
HAL Id: hal-00179975
https://hal.science/hal-00179975

Preprint submitted on 17 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust shortest path problems
Virginie Gabrel, Cecile Murat

To cite this version:

Virginie Gabrel, Cecile Murat. Robust shortest path problems. 2007. �hal-00179975�

https://hal.science/hal-00179975
https://hal.archives-ouvertes.fr


Robust shortest path problems
Virginie Gabrel∗, Cécile Murat∗

Résumé

Cet article constitue un état de l’art sur les problèmes de plus courts chemins
pour lesquels il existe des éléments d’incertitude et d’indétermination sur les valeurs
des arcs. Deux modèles d’incertitude sont distingués : celui dit par intervalleet celui
dit par scénarios. Différentes mesures et approches de la robustesse sont présentées :
celles issues de la théorie de la décison, celles issues de l’analyse multicritèreet
celles issues de la programmation mathématique. Elles donnent lieu à plusieurs ver-
sions distinctes du problème de plus court chemin robuste dont les complexités et les
résolutions sont présentées.

Mots-clefs : plus court chemin, optimisation robuste, incertitudes sur les données,
scénario du pire cas, regret maximum

Abstract

This paper is a state of the art on the shortest path problems for which it ex-
ists uncertainty and inaccuracy factors on arc values. Two uncertainty models are
distinguished: the so-called interval model and the discrete set of scenarios model.
Different measures and approaches of robustness are presented:those coming from
decision theory, those coming from multicriteria analysis and those coming from
mathematical programming. Each one leads to a particular version of robust shortest
path problem for which complexity and resolution are studied.

Key words : shortest path, robust optimization, data uncertainties, worst case sce-
nario, maximal regret
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1 Introduction

In optimization, it is used to deal with uncertain and inaccurate factors which make
difficult the assignment of a single plausible value to each model parameters. Two ap-
proaches are possible : in the first one, a single nominal value is assigned to each para-
meter, the corresponding optimal solution is computed, then the interval in which each
parameter can vary in order to preserve optimality solutionis determined ; the second ap-
proach consists in taking into account in the model to optimize, the possible variations of
each parameter. In mathematical programming, the first approach is known as sensibility
analysis. For the second approach, stochastic optimization may be applied for some pro-
blems in which parameters’ value can be described by probability laws. When it is not
possible nor relevant to associate probability laws to parameters, another way amounts to
assign a set of possible values to each parameter. In this context, the choice of one value in
each set corresponds to a scenario. The induced robust optimization problem is to deter-
mine a single solution which is optimal for all scenarios. In general, such a solution does
not exist and the problem is to determine a "relatively good" solution for all scenarios.

In most of robustness studies in combinatorial optimization, a robust solution is a
solution which is acceptable in a large majority of scenariosand, which is never too bad (cf
for example [23, 25]). This characterization leaves place to many possible interpretations
and, thus gives place to various approaches of robustness. These approaches differ from
models used to represent the uncertain and inaccurate factors of the considered decision
problem, from methodology used to measure robustness, and finally from the analysis and
the design of resolution methods.

In this chapter, we present various models, criteria and methods which were studied
for the robust shortest path problem. In the section 2, models are proposed then comes
in the section 3, the presentation of different measures of robustness, and finally, in the
parts 4 and 5, is presented complexities and resolutions of various versions of the robust
shortest path problem.

2 Models for representing uncertain, undetermined and
random factors

We consider a directed valued graphG = (X,U) such asX = {1, . . . , n} and|U | =
m. A pathµ from 1 ton in G is a sequence of arcs :µ = {(i0 = 1, i1), (i1, i2), . . . , (ik−1, ik =
n)}. Within the deterministic framework, to each arcu = (i, j) ∈ U is associated a single
valuecu = cij. The value ofµ is then given by :c(µ) =

∑
(i,j)∈µ cij. A traditional problem

of combinatorial optimization consists in determining theshortest path, denoted byµ∗
G,

among the setC of paths from 1 ton in G.
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When elements of uncertainty and/or inaccuracy must be takeninto account, it can be
no more relevant, even possible, to set a single valuecij for each arc(i, j).

In some contexts, these values are described by probabilitylaws. The problem then
becomes the stochastic shortest path problem that we will not study in this paper.

In other contexts, uncertain, inaccurate and random factors cannot be efficiently mo-
deled by probability laws. Since the middle of the 90’, two models were more particularly
developed in the literature : the so-called interval model and the discrete set of scenarios
model. In these two models, each arc is associated with a set ofvalues, this set may be
of infinite or finite size. The assumption is that on each arc, the real value belongs to its
associated set. A scenario corresponds to the specificationof a single value for each arc.
We will noteS the set ofq relevant scenarios,cs

ij the value of arc(i, j) under scenarios,
cs(µ) the value of pathµ under scenarios, Gs the graph valued according to the scenario
s, µ∗

Gs the shortest path from 1 ton in Gs.

In the two next sections, we present the so-called interval model and the so-called
discrete set of scenarios model.

2.1 The interval model

In the interval model, each arc(i, j) is associated to an interval, denoted[bij, Bij],
such ascij ∈ [bij, Bij]. This interval represents the set of possible values of the arc (i, j).
The setS of scenarios is infinite and is defined as the cartesian product of them intervals
[bu, Bu]. In this context, a pathµ can take any value belonging to the interval[b(µ), B(µ)]
with b(µ) =

∑
(i,j)∈µ bij andB(µ) =

∑
(i,j)∈µ Bij.

EXAMPLE . Let us consider the pathµ = (1, 2, 4, 5, 7) in the graphG of the figure 1 whose
arcs are valued by intervals. Under any scenarios, this path has a valuecs(µ) belonging
to the interval[5, 24].

