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Introduction 1.Random walk in random environment

Let ν be an N * -valued random variable (with N * := {1, 2, • • •}) and (A i , i ≥ 1) be a random variable taking values in R N * + . Let q k := P (ν = k), k ∈ N * . We assume q 0 = 0, q 1 < 1, and m := k≥0 kq k < ∞. Writing V := (A i , i ≤ ν), we construct a Galton-Watson tree as follows.

1 Let e be a point called the root. We pick a random variable V (e) := (A(e i ), i ≤ ν(e)) distributed as V , and draw ν(e) children to e. To each child e i of e, we attach the random variable A(e i ). Suppose that we are at the n-th generation. For each vertex x of the n-th generation, we pick independently a random vector V (x) = (A(x i ), i ≤ ν(x)) distributed as V , associate ν(x) children (x i , i ≤ ν(x)) to x, and attach the random variable A(x i ) to the child x i . This leads to a Galton-Watson tree T of offspring distribution q, on which each vertex x = e is marked with a random variable A(x).

We denote by GW the distribution of T. For any vertex x ∈ T, let ← x be the parent of x and |x| its generation (|e| = 0). In order to make the presentation easier, we artificially add a parent ← e to the root e. We define the environment ω by ω( ← e , e) = 1 and for any vertex

x ∈ T\{ ← e }, • ω(x, x i ) = A(x i ) 1+ ν(x) i=1 A(x i ) , ∀ 1 ≤ i ≤ ν(x), • ω(x, ← x) = 1 1+ b i=1 A(x i ) .
For any vertex y ∈ T, we define on T the Markov chain (X n , n ≥ 0) starting from y by P y ω (X 0 = y) = 1, P y ω (X n+1 = z | X n = x) = ω(x, z) .

Given T, (X n , n ≥ 0) is a T-valued random walk in random environment (RWRE). We note from the construction that ω(x, .), x = ← e are independent.

Following [START_REF] Lyons | Random walk in a random environment and first-passage percolation on trees[END_REF], we also suppose that A(x), x ∈ T, |x| ≥ 1, are identically distributed. Let A denote a random variable having the common distribution. We assume the existence of α > 0 such that ess sup(A) ≤ α and ess sup( 1A ) ≤ α. The following criterion is known.

Theorem A (Lyons and Pemantle [START_REF] Lyons | Random walk in a random environment and first-passage percolation on trees[END_REF]) The walk

(X n ) is transient if inf [0,1] E[A t ] > 1 m
, and is recurrent otherwise.

When T is a regular tree, Menshikov and Petritis [START_REF] Menshikov | On random walks in random environment on trees and their relationship with multiplicative chaos[END_REF] obtain the transience/recurrence criterion by means of a relationship between the RWRE and Mandelbrot's multiplicative cascades; Hu and Shi [START_REF] Hu | Slow movement of random walk in random environment on a regular tree[END_REF], [START_REF] Hu | A subdiffusive behaviour of recurrent random walk in random environment on a regular tree[END_REF] characterize different asymptotics of the walk in the recurrent case, revealing a wide range of regimes.

Throughout the paper, we assume that the walk is transient (i.e., inf [0,1] E[A t ] > 1 m according to Theorem A). Given the transience, natural questions arise concerning the rate of escape of the walk. The law of large numbers says that there exists a deterministic v ≥ 0 (which can be zero) such that

lim n→∞ |X n | n = v, a.s.
This was proved by Gross [START_REF] Gross | Marche aléatoire en milieu aléatoire sur un arbre[END_REF] when T is a regular tree, and by Lyons et al. [START_REF] Lyons | Biased random walks on Galton-Watson trees[END_REF] when A is deterministic; their arguments can be easily extended in the general case (i.e., when T is a Galton-Watson tree and A is random). We are interested in determining whether v > 0.

When A is deterministic, it is shown by Lyons et al. [START_REF] Lyons | Biased random walks on Galton-Watson trees[END_REF] that the transient random walk always has positive speed. Later, an interesting large deviation principle is obtained in Dembo et al. [START_REF] Dembo | Large deviations for random walks on Galton-Watson trees: averaging and uncertainty[END_REF]. In the special case of non-biased random walk, Lyons et al. [START_REF] Lyons | Ergodic theory on Galton-Watson trees: speed of random walk and dimension of harmonic measure[END_REF] succeed in computing the value of the speed.

We recall two results for RWRE on Z (which can be seen as a half line-tree). The first one gives a necessary and sufficient condition for RWRE to have positive asymptotic speed.

Theorem B (Solomon [START_REF] Solomon | Random walks in a random environment[END_REF])

If T = Z, then E 1 A < 1 ⇐⇒ lim n→∞ X n n > 0 a.s.
When the transient RWRE has zero speed, Kesten, Kozlov and Spitzer in [START_REF] Kesten | A limit law for random walk in a random environment[END_REF] prove that the walk is of polynomial order. To this end, let κ ∈ (0, 1] be such that E 1 A κ = 1. Under some mild conditions on A,

• if κ < 1, then Xn n κ converges in distribution.

• If κ = 1, then ln(n)Xn n converges in probability to a positive constant.

The aim of this paper is to study the behaviour of the transient random walk when T is a Galton-Watson tree. Let Leb represent the Lebesgue measure on R and let

Λ := Leb t ∈ R : E[A t ] ≤ 1 q 1 . (1.1)
If q 1 = 0, then we define Λ := ∞. Notice that this definition is similar to the definition of κ in the one-dimensional setting. Our first result, which is a (slightly weaker) analogue of Solomon's criterion for Galton-Watson tree T, is stated as follows.

Theorem 1.1 Assume inf [0,1] E[A t ] > 1
m , and let Λ be as in (1.1). (a) If Λ < 1, the walk has zero speed.

(b) If Λ > 1, the walk has positive speed.

Corollary 1.2 Assume inf [0,1] E[A t ] > 1
m . If T is a regular tree, then the walk has positive speed.

Theorem 1.1 extends Theorem B, except for the "critical case" Λ = 1. Corollary 1.2 says there is no Kesten-Kozlov-Spitzer-type regime for RWRE when the tree is regular. Our next result exhibits such a regime for Galton-Watson trees T.

Theorem 1.3 Assume inf [0,1] E[A t ] > 1 m , and Λ ≤ 1. Then lim n→∞ ln(|X n |) ln(n) = Λ a.s.
Since Λ > 0, the walk is proved to be of polynomial order. As expected, Λ plays the same role as κ.

Linearly edge reinforced random walk

The reinforced random walk is a model of random walk introduced by Coppersmith and Diaconis [START_REF] Coppersmith | Random walks with reinforcement[END_REF] where the particle tends to jump to familiar vertices. We consider the case where the graph is a b-ary tree T, that is a tree where each vertex has b children (b ≥ 2).

At each edge (x, y), we initially assign the weight π(x, y) = 1. If we know the weights and the position of the walk at time n, we choose an edge emanating from X n with probability proportional to its weight. The weight of the edge crossed by the walk then increases by a constant δ > 0. This process is called the Linearly Edge Reinforced Random Walk (LERRW).

Pemantle in [START_REF] Pemantle | Phase transition in reinforced random walk and RWRE on trees[END_REF] proves that there exists a real δ 0 such that the LERRW is transient if δ < δ 0 and recurrent if δ > δ 0 (δ 0 = 4, 29.. for the binary tree). We focus, from now on, on the case δ = 1, so that the LERRW almost surely is transient. Recently, Collevecchio in [START_REF] Collevecchio | Limit theorems for reinforced random walks on certain trees[END_REF] shows that when b ≥ 70 the LERRW has a positive speed v which verifies 0 < v ≤ b b+2 . We propose to extend the positivity of the speed to any b ≥ 2.

Theorem 1.4 The linearly edge reinforced random walk on a b-ary tree has positive speed.

We rely on a correspondence between RWRE and LERRW, explained in [START_REF] Pemantle | Phase transition in reinforced random walk and RWRE on trees[END_REF]. By means of a Polya's urn model, Pemantle shows that the LERRW has the distribution of a certain RWRE, such that for any y = ← e , the density of ω(y, z) on (0, 1) is given by

• f 0 (x) = b 2 (1 -x) b 2 -1 if z = ← y , • f 1 (x) = Γ( b 2 +1) Γ( 1 2 )Γ( b+1 2 ) x -1 2 (1 -x) b-1 2 if z is a child of y.
Consequently, we only have to prove the positivity of the speed of this RWRE.

With the notation of Section 1.1, A is not bounded in this case, which means Theorem 1.1 does not apply. To overcome this difficulty, we prove the following result.

Theorem 1.5 Let T be a b-ary tree and assume that inf

[0,1] E[A t ] > 1 b and E   b i=1 A i -1   < ∞ .
Then the RWRE has positive speed.

Since the RWRE associated with the LERRW satisfies the assumptions of Theorem 1.5 as soon as b ≥ 3, Theorem 1.4 follows immediately in the case b ≥ 3. The case of the binary tree is dealt with separately.

The rest of the paper is organized as follows. We prove Theorem 1.5 in Section 2. In Section 3, we prove the upper bound in Theorem 1.3. Some technical results are presented in Section 4, and are useful in Section 5 in the proof of the lower bound in Theorem 1.3.

