω(Ty < Te∗)P

y
ω(T←

y
= ∞ , Tũ = ∞).(4.6)

For any |y| ≤ ñ and yi child of y, we observe that

ω(y, yi) =
A(yi)

1 +
∑ν(y)

j=1 A(yj)
≥

1

c11ν(y)
,

15



which is greater than 1/c11b0 := c12, by the boundedness assumption on A and the definition

of ñ. It yields that for any |y| = ñ − 1,

P e
ω(Ty < T ∗e ) ≥ P e

ω(Xñ−1 = y) ≥ cñ
12 .(4.7)

By the Markov property,

P y
ω(T←

y
= ∞, Tyi

= ∞)

=
∑

j 6=i

ω(y, yj)β(yj) +

(
∑

j 6=i

ω(y, yj)(1 − β(yj))

)
P y

ω(T←
y

= ∞, Tyi
= ∞).

This leads to

P y
ω(T←

y
= ∞, Tyi

= ∞) =

∑
j 6=i A(yj)β(yj)

1 + A(yi) +
∑

j 6=i A(yj)β(yj)

≥
1

α(1 + α)

∑
j 6=i β(yj)

1 +
∑

j 6=i β(yj)

≥
1

2α(1 + α)

(
1 ∧

∑

j 6=i

β(yj)

)
.

Similarly, P y
ω(T←

y
= ∞) ≥ 1

2α2

(
1 ∧

∑ν(y)
j=1 β(yj)

)
. Thus, we have for any |y| = ñ − 1,

P y
ω(T←

y
= ∞ , Tũ = ∞) ≥ c13


1 ∧

∑

yj 6=ũ

β(yj)


 .(4.8)

By equations (4.6), (4.7) and (4.8), we have

p1(e, u) ≥ c13c
ñ
12


1 ∧

∑

|x|=ñ:x 6=ũ

β(x)


 .

Therefore, arguing over the value of ũ, we obtain

1I{n≥ñ}

∑

|u|=n

E

[
1

[p1(e, u)]k

]
≤ c14

∑

|y|=ñ

ν(y, n − ñ)E

[
1 ∨

1

[
∑
|x|=ñ,x 6=y β(x)]k

]
,

where c14 := (c13c
n
12)
−k. By using the Galton–Watson property at generation ñ,

∑

|u|=n

EQ

[
1I{u∈T,Zn>b0}

[p1(e, u)]k

∣∣∣ ñ , Z0, . . . , Zñ

]

≤ c14

∑

|y|=ñ

EGW [ν(y, n − ñ)]EQ

[
1 ∨

1

[
∑p

i=1 β(i)]k

]

p=Zñ−1

≤ c15Zñ
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by Lemma 4.2. Integrating over GW completes the proof of (4.5). �

Remark. Lemma 4.3 tells in particular that

EQ

[
1I{Zn>b0}

β(e)

]
≤ EQ

[
1I{Zn>b0}

P e
ω(T←

e
= ∞, T ∗e = ∞)

]
< ∞ .(4.9)

We deal now with a comparison between RWREs on a tree and one-dimensional RWREs

already used in [13]. Let T be a tree and ω the environment on this tree. Take x ≤ y ∈ T.

We look at the path [[
←
x, y]] = {

←
x = x−1, x0, . . . , xp = y} defined as the shortest path

from
←
x to y, and we consider on it the random walk (X̃n) with probability transitions

ω̃(
←
x, x) = ω̃(y, xp−1) = 1 and for any 0 ≤ i < p,

ω̃(xi, xi+1) =
ω(xi, xi+1)

ω(xi, xi+1) + ω(xi, xi − 1)
,

ω̃(xi, xi−1) =
ω(xi, xi−1)

ω(xi, xi+1) + ω(xi, xi−1)
.

Thus we can associate to the pair (x, y) a one-dimensional RWRE on [[
←
x, y]], and we denote by

P̃ , Ẽ the probabilities and expectations related to this new RWRE. We observe that under

Qx, the RWRE (X̃n, n ≤ T←
x
∧ Ty) has the distribution of the RWRE (Rn, n ≤ T−1 ∧ Tp)

introduced in Section 3.2. For any x, y ∈ T, the event {Tx < Ty} means that Tx < ∞ and

Tx < Ty.

Lemma 4.4 For any x, y, z ∈ T with x ≤ z < y,

P z
ω(Ty < T←

x
) ≤ P̃ z

ω(Ty < T←
x
) ,

P z
ω(T←

x
< Ty) ≤ P̃ z

ω(T←
x

< Ty) .

Proof. Fix z1, . . . zn−1 in ]]
←
x, y[[ and zn ∈ [[

←
x, y]]. Then

P z
ω(X1 = z1, . . . , Xn = zn) =

ω(z, z1)

1 − f(z)
. . .

ω(zn−1, zn)

1 − f(zn−1)

where f(r) represents the probability of making an excursion away from the path [[
←
x, y]]

from the vertex r. For each r ∈ [[
←
x, y[[, call r+ the child of r which lies in the path. Then

f(r) ≤ 1 − ω(r, r+) − ω(r,
←
r ). It follows that

P z
ω(X1 = z1, . . . , Xn = zn) ≤ ω̃(z, z1) . . . ω̃(zn−1, zn)

= P̃ z
ω(X̃1 = z1, . . . , X̃n = zn) .
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It remains to see that the events {Ty < Tx} and {Tx < Ty} can be written as an union of

disjoint sets of the form {X1 = z1, . . . , Xn = zn}. �

The last lemma deals with the one-dimensional RWRE (Rn)n≥0 defined in Section 3.2.

Lemma 4.5 For any n ≥ 1, there exists a number c19(n) such that for any i > n and almost

every ω,

E0
ω[T−1 ∧ Ti] ≤ c19E

n
ω [Tn−1 ∧ Ti] .

