
Seed-based Genomic Sequence Comparison using a
FPGA/FLASH Accelerator

Dominique Lavenier1,3

IRISA / CNRS
Rennes, France

Email: Dominique.Lavenier@irisa.fr

Liu Xinchun2,3

Institute of Computing Technology
Beijing, China

Email: lxc@ncic.ac.cn

Gilles Georges1,3

IRISA / INRIA
Rennes, France

Email: Gilles.Georges@irisa.fr

Abstract— This paper presents a parallel architecture for
computing genomic sequence alignments using seed-based algo-
rithms. Originality comes from the simultaneous use of FPGA
components and FLASH memories. The FPGA technology brings
the computer power while the FLASH memory provides high
memory bandwidth able to feed a large array of specific opera-
tors. A 64 GBytes FLASH memory connected to a Xilinx Virtex-2
Pro PCI board has been developed and an array of 160 distance-
computation operators have been implemented to perform the
first step of seed-based alignment algorithms. Compared to the
BLAST reference software family, we measured a speed-up of 75
on a real intensive genomic sequence comparison application.

I. INTRODUCTION

For the last ten years, biotechnology improvements in
the sequencing area led to generate an increasing amount
of genomic data. More precisely, the size of the genomic
databases are doubling every 16 months [2]. This exponential
growth provides a priceless source of knowledge which can
be advantageously exploited by in-silico studies. Today, wet
lab experimentations are systematically preceded by a deep
analysis of recent data available in the public databases.
Results obtained from these analyses limit the number of in-
vivo experimentations, saving both time and money.

On the other hand, processing large volume of genomic data
may require huge computational resources. Genomic sequence
comparison programs are traditionally used for that purpose,
particularly programs from the BLAST package [13]. Typically,
a set of genomic sequences is compared to a specific database
or an entire genome. The result is a list of alignments giving a
measure of similarity between genomic sequences. Detecting
similarities through alignments at the text level often gives
clues for determining relationship about gene functionalities.

An alignment is expressed as follows:

ATTAGGACCAGGGGATATGA...GACCCAGGAATTTA.GGGA
||| |||| |||| ||||| ||||| || ||||| ||||
ATTCGGAC.AGGGATTATGAGGAGACCCGGGGATTTAGGGGA

1This work is supported by the French Research Ministry under the ACI
Masses de Données ReMIX

2This work is supported by the National Natural Science Foundation of
China (Grant No.60573163)

3This work is supported by the French-Chinese Research Program PRA
SI04-04

It is composed of two substrings. Their size may differ since
gap errors (dot characters) can be inserted. A score is calcu-
lated according to the number of errors found (substitution or
gap). It is linked to an expected value reflecting the biological
significance of the alignment.

Many algorithms have been developed to compute align-
ments. The historical one is due to Wagner and Fisher [17]
for simply calculating a distance between two strings of
characters. It has been extended by Smith and Waterman
[16] to find the best local alignment between two biological
sequences and, later on, improved by Gotoh [15] to better
reflect biological reality. All these algorithms use dynamic
programming algorithms. Because of their high complexity,
they are not suited for intensive comparisons. Since the end
of the 80’s, to face the genomic data explosion, seed-based
heuristics have been proposed [14] [13]. They do not guarantee
to find the best alignments but, in practice, they produce very
satisfying results. The great advantage is that the computation
time is drastically reduced.

The BLAST [9] family programs belongs to this class of
algorithms. This is today the most popular software both for
scanning large databases and for comparing large genomic
data sets. Even if this program is fast, handling genomic
sequences of billions of nucleotides may take a very long time.
Accelerating this kind of algorithm is still worthwhile.