In Section 6, we prove Theorem 1.1. The proof of Theorem 1.4 for the binary tree is the subject of Section 7. Finally, Section 8 is devoted to the computation of parameters used in the proof of Theorem 1.3.

2 The regular case, and the proof of Theorem 1.5

We begin the section by giving some notation. Let P denote the distribution of ω conditionally on T, and P x the law defined by P x (•) := P x ω (•)P(dω). We emphasize that P x ω , P and P x depend on T. We respectively associate the expectations E x ω , E, E x . We denote also by Q and Q x the measures:

Q(•) := P(•)GW (dT) , Q x (•) := P x (•)GW (dT) .
For sake of brevity, we will write P and Q for P e and Q e .

Define for x, y ∈ T, and n ≥ 1,

Z n := #{x ∈ T : |x| = n} , x ≤ y ⇔ ∃ p ≥ 0, ∃ x = x 0 , . . . , x p = y ∈ T such that ∀ 0 ≤ i < p , x i = ← x i+1 .
If x ≤ y, we denote by [[x, y]] the set {x 0 , x 1 , . . . , x p }, and say that x < y if moreover x = y.

Define for x = ← e , and n ≥ 1,

T x := inf {k ≥ 0 : X k = x} , T * x := inf {k ≥ 1 : X k = x} , β(x) := P x ω (T← x = ∞) .
We observe that β(x), x ∈ T\{ ← e }, are identically distributed under Q. We denote by β a generic random variable distributed as β(x). Since the walk is supposed transient, β > 0 Q-almost surely, and in particular

E Q [β] > 0.
We still consider a general Galton-Watson tree. We prove that the number of sites visited at a generation has a bounded expectation under Q.

Lemma 2.1 There exists a constant c 1 such that for any n ≥ 0,

E Q   |x|=n 1I {Tx<∞}   ≤ c 1 .
Proof. By the Markov property, for any n ≥ 0,

|x|=n P e ω (T x < ∞)β(x) = |x|=n P e ω (T x < ∞, X k = ← x ∀k > T x ) ≤ 1 .
The last inequality is due to the fact that there is at most one regeneration time at the n-th generation. Since P e ω (T x < ∞) is independent of β(x), we obtain:

1 ≥ E Q   |x|=n P e ω (T x < ∞)β(x)   = |x|=n E Q [P e ω (T x < ∞)] E Q [β].
In view of the identity

E Q |x|=n 1I {Tx<∞} = |x|=n E Q [P e ω (T x < ∞)]
, the lemma follows immediately.

Let us now deal with the case of the regular tree. We suppose in the rest of the section that there exists b ≥ 2 such that ν(x) = b for any

x ∈ T \ { ← e }. Lemma 2.2 If E 1 b i=1 A i < ∞, then E 1 β < ∞ . Proof. Notice that E 1 max 1≤i≤b A i < ∞.
For any n ≥ 0, call v n the vertex defined by iteration in the following way:

• v 0 = e • v n ≤ v n+1 and A(v n+1 ) = max{A(y), y is a child of v n }.
The Markov property tells that

β(x) = b i=1 ω(x, x i )β(x i ) + b i=1 ω(x, x i )(1 -β(x i ))β(x) ,
from which it follows that for any vertex x,

1 β(x) = 1 + 1 b i=1 A(x i )β(x i ) ≤ 1 + min 1≤i≤b 1 A(x i )β(x i ) . (2.1) Let C(v n ) := {y is a child of v n , y = v n+1 } be the set of children of v n different from v n+1 .
Take C > 0 and define for any n ≥ 1 the event

E n := {∀k ∈ [0, n -1] , ∀y ∈ C(v k ) , (A(y)β(y)) -1 > C} .
We extend the definition to n = 0 by E c 0 := ∅. Notice that the sequence of events is decreasing. Using equation (2.1) yields

1I En β(v n ) ≤ (1 + C) + 1I E n+1 A(v n+1 )β(v n+1 ) . (2.2)
On the other hand, by the i.i.d. property of the environment, we have

P(E n ) = P(E 1 ) n .
By choosing C such that P(E 1 ) < 1 and using the Borel-Cantelli lemma, we have 1I En = 0 from some n 0 ≥ 0 almost surely. Iterate equation (2.2) to obtain

1 β(e) ≤ (1 + C) 1 + n≥1 B(n)
where

B(n) = 1I En n k=1 1 A(v k ) . Hence E 1 β ≤ (1 + C) 1 + n≥1 E [B(n)] . We observe that E[B(n)] = {E [1I E 1 A(v 1 ) -1 ]} n . When C tends to infinity, E [1I E 1 A(v 1 ) -1 ] tends to zero since E[A(v 1 ) -1 ] < ∞. Choose C such that E [1I E 1 A(v 1 ) -1 ] < 1 to complete the proof.
For x ∈ T and n ≥ -1, let

N(x) := k≥0 1I {X k =x} , N n := |x|=n N(x) , τ n := inf {k ≥ 0 : |X k | = n} .
In words, N(x) and N n denote, respectively, the time spent by the walk at x and at the n-th generation, and τ n stands for the first time the walk reaches the n-th generation. A consequence of the law of large numbers is that

lim n→∞ τ n n = 1 v Q -a.s.
Our next result gives an upper bound for the expected value of N n .

Proposition 2.3 Suppose that E 1 b i=1 A(x i ) < ∞.
There exists a constant c 2 such that for all n ≥ 0, we have

E n k=0 N k ≤ c 2 n .
Proof. By the strong Markov property,

P x ω (N(x) = ℓ) = {P x ω (T * x < ∞)} ℓ-1 P x ω (T * x = ∞), for ℓ ≥ 1. Accordingly, E e ω n k=0 N k = 0≤|x|≤n P e ω (T x < ∞)E x ω [N(x)] = 0≤|x|≤n P e ω (T x < ∞) 1 -P x ω (T * x < ∞)
.

We observe that 1 -

P x ω (T * x < ∞) ≥ b i=1 ω(x, x i ) β(x i ). Since P e ω (T x < ∞) is independent of (ω(x, x i )β(x i ), 1 ≤ i ≤ b), we have E n k=0 N k ≤ 0≤|x|≤n E [P e ω (T x < ∞)] E   b i=1 ω(e, e i )β(e i ) -1   = E   0≤|x|≤n P e ω (T x < ∞)   E   b i=1 ω(e, e i )β(e i ) -1   . (2.3) Since b i=1 ω(e, e i ) β(e i ) ≥ {min i=1...b β(e i )} b i=1 ω(e, e i ), it follows that E n k=0 N k ≤ E   0≤|x|≤n P e ω (T x < ∞)   E 1 1 -ω(e, ← e ) E min i=1...b β(e i ) -1
.

By definition,

1 1-ω(e, ← e ) = 1+ 1 b i=1 A(e i ) , which implies that E 1 1-ω(e, ← e ) < ∞. Notice also that E (min i=1...b β(e i )) -1 ≤ bE[ 1 β ] < ∞ by Lemma 2.2.
Finally, use Lemma 2.1 to complete the proof.

We are now able to prove the positivity of the speed.

Proof of Theorem 1.5. We note that τ n ≤ n k=-1 N k and that N -1 ≤ N 0 . By Proposition 2.3, we have

E[τ n ] ≤ 2c 2 n. Fatou's lemma yields that E[lim inf n→∞ τn n ] ≤ 2c 2 . Since lim n→∞ τn n = 1 v , then v > 0.

Proof of Theorem 1.3: upper bound

This section is devoted to the proof of the upper bound in Theorem 1.3, which is equivalent to the following:

Proposition 3.1 We have lim inf n→∞ ln(τ n ) ln(n) ≥ 1 Λ Q -a.s.

Basic facts about regenerative times

We recall some basic facts about regenerative times for the transient RWRE. These facts can be found in [START_REF] Gross | Marche aléatoire en milieu aléatoire sur un arbre[END_REF] in the case of regular trees, and in [START_REF] Lyons | Biased random walks on Galton-Watson trees[END_REF] in the case of biased random walks on Galton-Watson trees.

Let

D(x) := inf k ≥ 1 : X k-1 = x, X k = ← x , (inf ∅ := ∞) .
We define the first regenerative time

Γ 1 := inf k > 0 : ν(X k ) ≥ 2, D(X k ) = ∞, k = τ |X k |
as the first time when the walk reaches a generation by a vertex having more than two children and never returns to its parent. We define by iteration

Γ n := inf k > Γ n-1 : ν(X k ) ≥ 2, D(X k ) = ∞, k = τ |X k |
for any n ≥ 2 and we denote by S(.

) the conditional distribution Q(. | ν(e) ≥ 2, D(e) = ∞).
Fact Assume that the walk is transient.