Proof. Let i > n ≥ 1. By the Markov property and for 0 < p ≤ i, we have

Ep−1
ω [Tp−2 ∧ Ti] = 1 + ω(p − 1, p)

{
Ep

ω[Tp−1 ∧ Ti] + P p
ω(Tp−1 < Ti)E

p−1
ω [Tp−2 ∧ Ti]

}

which gives that Ep−1
ω [Tp−2 ∧ Ti] =

1+ω(p−1,p)Ep
ω [Tp−1∧Ti]

1−ω(p−1,p)P p
ω(Tp−1∧Ti)

, so that for some c20, c21 and c22 we

have

Ep−1
ω [Tp−2 ∧ Ti] ≤ c20 + c21E

p
ω[Tp−1 ∧ Ti] ≤ c22E

p
ω[Tp−1 ∧ Ti].

Iterating the inequality over all p from 1 to n gives the desired inequality. �

5 Proof of Theorem 1.3: lower bound

Let (Rn)n≥0 be the one-dimensional RWRE associated with T = {−1, 0, 1, . . .} defined in

Section 3.2 and Ti = inf{k ≥ 0 : Rk = i}. Define for any λ ∈ [0, 1],

m(n, λ) := E
[(

E0
ω [T−1 ∧ Tn]

)λ]
,(5.1)

and let

λc := sup

{
λ ≥ 0 : ∃r > q1 such that

∑

n≥0

m(n, λ)rn < ∞

}
.(5.2)

We start with a lemma.

Lemma 5.1 We have Λ ≤ λc .

Proof. See Section 8. �
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Take a λ ∈ [0, 1] such that λ < Λ. By Lemma 5.1, we have λ < λc which in turn implies

by (5.2) that there exists an 1 > r > q1 such that

∑

n≥0

m(n, λ) (n + 1)rn < ∞ .(5.3)

Recall the definition of b0 in Lemma 4.2. Then, by Lemma 4.1, we can define

n0 := inf
{
n ≥ 1 : EGW [Zn1I{Zn≤b0}] ≤ rn

}
.

Let Tn0 be the subtree of T defined as follows: y is a child of x in Tn0 if x ≤ y and |y−x| = n0.

In this new Galton–Watson tree Tn0 , we define

W = W(T) := {x ∈ Tn0 : ∀y ∈ Tn0 , (y < x) ⇒ ν(y, n0) ≤ b0} ,(5.4)

where ν(y, n0) is defined in (4.4). We call Wk the size of the k-th generation of W. The sub-

tree W is a Galton–Watson tree, whose offspring distribution is of mean EGW [Zn01I{Zn0≤b0}] ≤

rn0. In particular, we have for any k ≥ 0,

EGW [Wk] ≤ rkn0 .(5.5)

For any y ∈ T, we denote by yn0 the youngest ancestor of y belonging to Tn0 , or equivalently

the unique vertex such that

yn0 ≤ y, yn0 ∈ Tn0 , ∀ z ∈ Tn0 z ≤ y ⇒ z ≤ yn0 .

Let

N1,n :=
∑

|y|=n

N(y)1I{ν(yn0 ,n0)>b0} ,

N2,n :=
∑

|y|=n

N(y)1I{ν(yn0 ,n0)≤b0,yn0 /∈W} .

Lemma 5.2 There exists a constant L such that for any n ≥ n0 :

EQ[N1,n] ≤ L ,(5.6)

EQ[Nλ
2,n] ≤ L .(5.7)
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We admit Lemma 5.2 for the time being, and show how it implies Theorem 1.3.

Proof of Theorem 1.3: lower bound. Notice that W is finite almost surely. Then, there

exists a random K ≥ 0 such that for n ≥ K, Nn ≤ N1,n + N2,n. Lemma 5.2 yields that

EQ[Nλ
n1I{n≥K}] ≤ Lλ + L for any n ≥ n0. By Fatou’s lemma, lim infn→∞

∑n
k=K Nλ

k

n
< ∞.

Denote by (rk, k ≥ 0) the sequence (|XΓk
|, k ≥ 0). Notice that for any k ≥ 1,

Γk+1 − Γk =

rk+1∑

i=rk+1

Ni .

It yields that S(u(n), λ) :=
∑u(n)

k=1 (Γk − Γk−1)
λ ≤

∑ru(n)

i=0 Nλ
i ≤

∑n
i=0 Nλ

i where, as in Section

3, u(n) is the unique integer such that Γu(n) ≤ τn < Γu(n)+1. Observe also that n
u(n)

tends to

ES [|XΓ1|]. It follows that

lim inf
n→∞

1

n
S(n, λ) ≤ lim inf

n→∞

1

u(n)

n∑

k=K

Nλ
k = ES [|XΓ1 |] lim inf

n→∞

1

n

n∑

k=K

Nλ
k < ∞ .

Using equation (3.2) implies that lim supn→∞
(Γn)λ

n
< c23 for some constant c23. We check

that |Xn| ≥ #{k : Γk ≤ n} which leads to |Xn| ≥
nλ

c23
for sufficiently large n. Letting λ go

to Λ completes the proof. �

The rest of this section is devoted to the proof of Lemma 5.2. For the sake of clarity, the

two estimates, (5.6) and (5.7), are proved in distinct parts.

5.1 Proof of Lemma 5.2: equation (5.6)

For all y ∈ T, call Y the youngest ancestor of y such that ν(Y, n0) > b0. We have

Ee
ω[N(y)] = P e

ω(Ty < ∞)Ey
ω[N(y)] ≤ P e

ω(TY < ∞)Ey
ω[N(y)] .