This model is considered for the shortest path problem in [4,13, 14, 17, 19, 18, 28].

In addition, the interval model is applied to other combinatorial problems, for example
the minimum spanning tree [16, 26], the problem of selectingp elements amongn with
minimal total weight [3], or the assignment problem [1].

2.2 The discrete set of scenarios model

In the discrete set of scenarios model, a finite setS of scenarios is considered. Thus, gi-
venq scenarios, each arc(i, j) is associated to a finite set ofq plausible values{c1

ij, . . . , c
q
ij}.
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FIG. 1 – Example of interval model

Let us note that on the contrary of interval model, any combination of valuescij does
not constitute a relevant scenario. Consequently, each pathµ is associated to aq dimen-
sion vectorV (µ) such asV (µ) = (c1(µ), . . . , cq(µ)), wherecs(µ) =

∑
(i,j)∈µ cs

ij with
s ∈ {1, . . . , q}.

EXAMPLE . Let us consider the graphG of the figure 2 whose arcs are valued according
to three scenarios.

 
7, 2, 2 

7, 1, 2 

1, 2, 4 

1, 10, 1 1, 1, 1 

1, 1, 2 1, 7, 2 

1, 10, 1 
9, 1, 1 

8, 2,  1 

3, 1, 3 

 1 

 5 

 4 

 3 

 7 

6  2 

FIG. 2 – Example of scenarios model

Elementary paths from1 to 7 and their values on the three scenarios are presented in
the table 1.

This model is considered for the shortest path problem in [15, 21, 24, 27].

In addition, the discrete set of scenarios model is applied to other combinatorial pro-
blems, for example the minimum spanning tree in [15, 24], theproblem of selectingp
elements amongn with minimal total weight in [3], the 1-median location problem in
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µ c1(µ) c2(µ) c3(µ)

µ1 = (1, 2, 6, 7) 19 4 6
µ2 = (1, 2, 6, 5, 7) 12 15 10
µ3 = (1, 2, 4, 5, 7) 6 20 10

µ4 = (1, 2, 4, 3, 5, 7) 13 15 12
µ5 = (1, 3, 2, 6, 7) 25 6 5

µ6 = (1, 3, 2, 4, 5, 7) 12 22 9
µ7 = (1, 3, 2, 6, 5, 7) 18 17 9

µ8 = (1, 3, 5, 7) 16 5 7

TAB . 1 – Elementary paths from 1 to 7

[12, 15], or the assignment problem [1, 7].

A more general model is presented in [8] which includes the twoprevious models. In
this general framework, arcs value are determined by a set ofr parameters. These para-
meters are not exactly known and two models are considered : a discrete set of parameters
r-tuples, and a continuous subset ofRr delimited by constraints (for which the interval
model is a particular case).

3 Robustness measures

In this section, we list models to evaluate a path in term of robustness. Three ap-
proaches can be distinguished : the first one, coming from thedecision theory, models the
concept of robustness through a single criterion to be optimized ; the second one uses the
mathematical programming to address data uncertainty ; andthe third one, coming from
the multicriteria analysis and the social choice theory, attempts to characterize the robust
solutions by a set of conditions to be checked.

3.1 Classical criteria resulting from the decision theory

3.1.1 Worst case criterion

Given a path, the scenario to be considered is the one that gives the worst value for
this path. In this context, the value of a pathµ, notedvWOR(µ), is defined by :

vWOR(µ) = max
s∈S

cs(µ)
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EXAMPLE . Let us consider the pathµ = (1, 2, 4, 5, 7) of the graph in the figure 1. The
worst case scenario is the one for which each arc value is equalto its upper bound. In this
case,vWOR(µ) = 24.

The problem is to determine the pathµ∗
WOR which minimizesvWOR as follows :

vWOR(µ
∗
WOR) = min

µ∈C
vWOR(µ)

Under any scenarios ∈ S, µ∗
WOR has a value lower or equal tovWOR(µ

∗
WOR). Thus,

vWOR(µ
∗
WOR) can be considered as an upper bound which offers an absolute guarantee.

That is why in the work of Kouvelis and Yu [15], solutions which optimize this criterion
are called absolute robust solutions. In decision theory, this criterion models the behavior
of a decision maker averse to risk.

3.1.2 The maximum regret criterion

Given a scenarios, the choice of a pathµ which is not necessarily a shortest path in
Gs, generates a regret denotedrs(µ) = cs(µ) − cs(µ∗

Gs). A pathµ is then evaluated by
vREG(µ) on the basis of the maximum regret scenario :

vREG(µ) = max
s∈S

rs(µ)

EXAMPLE . Let us consider the pathµ = (1, 2, 4, 5, 7) of the graph in the figure 1 and the
scenariosb in which each arc value ofU is set to its lower bound. Then, as the shortest
path ofGsb

is µ∗

Gsb = (1, 3, 5, 7), we have :rsb

(µ) = 5− 3 = 2. In fact, we will see in the
section 4.2 that the maximum regret associated toµ is of 19, and thus :vREG(µ) = 19.

The optimal solution according to the maximum regret criterion will be denotedµ∗
REG

and checks :
vREG(µ

∗
REG ) = min

µ∈C
vREG(µ)

EXAMPLE . Let us consider again the graph in the figure 2 for which three scenarios
are taking into account. Since the shortest path in each scenario is respectivelyµ∗

G1 =
(1, 2, 4, 5, 7) of value 6,µ∗

G2 = (1, 2, 6, 7) of value 4 andµ∗
G3 = (1, 3, 2, 6, 7) of value 5,

we can determine the valuesvWOR(µ) andvREG(µ) for any pathµ, presented in the table 2.