(i) For any n ≥ 1, Γ n < ∞ Q-a.s. (ii) Under Q, (Γ n+1 -Γ n , |X Γ n+1 | -|X Γn |), n ≥ 1 are independent and distributed as (Γ 1 , |X Γ 1 |) under the distribution S. (iii) We have E S [ |X Γ 1 | ] < ∞.
We feel free to omit the proofs of (i) and (ii), since they easily follow the lines in [START_REF] Gross | Marche aléatoire en milieu aléatoire sur un arbre[END_REF] and [START_REF] Lyons | Biased random walks on Galton-Watson trees[END_REF]. To prove (iii), we will show that

E S [ |X Γ 1 | ] = 1/E Q [β]. For any n ≥ 0, we have, conditionally on |X Γ 1 |, Q ∃k ≥ 2 : |X Γ k | = n |X Γ 1 | = 1I { |X Γ 1 |≤n} Q ∃k ≥ 2 : |X Γ k | -|X Γ 1 | = n -|X Γ 1 | |X Γ 1 | .
By the renewal theorem (see chapter XI of [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] for instance) and the fact that 1I {|X Γ 1 |≤n} tends to 1 Q-almost surely, we obtain that

lim n→∞ Q ∃k ≥ 2 : |X Γ k | = n |X Γ 1 | = 1/E S [ |X Γ 1 | ] .
The dominated convergence yields then

lim n→∞ Q (∃k ≥ 2 : |X Γ k | = n) = 1/E S [ |X Γ 1 | ] .
It remains to notice that on the other hand,

Q (∃k ∈ N : |X Γ k | = n) = Q (D(X τn ) = ∞) = E Q [β] .
If we denote for any n ≥ 0 by u(n) the unique integer such that Γ

u(n) ≤ τ n < Γ u(n)+1 , then Fact yields that lim n→∞ n u(n) = E S [ |X Γ 1 | ]. In turn, we deduce that lim inf n→∞ ln(τ n ) ln(n) ≥ lim inf n→∞ ln(Γ n ) ln(n) Q -a.s. (3.1) Let for λ ∈ [0, 1] and n ≥ 0, S(n, λ) := n k=1 (Γ k -Γ k-1 ) λ , by taking Γ 0 := 0. Then (Γ n ) λ ≤ S(n, λ) since λ ≤ 1, which gives, by the law of large numbers, lim sup n→∞ (Γ n ) λ n ≤ lim n→∞ S(n, λ) n = E S [Γ λ 1 ] Q -a.s. (3.2)

Proof of Proposition 3.1

We construct a RWRE on the half-line as follows; suppose that T = {-1, 0, 1, . . .}. This would correspond to the case where q 1 = 1, e = 0, ← e = -1. Marking each integer i ≥ 0 with i.i.d. random variables A(i), we thus define a one-dimensional RWRE as we defined it in the case of a Galton-Watson tree. We call (R n ) n≥0 this RWRE. We still use the notation P i ω and P i to name the quenched and the annealed distribution of (R n ) with R 0 = i. For i ≥ -1 and a ∈ R + , define T i := inf{n ≥ 0 : R n = i} and

p (i, a) := P 0 (T -1 ∧ T i > a) , (3.3) 
where b ∧ c := min{b, c}. We give two preliminary results. Lemma 3.2 Let Λ be as in (1.1). Then

lim inf a→∞ sup i≥0 ln (q i 1 p (i, a)) ln(a) ≥ -Λ .
Proof. See Section 8.

We return to our general RWRE (X n ) n≥0 on a general Galton-Watson tree T.

Lemma 3.3 We have lim inf a→∞ ln( S (Γ 1 > a) ) ln(a) ≥ -Λ .
Proof. For any x ∈ T, let h(x) be the unique vertex such that

x ≤ h(x), ν(h(x)) ≥ 2 , ∀ y ∈ T, x ≤ y < h(x) ⇒ ν(y) = 1 .
In words, h(x) is the oldest descendent of x such that ν(h(x)) ≥ 2 (and can be x itself if

ν(x) ≥ 2). We observe that Γ 1 ≥ T * e ∧ T h(X 1 ) . Moreover, {ν(e) ≥ 2, D(e) = ∞} ⊃ E 1 ∪ E 2 where E 1 := {ν(e) ≥ 2} ∩ X 1 = ← e , T * e < T h(X 1 ) , X T * e +1 / ∈ { ← e , X 1 } ∩ {X n = e, ∀ n ≥ T * e + 1} , E 2 := {ν(e) ≥ 2} ∩ X 1 = ← e , T h(X 1 ) < T * e ∩ X n = ←- h(X 1 ), ∀ n ≥ T h(X 1 ) + 1 .
It follows that By gradually applying the strong Markov property at times T * e + 1, T * e and at time 1, this yields

S(Γ 1 > a) ≥ 1 Q(ν(e) ≥ 2, D(e) = ∞) (Q(T * e > a, E 1 ) + Q(T h(X 1 ) > a, E 2 )) . (3.4) We claim that Q(T * e > a, E 1 ) = c 3 Q(T← e < T h(e) ,
P e ω (T * e > a, E 1 ) = e i =e j
ω(e, e i )P e i ω T e < T h(e i ) , 1 + T e > a ω(e, e j )β(e j ).

Since ω(e, e i )ω(e j ), β(e j ) and P e i ω T e < T h(e i ) , 1 + T e > a are independent under P, this leads to

P(T * e > a, E 1 ) = e i =e j E [ω(e, e i )ω(e, e j )] P e i T e < T h(e i ) , 1 + T e > a E [β(e j )]
.

By the Galton-Watson property,

Q(T * e > a, E 1 ) = E Q   1I {ν(e)≥2}
e i =e j ω(e, e i )ω(e, e j )

  Q e T← e < T h(e) , 1 + T← e > a E Q [β] ,
which gives (3.5). Similarly,

Q(T h(X 1 ) > a, E 2 ) = c 4 Q T← e > T h(e) , 1 + T h(e) > a . (3.6)
Finally, by (3.4), (3.5) and (3.6) we get

S(Γ 1 > a) ≥ c 5 Q 1 + T← e ∧ T h(e) > a . Conditionally on | h(e)|, the walk | X n |, 0 ≤ n ≤ T← e ∧ T h(e) has the distribution of the walk R n , 0 ≤ n ≤ T -1 ∧ T |h(e)|
, as defined at the beginning of this section. For any n ≥ 0, since

GW (|h(e)| = n) = q n 1 (1 -q 1 ), it follows that Q 1 + T← e ∧ T h(e) > a ≥ q n 1 (1 -q 1 )p (n, a). Finally, lim inf a→∞ ln (S (Γ 1 > a)) ln(a) ≥ lim inf a→∞ sup n≥0 ln (q n 1 p (n, a)) ln(a) .
Applying Lemma 3.2 completes the proof.

We now have all of the ingredients needed for the proof of Proposition 3.1.

Proof of Proposition 3.1. If Λ ≥ 1, Proposition 3.1 trivially holds since τ n ≥ n. We suppose that Λ < 1, and let Λ < λ < 1. Let M n := max{Γ k -Γ k-1 , k = 2, . . . n}. We have

Q M n ≤ n 1 λ = Q Γ 2 -Γ 1 ≤ n 1 λ n . By Lemma 3.3, Q Γ 2 -Γ 1 ≤ n 1 λ ≤ 1 -n -1+ε
for some ε > 0 and large n.

Consequently, n≥1 Q M n ≤ n 1 λ
< ∞, and the Borel-Cantelli lemma tells that Q-almost surely and for sufficiently large n, M n ≥ n 1 λ , which in turn implies that lim inf n→∞

Γn-Γ 1 n 1 λ ≥ 1. We proved then that lim inf n→∞ ln(Γn) ln(n) ≥ 1 Λ . Therefore, by equation (3.1), lim inf n→∞ ln(τ n ) ln(n) ≥ 1 Λ Q -a.s.

Technical results

We give, in this section, some tools needed in our proof of the lower bound in Theorem 1.3.

Z n stands as before for the size of the n-th generation of T.

Lemma 4.1 For every b, n ≥ 1, we have

E GW [Z n 1I {Zn≤b} ] ≤ bn b q n-b 1 .
Proof. If Z n ≤ b, then there are at most b vertices before the n-th generation having more than one child. Therefore,

GW (Z n ≤ b) ≤ C b n q n-b 1 ≤ n b q n-b 1 and we conclude since E GW [Z n 1I {Zn≤b} ] ≤ b GW (Z n ≤ b).
Lemma 4.2 Let β i , i ≥ 1 be independent random variables distributed as β. There exists b 0 ≥ 1 such that

E Q   1 b 0 i=1 β i 2   < ∞ .
Proof. Let T (i) , i ≥ 1 be independent Galton-Watson trees of distribution GW . We equip independently each T (i) with an environment of distribution P so that we can look at the random variable β(e (i) ) where e (i) is the root of T (i) . Then β(e (i) ), i ≥ 1 are independent random variables distributed as β.