We compute Ey
ω[N(y)] with a method similar to the one given in [13]. By the Markov

property,

Ey
ω[N(y)] = G(y, Y ) + P y

ω(TY < ∞)P Y
ω (Ty < ∞)Ey

ω[N(y)] ,

where G(y, Y ) := Ey
ω

[∑TY

k=0 1I{Xk=y}

]
. When ν(yn0 , n0) > b0, there exists a constant c24 > 0

such that P y
ω(T ∗y > TY ) ≥ c24. Therefore, in this case G(y, Y ) ≤ (c24)

−1 =: c25. It follows
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that

Ey
ω[N(y)]1I{ν(yn0 ,n0)>b0} ≤ c25

1I{ν(yn0 ,n0)>b0}

1 − P Y
ω (Ty < ∞)P y

ω(TY < ∞)

≤ c25

1I{ν(yn0 ,n0)>b0}

1 − P Y
ω (T ∗Y < ∞)

≤ c25

1I{ν(yn0 ,n0)>b0}

γ(Y )
,

where γ(x) := P x
ω (T←

x
= ∞, T ∗x = ∞). Arguing over the value of Y yields that

EQ[N1,n] ≤ c25EQ




∑

n−n0<|z|≤n

P e
ω(Tz < ∞)

1I{ν(z,n0)>b0}

γ(z)





= c25EQ




∑

n−n0<|z|≤n

P e
ω(Tz < ∞)



EQ

[
1I{Zn0>b0}

γ(e)

]

≤ c25n0 c1 c26 ,

by Lemma 2.1 and equation (4.9). �

5.2 Proof of Lemma 5.2: equation (5.7)

For any y ∈ T such that ν(yn0 , n0) ≤ b0 and yn0 /∈ W, choose Y1 = Y1(y), Y2 = Y2(y) and

Y3 = Y3(y), vertices of Tn0 , such that

Y1 < y, ν(Y1, n0) > b0, ∀ z ∈ Tn0 , Y1 < z ≤ y ⇒ ν(z, n0) ≤ b0

Y1 < Y2 ≤ y, ∀ z ∈ Tn0 , Y1 < z ≤ y ⇒ Y2 ≤ z ,

y ≤ Y3, ν(Y3, n0) > b0, ∀ z ∈ Tn0 , y ≤ z < Y3 ⇒ ν(z, n0) ≤ b0 .

By definition, Y1 is the youngest ancestor of y in Tn0 such that ν(Y1, n0) > b0 and Y2 the child

of Y1 in Tn0 which is also an ancestor of y. In the rest of the section, P̃ω = P̃ω(Y1, Y3) and

Ẽω = Ẽω(Y1, Y3) represent the probability and expectation for the one-dimensional RWRE

associated to the path [[Y1, Y3]], as seen in Lemma 4.4. They depend then on the pair (Y1, Y3),

which doesn’t appear in the notation for sake of brevity. Define for any n ≥ n0,

S(n) := EQ




∑

|y|=n:Y1=e

[
p1(e, Y2)

2β(Y3)
]−1
(
ẼY2

ω [T←
Y 2

∧ TY3 ]
)λ



 ,(5.8)

where
←

Y 2 represents as usual the parent of Y2 in the tree T and p1(u, v) is defined in (4.3).
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Lemma 5.3 There exists a constant c27 such that for any n ≥ n0,

EQ[Nλ
2,n] ≤ c27

∑

k≥n0

S(k) .

Proof. We observe that

Ee
ω[Nλ

n ] = Ee
ω






∑

|y|=n

N(y)




λ

 ≤ Ee

ω



∑

|y|=n

N(y)λ




since λ ≤ 1. By the Markov property, Ee
ω[
∑
|y|=n N(y)λ] =

∑
|y|=n P e

ω(Ty < ∞)Ey
ω[N(y)λ].

An application of Jensen’s inequality yields that

Ee
ω[Nλ

n ] ≤
∑

|y|=n

P e
ω(Ty < ∞) (Ey

ω[N(y)])λ .(5.9)

Using the Markov property for any |y| = n, we get

Ey
ω[N(y)]

= G(y, Y1 ∧ Y3) + Ey
ω[N(y)](P y

ω(TY1 < TY3)P
Y1
ω (Ty < ∞) + P y

ω(TY3 < TY1)P
Y3
ω (Ty < ∞)) ,

where G(y, Y1 ∧ Y3) := Ey
ω

[∑TY1
∧TY3

k=0 1I{Xk=y}

]
. Accordingly,

Ey
ω[N(y)] =

G(y, Y1 ∧ Y3)

1 − P y
ω(TY1 < TY3)P

Y1
ω (Ty < ∞) − P y

ω(TY3 < TY1)P
Y3
ω (Ty < ∞)

.

Notice that
[
1 − P y

ω(TY1 < TY3)P
Y1
ω (Ty < ∞) − P y

ω(TY3 < TY1)P
Y3
ω (Ty < ∞)

]−1
is the expected

number of times when the walk go from y to Y1 or Y3 and then returns to y, which is naturally

smaller than Ey
ω[N(Y1) + N(Y3)]. We have

Ey
ω[N(Y1)] = P y

ω(TY1 < ∞)
[
1 − P Y1

ω (T ∗Y1
< ∞)

]−1

≤ [p1(Y1, Y2)]
−1 ,

where as before p1(Y1, Y2) = P Y1
ω

(
T←

Y 1
= ∞ , T ∗Y1

= ∞ , TY2 = ∞
)
. Similarly Ey

ω[N(Y3)] ≤

[β(Y3)]
−1. We obtain

P e
ω(Ty < ∞) (Ey

ω[N(y)])λ ≤ [p1(Y1, Y2)β(Y3)]
−1P e

ω(Ty < ∞) (G(y, Y1 ∧ Y3))
λ .(5.10)

We deduce from the Markov property that P e
ω(Ty < ∞) = P e

ω(TY1 < ∞)P Y1
ω (Ty < ∞) and

P Y1
ω (Ty < ∞) = G(Y1, y)P Y1

ω (Ty < T ∗Y1
) where G(Y1, y) := EY1

ω

[∑Ty

k=0 1I{Xk=Y1}

]
. By Lemma

22



4.4, we have P Y1
ω (Ty < T←

Y 1
) ≤ P̃ Y1

ω (Ty < T←
Y 1

). In words, it means that the probability to

escape by y is lower for the RWRE on the tree than for the restriction of the walk on [[Y1, y]].