Optimal solutions according to the worst case criterion are pathsµ2 andµ4, and the
optimal solution according to the maximum regret criterionis the pathµ8.

In the work of Kouvelis and Yu [15], a solution which optimizes the maximum regret
criterion is called a robust deviation solution. In addition, they propose another criterion of
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µ vWOR(µ) vREG(µ)

µ1 = (1, 2, 6, 7) 19 13
µ2 = (1, 2, 6, 5, 7) 15 11
µ3 = (1, 2, 4, 5, 7) 20 16

µ4 = (1, 2, 4, 3, 5, 7) 15 11
µ5 = (1, 3, 2, 6, 7) 25 19

µ6 = (1, 3, 2, 4, 5, 7) 22 18
µ7 = (1, 3, 2, 6, 5, 7) 18 13

µ8 = (1, 3, 5, 7) 16 10

TAB . 2 – Paths value on classical criteria

robustness in term of relative deviation which consists in normalizing the regret measure
as follows :

vREG′(µ) = max
s∈S

cs(µ) − cs(µ∗
Gs)

cs(µ∗
Gs)

This criterion must also be minimized.

Classical criteria coming from decision theory evaluate solutions on the basis of ex-
treme scenarios. The major disadvantage is to focus on a single scenario, mainly the worst
case, without taking into account all others scenarios. On theother hand, these criteria
offer optimality guarantees. In particular, Averbakh in [2] proposes a very lighting inter-
pretation of the maximum regret criterion. He supposes, rather naturally, that a solution is
robust if it is a good solution on all the scenarios. Thus, fora scenarios, robust solutions
must belong to the set, denotedCs

ǫ , of theǫ-optimal solutions verifying :

cs(µ) − cs(µ∗
Gs) ≤ ǫ.

The set, denotedCROB
ǫ , of robust solutions is then the intersection of allǫ-optimal solutions

sets, one per scenario, as follows :

CROB
ǫ =

⋂

s∈S

Cs
ǫ

It is obvious that ifǫ is too small,CROB
ǫ will be empty, and the cardinality ofCROB

ǫ increases
with ǫ. Otherwise, ifǫ is too large, thenCROB

ǫ will contain solutions with bad evaluations
on some scenarios. Consequently, it is particularly interesting to determine the smallest
value ofǫ such asCROB

ǫ contains at least one solution. Averbakh shows that this value is
not other thanvREG(µ

∗
REG). Indeed, solutions ofCROB

ǫ are such that :

∀µ ∈ CROB
ǫ , ∀s ∈ S, cs(µ) − cs(µ∗

Gs) ≤ ǫ

⇒ ∀µ ∈ CROB
ǫ , max

s∈S
(cs(µ) − cs(µ∗

Gs)) = vREG(µ) ≤ ǫ
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But, since∀µ ∈ CROB
ǫ , vREG(µ) ≥ vREG(µ

∗
REG), if ǫ < vREG(µ

∗
REG) thenCROB

ǫ is empty, and
otherwise,CROB

ǫ contains at leastµ∗
REG. Consequently,vREG(µ

∗
REG) is the smallestǫ such

as it exists at least one solution which isǫ-optimal for all scenarios. This interpretation
may be adapted to the relative deviation criterion by modifying the definition ofǫ-optimal
solution as follows : for a scenarios, µ is ǫ-optimal if and only if cs(µ)−cs(µ∗

Gs )

cs(µ∗

Gs )
≤ ǫ.

3.2 Methodology coming from mathematical programming

The shortest path problem can be represented by an integer linear program of the
form :

(P)






min
∑

(i,j)∈U

cijyij

s.c y ∈ Y

In studies dealing with robustness in mathematical programming, we can distinguish
those in which data uncertainty affects only the elements of the constraint matrix, and
those in which data uncertainty concerns only objective function coefficients. In this
context, a very interesting approach is introduced by Bertsimas and Sim (in [5] and
[6]). They consider the following interval model for objective function coefficients :
cij ∈ [cij, cij + ĉij] wherecij is the nominal value for(i, j) and ĉij ≥ 0 represents the
deviation from the nominal coefficientcij. They start from the quite natural idea that the
worst case will not happen simultaneously for all coefficients. In [5], authors "stipulate
that nature will be restricted in its behavior, in that only a subset of coefficients will change
in order to adversely affect the solution".

So, they introduce a parameterΓ which represents the maximum number of coeffi-
cients that can deviate from their nominal value :Γ = 0 means that none coefficient will
vary, whileΓ = m means that all coefficients will vary in the worst case sense. So, Γ is
interpreted as a level of robustness.

The robust version of the shortest path problem becomes :

(PROB)






min




∑

(i,j)∈U

cijyij + max
{R|R⊆U,|R|≤Γ}

∑

(ij)∈R

ĉijyij





s.c y ∈ Y

3.3 Methodology coming from multicriteria analysis

In multicriteria analysis [22], a decision problem is commonly defined using a set of
solutions, a discrete set of criteria and an aggregation model of these criteria. A solution
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is thus described by its evaluation vector containing the solution value on each criterion.
Considering a scenario as a criterion, a part of the results obtained in multicriteria analysis
can be used for the robustness analysis (cf [11]). In this context, the robustness analysis
is based upon the choice of an evaluation vector associated with each solution, and the
definition of an aggregation model of these evaluation vectors.

3.3.1 Path evaluation vector

When the set of scenarios is discrete, it is natural to consider the vectorV (µ), repre-
senting all possible values ofµ on various scenarios, as an evaluation vector (cf [8] and
[11]).