Let c 6 > 0 be such that η

:= Q( 1 β > c 6 ) < 1. Recall that 1 α ≤ A(x) ≤ α, ∀x ∈ T, Q-almost surely. Let R (i) := inf{n ≥ 0 : ∃y ∈ T (i) , |y| = n, 1
β(y) ≤ c 6 } be the first generation in T (i) where a vertex verifies 1 β(y) ≤ c 6 , and let y (i) be such a vertex y. Recall from equation (2.1) that 1 β(x)

≤ 1 + 1 A(x j )β(x j )
for any child x j of a vertex x. By iterating the inequality on the path [[e (i) , y (i) ]], we obtain

1 β(e (i) ) ≤ 1 + z∈]]e,y (i) [[ H(z) + H(y (i) ) β(y (i) )
where

H(z) = v∈]]e (i) ,z]] 1 
A(v) ≤ α |z| for every z ∈ T by the bound assumption on A. Since

1 β(y (i) ) ≤ c 6 , this implies 1 β(e (i) ) ≤ c 7 α R (i) ,
for some constant c 7 . There exist constants c 8 and c 9 such that for any b ≥ 1,

1 b i=1 β(e (i) ) 2 ≤ c 8 c min 1≤i≤b R (i) 9 . (4.1)
We observe that

E Q c min 1≤i≤b R (i) 9 = ∞ n=0 c n 9 Q( min 1≤i≤b R (i) = n) ≤ ∞ n=0 c n 9 Q(R (1) ≥ n) b . (4.2)
We have, for any n ≥ 1,

Q(R (1) ≥ n) ≤ Q ∀|x| = n -1, 1 β(x) > c 6 . Recall that η := Q( 1 β > c 6 ) < 1. By independence, Q ∀|x| = n -1, 1 β(x) > c 6 = E GW [η Z n-1 ] .
Let q 1 < a < 1. There exists a constant c 10 such that E GW η Z ℓ ≤ c 10 a ℓ+1 for any ℓ ≥ 0.

Choose b 0 such that c 9 a b 0 < 1. Then by (4.2), E Q c

min 1≤i≤b 0 R (i) 9
< ∞, which completes the proof in view of (4.1).

Define for any u, v ∈ T such that u ≤ v and for any n ≥ 1: 

p 1 (u, v) = P u ω T← u = ∞ , T * u = ∞ , T v = ∞ , (4.3) ν(u, n) = # {x ∈ T : u ≤ x, | x -u| = n} .
E Q   |u|=n 1I {Zn>b 0 } [p 1 (e, u)] k   < ∞ .
P y ω (T← y = ∞, T y i = ∞) = j =i ω(y, y j )β(y j ) + j =i ω(y, y j )(1 -β(y j )) P y ω (T← y = ∞, T y i = ∞).
This leads to

P y ω (T← y = ∞, T y i = ∞) = j =i A(y j )β(y j ) 1 + A(y i ) + j =i A(y j )β(y j ) ≥ 1 α(1 + α) j =i β(y j ) 1 + j =i β(y j ) ≥ 1 2α(1 + α) 1 ∧ j =i β(y j ) .
Similarly, P y ω (T← y = ∞) ≥ 1 2α 2 1 ∧ ν(y) j=1 β(y j ) . Thus, we have for any |y| = n -1,

P y ω (T← y = ∞ , T u = ∞) ≥ c 13   1 ∧ y j = u β(y j )   . (4.8)
By equations (4.6), (4.7) and (4.8), we have

p 1 (e, u) ≥ c 13 c n 12   1 ∧ |x|= n:x = u β(x)   .
Therefore, arguing over the value of u, we obtain

1I {n≥ n} |u|=n E 1 [p 1 (e, u)] k ≤ c 14 |y|= n ν(y, n -ñ)E 1 ∨ 1 [ |x|= n,x =y β(x)] k ,
where c 14 := (c 13 c n 12 ) -k . By using the Galton-Watson property at generation n,

|u|=n E Q 1I {u∈T,Zn>b 0 } [p 1 (e, u)] k n , Z 0 , . . . , Z n ≤ c 14 |y|= n E GW [ν(y, n -n)]E Q 1 ∨ 1 [ p i=1 β(i)] k p=Z n -1 ≤ c 15 Z n by Lemma 4.2.
Integrating over GW completes the proof of (4.5).

Remark. Lemma 4.3 tells in particular that

E Q 1I {Zn>b 0 } β(e) ≤ E Q 1I {Zn>b 0 } P e ω (T← e = ∞, T * e = ∞) < ∞ . (4.9)
We deal now with a comparison between RWREs on a tree and one-dimensional RWREs already used in [START_REF] Lyons | Biased random walks on Galton-Watson trees[END_REF]. Let T be a tree and ω the environment on this tree. Take x ≤ y ∈ T.

We look at the path [[

← x, y]] = { ← x = x -1 ,
x 0 , . . . , x p = y} defined as the shortest path from ← x to y, and we consider on it the random walk ( X n ) with probability transitions ω( ← x, x) = ω(y, x p-1 ) = 1 and for any 0

≤ i < p, ω(x i , x i+1 ) = ω(x i , x i+1 ) ω(x i , x i+1 ) + ω(x i , x i -1) , ω(x i , x i-1 ) = ω(x i , x i-1 ) ω(x i , x i+1 ) + ω(x i , x i-1 )
.

Thus we can associate to the pair (x, y) a one-dimensional RWRE on [[ ← x, y]], and we denote by P , E the probabilities and expectations related to this new RWRE. We observe that under

Q x , the RWRE ( X n , n ≤ T← x ∧ T y ) has the distribution of the RWRE (R n , n ≤ T -1 ∧ T p )
introduced in Section 3.2. For any x, y ∈ T, the event {T x < T y } means that T x < ∞ and T x < T y . Lemma 4.4 For any x, y, z ∈ T with x ≤ z < y,

P z ω (T y < T← x ) ≤ P z ω (T y < T← x ) , P z ω (T← x < T y ) ≤ P z ω (T← x < T y ) . Proof. Fix z 1 , . . . z n-1 in ]] ← x, y[[ and z n ∈ [[ ← x, y]]. Then P z ω (X 1 = z 1 , . . . , X n = z n ) = ω(z, z 1 ) 1 -f (z) . . . ω(z n-1 , z n ) 1 -f (z n-1 )
where f (r) represents the probability of making an excursion away from the path [[ 

f (r) ≤ 1 -ω(r, r + ) -ω(r, ← r ). It follows that P z ω (X 1 = z 1 , . . . , X n = z n ) ≤ ω(z, z 1 ) . . . ω(z n-1 , z n ) = P z ω ( X 1 = z 1 , . . . , X n = z n ) .
It remains to see that the events {T y < T x } and {T x < T y } can be written as an union of disjoint sets of the form {X 1 = z 1 , . . . , X n = z n }.

The last lemma deals with the one-dimensional RWRE (R n ) n≥0 defined in Section 3.2.

Lemma 4.5 For any n ≥ 1, there exists a number c 19 (n) such that for any i > n and almost

every ω, E 0 ω [T -1 ∧ T i ] ≤ c 19 E n ω [T n-1 ∧ T i ] .
Proof. Let i > n ≥ 1. By the Markov property and for 0 < p ≤ i, we have

E p-1 ω [T p-2 ∧ T i ] = 1 + ω(p -1, p) E p ω [T p-1 ∧ T i ] + P p ω (T p-1 < T i )E p-1 ω [T p-2 ∧ T i ] which gives that E p-1 ω [T p-2 ∧ T i ] = 1+ω(p-1,p)E p ω [T p-1 ∧T i ] 1-ω(p-1,p)P p ω (T p-1 ∧T i )
, so that for some c 20 , c 21 and c 22 we have

E p-1 ω [T p-2 ∧ T i ] ≤ c 20 + c 21 E p ω [T p-1 ∧ T i ] ≤ c 22 E p ω [T p-1 ∧ T i ].
Iterating the inequality over all p from 1 to n gives the desired inequality.

Proof of Theorem 1.3: lower bound

Let (R n ) n≥0 be the one-dimensional RWRE associated with T = {-1, 0, 1, . . .} defined in Section 3.2 and T i = inf{k ≥ 0 : R k = i}. Define for any λ ∈ [0, 1],

m(n, λ) := E E 0 ω [T -1 ∧ T n ] λ , (5.1)
and let

λ c := sup λ ≥ 0 : ∃r > q 1 such that n≥0 m(n, λ)r n < ∞ . (5.2)
We start with a lemma. Take a λ ∈ [0, 1] such that λ < Λ. By Lemma 5.1, we have λ < λ c which in turn implies by (5.2) that there exists an 1 > r > q 1 such that n≥0 m(n, λ) (n + 1)r n < ∞ . 

n 0 := inf n ≥ 1 : E GW [Z n 1I {Zn≤b 0 } ] ≤ r n .
Let T n 0 be the subtree of T defined as follows: y is a child of x in T n 0 if x ≤ y and |y-x| = n 0 . In this new Galton-Watson tree T n 0 , we define

W = W(T) := {x ∈ T n 0 : ∀y ∈ T n 0 , (y < x) ⇒ ν(y, n 0 ) ≤ b 0 } , (5.4)
where ν(y, n 0 ) is defined in (4.4). We call W k the size of the k-th generation of W. The subtree W is a Galton-Watson tree, whose offspring distribution is of mean E GW [Z n 0 1I {Zn 0 ≤b 0 } ] ≤ r n 0 . In particular, we have for any k ≥ 0,

E GW [W k ] ≤ r kn 0 . (5.5)
For any y ∈ T, we denote by y n 0 the youngest ancestor of y belonging to T n 0 , or equivalently the unique vertex such that

y n 0 ≤ y, y n 0 ∈ T n 0 , ∀ z ∈ T n 0 z ≤ y ⇒ z ≤ y n 0 . Let N 1,n := |y|=n N(y)1I {ν(yn 0 ,n 0 )>b 0 } , N 2,n := |y|=n N(y)1I {ν(yn 0 ,n 0 )≤b 0 ,yn 0 / ∈W} .
Lemma 5.2 There exists a constant L such that for any n ≥ n 0 :

E Q [N 1,n ] ≤ L , (5.6) E Q [N λ 2,n ] ≤ L . (5.7)
We admit Lemma 5.2 for the time being, and show how it implies Theorem 1.3.