Furthermore G(Y1, y) ≤ EY1
ω [N(Y1)] ≤ [p1(Y1, Y2)]

−1, so that

P e
ω(Ty < ∞) ≤ P e

ω(TY1 < ∞)P̃ Y1
ω (Ty < T←

Y 1
)[p1(Y1, Y2)]

−1

≤ P e
ω(TY1 < ∞)

(
P̃ Y1

ω (Ty < T←
Y 1

)
)λ

[p1(Y1, Y2)]
−1 .(5.11)

We observe that

G(y, Y1 ∧ Y3) =
[
1 − P y

ω(T ∗y < TY1 ∧ TY3)
]−1

.(5.12)

Call y3 the unique child of y such that y3 ≤ Y3. Consequently,

P y
ω(T ∗y < TY1 ∧ TY3)

≤ [1 − ω(y, y3) − ω(y,
←
y )] + ω(y,

←
y )P

←
y

ω (Ty < TY1) + ω(y, y3)P
y3
ω (Ty < TY3) .

By Lemma 4.4, we have

P
←
y

ω (Ty < TY1) ≤ P̃
←
y

ω (Ty < TY1) ,

P y3
ω (Ty < TY3) ≤ P̃ y3

ω (Ty < TY3) .

Equation (5.12) becomes G(y, Y1∧Y3) ≤ (ω(y, y3)+ω(y,
←
y ))−1G̃(y, Y1∧Y3) where G̃(y, Y1∧Y3)

stands for the expectation of the number of times the one-dimensional RWRE associated to

the pair (Y1, Y3) by Lemma 4.4 crosses y before reaching Y1 or Y3 when started from y. Since

ν(y) ≤ b0, there exists a constant c28 such that (ω(y,
←
y ) + ω(y, y3))

−1 ≤ c28. It yields

G(y, Y1 ∧ Y3) ≤ c28 G̃(y, Y1 ∧ Y3) .(5.13)

Finally, using (5.11), (5.13), and the following inequality,

P̃ Y1
ω (Ty < T←

Y 1
) G̃(y, Y1 ∧ Y3) ≤ ẼY1

ω [T←
Y 1

∧ TY3] ,

we get

P e
ω(Ty < ∞) (G(y, Y1 ∧ Y3))

λ ≤
c28

p1(Y1, Y2)
P e

ω(TY1 < ∞)(ẼY1
ω [T←

Y 1
∧ TY3 ])

λ .

By Lemma 4.5, for any y ∈ T, we have

ẼY1
ω [T←

Y 1
∧ TY3 ] ≤ c19(n0)Ẽ

Y2
ω [T←

Y 2
∧ TY3 ] .
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It follows that

P e
ω(Ty < ∞) (G(y, Y1 ∧ Y3))

λ ≤
c28c

λ
19

p1(Y1, Y2)
P e

ω(TY1 < ∞)(ẼY2
ω [T←

Y 2
∧ TY3 ])

λ .(5.14)

In view of equations (5.10) and (5.14), we obtain

P e
ω(Ty < ∞) (Ey

ω[N(y)])λ ≤ c29 P e
ω(TY1 < ∞)H(Y1, y, Y3)

where

H(Y1, y, Y3) :=
[
p1(Y1, Y2)

2β(Y3)
]−1
(
ẼY2

ω [T←
Y 2

∧ TY3 ]
)λ

.

By equation (5.9), it implies that

EQ[Nλ
2,n] ≤ c29 EQ




∑

|y|=n

P e
ω(TY1 < ∞)H(Y1, y, Y3)



 .

Arguing over the value of Y1 gives

EQ[Nλ
2,n] ≤ c29 EQ



∑

|z|≤n−n0

P e
ω(Tz < ∞)




∑

|y|=n,Y1=z

H(z, y, Y3)






= c29 EQ



∑

|z|≤n−n0

P e
ω(Tz < ∞)EQ




∑

|y|=n−|z|,Y1=e

H(e, y, Y3)






= c29 EQ



∑

|z|≤n−n0

P e
ω(Tz < ∞)S(n − |z|)


 ,

by equation (5.8). Lemma 2.1 yields that

EQ[Nλ
2,n] ≤ c1c29

n∑

k=n0

S(k)

≤ c1c29

∑

k≥n0

S(k) . �

We call as before m(n, λ) := E
[
(E0

ω [T−1 ∧ Tn])
λ
]

for the one-dimensional RWRE (Rn)n≥0.

The following lemma gives an estimate of S(n).

Lemma 5.4 There exists a constant c30 such that for any ℓ ≥ 0,

S(ℓ + n0) ≤ c30

∑

i≥ℓ

m(i, λ)ri .
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Proof. Let ℓ ≥ 0 and f(Y2, Y3) :=
(
ẼY2[T←

Y 2
∧ TY3 ]

)λ

. We have

S(ℓ + n0) = EQ




∑

|y|=ℓ+n0:Y1=e

[
p1(e, Y2)

2β(Y3)
]−1

f(Y2, Y3)





= EQ



∑

|u|=n0

[p1(e, u)]−2
∑

|y|=ℓ+n0:Y2=u

f(u, Y3) [β(Y3)]
−1


 .