Whereas many efforts have been done to implement dy-
namic programming algorithms on dedicated parallel archi-
tectures [6] [10] [11] [12], seed-based implementation mainly
remains a software approach. Today, as far as we know,
the only available commercial board accelerating the BLAST
program family has been developed by TimeLogic Inc. through
the DeCypher FPGA Engine [18]. And it is not clear how
BLAST is implemented. Academic research includes work on
the Mercury system [5] [3] and on the RDISK system [7]
[8]. Both projects consider the database as a data stream and
perform fast hardware filtering to select regions of interest
for further processing. Another interesting idea (RC-BLAST)
is based on an open source hardware implementation to
only speed-up some critical parts of the BLAST software [1].
Unfortunately, this direct approach doesn’t provide significant
speed-up, but gives good clues towards advanced hardware
implementations.

The approach we propose here is new in the sense that
we don’t scan the database. Instead, the database is formatted
as an index structure from which regions of interest can be
directly accessed. The index is built using-BLAST similar seed-
based heuristics. This mechanism provides a very efficient way
to speed-up the first steps of the genomic sequence comparison
algorithms as long as the index memory is able to sustain a
fast data access and a high bandwidth. Unfortunately, the size
of the database index can be very large (100 GBytes), which
makes the use of a simple DRAM memory impossible. In
this paper, we show how a large capacity FLASH memory
tightly connected to FPGA resources can best implement the
first steps of seed-based algorithms.

For the problem introduced above, a PCI-based system has
been designed. It includes a 64 GBytes FLASH memory and a
Virtex-2 Pro FPGA component. It has been successfully tested
on a real and time-consuming application: the comparison of
400,000 proteins against the Human genome. We measured a
speed-up of 75 compared to a stand alone 3 GHz PC running
the TBLASTN program.

The rest of the paper is organized as follows. The next
section presents one of the BLAST program family, TBLASTN,
which is used as a reference for the process of comparing
proteins versus DNA databases. Section 3 details the database
index structure used in our hardware implementation. Section
4 describes the parallel architecture implemented on the re-
configurable resources. Section 5 deals with implementation
and result issues. Section 6 concludes this paper.

II. TBLASTN ALGORITHM

The TBLASTN program belongs to the BLAST program
family [9]. It aims to find alignments between a query protein
sequence and a nucleic database. The result is displayed
as protein-based alignments, requiring first the database to
be translated into protein sequences before the comparison
process. The (simplified) TBLASTN algorithm can be described
as follows:

index the query with 3-AA words
for all DNA sequences of the database

translation into 6 proteins (P1 to P6)
for all Pi (0<i<7)
for all 3-AA words

if word exists in the query index
then

hit found
compute ungapped alignment
if score > threshold_1
then
compute gapped alignment
if score > threshold_2
then

display alignment

The first step consists in indexing the query protein se-
quence: for each 3-amino acid word (3-AA word), a list of
positions is attached. The list gives the position (the index)
of the words where they appear in the sequence. This data
structure is called the query index. For example, suppose the
following (small) protein sequence:

T P A T Y K L P E W G G E S
1 2 3 4 5 6 7 8 9 10 11 12 13 14

The index associated to this protein is:

A T Y 3 P A T 2
E W G 9 P E W 8
G E S 12 T P A 1
G G E 11 T Y K 4
K L P 6 W G G 10
L P E 7 Y K L 5

Once the query sequence is indexed, the next step is to
translate all the DNA sequences of the database into the 6
possible potential proteins. Indeed, a DNA sequence can be
translated starting from any nucleotides following either the
direct or reverse DNA strand. As the genetic code translates
an amino acid from a 3-uplet nucleotide (codons), there are
3 encoding possibilities by frame, leading to 6 possibilities
if the direct and reverse strand are considered. Suppose the
following DNA sequence is given:

ACGCAAGCTACCTATAAATTACCTGACTGGGGAGAGTCAACA

The reverse strand is given by:
TGTTGACTCTCCCCAGTCAGGTAATTTATAGGTAGCTTGCGT

The sequence is first inverted and the nucleotides are
replaced following the (A ↔ T) and (C ↔ G) rules. The first
ACG... characters become the last ...CGT characters. From
these 2 strands, using the genetic code, we get the 6 following
potential proteins:

ACGCAAGCTACCTATAAATTACCTGACTGGGGAGAGTCAACA
1 T Q A T Y K L P D W G E S T
2 R K L P I N Y L T G E S Q
3 A S Y L X I T X L G R V N

TGTTGACTCTCCCCAGTCAGGTAATTTATAGGTAGCTTGCGT
4 C X L S P V R X F I G S L R
5 V D S P Q C G N L X V A C
6 L T L P S Q V I Y R X L A

At this point, protein-protein comparison can now be con-
sidered. Alignments are thus searched using seed-based protein
heuristics. The hypothesis is that the two subsequences which
compose an alignment share, at least, one identical 3-AA word.
Thus, instead of considering all the possible alignments, we
only focus on the alignments having this property. Practically,
this technic finds most of the significant alignments while de-
creasing the computation time from 2 or 3 orders of magnitude
as compared to exact methods such as dynamic programming
methods.

The next step is to detect the 3-AA common words between
the query sequence and the six translated sequences. This is
rapidly performed using the query index computed at step 1.
When a hit is found (that is two identical 3-AA words), an
ungapped alignment is calculated by extending the comparison
on its left and right hand side. This treatment doesn’t consider
gap error. A score is simply calculated by adding substitution

Fig. 1. Structure of the index. All the 3-AA words of the sequences are grouped together. Then, each 3-AA word is associated with its position in the
sequence and its neighboring environment. For example, the 3-AA word AAC is present at position 24, 38 and 49. This entry is thus linked to 3 amino acid
substrings (TPAAACFGKL, YNPFAACTTRQ, YYYTAACGFPL) which will be used to start the computation of ungapped alignment.

costs between pairwise amino acids. Suppose that the KLP
word is processed: it is present both in the query (at position
6) and in the frame #1 and #2 of the database. The 2 following
hits can be set:

Query T P A T Y K L P E W G G E S
| | | | | | | | |

Frame #1 T Q A T Y K L P D W G E S T

Query T P A T Y K L P E W G G E S
| | |

Frame #2 R K L P I N Y L T G E S Q

Clearly, the first hit position is better and lead to a higher
score when an extension is made. The second one will be
discarded. This ungapped alignment step can be seen as a
filter step to select promising hits, that is, hits with a favorable
environment likely to produce significant alignments. The
selection is based on the score value: only extended hits with
scores higher than a threshold value are transmitted to the final
step.

The last step computes alignments with gap errors. The hit
acts as an anchor from which the final alignment is found.
In our example we can still increase the length of the first
ungapped alignment by adding one gap as follows:

Query T P A T Y K L P E W G G E S
| | | | | | | | | | |

Frame #1 T Q A T Y K L P D W G . E S T

The principle of the algorithm can be summarized as a 3
step procedure:

• step 1: find hits
• step 2: extend hit (compute ungapped alignments)
• step 3: process alignment (compute gap alignments)
Previous studies have shown that most of the computation

time is spent in steps 1 and 2. The following table, extracted
from [5], precisely indicates, for various query length, the
percentage of time spent in stage 1, 2 and 3.

word Ungapped Gapped
Query size matching extension extension

(step 1) (step 2) (step 3)

10K 86.50 % 13.30 % 0.20 %
100K 83.30 % 16.60 % 0.10 %
1000K 85.30 % 14.65 % 0.05 %

Obviously, to get a significant speed up, both step 1 and 2
need to be accelerated. Before presenting how an hardware
accelerator can handle these 2 steps, we first introduce a
suitable data structure allowing fast data accesses and able
to rapidly feed hardwire operators.