Proof of Theorem 1.3: lower bound. Notice that W is finite almost surely. Then, there exists a random K ≥ 0 such that for n ≥ K, N n ≤ N 1,n + N 2,n . Lemma 5.2 yields that

E Q [N λ n 1I {n≥K} ] ≤ L λ + L for any n ≥ n 0 . By Fatou's lemma, lim inf n→∞ n k=K N λ k n < ∞. Denote by (r k , k ≥ 0) the sequence (|X Γ k |, k ≥ 0). Notice that for any k ≥ 1, Γ k+1 -Γ k = r k+1 i=r k +1 N i . It yields that S(u(n), λ) := u(n) k=1 (Γ k -Γ k-1 ) λ ≤ r u(n) i=0 N λ i ≤ n i=0 N λ i where, as in Section 3, u(n) is the unique integer such that Γ u(n) ≤ τ n < Γ u(n)+1 . Observe also that n u(n) tends to E S [|X Γ 1 |]. It follows that lim inf n→∞ 1 n S(n, λ) ≤ lim inf n→∞ 1 u(n) n k=K N λ k = E S [|X Γ 1 |] lim inf n→∞ 1 n n k=K N λ k < ∞ .
Using equation (3.2) implies that lim sup n→∞

(Γn) λ n < c 23 for some constant c 23 . We check that |X n | ≥ #{k : Γ k ≤ n} which leads to |X n | ≥ n λ
c 23 for sufficiently large n. Letting λ go to Λ completes the proof.

The rest of this section is devoted to the proof of Lemma 5.2. For the sake of clarity, the two estimates, (5.6) and (5.7), are proved in distinct parts.

Proof of Lemma 5.2: equation (5.6)

For all y ∈ T, call Y the youngest ancestor of y such that ν(Y, n 0 ) > b 0 . We have

E e ω [N(y)] = P e ω (T y < ∞)E y ω [N(y)] ≤ P e ω (T Y < ∞)E y ω [N(y)] .
We compute E y ω [N(y)] with a method similar to the one given in [START_REF] Lyons | Biased random walks on Galton-Watson trees[END_REF]. By the Markov property,

E y ω [N(y)] = G(y, Y ) + P y ω (T Y < ∞)P Y ω (T y < ∞)E y ω [N(y)] ,
where

G(y, Y ) := E y ω T Y k=0 1I {X k =y} . When ν(y n 0 , n 0 ) > b 0 , there exists a constant c 24 > 0 such that P y ω (T * y > T Y ) ≥ c 24 . Therefore, in this case G(y, Y ) ≤ (c 24 ) -1 =: c 25 . It follows that E y ω [N(y)]1I {ν(yn 0 ,n 0 )>b 0 } ≤ c 25 1I {ν(yn 0 ,n 0 )>b 0 } 1 -P Y ω (T y < ∞)P y ω (T Y < ∞) ≤ c 25 1I {ν(yn 0 ,n 0 )>b 0 } 1 -P Y ω (T * Y < ∞) ≤ c 25 1I {ν(yn 0 ,n 0 )>b 0 } γ(Y ) ,
where γ(x)

:= P x ω (T← x = ∞, T * x = ∞).
Arguing over the value of Y yields that

E Q [N 1,n ] ≤ c 25 E Q   n-n 0 <|z|≤n P e ω (T z < ∞) 1I {ν(z,n 0 )>b 0 } γ(z)   = c 25 E Q   n-n 0 <|z|≤n P e ω (T z < ∞)   E Q 1I {Zn 0 >b 0 } γ(e) ≤ c 25 n 0 c 1 c 26 ,
by Lemma 2.1 and equation (4.9).

Proof of Lemma 5.2: equation (5.7)

For any y ∈ T such that ν(y n 0 , n 0 ) ≤ b 0 and

y n 0 / ∈ W, choose Y 1 = Y 1 (y), Y 2 = Y 2 (y)
and

Y 3 = Y 3 (y), vertices of T n 0 , such that Y 1 < y, ν(Y 1 , n 0 ) > b 0 , ∀ z ∈ T n 0 , Y 1 < z ≤ y ⇒ ν(z, n 0 ) ≤ b 0 Y 1 < Y 2 ≤ y, ∀ z ∈ T n 0 , Y 1 < z ≤ y ⇒ Y 2 ≤ z , y ≤ Y 3 , ν(Y 3 , n 0 ) > b 0 , ∀ z ∈ T n 0 , y ≤ z < Y 3 ⇒ ν(z, n 0 ) ≤ b 0 .
By definition, Y 1 is the youngest ancestor of y in T n 0 such that ν(Y 1 , n 0 ) > b 0 and Y 2 the child of Y 1 in T n 0 which is also an ancestor of y. In the rest of the section, 

P ω = P ω (Y 1 , Y 3 ) and E ω = E ω (Y 1 , Y 3 )
S(n) := E Q   |y|=n:Y 1 =e p 1 (e, Y 2 ) 2 β(Y 3 ) -1 E Y 2 ω [T← Y 2 ∧ T Y 3 ] λ   , (5.8)
where ← Y 2 represents as usual the parent of Y 2 in the tree T and p 1 (u, v) is defined in (4.3). Lemma 5.3 There exists a constant c 27 such that for any n ≥ n 0 ,

E Q [N λ 2,n ] ≤ c 27 k≥n 0 S(k) .
Proof. We observe that

E e ω [N λ n ] = E e ω      |y|=n N(y)   λ    ≤ E e ω   |y|=n N(y) λ   since λ ≤ 1. By the Markov property, E e ω [ |y|=n N(y) λ ] = |y|=n P e ω (T y < ∞)E y ω [N(y) λ
]. An application of Jensen's inequality yields that

E e ω [N λ n ] ≤ |y|=n P e ω (T y < ∞) (E y ω [N(y)]) λ . (5.9)
Using the Markov property for any |y| = n, we get

E y ω [N(y)] = G(y, Y 1 ∧ Y 3 ) + E y ω [N(y)](P y ω (T Y 1 < T Y 3 )P Y 1 ω (T y < ∞) + P y ω (T Y 3 < T Y 1 )P Y 3 ω (T y < ∞)) ,
where

G(y, Y 1 ∧ Y 3 ) := E y ω T Y 1 ∧T Y 3 k=0
1I {X k =y} . Accordingly,

E y ω [N(y)] = G(y, Y 1 ∧ Y 3 ) 1 -P y ω (T Y 1 < T Y 3 )P Y 1 ω (T y < ∞) -P y ω (T Y 3 < T Y 1 )P Y 3 ω (T y < ∞) . Notice that 1 -P y ω (T Y 1 < T Y 3 )P Y 1 ω (T y < ∞) -P y ω (T Y 3 < T Y 1 )P Y 3 ω (T y < ∞) -1
is the expected number of times when the walk go from y to Y 1 or Y 3 and then returns to y, which is naturally

smaller than E y ω [N(Y 1 ) + N(Y 3 )].
We have

E y ω [N(Y 1 )] = P y ω (T Y 1 < ∞) 1 -P Y 1 ω (T * Y 1 < ∞) -1 ≤ [p 1 (Y 1 , Y 2 )] -1 ,
where as before

p 1 (Y 1 , Y 2 ) = P Y 1 ω T← Y 1 = ∞ , T * Y 1 = ∞ , T Y 2 = ∞ . Similarly E y ω [N(Y 3 )] ≤ [β(Y 3 )] -1 . We obtain P e ω (T y < ∞) (E y ω [N(y)]) λ ≤ [p 1 (Y 1 , Y 2 )β(Y 3 )] -1 P e ω (T y < ∞) (G(y, Y 1 ∧ Y 3 )) λ . (5.10)
We deduce from the Markov property that P e ω (T

y < ∞) = P e ω (T Y 1 < ∞)P Y 1 ω (T y < ∞) and P Y 1 ω (T y < ∞) = G(Y 1 , y)P Y 1 ω (T y < T * Y 1 ) where G(Y 1 , y) := E Y 1 ω Ty k=0 1I {X k =Y 1 } . By Lemma 4.4, we have P Y 1 ω (T y < T← Y 1 ) ≤ P Y 1 ω (T y < T← Y 1
). In words, it means that the probability to escape by y is lower for the RWRE on the tree than for the restriction of the walk on

[[Y 1 , y]]. Furthermore G(Y 1 , y) ≤ E Y 1 ω [N(Y 1 )] ≤ [p 1 (Y 1 , Y 2 )] -1 , so that P e ω (T y < ∞) ≤ P e ω (T Y 1 < ∞) P Y 1 ω (T y < T← Y 1 )[p 1 (Y 1 , Y 2 )] -1 ≤ P e ω (T Y 1 < ∞) P Y 1 ω (T y < T← Y 1 ) λ [p 1 (Y 1 , Y 2 )] -1 . (5.11)
We observe that

G(y, Y 1 ∧ Y 3 ) = 1 -P y ω (T * y < T Y 1 ∧ T Y 3 ) -1 . (5.12)
Call y 3 the unique child of y such that y 3 ≤ Y 3 . Consequently,