More recent work ([12] and [21]) applies the anonymous principle which consists in
admitting that the vectorV (µ) = (c1(µ), . . . , cq(µ)) is equivalent to the vectorV (µ) =
(cσ(1)(µ), . . . , cσ(q)(µ)) for any permutationσ(i) of the q scenarios. According to this
principle, a pathµ can be evaluated by a vector obtained by ordering the valuesci(µ) in
a decreasing order. This vector is called disutility vectorin [12], and is denotedD(µ) =
(d1(µ), . . . , dq(µ)), whered1(µ) ≥ . . . ≥ dq(µ) with di(µ) representing the value of order
i of the pathµ.

In some other studies on robustness, another so-called equity principle is proposed.
According to this principle, a solution whose evaluations are well distributed around the
average on the various scenarios is always preferred to a more unbalanced solution. For
that, one evaluates a solution on the basis of the following vector, called in [21] the gene-
ralized Lorenz vector :L(µ) = (l1(µ), . . . , lq(µ)) with lj(µ) =

∑j

i=1 di(µ).

EXAMPLE . For the graph in figure 2, desutility and generalized Lorenzvectors are pre-
sented for each path in the table 3.

Desutility vectors Lorenz vectors
µ d1(µ) d2(µ) d3(µ) l1(µ) l2(µ) l3(µ)

µ1 = (1, 2, 6, 7) 19 6 4 19 25 29
µ2 = (1, 2, 6, 5, 7) 15 12 10 15 27 37
µ3 = (1, 2, 4, 5, 7) 20 10 6 20 30 36

µ4 = (1, 2, 4, 3, 5, 7) 15 13 12 15 28 40
µ5 = (1, 3, 2, 6, 7) 25 6 5 25 31 36

µ6 = (1, 3, 2, 4, 5, 7) 22 12 9 22 34 43
µ7 = (1, 3, 2, 6, 5, 7) 18 17 9 18 35 44

µ8 = (1, 3, 5, 7) 16 7 5 16 23 28

TAB . 3 – Evaluation vectors for paths from1 to 7
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3.3.2 Aggregation models for robustness

In multicriteria analysis, the dominance relation is defined as follows.

DEFINITION. Given a familyF = (f 1, . . . , f q) of q criteria, a pathµ dominates a pathµ′

if and only if f i(µ) ≤ f i(µ′) for i = 1, . . . , q, with at least one strict inequality. The path
µ′ is then dominated byµ, that one notesµ∆F µ′.

DEFINITION. A pathµ is non dominated if and only if there is not another pathµ′ ∈ C
such asµ′∆F µ.

In the interval model, it is not possible to associate to eachpath a finite number of eva-
luation vectors because the number of scenarios is infinite.However, dominance relation
remains defined in this model as follows

DEFINITION. A pathµ dominates a pathµ′ if and only if cs(µ) ≤ cs(µ′) for all s ∈ S,
with at least one strict inequality. The pathµ′ is then dominated byµ that one notesµ∆µ′.

Whatever the evaluation vector, robust solutions naturallybelong to the non-dominated
solutions set. Thus, the problem can be first to determine allnon-dominated solutions (see
for example [8]).

EXAMPLE . For the graph in figure 2, and regarding to the evaluation vector V (µ) (in
table 1), all solutions are non-dominated exceptedµ4 which is dominated byµ2 ; regarding
to the desutility vector (in table 3), non-dominated solutions areµ1, µ2, µ8 ; and regarding
to the Lorenz vector, non-dominated solutions areµ2 andµ8. Let us remark that the path
µ4 which is optimal for the worst case criterion is a dominated path.

The main difficulty comes from the possible huge number of non-dominated paths.
Hansen in [10] has defined a bicriteria graph for which the number of non-dominated
paths is an exponential function of the graph order. Perny and Spanjaard showed in [21]
that the non-dominated solutions set according to Lorenz evaluation vectors is a subset of
the non-dominated solutions set according toV (µ) vectors. Thus, in the graph proposed
by Hansen, only two paths remain non-dominated according to Lorenz evaluation vectors.
However, in [21], a graph with an exponential number of non-dominated paths according
to Lorenz evaluation vectors is proposed.

Consequently, the determination of all non-dominated solutions is not possible in ge-
neral case. Other procedures must be defined for aggregating evaluation vectors in order to
provide one or a small size set of robust solutions. Let us mention an alternative approach
based on a lexicographic procedure. This approach is applied in [12] on the disutility
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vector for the 1-median location problem.

These three approaches are quiet different. Classical criteria coming from decision
theory only take into account extreme scenario. The methodology introduced by Bertsi-
mas and Sim represents a way to qualify worst case analysis byconsidering that only a
subset of coefficients will vary in the bad sense. In the approach coming from the decision
theory, a solution is robust when it optimizes a particular criterion. In the approach co-
ming from multicriteria analysis, the concept of robustness is not characterized anymore
by optimality on a single criterion, but by a list of principles and conditions that leads to
determine a set of robust solutions (this set being able to beempty !).

4 Complexity and resolution of robust shortest path pro-
blems in the interval model

4.1 With the worst case criterion

This version of the robust shortest path problem, notedROBINTWOR, is studied in
[13]. Let us recall that, in this version, a pathµ has a valuevWOR(µ) = maxs∈S cs(µ)
and the problem is to determine the optimal path that minimizes this value on all paths.
Given a pathµ from 1 to n, the scenario which maximizescs(µ) is the one for which
each arcu ∈ U has the higher possible value, that is to sayBu. Since this worst case
scenario, notedsB, is unique, it is enough to consider the graph evaluated by this worst
case scenario, and to determine the shortest path which exactly corresponds toµ∗

WOR since
vWOR(µ

∗
WOR) = minµ∈CB(µ). Consequently,

THEOREM. [13] TheROBINTWOR problem is polynomial.