III. DATABASE INDEXING

In the context of intensive genomics computation, a large
set of query proteins (let say N proteins) are compared to a
DNA database. In this case, the database is processed N times.
From a computational point of view, this approach is quite
inefficient since the database need to be systematically re-
translated into the 6 frames. Actually, the TBLASTN software

Fig. 2. Ungapped Operator. Left side: architecture principle of an ungapped operator. The substitution cost of the amino acids coming from the query and
databse substrings are added. The return score is the maximum value achieved during the calculation. Righ side: K ungapped operators can be connected in
such a way that one query substring is compared with K database substrings. Extra hardware are added for collecting the results by shifting the maximum
values calculated during the previous cycles.

has an optimizing parameter allowing the user to concatenate
a few query protein sequences into a single one. Setting this
optional parameter greatly improves the efficiency, but doesn’t
remove the need to periodically recomputing the 6 frames.

To avoid this drawback, the database can be permanently
encoded as a 6 protein sequence set resulting from the 6-frame
DNA translation. Consequently, compared to the BLAST ap-
proach, the whole process can be inverted: instead of indexing
the N queries and reading N times the database, the database
is fully indexed and the N queries are sequentially processed,
word by word.

Furthermore, to optimize the database access, the index
structure is enhanced with extra information: a 3-AA word
is not only linked with a list of positions but also with neigh-
boring knowledge. The goal is to be able to rapidly decide if
a 3-AA hit has a favorable environment to start an alignment.
Thus, each 3-AA word in the index is tied with a neighboring
amino acid substring representing its environment (see figure
1). This information allow short ungapped alignments to be
immediately computed, avoiding millions of random accesses
to the database.

To illustrate the database index structure, consider again
the DNA sequence of the previous example and its 6 frame
translations. The KLP word of the database will be indexed
as follows:

KLP --> ATY DWG #1 16
**R INY #2 5

It is present in frame #1 at position 16 with a left neigh-
boring environment ATY and a right neighboring environment
DWG. It is also present in frame #2 at position 5 with a (**R,

INY) environment.
When a KLP word is found in the query sequence, all the

KLP words of the database are immediately accessed together
with their neighboring environment. The great advantage is
that we only focus on the useful parts of the database. A
systematic scan is no longer required.

On the other hand, the size of the index becomes very large:
for all words of the six frames, in addition to their positions,
two short substrings reflecting the neighboring amino acid
environment need to be memorized. As an example, storing a
40 amino acid substring environment leads to a 150 GBytes
index for the Human genome. This is 50 times more than the
raw data. The database index structure is represented figure
1. Using this structure, and supposing that the database index
already exists, the algorithm becomes:

1 Input query
2 For all 3-AA words W in the query
3 Go to the environment list linked with W
4 For all environment
5 Compute ungapped alignment
6 If score > Threshold_1
7 Then
8 Compute gapped alignment
9 If score > threshold_2

10 Then
11 Display alignment

Compared to the TBLASTN algorithm, the finding-hit step is
suppressed since statistically, when indexing a large database
(such as a complete genome), all the possible 3 amino acid
words exist and are associated to a list of positions. Thus,

we can directly process the ungapped alignments from the list
associated to every 3-AA words. Accelerating this algorithm
means to focus on lines 3 to 6. The next section describes the
hardware architecture to perform this calculation.

IV. ARCHITECTURE

The critical part of the algorithm is to compute a large
number of ungapped alignments from two short amino acid
subsequences. Let L be the length of the protein subsequences,
Qry a subsequence from the query and Db a subsequence from
the database. Computing the best score based on an ungapped
alignment is done as follows:

max = 0;
score = 0;
for (i=0; i<L; i++) {
score = score + SubMat(Qry[i]][Db[i]);
if (score>max) max = score;

}

The SubMat function returns a positive or negative value
according to the substitution cost of amino acid Qry[i] by
amino acid Dd[i].

Hardwiring this operator is straightforward as depicted
figure 2 (left). This is a serial operator which need L cycles
(the length of the substrings) to compute a maximum score
value. The substrings Qry and Db are supposed to be sent
character by character, one every cycle. The substitution cost
is memorized into a ROM memory directly addressed by the
amino acids code. As there are 20 different amino acids, they
are 5-bit encoded.