P y ω (T * y < T Y 1 ∧ T Y 3 ) ≤ [1 -ω(y, y 3 ) -ω(y, ← y )] + ω(y, ← y )P ← y ω (T y < T Y 1 ) + ω(y, y 3 )P y 3 ω (T y < T Y 3 ) .
By Lemma 4.4, we have

P ← y ω (T y < T Y 1 ) ≤ P ← y ω (T y < T Y 1 ) , P y 3 ω (T y < T Y 3 ) ≤ P y 3 ω (T y < T Y 3 ) .
Equation (5.12) becomes G(y, Y 1 ∧Y 3 ) ≤ (ω(y, y 3 )+ω(y,

← y )) -1 G(y, Y 1 ∧Y 3 ) where G(y, Y 1 ∧Y 3 )
stands for the expectation of the number of times the one-dimensional RWRE associated to the pair (Y 1 , Y 3 ) by Lemma 4.4 crosses y before reaching Y 1 or Y 3 when started from y. Since ν(y) ≤ b 0 , there exists a constant c 28 such that (ω(y,

← y ) + ω(y, y 3 )) -1 ≤ c 28 . It yields G(y, Y 1 ∧ Y 3 ) ≤ c 28 G(y, Y 1 ∧ Y 3 ) . (5.13)
Finally, using (5.11), (5.13), and the following inequality,

P Y 1 ω (T y < T← Y 1 ) G(y, Y 1 ∧ Y 3 ) ≤ E Y 1 ω [T← Y 1 ∧ T Y 3 ] ,
we get

P e ω (T y < ∞) (G(y, Y 1 ∧ Y 3 )) λ ≤ c 28 p 1 (Y 1 , Y 2 ) P e ω (T Y 1 < ∞)( E Y 1 ω [T← Y 1 ∧ T Y 3 ]) λ .
By Lemma 4.5, for any y ∈ T, we have

E Y 1 ω [T← Y 1 ∧ T Y 3 ] ≤ c 19 (n 0 ) E Y 2 ω [T← Y 2 ∧ T Y 3 ] .
It follows that

P e ω (T y < ∞) (G(y, Y 1 ∧ Y 3 )) λ ≤ c 28 c λ 19 p 1 (Y 1 , Y 2 ) P e ω (T Y 1 < ∞)( E Y 2 ω [T← Y 2 ∧ T Y 3 ]) λ . (5.14)
In view of equations (5.10) and (5.14), we obtain

P e ω (T y < ∞) (E y ω [N(y)]) λ ≤ c 29 P e ω (T Y 1 < ∞)H(Y 1 , y, Y 3 )
where

H(Y 1 , y, Y 3 ) := p 1 (Y 1 , Y 2 ) 2 β(Y 3 ) -1 E Y 2 ω [T← Y 2 ∧ T Y 3 ] λ .
By equation (5.9), it implies that

E Q [N λ 2,n ] ≤ c 29 E Q   |y|=n P e ω (T Y 1 < ∞)H(Y 1 , y, Y 3 )   .
Arguing over the value of Y 1 gives

E Q [N λ 2,n ] ≤ c 29 E Q   |z|≤n-n 0 P e ω (T z < ∞)   |y|=n,Y 1 =z H(z, y, Y 3 )     = c 29 E Q   |z|≤n-n 0 P e ω (T z < ∞)E Q   |y|=n-|z|,Y 1 =e
H(e, y, Y 3 )

    = c 29 E Q   |z|≤n-n 0 P e ω (T z < ∞)S(n -|z|)   ,
by equation (5.8). Lemma 2.1 yields that

E Q [N λ 2,n ] ≤ c 1 c 29 n k=n 0 S(k) ≤ c 1 c 29 k≥n 0 S(k) .
We call as before m(n, λ)

:= E (E 0 ω [T -1 ∧ T n ]) λ for the one-dimensional RWRE (R n ) n≥0 .
The following lemma gives an estimate of S(n).

Lemma 5.4 There exists a constant c 30 such that for any ℓ ≥ 0,

S(ℓ + n 0 ) ≤ c 30 i≥ℓ m(i, λ)r i . Proof. Let ℓ ≥ 0 and f (Y 2 , Y 3 ) := E Y 2 [T← Y 2 ∧ T Y 3 ] λ .
We have

S(ℓ + n 0 ) = E Q   |y|=ℓ+n 0 :Y 1 =e p 1 (e, Y 2 ) 2 β(Y 3 ) -1 f (Y 2 , Y 3 )   = E Q   |u|=n 0 [p 1 (e, u)] -2 |y|=ℓ+n 0 :Y 2 =u f (u, Y 3 ) [β(Y 3 )] -1   .
If we call T u the subtree of T rooted in u, we observe that

|y|=ℓ+n 0 :Y 2 =u f (u, Y 3 ) [β(Y 3 )] -1 ≤ 1I {Zn 0 >b 0 } |z|≥ℓ+n 0 :z∈W(Tu) f (u, z) [β(z)] -1 1I {ν(z,n 0 )>b 0 } ,
where W was defined in equation (5.4). The Galton-Watson property yields that

S(ℓ + n 0 ) ≤ E Q   |u|=n 0 1I {Zn 0 >b 0 } p 1 (e, u) 2   E Q   |z|≥ℓ,z∈W f (e, z) [β(z)] -1 1I {ν(z,n 0 )>b 0 }   = E Q   |u|=n 0 1I {Zn 0 >b 0 } p 1 (e, u) 2   E Q   |z|≥ℓ,z∈W f (e, z)   E Q 1I {Zn 0 >b 0 } β(e) ≤ c 31 E Q   |z|≥ℓ,z∈W f (e, z)   ,
by Lemma 4.3 and equation (4.9). The proof follows then from

E Q   |z|≥ℓ,z∈W f (e, z)   = E GW   |z|≥ℓ,z∈W m(|z|, λ)   = i:in 0 ≥ℓ m(in 0 , λ)E GW [W i ] ≤ in 0 ≥ℓ m(in 0 , λ)r in 0 ,
where the last inequality comes from equation (5.5).

We are now able to prove (5.7). Proof of Lemma 5.2, equation (5.7). By Lemma 5.3,

E Q [N λ 2,n ] ≤ c 27 ℓ≥0 S(ℓ + n 0 ) . Lemma 5.4 tells that ℓ≥0 S(ℓ + n 0 ) ≤ c 30 i≥ℓ≥0 m(i, λ)r i = c 30 i≥0 (i + 1)m(i, λ)r i ,
which is finite by equation ( 5.3).

6 Proof of Theorem 1.1

If we suppose that Λ < 1, then Theorem 1.3 ensures that |Xn| n tends to 0. Suppose now that Λ > 1. Take λ = 1 in the proof of the lower bound of Theorem 1.3 in Section 5 to see that |X n | ≥ n c 23 for sufficiently large n, which proves the positivity of the speed in this case. Theorem 1.1 is proved.

7 Proof of Theorem 1.4

When b ≥ 3, Theorem 1.4 follows immediately from Theorem 1.5. In the rest of this section, we assume that T is a binary tree. Thanks to the correspondence between RWRE and LERRW mentioned in the introduction, we only have to prove the positivity of the speed for a RWRE on the binary tree such that the density of ω(y, z) on (0, 1) is given by

f 0 (x) = 1 if z = ← y (7.1) f 1 (x) = 1 Γ( 1 2 )Γ( 3 2 ) x -1/2 (1 -x) 1/2 if z is a child of y. (7.2)
We propose to prove three lemmas before handling the proof of the theorem. Lemma 7.1 We have for any 0 < δ < 1,

E 1 β δ < ∞ .
Proof. By equation (2.1), for any y ∈ T,

1 β(y) δ ≤ 1 + min i=1,2 1 A(y i )β(y i ) δ ≤ 1 + min i=1,2 1 A(y i ) δ β(y i ) δ .
Notice that by (7.1),

E min i=1,2 1 A(y i ) δ ≤ 2 δ E 1 A(y 1 ) + A(y 2 ) δ = 2 δ E   ω(y, ← y ) 1 -ω(y, ← y ) δ   < ∞ .
The proof is therefore the proof of Lemma 2.2 when replacing A(y) and β(y) respectively by A(y) δ and β(y) δ .

Recall that for any y ∈ T, γ(y) := P y ω (T← y = ∞, T * y = ∞).

Lemma 7.2 There exists µ ∈ (0, 1) such that for any ε ∈ (0, 1), we have

E   1I {ω(e, ← e )≤1-ε} γ(e) 1/µ   < ∞ .
Proof. We see that 1 γ(e) = 1 ω(e, e 1 )β(e 1 ) + ω(e, e 2 )β(e 2 )

≤ min i=1,2

1 ω(e, e i )β(e i ) .

Let µ ∈ (0, 1) and ε ∈ (0, 1). We compute P(ω(e, [ω(e, e i )β(e i )] -1/µ > n

≤ 2P β(e 2 ) -1 > n µ ε/2 , [ω(e, e 1 )β(e 1 )] -1/µ > n ≤ 2P β(e 2 ) -1 > n µ ε/2 , ω(e, e 1 ) ≤ n -1/2 + 2P β(e 2 ) -1 > n µ ε/2 , β(e 1 ) -1 > n µ-1/2 =: 2P(E 1 ) + 2P(E 2 ) .
Let 0 < δ < 1. We have by (7.2) and Lemma 7.1,

P(E 1 ) = P ω(e, e 1 ) ≤ n -1/2 )P(β(e 2 ) -1 > n µ ε/2 ≤ c 32 n -1/4 n -δµ .
Similarly,

P(E 2 ) = P β(e 1 ) -1 > n µ-1/2 )P(β(e 2 ) -1 > n µ ε/2 ≤ c 33 n -δ(µ-1/2) n -δµ .
It suffices to take 1/4 + δµ > 1 and δ(2µ -1/2) > 1 to complete the proof, for example by taking δ = 4/5 and µ = 19/20.