If we call Tu the subtree of T rooted in u, we observe that

∑

|y|=ℓ+n0:Y2=u

f(u, Y3) [β(Y3)]
−1 ≤ 1I{Zn0>b0}

∑

|z|≥ℓ+n0:z∈W(Tu)

f(u, z) [β(z)]−1 1I{ν(z,n0)>b0} ,

where W was defined in equation (5.4). The Galton–Watson property yields that

S(ℓ + n0) ≤ EQ




∑

|u|=n0

1I{Zn0>b0}

p1(e, u)2



EQ




∑

|z|≥ℓ,z∈W

f(e, z) [β(z)]−1 1I{ν(z,n0)>b0}





= EQ



∑

|u|=n0

1I{Zn0>b0}

p1(e, u)2


EQ




∑

|z|≥ℓ,z∈W

f(e, z)


EQ

[
1I{Zn0>b0}

β(e)

]

≤ c31EQ




∑

|z|≥ℓ,z∈W

f(e, z)


 ,

by Lemma 4.3 and equation (4.9). The proof follows then from

EQ




∑

|z|≥ℓ,z∈W

f(e, z)


 = EGW




∑

|z|≥ℓ,z∈W

m(|z|, λ)




=
∑

i:in0≥ℓ

m(in0, λ)EGW [Wi] ≤
∑

in0≥ℓ

m(in0, λ)rin0 ,

where the last inequality comes from equation (5.5). �

We are now able to prove (5.7).

Proof of Lemma 5.2, equation (5.7). By Lemma 5.3,

EQ[Nλ
2,n] ≤ c27

∑

ℓ≥0

S(ℓ + n0) .
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Lemma 5.4 tells that

∑

ℓ≥0

S(ℓ + n0) ≤ c30

∑

i≥ℓ≥0

m(i, λ)ri

= c30

∑

i≥0

(i + 1)m(i, λ)ri ,

which is finite by equation (5.3). �

6 Proof of Theorem 1.1

If we suppose that Λ < 1, then Theorem 1.3 ensures that |Xn|
n

tends to 0. Suppose now

that Λ > 1. Take λ = 1 in the proof of the lower bound of Theorem 1.3 in Section 5 to see

that |Xn| ≥
n

c23
for sufficiently large n, which proves the positivity of the speed in this case.

Theorem 1.1 is proved. �

7 Proof of Theorem 1.4

When b ≥ 3, Theorem 1.4 follows immediately from Theorem 1.5. In the rest of this section,

we assume that T is a binary tree. Thanks to the correspondence between RWRE and

LERRW mentioned in the introduction, we only have to prove the positivity of the speed

for a RWRE on the binary tree such that the density of ω(y, z) on (0, 1) is given by

f0(x) = 1 if z =
←
y(7.1)

f1(x) =
1

Γ(1
2
)Γ(3

2
)
x−1/2(1 − x)1/2 if z is a child of y.(7.2)

We propose to prove three lemmas before handling the proof of the theorem.

Lemma 7.1 We have for any 0 < δ < 1,

E

[
1

βδ

]
< ∞ .

Proof. By equation (2.1), for any y ∈ T,

1

β(y)δ
≤

(
1 + min

i=1,2

1

A(yi)β(yi)

)δ

≤ 1 + min
i=1,2

1

A(yi)δβ(yi)δ
.
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Notice that by (7.1),

E

[
min
i=1,2

1

A(yi)δ

]
≤ 2δ E

[(
1

A(y1) + A(y2)

)δ
]

= 2δ E




(

ω(y,
←
y )

1 − ω(y,
←
y )

)δ


 < ∞ .

The proof is therefore the proof of Lemma 2.2 when replacing A(y) and β(y) respectively by

A(y)δ and β(y)δ. �

Recall that for any y ∈ T, γ(y) := P y
ω(T←

y
= ∞, T ∗y = ∞).

Lemma 7.2 There exists µ ∈ (0, 1) such that for any ε ∈ (0, 1), we have

E



(

1I
{ω(e,

←
e )≤1−ε}

γ(e)

)1/µ

 < ∞ .

Proof. We see that

1

γ(e)
=

1

ω(e, e1)β(e1) + ω(e, e2)β(e2)
≤ min

i=1,2

1

ω(e, ei)β(ei)
.

Let µ ∈ (0, 1) and ε ∈ (0, 1). We compute P(ω(e,
←
e ) ≤ 1−ε , mini=1,2

{
[ω(e, ei)β(ei)]

−1/µ
}

>

n) for n ∈ R∗+. We observe that {ω(e,
←
e ) ≤ 1 − ε} ⊂ {ω(e, e1) ≥ ε/2} ∪ {ω(e, e2) ≥ ε/2}.

By symmetry,

P

(
ω(e,

←
e ) ≤ 1 − ε , min

i=1,2

{
[ω(e, ei)β(ei)]

−1/µ
}

> n

)

≤ 2P

(
ω(e, e2) ≥ ε/2 , min

i=1,2

{
[ω(e, ei)β(ei)]

−1/µ
}

> n

)

≤ 2P
(
β(e2)

−1 > nµε/2 , [ω(e, e1)β(e1)]
−1/µ > n

)

≤ 2P
(
β(e2)

−1 > nµε/2 , ω(e, e1) ≤ n−1/2
)

+ 2P
(
β(e2)

−1 > nµε/2 , β(e1)
−1 > nµ−1/2

)

=: 2P(E1) + 2P(E2) .

Let 0 < δ < 1. We have by (7.2) and Lemma 7.1,

P(E1) = P
(
ω(e, e1) ≤ n−1/2)P(β(e2)

−1 > nµε/2
)

≤ c32n
−1/4n−δµ .