One query substring need to be compared with a large
number of database substrings. These comparisons are inde-
pendant and can be performed in parallel. If we suppose that
K database substrings can be accessed together, a parallel
architecture made of K ungapped operators can be simply
implemented. Figure 2 (right) shows the interconnection of
K operators.

The Qry substring is broadcasted to all the ungapped oper-
ators while K database substrings are connected to K different
operators. The system is synchronous: all computation start at
the same time, and after L cycles K new results are available.
Extra hardware has been added for collecting the results: at
the end of the L cycles, they are stored in a register and during
the K next cycles they are sequentially shifted to the output.
This shift mechanism works only when L (number of cycles to
compute a score) is higher than K (the number of operators).

In that scheme, to reach a maximal efficiency, the number
of operators depends on:

• the available bandwidth (B) between the database storage
support and the reconfigurable resources;

• the clock frequency (F);
• the input data width (dw). Here amino acids are 5-bit

encoded (dw=5).
Consequently, the number of operators can be determined

as the following ratio:

#operators =
B

dw × F
(1)

Remember that the size of the index databases is important.
It can range from 30 to 300 GBytes, or even more. This is an
easy fit to today’s disk capacity. However, limitations come
from both the time for accessing the data (a few milliseconds)
and the limited bandwidth. As an example, with a 50 Mo/sec
bandwidth and a 40 MHz clock frequency, it is impossible to
implement more than 2 operators.

Using Random Access Memory appears as an attractive
alternative to sustain a higher bandwidth, but the complexity
of managing hundreds of GBytes of DRAM, the power con-
sumption and the volatility of the data, seriously compromise
the use of this technology.

A better solution is FLASH memory technology. It is faster
than magnetic storages in terms of data access and bandwidth,
it has a low power consumption compared to DRAM and it
permanently stores the data. Drawback are a much higher price
(compared to disk), a slower data access (compared to DRAM)
and a limited write cycles.

To investigate this approach, we have designed a 64 GBytes
FLASH memory allowing both to store large database index
and to support a bandwidth of 640 MB/sec. Using this
memory, 25 ungapped operators can be fed simultaneously.
Actually, this represents a small amount of reconfigurable
resources available in the Xilinx XC2VP30 FPGA component.
There are still resources available to fit many more operators.

In the context of comparing a large set of proteins against
large DNA sequences (chromosomes), identical 3-AA words
coming from the proteins can be gathered and processed simul-
taneously. Thus, a few parallel ungapped operators working on
different data from the query proteins, but on the same data
from the database can be advantageously implemented in order
to fill the FPGA and to reach a higher efficiency. The resulting
architecture is shown figure 3.

This is an array of P × K ungapped operators. This array
is steered by a controller whose task is to feed the array
with query data and to collect the results from the ungapped
operators. To reduce the output data flow, results from the
ungapped operator are filtered: only the values higher than a
threshold value are transmitted.

A basic treatment consists in comparing P query substrings
having in common the same 3-AA hit word. The PowerPC
processor available in the Virtex-II Pro component controls
the treatment. It receives the P substrings from the PCI
interface together with information to locate, in the FLASH
memory, the 3-AA database word list. Then it runs the whole
computation and transfers back the results to the PCI interface.
The results which are returned correspond to the locations
where significant ungapped hits have been found together with
the ID of the matching query.

V. IMPLEMENTATION AND RESULTS

A. Platform
An array of 8 × 20 ungapped operators have been imple-

mented and successfully tested. The platform is a commercial
board from Avnet (ADS-XLX-V2PRO-DEVP30). It includes
a Xilinx Virtex-2 Pro (XC2VP30), 128 MBytes of DDR

Fig. 3. Architecture of the accelerator. An array of P × K ungapped operators is both feed from the FLASH memory and from a small local memory
implemented with the FPGA RAM resources. The local memory contains K substrings which are re-initialized by the PowerPC processor each time a new
computation is done.