Let ε ∈ (0, 1/3) be such that

E (#{i : ω(e i , e) > 1 -ε}) 2-µ 1-µ < 1 . (7.3)
Denote by U the set of the root and all the vertices y such that for any vertex x ∈ T with e < x ≤ y, we have ω(x, ← x) > 1ε; we observe that by (7.3), U is a subcritical Galton-Watson tree. Denote by U k the size of the generation k.

Lemma 7.3 There exists a constant c 34 < 1 such that for any k ≥ 0

E U 1/(1-µ) k ≤ c k 34 .
Proof. By Galton-Watson property,

E U 1/(1-µ) k+1 = E   U 1 i=1 U (i) k 1/(1-µ)  
where conditionally on U 1 , U

k , i ≥ 1 is a family of i.i.d random variables distributed as U k . Since ( n i=1 a i ) p ≤ n p p i=1 a p i (for p > 0 and a i ≥ 0), it yields that

E U 1/(1-µ) k+1 ≤ E U 1/(1-µ) 1 U 1 i=1 U (i) k 1/(1-µ) = E U 2-µ 1-µ 1 E U 1/(1-µ) k .
The proof follows from equation (7.3).

We are now able to complete the proof of Theorem 1.4.

Proof of Theorem 1.4 : the binary tree case. We suppose without loss of generality that ω(e, ← e ) ≤ 1ε. For any vertex y, we call Y the youngest ancestor of y such that ω(Y, ← Y ) ≤ 1ε. We have for any n ≥ 0,

E e ω [N n ] = |y|=n P e ω (T y < ∞)E y ω [N(y)] ,
where, as before, N(y) := k≥0 1I {X k =y} and N n = |y|=n N(y). By the Markov property,

E y ω [N(y)] = G(y, Y ) + P y ω (T Y < ∞)P Y ω (T y < ∞)E y ω [N(y)] ,
where

G(y, Y ) := E y ω T Y k=0 1I {X k =y} . It yields that E e ω [N n ] = |y|=n P e ω (T y < ∞) G(y, Y ) 1 -P Y ω (T y < ∞)P y ω (T Y < ∞) ≤ |y|=n P e ω (T y < ∞) G(y, Y ) 1 -P Y ω (T * Y < ∞) ≤ |y|=n P e ω (T y < ∞) G(y, Y ) γ(Y ) .
By coupling the walk on [[y, Y ]] with a one-dimensional random walk, we see that

P y ω (T * y < T Y ) ≤ ε + (1 -ε) ε 1-ε = 2ε ≤ 2/3, so that G(y, Y ) ≤ 3. On the other hand, P e ω (T y < ∞) ≤ P e ω (T Y < ∞). Therefore, E[N n ] ≤ 3E   |y|=n P e ω (T Y < ∞) 1 γ(Y )   = 3E   |y|=n z=Y P e ω (T z < ∞) 1 γ(z)   = 3E   |z|≤n P e ω (T z < ∞) |y|=n:Y =z 1 γ(z)   .
By independence and stationarity of the environment, We define and compute two useful parameters. Call D := {x 1 , x 2 , , z 1 , z 2 ∈ R 4 + , z 1 + z 2 ≤ 1}. Define for 0 < λ ≤ 1, and with the convention that 0 × ∞ := 0,

E[N n ] ≤ 3 |z|≤n P(T z < ∞)E   |y|=n-|z|:Y =e 1 γ(e)   = 3 |z|≤n P(T z < ∞)E 1I {ω(e, ← e )≤1-ε} U n-|z| γ(e) ≤ 3 |z|≤n P(T z < ∞)E   1I ω(e, ← e )≤1-ε γ(e) 1/µ   µ E U 1/(1-µ) n-|z| 1 
L(λ) := sup D (x 1 z 1 ) ∧ (x 2 z 2 ) λ -I(-x 1 )z 1 -I(x 2 )z 2 , (8.1) L ′ := sup x 1 + x 2 x 1 x 2 ln(q 1 ) - I(-x 1 ) x 1 - I(x 2 ) x 2 , x 1 , x 2 > 0 . (8.2) If q 1 = 0, we set L ′ = -∞. Notice that L(λ) ≥ 0 is necessarily reached for x 1 z 1 = x 2 z 2 . It yields that L(λ) = 0 ∨ sup x 1 x 2 x 1 + x 2 λ -I(-x 1 ) x 2 x 1 + x 2 -I(x 2 ) x 1 x 1 + x 2 , x 1 , x 2 > 0 , (8.3)
where c ∨ d := max(c, d). The computation of L(λ) and L ′ is done in the following lemma. 

L(λ) = 0 ∨ φ( t ) , (8.4) 
L ′ = -Λ , (8.5) 
where t verifies φ( t ) = φ( t + λ) if it exists and t := 0 otherwise. Proof. When A is a constant almost surely, L(λ) = 0 and (8.4) is true. Therefore we assume that a < b. Considering equation (8.3), we see that if L(λ) > 0, then L(λ) is reached by a pair (x 1 , x 2 ) which satisfies:

λ x 2 x 1 + x 2 + I(-x 1 ) x 1 + x 2 + I ′ (-x 1 ) - I(x 2 ) x 1 + x 2 = 0 , (8.6) λ x 1 x 1 + x 2 - I(-x 1 ) x 1 + x 2 + I(x 2 ) x 1 + x 2 -I ′ (x 2 ) = 0 . (8.7)
We deduce from equations (8.6) and (8.7) that

I ′ (x 2 ) -I ′ (-x 1 ) = λ, i.e. t(x 2 ) -t(-x 1 ) = λ. Plugging this into (8.3) yields L(λ) = 0 ∨ sup φ(t)φ ′ (t + λ) -φ(t + λ)φ ′ (t) φ ′ (t + λ) -φ ′ (t) , t ∈ R, φ ′ (t) < 0, φ ′ (t + λ) > 0 . Let h(t) := φ(t)φ ′ (t+λ)-φ(t+λ)φ ′ (t) φ ′ (t+λ)-φ ′ (t)
. Then L(λ) = 0 ∨ h( t ) where t verifies h ′ ( t ) = 0, which is equivalent to say that φ( t ) = φ( t + λ). We find that h( t ) = φ( t ), which gives (8.4). The computation of (8.5) is similar and is therefore omitted.

Proof of Lemma 5.1

We begin by some notation. Let A > 0 and B > 0 be two expressions which can depend on any variable, and in particular on n. We say that A B if we can find a function f of the variable n such that lim n→∞ 1 n ln(f (n)) = 0 and A ≤ f (n)B. We say that A ≃ B if A B and B A. By circuit analogy (see [START_REF] Doyle | Random walks and electric networks[END_REF]), we find for 0 ≤ i ≤ n,

P 0 ω (T i < T -1 ) = 1 e V (0) + e V (1) + . . . + e V (i) .
It follows that e -M (i) n + 1 ≤ P 0 ω (T i < T -1 ) ≤ e -M (i) . (8.8)

We deduce also that e -H 2 (i,n) n + 1 ≤ P i+1 ω (T n < T i ) ≤ e -H 2 (i,n) , (8.9) e -H 1 (i) n + 1

≤ P i-1 ω (T -1 < T i ) ≤ e -H 1 (i) . (8.10)
Finally, the quenched expectation G (i, -1 ∧ n) of the number of times the walk starting from i returns to i before reaching -1 or n verifies G (i, -1 ∧ n) = ω(i, i -1)P i-1 ω (T -1 < T i ) + ω(i, i + 1)P i+1 ω (T n < T i )

-1 , so that c 37 e H 1 (i)∧H 2 (i,n) ≤ G(i, -1 ∧ n) ≤ c 38 (n + 1)e H 1 (i)∧H 2 (i,n) .

Since E 0 ω [T -1 ∧ T n ] = 1 + n-1 i=0 P 0 ω (T i < T -1 ) G (i, -1 ∧ n), we get 1 + c 37 n + 1 max 0≤i≤n e -M (i)+H 1 (i)∧H 2 (i,n) ≤ E 0 ω [T -1 ∧ T n ] ≤ 1 + c 38 n(n + 1) max 0≤i≤n e -M (i)+H 1 (i)∧H 2 (i,n) .

As a result,

E[ E 0 ω [T -1 ∧ T n ] λ ] ≃ max 0≤i≤n E e λ[-M (i)+H 1 (i)∧H 2 (i,n)] . (8.11)
We proceed to the proof of Lemma 5.1. Let η > 0 and 0 ≤ i ≤ n. Let ε > 0 be such that (|a| ∨ |b|)ε < η. For fixed i and n, we denote by K 1 and K 2 the integers such that

K 1 η ≤ H 1 (i) < (K 1 + 1)η , K 2 η ≤ H 2 (i, n) < (K 2 + 1)η .
Similarly, let L 1 and L 2 be integers such that ∃ L 1 ⌊εn⌋ ≤ x < (L 1 + 1)⌊εn⌋ such that H 1 (i) = V (ix) -V (i) , ∃ L 2 ⌊εn⌋ ≤ y < (L 2 + 1)⌊εn⌋ such that H 2 (i, n) = V (i + y) -V (i) .