EXAMPLE . In the graph of the figure 1, the optimal path according to theworst case
criterion isµ∗

WOR = (1, 2, 6, 7) = µ1 of value19.

4.2 With the maximum regret criterion

This version of the robust shortest path problem, denotedROBINTREG, is studied in
[4, 13, 17, 18, 19, 28]. Most results are based on the followingproperty, established by
Karaşan, Pinar and Yaman. Let us first recall that, in this problem version, a pathµ has
the valuevREG(µ) = maxs∈S rs(µ) = maxs∈S(cs(µ) − cs(µ∗

Gs)).

Propriété 1 [13] Given a pathµ from 1 to n, the scenario, denoteds(µ), which maxi-
mizesrs(µ) is the one for which each arc(i, j) belonging toµ has a value equals to its
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higher possible value, in other wordscs(µ)
ij = Bij, and each arc(k, h) not belonging toµ

has a value equals to its lower bound, in other wordsc
s(µ)
kh = bkh.

The scenarios(µ) is called the scenario induced byµ. The problem to determine the
robust path, according to the maximum regret criterion, is to findµ∗

REG such as :

vREG(µ
∗
REG) = min

µ∈C
(cs(µ)(µ) − cs(µ)(µ∗

Gs(µ)))

EXAMPLE . For the graph of the figure 1, the table 4 presents the maximumregret value
of each path.

µ cs(µ)(µ) cs(µ)(µ∗
Gs(µ)) vREG(µ)

µ1 = (1, 2, 6, 7) 19 3 16
µ2 = (1, 2, 6, 5, 7) 24 6 18
µ3 = (1, 2, 4, 5, 7) 24 5 19

µ4 = (1, 2, 4, 3, 5, 7) 26 5 21
µ5 = (1, 3, 2, 6, 7) 27 5 22

µ6 = (1, 3, 2, 4, 5, 7) 32 5 27
µ7 = (1, 3, 2, 6, 5, 7) 32 8 24

µ8 = (1, 3, 5, 7) 20 5 15

TAB . 4 – Maximum regret value of each path from1 to 7

The pathµ8 is optimal for the maximum regret criterion (µ8 is also the optimal path
for the best case criterion).

Unfortunately, the difficulty comes from the fact that the number of elementary paths
from 1 to n may be exponential.

4.2.1 Complexity

This problem was shown to be NP-hard for directed graphs by Zieliński in [28] with
a reduction to a particular version of the partition problemknown as being NP-hard (see
on this subject [9]). In parallel, Averbakh and Lebedev established in [4] thatROBINTREG

is strongly NP-hard for non-directed graphs, by making a reduction to the Hamiltonian
path problem, denotedHAMIL . They notice that their result can be easily extended for the
case of acyclic directed graphs with a layered structure. In the following, we present this
extension. Let us first recall that a graph has a layered structure if it is possible to partition
the vertices setX into disjoint subsetsX1, . . . , Xg, called blocks, such as each arc goes
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from a vertex of a blockXj to a vertex of the next blockXj+1.

THEOREM. [4] The problemROBINTREG is NP-hard even for the acyclic directed graphs
with a layered structure.

To prove this theorem, we have to introduce the decision version of the problemRO-
BINTREG which is defined by :

Instance : an acyclic directed graphG = (X,U) with a layered structure, having two
particular vertices1 andn, whose arcsu ∈ U are valued by intervals[bu, Bu] and
an integerM ,

Question : does there exist a path from1 to n in G with a maximum regret value lower
or equal toM ?

TheHAMIL problem is defined as follows :

Instance : a non-directed connected graphF = (V,E).

Question : does there exist inF an Hamiltonian chain, that is to say a chain containing
each vertex only once ?

An instanceF = (V,E) of this problem, with|V | = p, can be polynomially reduced
to an instance of the decision problemROBINTREG in the following way. Vertices ofG
are vertices1, n and2p copies of the setV . The copy numberedi, denotedVi, is the
block i of G. For any vertexv ∈ V , we notevi its copy in the blocki, for i = 1, . . . , 2p.
Thus, we haveX = (1, V1, . . . , V2p, n), with |X| = 2 + 2p2. The setU of G is defined as
follows :

– arcs(1, v), for any vertexv ∈ V1,
– arcs(v, n), for any vertexv ∈ V2p,
– arcs(vi, vi+1), for any vertexv ∈ V with i = 1, . . . 2p− 1, these arcs will be called

horizontal arcs,
– arcs(v2i, w2i+1) and (w2i, v2i+1), for all i = 1, . . . p − 1 and for all arcs(v, w)

belonging toE.
The set of horizontal arcs is notedH. Any arc ofU which is not horizontal is called

diagonal. The set of diagonal arcs is denotedD, among which we distinguish the subset
D̃ containing arcs ofD not linked to1 nor n. Intervals associated to horizontal arcs are
[0, 1], and those associated to diagonal arcs are[1, 1].

In the figure 3, an example of graphF with 3 vertices is represented on the left and
the graphG corresponding to the reduction is given on its right (in whichintervals[1, 1]
are replacing by the value 1). Let us observe that the vertices of the even blocksV2i,
i = 1, . . . , p can be reached by some vertices of the blockV2i−1 only with horizontal arcs.
For any vertexv ∈ V , the path(1, v1, . . . , v2p, n) is called av-tunnel.
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FIG. 3 – Example of the reduction of Hamiltonian path problem toROBINTREGproblem

It should be shown that an instance ofHAMIL problem has a positive answer if and
only if the corresponding instance ofROBINTREGproblem has a positive answer forM =
2p − 2.