SDRAM, a PCI bridge and 4 connectors to plug daughter
boards.

In addition, we have developed a FLASH memory board
of 64 GBytes which can be connected to the Avnet board.
64 1-GB NAND-FLASH chips are interconnected into 4
independent 16 GB banks. Each bank has its own controller
implemented into specific Xilinx Spartan-3 FPGA (see figure
4). The maximal bandwidth is 640 MB/sec: each bank is able
to deliver a 32-bit data every 25 ns.

NAND-FLASH memory cannot be used efficiently as pure
random access memory. To be efficient, data need to be read by
pages. In our case, this is not a major problem since we have to
read a list of 3-AA word environments which may represent
a few consecutive pages. However, access times need to be
considered. Typically, it takes about 20 µsec to get a block of
data before being able to process it. This latency may highly
penalize performance by including idle period each time a new
block of data is accessed. The FLASH controllers we designed
have integrated advanced mechanisms for anticipating the read
of new blocks: while data from a page are output, a new
page can be concurrently accessed. This overlap mechanism
allows high bandwidth to be sustained if the data access can be
predicted. Once again, in our case, the algorithm fits to these
requirements: all the data accesses (i.e. all the lists of all 3-
AA words of the query) can be progressively forecasted as the
query input is processed. Sending periodically a list of reading
commands to the FLASH controller reduces significantly the
access time overhead. In the best case, we only pay the first
page access, the other ones are free.

B. Application
The FPGA/FLASH architecture have been tested on a real,

intensive comparison genomic application. The scope of this
paper is not to precisely describe the biological context, but
to give an idea of the volume of data to process at an initial
stage of a large scale genomic project. The study aims to detect
new mitochondrial proteins in the Human genome. As mito-
chondria may originate from ancestral bacteria, a systematic
comparison with the proteome of all available bacteria is done.
From a computational point of view, about 400 000 proteins
have to be compared with all the chromosomes of the Human
genome.

Usually, the TBLASTN program is used. Experiments have
shown that performing this computation on a 3 GHz processor
will require about 20 000 hours (or 27 months) of compu-
tation. With a 64-node cluster, supposing no communication
overhead, it will approximately take 13 days.

A program similar to TBLASTN has been developed for
integrating the hardware version of step 1 and 2 in our
FPGA/FLASH architecture. As the FLASH memory cannot
hold the full index of the Human genome, we process each
chromosome sequentially. The size of the largest Human
chromosome is 246 × 106 nt, leading to an index of nearly
12 GBytes. This easily fit into the FLASH memory. Hence,
the whole process is done as follows:

for each chromosome:
- download chromosome index into FLASH
- process 400,000 proteins

Fig. 4. FLASH memory organization. It is composed of 4 independant 16 GBytes banks. Each bank has its own controller implemented into Xilinx Spartan-3
FPGA. These controllers permit page reading and page access overlaping, leading to sustain a 640 Mbytes/sec bandwidth.

C. Performances

The complete computation has been performed in approxi-
mately 260 hours (11 days). It includes the time for download-
ing new data into the FLASH memory, but not the time for
calculating the index of each chromosomes. We consider that
this operation need to be done once and that the resulting data
index structure can be re-used for many other applications, as
it is done for the BLAST family programs.

This experiment shows that connecting a PCI reconfigurable
board enhanced with large FLASH memory into a standard PC
can highly reduce the computation time of seed-based algo-
rithms for intensive genomic comparison applications. We get,
here, a speed-up of 75. Another way to compare performances
is to say that the computer power of this architecture is nearly
equivalent to a 64-node cluster.

However, these performances need to be relativized consid-
ering the cost of the accelerator. Today (mid 2006), the price of
a 2-GB NAND-FLASH component is around $40. A Virtex-
2 Pro FPGA equipped with 64 GB of FLASH memory can
easily fit into a single PCI board. The price of such a board
would not exceed the price of the host station. In other word,
with the same amount of money, the FPGA/FLASH alternative
provide a substantial speed-up for this class of algorithms.