Finally, e λ[-M (i)+H 1 (i)∧H 2 (i,n)] ≤ e (K 1 ∧K 2 +1)ληn . By our choice of ε, we have for any integers where I reaches the minimum on this interval, and x 2 is the equivalent in (k 2 -1)ηn ℓ 2 ⌊εn⌋ , (k 2 +2)ηn

ℓ 2 ⌊εn⌋
. It yields that E e λ[-M (i)+H 1 (i)∧H 2 (i,n)] max k 1 ,k 2 ,ℓ 1 ,ℓ 2 ∈D ′ exp ((k 1 ∧ k 2 ) ληn -I(-x 1 )ℓ 1 ⌊εn⌋ -I(x 2 )ℓ 2 ⌊εn⌋ + 3ληn) , where D ′ is the (finite) set of all possible values of (K 1 , K 2 , L 1 , L 2 ). We note that (k 1 ∧ k 2 )ληn -I(-x 1 )ℓ 1 ⌊εn⌋ -I(x 2 )ℓ 2 ⌊εn⌋ ≤ (x 1 ℓ 1 ⌊εn⌋ ∧ x 2 ℓ 2 ⌊εn⌋)λ -I(-x 1 )ℓ 1 ⌊εn⌋ -I(x 2 )ℓ 2 ⌊εn⌋ + 3ληn ≤ (L(λ) + 3λη)n by (8.1). Finally, E[e λ(-M (i)+H 1 (i)∧H 2 (i,n)) ] e n(L(λ)+6λη) so that, by equation (8.11), m(n, λ) e n(L(λ)+6λη) . We let η tend to 0 to get that lim sup Let λ < Λ. By definition of Λ and equation (8.4), it implies that L(λ) < 1 q 1 , so that we can find r > q 1 such that n≥0 m(n, λ)r n < ∞. It means that λ ≤ λ c . Consequently, Λ ≤ λ c .

Proof of Lemma 3.2

Fix x 1 , x 2 > 0. Write

z 1 = x 2 x 1 + x 2 , z 2 = x 1 x 1 + x 2 , z = x 1 x 2 x 1 + x 2 .
Let a ≥ 100 and n = n(a) := ⌊ ln(a) z ⌋. We have, by the strong Markov property, P 0 ω (T -1 ∧T n > a) ≥ P 0 ω (T ⌊z 1 n⌋ < T -1 )P ⌊z 1 n⌋ ω (T ⌊z 1 n⌋ < T -1 ∧ T n ) a . It follows by (8.8), (8.9) and (8.10) that p (n, a) E e -M (⌊z 1 n⌋) 1e -H 1 (⌊z 1 n⌋)∧H 2 (⌊z 1 n⌋,n) a ≥ (1e -zn ) a P V (⌊z 1 n⌋) < -zn, M (⌊z 1 n⌋) ≤ 0 P V (⌊z 2 n⌋ + 1) > zn P V (⌊z 1 n⌋) < -zn, M (⌊z 1 n⌋) ≤ 0 P V (⌊z 2 n⌋ + 1) > zn by our choice of n. Let k ≥ 0. Call τ the first time when the walk (V (i)) i≥0 reaches its maximum on [0, k]. Let i ∈ [0, k] and for 0 ≤ r ≤ k -1, X r := ln(A r) where r := i + r modulo k. We observe that P(V k < -zn, τ = i) ≤ P(X 0 + . . . + X k-1 < -zn, X 0 + . . . + X j ≤ 0 ∀ 0 ≤ j ≤ k -1)

= P(V k < -zn, M k ≤ 0) .

We obtain that P (V k < -zn, M k ≤ 0) ≥ 1 k+1 P (V k < -zn). Therefore, for any ε > 0, 

1 +

 1 T← e > a) . (3.5) Indeed, write P e ω (T * e > a, E 1 ) = e i =e j P e ω T * e < T h(e i ) , X 1 = e i , X T * e +1 = e j , D(e j ) = ∞, T * e > a .

(4. 4 ) 4 . 3

 443 Lemma For all n ≥ 2 and k ∈ {1, 2}, we have

(4. 5 )

 5 Proof. Let n ≥ 2 and k ∈ {1, 2} be fixed integers and n := inf{ℓ ≥ 1 :Z ℓ > b 0 }. Notice that {Z n > b 0 } = { n ≤ n}.For any u ∈ T such that |u| ≥ n, let u ∈ T be the unique vertex such that | u| = n and u ≤ u that is the ancestor of u at generation n. We have by the Markov property, p 1 (e, u) ≥ |y|= n-1 P e ω (T y < T e * )P y ω (T← y = ∞ , T u = ∞). (4.6) For any |y| ≤ n and y i child of y, we observe that ω(y, y i ) = A(y i ) 1 + ν(y) j=1 A(y j ) ≥ 1 c 11 ν(y) , which is greater than 1/c 11 b 0 := c 12 , by the boundedness assumption on A and the definition of n. It yields that for any |y| = n -1, P e ω (T y < T * e ) ≥ P e ω (X n-1 = y) ≥ c n 12 . (4.7) By the Markov property,

←

  x, y]] from the vertex r. For each r ∈ [[ ← x, y[[, call r + the child of r which lies in the path. Then

Lemma 5 . 1

 51 We have Λ ≤ λ c .Proof. See Section 8.

(5. 3 )

 3 Recall the definition of b 0 in Lemma 4.2. Then, by Lemma 4.1, we can define

  represent the probability and expectation for the one-dimensional RWRE associated to the path [[Y 1 , Y 3 ]], as seen in Lemma 4.4. They depend then on the pair (Y 1 , Y 3 ), which doesn't appear in the notation for sake of brevity. Define for any n ≥ n 0 ,

←e)

  ≤ 1-ε , min i=1,2 [ω(e, e i )β(e i )] -1/µ > n) for n ∈ R * + .We observe that {ω(e, ← e ) ≤ 1 -ε} ⊂ {ω(e, e 1 ) ≥ ε/2} ∪ {ω(e, e 2 ) ≥ ε/2}. By symmetry, P ω(e, ← e ) ≤ 1ε , min i=1,2 [ω(e, e i )β(e i )] -1/µ > n ≤ 2P ω(e, e 2 ) ≥ ε/2 , min i=1,2

-µ,

  by the Hölder inequality. We use Lemmas 7.2 and 7.3 to see thatE[N n ] ≤ c 35 |z|≤n P(T (z) < ∞)c n-|z| 36 . R\[a, b]. Moreover, for any x ∈]a, b[, we have I ′ (x) = t(x) where t(x) is the real such that I(x) = xt(x)φ(t(x)), or, equivalently, x = φ ′ (t(x)).

Lemma 8 . 1

 81 We have

k 1 ,

 1 k 2 , ℓ 1 , ℓ 2 , P (K 1 = k 1 , L 1 = ℓ 1 ) ≤ P V (ℓ 1 ⌊εn⌋) ∈ [-(k 1 + 2)ηn, -(k 1 -1)ηn] , P (K 2 = k 2 , L 2 = ℓ 2 ) ≤ P V (ℓ 2 ⌊εn⌋) ∈ [(k 2 -1)ηn, (k 2 + 2)ηn] .By Cramér's theorem (see[START_REF] Hollander | Large deviations[END_REF] for example),P V (ℓ 1 ⌊εn⌋) ∈ [-(k 1 + 2)ηn, -(k 1 -1)ηn] expℓ 1 ⌊εn⌋(I(-x 1 )λη) P V (ℓ 2 ⌊εn⌋) ∈ [(k 2 -1)ηn, (k 2 + 2)ηn] expℓ 2 ⌊εn⌋(I(x 2 )λη) if -x 1 is the point of -(k 1 +2)ηn ℓ 1 ⌊εn⌋ , -(k 1 -1)ηn ℓ 1 ⌊εn⌋

n→∞ 1 n

 1 ln(m(n, λ)) ≤ L(λ) .

pFinally

  (n, a) P V (⌊z 1 n⌋) < -zn P V (⌊z 2 n⌋ + 1) > znexp n (-I(-x 1 )z 1 -I(x 2 )z 2 -2ε) by Cramér's theorem. It yields that lim inf a→∞ sup ℓ≥0 ln(q ℓ 1 p (ℓ, a)) ln(a) ≥ lim inf a→∞ ln(q n 1 p (n, a)) ln(a) ≥ ln(q 1 ) -I(-x 1 )z 1 -I(x 2 )z 2 -2ε z . ≥ L ′ = -Λ .
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8 Proof of Lemmas 5.1 and 3.2

We consider the one-dimensional RWRE (R n ) n≥0 when we consider the case

This RWRE is such that the random variables A(i), i ≥ 0 are independent and have the distribution of A, when we set for i ≥ 0,

with ω(y, z) the quenched probability to jump from y to z. We recall that, as defined in equations (3.3) and (5.1), p (n, a)

We study the walk (R n ) n≥0 through its potential. We introduce for p ≥ i ≥ 0, V (0) = 0 and