Similarly,

P(E2) = P
(
β(e1)

−1 > nµ−1/2)P(β(e2)
−1 > nµε/2

)

≤ c33n
−δ(µ−1/2)n−δµ .
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It suffices to take 1/4 + δµ > 1 and δ(2µ − 1/2) > 1 to complete the proof, for example by

taking δ = 4/5 and µ = 19/20. �

Let ε ∈ (0, 1/3) be such that

E
[
(#{i : ω(ei, e) > 1 − ε})

2−µ
1−µ

]
< 1 .(7.3)

Denote by U the set of the root and all the vertices y such that for any vertex x ∈ T

with e < x ≤ y, we have ω(x,
←
x) > 1 − ε; we observe that by (7.3), U is a subcritical

Galton–Watson tree. Denote by Uk the size of the generation k.

Lemma 7.3 There exists a constant c34 < 1 such that for any k ≥ 0

E
[
U

1/(1−µ)
k

]
≤ ck

34 .

Proof. By Galton–Watson property,

E
[
U

1/(1−µ)
k+1

]
= E




(

U1∑

i=1

U
(i)
k

)1/(1−µ)




where conditionally on U1, U
(i)
k , i ≥ 1 is a family of i.i.d random variables distributed as Uk.

Since (
∑n

i=1 ai)
p
≤ np

∑p
i=1 ap

i (for p > 0 and ai ≥ 0), it yields that

E
[
U

1/(1−µ)
k+1

]
≤ E

[
U

1/(1−µ)
1

U1∑

i=1

(
U

(i)
k

)1/(1−µ)
]

= E

[
U

2−µ
1−µ

1

]
E
[
U

1/(1−µ)
k

]
.

The proof follows from equation (7.3). �

We are now able to complete the proof of Theorem 1.4.

Proof of Theorem 1.4 : the binary tree case. We suppose without loss of generality that

ω(e,
←
e ) ≤ 1− ε. For any vertex y, we call Y the youngest ancestor of y such that ω(Y,

←

Y ) ≤

1 − ε. We have for any n ≥ 0,

Ee
ω[Nn] =

∑

|y|=n

P e
ω(Ty < ∞)Ey

ω[N(y)] ,
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where, as before, N(y) :=
∑

k≥0 1I{Xk=y} and Nn =
∑
|y|=n N(y). By the Markov property,

Ey
ω[N(y)] = G(y, Y ) + P y

ω(TY < ∞)P Y
ω (Ty < ∞)Ey

ω[N(y)] ,

where G(y, Y ) := Ey
ω

[∑TY

k=0 1I{Xk=y}

]
. It yields that

Ee
ω[Nn] =

∑

|y|=n

P e
ω(Ty < ∞)

G(y, Y )

1 − P Y
ω (Ty < ∞)P y

ω(TY < ∞)

≤
∑

|y|=n

P e
ω(Ty < ∞)

G(y, Y )

1 − P Y
ω (T ∗Y < ∞)

≤
∑

|y|=n

P e
ω(Ty < ∞)

G(y, Y )

γ(Y )
.

By coupling the walk on [[y, Y ]] with a one-dimensional random walk, we see that P y
ω(T ∗y <

TY ) ≤ ε + (1 − ε) ε
1−ε

= 2ε ≤ 2/3, so that G(y, Y ) ≤ 3. On the other hand, P e
ω(Ty < ∞) ≤

P e
ω(TY < ∞). Therefore,

E[Nn] ≤ 3E



∑

|y|=n

P e
ω(TY < ∞)

1

γ(Y )




= 3E



∑

|y|=n

∑

z=Y

P e
ω(Tz < ∞)

1

γ(z)




= 3E



∑

|z|≤n

P e
ω(Tz < ∞)

∑

|y|=n:Y =z

1

γ(z)


 .

By independence and stationarity of the environment,

E[Nn] ≤ 3
∑

|z|≤n

P(Tz < ∞)E




∑

|y|=n−|z|:Y =e

1

γ(e)




= 3
∑

|z|≤n

P(Tz < ∞)E

[
1I
{ω(e,

←
e )≤1−ε}

Un−|z|

γ(e)

]

≤ 3
∑

|z|≤n

P(Tz < ∞)E




(

1I
ω(e,

←
e )≤1−ε

γ(e)

)1/µ



µ

E
[
U

1/(1−µ)
n−|z|

]1−µ

,

by the Hölder inequality. We use Lemmas 7.2 and 7.3 to see that

E[Nn] ≤ c35

∑

|z|≤n

P(T (z) < ∞)c
n−|z|
36 .
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By Lemma 2.1,

E[Nn] ≤ c35c1

n∑

k=0

ck
36 < c35c1/(1 − c36) .

Since τn ≤
∑n

k=−1 Nk and N−1 ≤ N0, where τn := inf {k ≥ 0 : |Xk| = n} as before, we have

E[τn] ≤ c37 n. Fatou’s lemma yields that P-almost surely, lim infn→∞
τn

n
< ∞, which proves

that v > 0 in view of the relation limn→∞
τn

n
= 1

v
. �

8 Proof of Lemmas 5.1 and 3.2

We consider the one-dimensional RWRE (Rn)n≥0 when we consider the case T = {−1, 0, 1, . . .}.

This RWRE is such that the random variables A(i), i ≥ 0 are independent and have the

distribution of A, when we set for i ≥ 0,

A(i) :=
ω(i, i + 1)

ω(i, i− 1)

with ω(y, z) the quenched probability to jump from y to z. We recall that, as defined in

equations (3.3) and (5.1),

p (n, a) := P0(T−1 ∧ Tn > a) ,

m(n, λ) := E
[(

E0
ω [T−1 ∧ Tn]

)λ]
.

We study the walk (Rn)n≥0 through its potential. We introduce for p ≥ i ≥ 0, V (0) = 0 and

V (i) = −
i−1∑

k=0

ln(A(k)) ,

M(i) = max
0≤k≤i

V (k) ,

H1(i) = max
0≤k≤i

V (k) − V (i) ,

H2(i, p) = max
i≤k≤p

V (k) − V (i) .