In order to compare the computational power of this
FPGA architecture with other FPGA solutions we introduce
a measurement unit: the number of Kilo Amino Acids (Kaa)
compared to the number of Mega nucleotids (Mnt) performed
every second. On the above application, we get:

132000Kaa× 3200Mnt

936× 103sec
= 451KaaMnt/sec

20K 40K 60K 100K80K

hours

10

20

30

proteins

DeCypher

FLASH

Fig. 5. Performance comparison of the DeCypher Engine and the
FPGA/FLASH architecture. A database, composed of 192 bacterial genomes,
is compared against set of proteins. For small sets, the DeCypher Engine is
better as it is not penalized by the FLASH memory initialization. For large
set, the FLASH/FPGA architecture is approximatively 2.5 times faster.

A comparison can be done with the Tera-T-BLASTN im-
plementation on the FPGA Timelogic DeCypher Engine. The
accelerator has been benchmarked for searching 4289 proteins
from the E. Coli bacteria against 192 bacterial genomes (775×

106 symbols) 1. It took 1 hours and 36 minutes to perform
the computation. From this benchmark, we can calculate the
architecture performance:

1358Kaa× 775Mnt

5760sec
= 182KaaMnt/sec

It appears that the FPGA/FLASH architecture has a higher
raw performance ratio. Actually, this unit doesn’t exactly
reflect the features of both architectures. The FPGA/FLASH
architecture is handicaped by the initialization of the FLASH
memory. Figure 5 show the comparison of an increasing set of
proteins against the 192 bacterial genomes. It can be seen that

1TimeLogic benchmark: http://www.timelogic.com/benchmark blast.html

for small set of query proteins, the DeCyper Engine is better,
even if this performance ratio is lower than the FPGA/FLASH
one. This is mainly due to the time for downloading, at the
begining of the computation, the index of the 192 bacterial
genomes. But, as the set of the query proteins becomes larger,
this penalty tends to disappear.

VI. CONCLUSION

In this paper, we have presented a new way of accelrat-
ing seed-based search algorithms in the context of intensive
genomic sequence comparison. Our approach relies on:

• an index database structure built from seed-based heuris-
tics;

• a large FLASH memory tightly connected to FPGA
resources;

• a parallel architecture implementing an array of 160
simple ungapped operators.

We have designed a PCI based system including 64 GBytes
of FLASH memory connected to a Xilinx Virtex-2 Pro compo-
nent. A speed-up of 75 has been measured on a real intensive
genomic sequence comparison application.

Compared to other research works, which mainly process
the database as a nucleic data stream, data are structured in
such a way that they can be highly re-used when accessed.
Performances essentially come from that point: today FPGA
components house a huge potential computational power
which can really be exploited if they can be fed at a consequent
data rate. Magnetic storage cannot sustain such features, and
hundred of GBytes of RAM or DRAM memories are no
so easy to implement. FLASH memory appears as a good
compromise.

The limited write cycles of the FLASH memory might
be seen as a strong constraint, leading to restrictive use of
the accelerator. Actually, in the context of large computa-
tion, data remains long enougth in the FLASH memory to
avoid a fast wear. The FLASH memories we used (Samsung
K9W8G08U1M [19]) can support 100,000 writes before any
degradation in a typical application. If we reload the complete
memory every hour, then we have a potential use of more
than 10 years ! Furthermore, the life of the memory can
be augmented by using wear-leveling mechanisms [4] which
avoids writing to always the same memory blocks.

Further researche will focus on investigating implementa-
tion of other programs from the BLAST family, especially the
BLASTN program in the context of detecting all the repeat
sequences inside full genomes. These applications require
comparing entire genomes against themselves. They take days
of computation, even on large clusters. The same index tech-
nique, based on DNA seeds, can be used to structure the
database, and feed a specific DNA ungapped processor array.