For a pathµ from 1 to n, we denote|µ| its number of arcs andµ its vertices belonging
to V1,..., V2p. By definition of scenario induced byµ and according to upper bounds on
arcs of the graphG, we have :cs(µ)(µ) = |µ| = 2p + 1. Moreover under scenarios(µ),
any arc ofD and any arc ofH which belongs toµ has a unit cost, whereas the cost of any
arc ofH which does not belong toµ is equal to 0. Consequently, the cost of a pathλ from
1 to n in s(µ) is : cs(µ)(λ) = |D ∩ λ| + |H ∩ λ ∩ µ| = 2 + |D̃ ∩ λ| + |H ∩ λ ∩ µ|. With
f(µ, λ) = cs(µ)(µ) − cs(µ)(λ), we have :

f(µ, λ) = 2p − 1 − |D̃ ∩ λ| − |H ∩ λ ∩ µ| (1)

Let us suppose that there exists an Hamiltonian chain inF denoted(v1, . . . , vp). Then,
the sequence(1, v1

1, v
1
2, v

2
3, v

2
4, . . . , v

p
2p−1, v

p
2p, n) is a pathµ from 1 to n in G. Since each

tunnelT does not have any arc iñD and exactly one horizontal arc in common withµ,
we havef(µ, T ) = 2p − 2. Moreover, since any pathλ from 1 to n which is not a tunnel
has at least one arc iñD, we have :f(µ, λ) ≤ 2p − 2. Consequently,

vREG(µ) = max
λ∈C

f(µ, λ) = 2p − 2

Let us now consider an optimal pathµ from 1 to n whose maximum regret is lower or
equal to2p − 2. T is a tunnel such thatk = |H ∩ T ∩ µ| = |T ∩ µ| is minimum. Since
µ is optimal with a value lower or equal to2p − 2, and according to the equation 1, we
have :f(µ, T ) = 2p− 1− k ≤ 2p− 2. This impliesk ≥ 1. Thus each tunnel intersectsµ
with at leastk different horizontal arcs, and one needs at leastp − 1 diagonal arcs inµ to
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connect together thesek arcs. So, we have :|µ| = 2p − 1 ≥ kp + p − 1 implying k ≤ 1.
Consequently,k = 1, f(µ, T ) = 2p− 2 andvREG(µ) = 2p− 2 with exactly one horizontal
arc of the form(vj, vj+1) ∀v ∈ V and exactly one diagonal arc of the form(v2i, w2i+1)
∀I = 1, . . . , p − 1 in µ. Finally, we obtain an Hamiltonian chain inF from the diagonal
arcs ofµ.

4.2.2 Resolution

Several algorithms for exactly solvingROBINTREG have been proposed [13, 17, 18,
19]. In these studies,ROBINTREG is written as an integer linear program with variables
yij which represent a pathµ as follows :

yij =

{
1 if (i, j) ∈ µ
0 otherwise

The integer linear program, denotedP0, is :

P0






min max
s∈S




∑

(i,j)∈U

cs
ijyij − xs





s.c.
∑

(i,j)∈U

yij −
∑

(k,i)∈U

yki =






1 if i = 1
−1 if i = n
0 otherwise

∀i ∈ X

yij ∈ {0, 1} ∀(i, j) ∈ U

wherexs is the length of the shortest path from 1 ton in Gs.

According to the property 1 and given a pathµ represented byy, the scenario which
carries outmaxs∈S

∑
(i,j)∈U cs

ijyij − xs is the induced scenarios(µ). Under this scenario,
the length of any arc(i, j) can be written in function ofyij as follows :bij +(Bij −bij)yij.
Thus, by introducing variablesxi which represent the length of the shortest path from 1 to
i under scenarios(µ), Karaşan et al. in [13] propose a new formulation ofROBINTREG,
notedP1.

P1






min
∑

(i,j)∈U

Bijyij − xn

s.c
∑

(i,j)∈U

yij −
∑

(k,i)∈U

yki =






1 if i = 1
−1 if i = n
0 otherwise

∀i ∈ X (1)

xj ≤ xi + bij + (Bij − bij)yij ∀(i, j) ∈ U (2)
x1 = 0 (3)
yij ∈ {0, 1} ∀(i, j) ∈ U
xi ≥ 0 ∀i ∈ X
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P1 is thus a mixed linear program. Karaşan et al. in [13] solve itusing a linear pro-
gramming solver. However, whenG is of big size,P1 cannot be solved exactly. The
difficulty comes from the constraints(2) which, if deleated, would reduceP1 to a simple
shortest path problem. Also, in [13], authors propose to apply a preprocessing procedure
which removes some constraints(2), those associated with some arcs that cannot belong
to the optimal path. By reducing the size ofP1, this procedure makes possible to increase
the size of exactly solved problems.

More recently, Montemanni et al. proposed two algorithms tosolve exactly the pro-
blem : a dedicated algorithm presented in [17], and a branch and bound algorithm presen-
ted in [19]. In [18], authors propose to apply a Benders decomposition scheme onP1. A
great number of experiments is carried out to compare these various approaches. It seems
that the algorithm resulting from the Benders decompositionis most powerful to solve
most of the considered problems.