Let us introduce for t ∈ R the Laplace transform E[At], and define φ(t) := ln(E[At]). Denote

by I its Legendre transform I(x) = sup{tx − φ(t), t ∈ R} where x ∈ R. Let also

[a, b] := [ess inf(ln A), ess sup(ln A)] .

Two situations occur. If a = b, it means that A is a constant almost surely. In this case,

I(x) = 0 if x = a and is infinite otherwise. If a < b, then I is finite on ]a, b[ and infinite on
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R\[a, b]. Moreover, for any x ∈]a, b[, we have I ′(x) = t(x) where t(x) is the real such that

I(x) = xt(x) − φ(t(x)), or, equivalently, x = φ′(t(x)).

We define and compute two useful parameters. Call D := {x1, x2, , z1, z2 ∈ R4
+, z1 +z2 ≤

1}. Define for 0 < λ ≤ 1, and with the convention that 0 ×∞ := 0,

L(λ) := sup
D

{(
(x1z1) ∧ (x2z2)

)
λ − I(−x1)z1 − I(x2)z2

}
,(8.1)

L′ := sup
{x1 + x2

x1x2
ln(q1) −

I(−x1)

x1
−

I(x2)

x2
, x1, x2 > 0

}
.(8.2)

If q1 = 0, we set L′ = −∞. Notice that L(λ) ≥ 0 is necessarily reached for x1z1 = x2z2. It

yields that

L(λ) = 0 ∨ sup
{ x1x2

x1 + x2
λ − I(−x1)

x2

x1 + x2
− I(x2)

x1

x1 + x2
, x1, x2 > 0

}
,(8.3)

where c ∨ d := max(c, d). The computation of L(λ) and L′ is done in the following lemma.

Lemma 8.1 We have

L(λ) = 0 ∨ φ(t̄ ) ,(8.4)

L′ = −Λ ,(8.5)

where t̄ verifies φ(t̄ ) = φ(t̄ + λ) if it exists and t̄ := 0 otherwise.

Proof. When A is a constant almost surely, L(λ) = 0 and (8.4) is true. Therefore we assume

that a < b. Considering equation (8.3), we see that if L(λ) > 0, then L(λ) is reached by a

pair (x1, x2) which satisfies:

λ
x2

x1 + x2
+

I(−x1)

x1 + x2
+ I ′(−x1) −

I(x2)

x1 + x2
= 0 ,(8.6)

λ
x1

x1 + x2
−

I(−x1)

x1 + x2
+

I(x2)

x1 + x2
− I ′(x2) = 0 .(8.7)

We deduce from equations (8.6) and (8.7) that I ′(x2)− I ′(−x1) = λ, i.e. t(x2)− t(−x1) = λ.

Plugging this into (8.3) yields

L(λ) = 0 ∨ sup

{
φ(t)φ′(t + λ) − φ(t + λ)φ′(t)

φ′(t + λ) − φ′(t)
, t ∈ R, φ′(t) < 0, φ′(t + λ) > 0

}
.

Let h(t) := φ(t)φ′(t+λ)−φ(t+λ)φ′(t)
φ′(t+λ)−φ′(t)

. Then L(λ) = 0 ∨ h(t̄ ) where t̄ verifies h′(t̄ ) = 0, which is

equivalent to say that φ(t̄ ) = φ(t̄ + λ). We find that h(t̄ ) = φ(t̄ ), which gives (8.4). The

computation of (8.5) is similar and is therefore omitted. �
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8.1 Proof of Lemma 5.1

We begin by some notation. Let A > 0 and B > 0 be two expressions which can depend on

any variable, and in particular on n. We say that A . B if we can find a function f of the

variable n such that limn→∞
1
n

ln(f(n)) = 0 and A ≤ f(n)B. We say that A ≃ B if A . B

and B . A. By circuit analogy (see [5]), we find for 0 ≤ i ≤ n,

P 0
ω (Ti < T−1) =

1

eV (0) + eV (1) + . . . + eV (i)
.

It follows that

e−M(i)

n + 1
≤ P 0

ω (Ti < T−1) ≤ e−M(i) .(8.8)

We deduce also that

e−H2(i,n)

n + 1
≤ P i+1

ω (Tn < Ti) ≤ e−H2(i,n) ,(8.9)

e−H1(i)

n + 1
≤ P i−1

ω (T−1 < Ti) ≤ e−H1(i) .(8.10)

Finally, the quenched expectation G (i,−1 ∧ n) of the number of times the walk starting

from i returns to i before reaching −1 or n verifies

G (i,−1 ∧ n) =
{
ω(i, i− 1)P i−1

ω (T−1 < Ti) + ω(i, i + 1)P i+1
ω (Tn < Ti)

}−1
,

so that

c37e
H1(i)∧H2(i,n) ≤ G(i,−1 ∧ n) ≤ c38(n + 1)eH1(i)∧H2(i,n) .

Since E0
ω[T−1 ∧ Tn] = 1 +

∑n−1
i=0 P 0

ω (Ti < T−1) G (i,−1 ∧ n), we get

1 +
c37

n + 1
max
0≤i≤n

e−M(i)+H1(i)∧H2(i,n) ≤ E0
ω[T−1 ∧ Tn] ≤ 1 + c38n(n + 1) max

0≤i≤n
e−M(i)+H1(i)∧H2(i,n) .

As a result,

E[
(
E0

ω[T−1 ∧ Tn]
)λ

] ≃ max
0≤i≤n

E
[
eλ[−M(i)+H1(i)∧H2(i,n)]

]
.(8.11)

We proceed to the proof of Lemma 5.1. Let η > 0 and 0 ≤ i ≤ n. Let ε > 0 be such that

(|a| ∨ |b|)ε < η. For fixed i and n, we denote by K1 and K2 the integers such that

K1η ≤ H1(i) < (K1 + 1)η ,

K2η ≤ H2(i, n) < (K2 + 1)η .
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Similarly, let L1 and L2 be integers such that

∃ L1⌊εn⌋ ≤ x < (L1 + 1)⌊εn⌋ such that H1(i) = V (i − x) − V (i) ,

∃ L2⌊εn⌋ ≤ y < (L2 + 1)⌊εn⌋ such that H2(i, n) = V (i + y) − V (i) .