More sophisticated data structures are also envisioned, such
as suffix trees which are intensively used in the bioinformatics
area to locate identical motifs along genomes. Today, even
for medium size genomes, such structures cannot fit into the
main memory of computers. Having these structures stored
in FLASH memories together with their appropriate query
hardware mechanisms will surely contribute to eliminating the
current bottleneck in the use of suffix trees for processing large
genomes.

REFERENCES

[1] K. Muriki, K.D. Underwood, R. Sass, RC-BLAST: Towards a Portable,
Cost-Effective Open Source Hardware Implementation, In proc. IPDPS
2005: Fourth IEEE International Workshop on High Performance Com-
putational Biology, Denver, CO, April 4, 2005.

[2] D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, D.L. Wheeler,
GenBank, Nucleic Acids Res., Jan 1;33(Database issue):D34-8, 2005.

[3] J. Lancaster, J. Buhler, R. Chamberlain, Acceleration of Ungapped
Extension in Mercury BLAST, 7th workshop on media and streaming
processors, Barcelona, Spain, November 12, 2005

[4] E. Gal, S. Toledo, Algorithms and data structures for flash memories,
ACM Computing Surveys (CSUR), Volume 37 , Issue 2, 138-163, 2005

[5] P. Krishnanurthy, J. Buhler, R.D. Chamberlain, M.A. Franklin, K. Gyang,
J. Lancaster, Biosequence Similarity search on the Mercury system, in
Proceedings of the 15th IEEE International Conference on Application-
Specific Systems, Architectures and Processors, 365-375, 2004

[6] L. Grate, M. Diekhans, D. Dahle, R. Hughey, Sequence Analysis With the
Kestrel SIMD Parallel Processor Pacific Symposium on Biocomputing,
Hawai, 2001

[7] D. Lavenier, D. Guytant, S. Derrien, S. Rubini, A reconfigurable par-
allel disk system for filtering genomic banks, ERSA’03, Engineering of
Reconfigurable Systems and Algorithms , Las Vegas, Nevada, USA, 2003

[8] S. Guytant, D. Lavenier, Evaluation of anchoring scheme for fast DNA
Sequence Alignment, ECCB’2003 European Conference on Computa-
tional Biology, Paris, France, 2003

[9] S.F. Altschul et al., Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs, Nucleic Acids Res., 25:3389-3402,
1997

[10] P. Guerdoux, D. Lavenier, SAMBA: Hardware Accelerator for Biologi-
cal Sequence Comparison, CABIOS, vol 13, no 6, 1997

[11] D.T. Hoang, Searching genetic databases on SPLASH2, FCCM’93,
IEEE Workshop on FPGAs for Custom Computing Machines, Napa,
California, 1993

[12] E. Chow, T. Hunkapiller, J. Peterson, Biological Information Signal
Processor, ASAP’91, International Conference on Application Specific
Array Processors, Barcelona, Spain, 1991

[13] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic Local
Alignment Search Tool, J. Biol. Mol, 215-403:410, 1990

[14] W.R. Pearson, D.J. Lipman, Improved tools for biological sequence
comparison, Proc. Natl. Acad. Sci., 85:3244-3248, 1988

[15] O. Gotoh, An Improved Algorithm for Matching Biological Sequence,
J. Mol. Biol., 162:705-708, 1982

[16] T.F. Smith, M.S. Waterman, Identification of common molecular subse-
quences, J. Mol. Biol. 147-195-197, 1981

[17] R.A. Wagner and M.J. Fischer, The String-to-String Correction Problem,
Journal of the ACM, 21(1):168–173, 1974

[18] TimeLogic Web Site: http://www.timelogic.com
[19] K9W8G08U1M Samsung, 1G x 8 Bit NAND Flash Memory Datasheet,

http://www.samsung.com