4.3 With the multicriteria analysis methodology

In the interval model, a pathµ dominates a pathµ′, denoted byµ∆µ′, either ifδ∗ < 0
with δ∗ = maxs∈S cs(µ) − cs(µ′), or [δ∗ = 0 and∃s ∈ S : cs(µ) < cs(µ′)]. The com-
plexity of this dominance test comes from the infinite set of scenarios to be considered.
Dias and Climaco studied this problem in [8] for a more general model (for which the
interval model is a particular case). They introduced binary relations to compare path eva-
luation vectors on the basis of two extreme scenarios only, the best case and the worst
case scenarios (already introduced in section 4.1). In the best case scenario, denotedsb,
the value of each arcu ∈ U is equal to the smallest cost, that is to saycsb

u = bu. They
defined the following binary relations :
Relation 1 : µ ≪ µ′ if and only if csB

(µ) < csb

(µ′)

Relation 2 : µ < µ′ if and only if [csb

(µ) = csb

(µ′) andcsB

(µ) < csB

(µ′)], or [csb

(µ) <
csb

(µ′) andcsB

(µ) = csB

(µ′)]

Relation 3 : µ <≈ µ′ if and only if csb

(µ) ≤ csb

(µ′) andcsB

(µ) ≤ csB

(µ′)

On the basis of these three relations, they established the following results in the com-
parison of two pathsµ andµ′ of C :

µ ≪ µ′ ⇒ µ∆µ′.
csb

(µ′) < csb

(µ) ⇒ µ cannot dominateµ′.
csB

(µ′) < csB

(µ) ⇒ µ cannot dominateµ′.
µ∆µ′ ⇒ µ <≈ µ′, with the corollary : ifµ is not <≈-dominated thenµ is not
dominated.

From these results, they proposed an algorithm, based on theenumeration ofk shortest
paths, to determine the set of non-dominated paths. In this algorithm, paths are enume-
rated in ascending order of their value on the scenariosb, then<≈-dominated and≪-
dominated paths are removed, and finally, the complete dominance test is carried out only
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on remaining paths in order to eliminate the dominated ones.

In the specific case of interval model, the complete dominance test has not to be carried
out. The property below allows to conclude by considering only the extreme best and
worst case scenarios. Let us first denote byµ \ µ′ the set of arcs that belong toµ and not
to µ′.

Propriété 2 µ dominateµ′ if and only ifcsB

(µ \ µ′) ≤ csb

(µ′ \ µ).

PROOF. Let us show thatcsB

(µ \ µ′) ≤ csb

(µ′ \ µ) ⇒ µ∆µ′.
csB

(µ \ µ′) ≥ cs(µ \ µ′), ∀s ∈ S andcsb

(µ′ \ µ) ≤ cs(µ′ \ µ), ∀s ∈ S. Consequently,
csB

(µ \ µ′) ≤ csb

(µ′ \ µ) implies :

⇒ cs(µ \ µ′) ≤ cs(µ′ \ µ),∀s ∈ S

⇔ cs(µ \ µ′) +
∑

u∈µ∩µ′

cs
u ≤ cs(µ′ \ µ) +

∑

u∈µ′∩µ

cs
u,∀s ∈ S

⇔ cs(µ) ≤ cs(µ′),∀s ∈ S

Let us show now thatµ∆µ′ ⇒ csB

(µ \ µ′) ≤ csb

(µ′ \ µ).
Under scenarios(µ), cs(µ)(µ) = csB

(µ) andcs(µ)(µ′) = csb

(µ′)+
∑

u∈µ′∩µ(Bu − bu). But,
with the dominance property ofµ for the specific scenarios(µ), we obtain :

csB

(µ) ≤ csb

(µ′) +
∑

u∈µ′∩µ

(Bu − bu)

⇔ csB

(µ \ µ′) ≤ csb

(µ′ \ µ)

REMARK . If µ andµ′ have not any joint arc, then the property 2 becomes :µ∆µ′ ⇔
csB

(µ) ≤ csb

(µ′).

EXAMPLE . In the graph represented in the figure 4,µ = (a, b, d, e) dominatesµ′ =
(a, c, d, e). And, it is checked thatcsB

(µ \ µ′) = 5 < csb

(µ′ \ µ) = 6 with csB

(µ) = 11 >
csb

(µ′) = 10.

From the property 2, it is possible to propose an algorithm, similar to the one proposed
by Dias and Climaco in [8], based on the enumeration of thek shortest paths. Ones have
to enumerate paths in ascending order of their value on the best case scenario and, in the
event of equality, by ascending order of their value on the worst case scenario. Conse-
quently, the ith enumerated path, denotedµi, cannot be dominated byµk if i < k. On the
other hand,µi dominatesµk if and only if csB

(µi \ µk) ≤ csb

(µk \ µi). This test is the
single test to be carried out for each enumerated path.
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FIG. 4 – Dominance test for graph with intervals

4.4 With the mathematical programming methodology

In [5], authors show that the problemPROB presented in section 3.2 can easily be
solved by solving at mostm + 1 shortest path problems. In fact, the optimal solution
value ofPROB, denotedZ⋆ is given by :

Z⋆ = min
k=1,...m

Zk

where

Zk = Γĉk + min
y∈Y




∑

(i,j)∈U

cijyij +
k∑

h=1

(ĉh − ĉk)yh





where it is assumed that the indices of the arcs are ordered such thatĉ1 ≥ ĉ2 ≥ . . . ĉm.

Consequently, in this approach, the robust version presentsthe same complexity as
the nominal one. Thus, in the case of the shortest path problem, the robust version can be
polynomially solved which makes this approach very attractive.