Finally, eλ[−M(i)+H1(i)∧H2(i,n)] ≤ e(K1∧K2+1)ληn. By our choice of ε, we have for any integers

k1, k2, ℓ1, ℓ2,

P (K1 = k1, L1 = ℓ1) ≤ P

(
V (ℓ1⌊εn⌋) ∈ [−(k1 + 2)ηn,−(k1 − 1)ηn]

)
,

P (K2 = k2, L2 = ℓ2) ≤ P

(
V (ℓ2⌊εn⌋) ∈ [(k2 − 1)ηn, (k2 + 2)ηn]

)
.

By Cramér’s theorem (see [4] for example),

P

(
V (ℓ1⌊εn⌋) ∈ [−(k1 + 2)ηn,−(k1 − 1)ηn]

)
. exp

(
− ℓ1⌊εn⌋(I(−x1) − λη)

)

P

(
V (ℓ2⌊εn⌋) ∈ [(k2 − 1)ηn, (k2 + 2)ηn]

)
. exp

(
− ℓ2⌊εn⌋(I(x2) − λη)

)

if −x1 is the point of
[
−(k1+2)ηn

ℓ1⌊εn⌋
, −(k1−1)ηn

ℓ1⌊εn⌋

]
where I reaches the minimum on this interval,

and x2 is the equivalent in
[

(k2−1)ηn
ℓ2⌊εn⌋

, (k2+2)ηn
ℓ2⌊εn⌋

]
. It yields that

E
[
eλ[−M(i)+H1(i)∧H2(i,n)]

]

. max
k1,k2,ℓ1,ℓ2∈D′

exp ((k1 ∧ k2)ληn − I(−x1)ℓ1⌊εn⌋ − I(x2)ℓ2⌊εn⌋ + 3ληn) ,

where D′ is the (finite) set of all possible values of (K1, K2, L1, L2). We note that

(k1 ∧ k2)ληn − I(−x1)ℓ1⌊εn⌋ − I(x2)ℓ2⌊εn⌋

≤ (x1ℓ1⌊εn⌋ ∧ x2ℓ2⌊εn⌋)λ − I(−x1)ℓ1⌊εn⌋ − I(x2)ℓ2⌊εn⌋ + 3ληn

≤ (L(λ) + 3λη)n

by (8.1). Finally, E[eλ(−M(i)+H1(i)∧H2(i,n))] . en(L(λ)+6λη) so that, by equation (8.11), m(n, λ) .

en(L(λ)+6λη). We let η tend to 0 to get that

lim sup
n→∞

1

n
ln(m(n, λ)) ≤ L(λ) .

Let λ < Λ. By definition of Λ and equation (8.4), it implies that L(λ) < 1
q1

, so that we can

find r > q1 such that
∑

n≥0 m(n, λ)rn < ∞. It means that λ ≤ λc. Consequently, Λ ≤ λc. �

33



8.2 Proof of Lemma 3.2

Fix x1, x2 > 0. Write

z1 =
x2

x1 + x2
, z2 =

x1

x1 + x2
, z =

x1x2

x1 + x2
.

Let a ≥ 100 and n = n(a) := ⌊ ln(a)
z

⌋. We have, by the strong Markov property, P 0
ω(T−1∧Tn >

a) ≥ P 0
ω(T⌊z1n⌋ < T−1)P

⌊z1n⌋
ω (T⌊z1n⌋ < T−1 ∧ Tn)a. It follows by (8.8), (8.9) and (8.10) that

p (n, a) & E
[
e−M(⌊z1n⌋)

(
1 − e−H1(⌊z1n⌋)∧H2(⌊z1n⌋,n)

)a]

≥ (1 − e−zn)aP
(
V (⌊z1n⌋) < −zn, M (⌊z1n⌋) ≤ 0

)
P
(
V (⌊z2n⌋ + 1) > zn

)

& P
(
V (⌊z1n⌋) < −zn, M (⌊z1n⌋) ≤ 0

)
P
(
V (⌊z2n⌋ + 1) > zn

)

by our choice of n. Let k ≥ 0. Call τ the first time when the walk (V (i))i≥0 reaches its

maximum on [0, k]. Let i ∈ [0, k] and for 0 ≤ r ≤ k − 1, Xr := ln(Ar̄) where r̄ := i + r

modulo k. We observe that

P(Vk < −zn, τ = i) ≤ P(X0 + . . . + Xk−1 < −zn, X0 + . . . + Xj ≤ 0 ∀ 0 ≤ j ≤ k − 1)

= P(Vk < −zn, Mk ≤ 0) .

We obtain that P (Vk < −zn, Mk ≤ 0) ≥ 1
k+1

P (Vk < −zn). Therefore, for any ε > 0,

p (n, a) & P
(
V (⌊z1n⌋) < −zn

)
P
(
V (⌊z2n⌋ + 1) > zn

)

& exp
(
n (−I(−x1)z1 − I(x2)z2 − 2ε)

)

by Cramér’s theorem. It yields that

lim inf
a→∞

{
sup
ℓ≥0

ln(qℓ
1p (ℓ, a))

ln(a)

}
≥ lim inf

a→∞

ln(qn
1 p (n, a))

ln(a)

≥
ln(q1) − I(−x1)z1 − I(x2)z2 − 2ε

z
.

Finally, by (8.2) and (8.5),

lim inf
a→∞

{
sup
n≥0

ln(qn
1 p(n, a))

ln(a)

}
≥ L′ = −Λ . �
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