5 Complexity and resolution of robust shortest path pro-
blems in the discrete set of scenarios model

5.1 With the worst case criterion

5.1.1 Complexity

This version of the robust path problem, denotedROBDISWOR, is studied in [15, 27].
Yu and Yang show that this problem is weakly NP-difficult if the number of scenarios is
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bounded by a constant and strongly NP-difficult otherwise. Indeed, they show in [27] that
the 2-partition problem

Instance : a setI of m elements and a sizeai ∈ Z+ for eachi in I.

Question : Does there exist a sub-setI ′ ⊆ I such as
∑

i∈I′ ai =
∑

i∈I\I′ ai ?

is reduced toROBDISWORproblem defined as follows :

Instance : a connected graphG = (X,U) with 2 scenarios.

Question : Does there exist a pathµ from 1 ton such asvWOR(µ) = v ?

For that, we only have to consider the graphG = (X,U) reduced to the 2-partition
problem (represented in the figure 5) without directed cycle valued by two scenarios. This
graph presents2m + 2 levels with X = X0 ∪ X1 ∪ . . . ∪ X2m+1 whereX0 = {1},
X2m+1 = {n} (with n = 4m+2) andXi = {xi,1, xi,2}. There are three categories of arcs
in U defined as follows :

– U1 = {(1, x1,1), (1, x1,2), (x2m,1, n), (x2m,2, n)}, each arc(i, j) in U1 is valued by
{0, 0}

– U2 =
⋃m−1

k=1 {(x2k,i, x2k+1,j)/i = 1, 2 ; j = 1, 2}, each arc(i, j) in U2 is also valued
by {0, 0}

– U3 = {(x2k−1,i, x2k,i)/i = 1, 2 ; k = 1, . . . ,m}, each arc inU3 is valued in a
different way :

c1
x2k−1,i,x2k,i

=

{
ak if i = 1
0 if i = 2

c2
x2k−1,i,x2k,i

=

{
0 if i = 1
ak if i = 2

 

…

… { 0,0}  

{ 0,0}  

{ 0,0}  

{ 0,0}  

{ 0,0}  

{ 0,0}  
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…

…

FIG. 5 – Reduction of the 2-partition problem to theROBDISWORproblem

Considering a pathµ from 1 ton in G, let us set :

I ′ = {k/(x2k−1,1, x2k,1) ∈ µ ∀k = 1, . . . ,m}
I \ I ′ = {k/(x2k−1,2, x2k,2) ∈ µ ∀k = 1, . . . ,m}

Thusc1(µ) =
∑

k∈I′ ak andc2(µ) =
∑

k∈I\I′ ak. Consequently, a 2-partition exists if and
only if there exists a pathµ from 1 to n in G such asvPIR(µ) = max{c1(µ), c2(µ)} =∑

k∈I ai

2
, this value being the optimal path valueµ∗

PIR.
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5.1.2 Resolution

Yu and Yang in [27] propose an exact algorithm for solvingROBDISWOR when the
number of scenarios is bounded. It is based on the dynamic programming principle with
a pseudo-polynomial time complexity. In particular for layered graphs, the complexity
is O(|U |(Lmax)

q) whereLmax = maxs∈S Ls with Ls denoted the length of the longest
path from1 to n for the scenarios. Yu and Yang also propose in [27] an approximate
algorithm, denotedH. For layered graphs, the complexity isO(|U |q). This algorithm
consists to compute the shortest path for each scenario and,for a fictitious scenario which
is an average of theq scenarios, to determine the path which minimizes the worst case
criterion. Givenµh

WOR the path determined byH, the authors show that :

vWOR(µH
WOR)

vWOR(µ∗
WOR)

≤
qmaxs∈S cs(µH

WOR)

mins∈S cs(µH
WOR)

maxs∈S cs(µH
WOR)

mins∈S cs(µH
WOR)

+ q − 1

5.2 With the maximum regret criterion

Yu and Yang in [27] show that the 2-partition problem is reduced toROBDISREG, for
which the problem is to decide if there is a pathµ from 1 ton such asvREG(µ) = v. The
reduction presented in the previous section remains valid since vREG(µ) = vWOR(µ) be-
causec1(µ∗

G1) = c2(µ∗
G2) = 0. In addition, exact and approximate algorithms for solving

ROBDISWORcan be applied, after some minor modifications for solvingROBDISREG.

5.3 With the multicriteria methodology

In the discrete set of scenarios model, the problem of determining all non-dominated
paths can be solved by applying algorithms defined in multicriteria analysis as suggested
in [8]. Two types of algorithms are proposed in the literature for determining all non-
dominated paths in a multicriteria graph : graph algorithmswhich generalize classical
monocriterion graph algorithms to the multicriteria case and, those based on the enume-
ration of thek shortest paths. The efficiency of this approach rapidly decreases when
the number of scenarios increases since the number of non-dominated paths significantly
increases with the number of scenarios.

Concerning the problem to determine all Lorenz non-dominated paths, Perny and
Spanjaard propose in [21] anA∗ algorithm.
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6 Conclusion

Robust path problem has been extensively studied. For most ofthe considered models,
robust version of the shortest path problem becomes NP-difficult, excepted for the worst
case analysis with the interval model which is tractable in polynomial time. However, the
worst case analysis supposes that the scenario that will be realized will adversely affect
the solution. This hypothesis may not be relevant in some decision context. In such cases,
new models of robustness have to be proposed.

Concerning the modeling of uncertain, undetermined and random factors, it can be
relevant in some context to consider them on graph structureand not only on arcs’ value.
In such a model, a scenario may be a particular partial subgraph. Such a "structural"
model can be seen as an extension of probabilistic combinatorial optimization (cf [20] for
the study of the longest probabilistic path).
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