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Robust shortest path problems
Virginie Gabret, Cécile Murat

Résumé

Cet article constitue un état de l'art sur les probléemes de plus courts chemins
pour lesquels il existe des éléments d’incertitude et d’indétermination sur lesvale
des arcs. Deux modeéles d’incertitude sont distingués : celui dit par inteetalégui
dit par scénarios. Différentes mesures et approches de la roleustegprésentées :
celles issues de la théorie de la décison, celles issues de I'analyse multietitere
celles issues de la programmation mathématique. Elles donnent lieu a plusieurs ver-
sions distinctes du probléme de plus court chemin robuste dont les compléxigs e
résolutions sont présentées.

Mots-clefs : plus court chemin, optimisation robuste, incertitudes sur les données,
scénario du pire cas, regret maximum

Abstract

This paper is a state of the art on the shortest path problems for which it ex-
ists uncertainty and inaccuracy factors on arc values. Two uncertaindglmare
distinguished: the so-called interval model and the discrete set of scenaitel.
Different measures and approaches of robustness are prestse coming from
decision theory, those coming from multicriteria analysis and those coming from
mathematical programming. Each one leads to a particular version of rdlouttst
path problem for which complexity and resolution are studied.

Key words : shortest path, robust optimization, data uncertainties, worst case sce-
nario, maximal regret

*LAMSADE, Université Paris-Dauphine, 75775 Paris cedex 1Brance. {gabrel,
nmur at } @ ansade. dauphi ne. fr

71



Robust shortest path problems

1 Introduction

In optimization, it is used to deal with uncertain and inaeterfactors which make
difficult the assignment of a single plausible value to eaddeh parameters. Two ap-
proaches are possible : in the first one, a single nominakvalassigned to each para-
meter, the corresponding optimal solution is computedj the interval in which each
parameter can vary in order to preserve optimality solusatetermined ; the second ap-
proach consists in taking into account in the model to o@nihe possible variations of
each parameter. In mathematical programming, the firsioagpris known as sensibility
analysis. For the second approach, stochastic optimizatey be applied for some pro-
blems in which parameters’ value can be described by prabalailvs. When it is not
possible nor relevant to associate probability laws to patams, another way amounts to
assign a set of possible values to each parameter. In thisxtptihe choice of one value in
each set corresponds to a scenario. The induced robustingtiiom problem is to deter-
mine a single solution which is optimal for all scenarios. émgral, such a solution does
not exist and the problem is to determine a "relatively goadiitson for all scenarios.

In most of robustness studies in combinatorial optimizgti& robust solution is a
solution which is acceptable in a large majority of scenaaiwg, which is never too bad (cf
for example [23, 25]). This characterization leaves placa&ny possible interpretations
and, thus gives place to various approaches of robustnbsseTapproaches differ from
models used to represent the uncertain and inaccuratedaiftthe considered decision
problem, from methodology used to measure robustness,raily firom the analysis and
the design of resolution methods.

In this chapter, we present various models, criteria and odstlvhich were studied
for the robust shortest path problem. In the section 2, nsoded proposed then comes
in the section 3, the presentation of different measureslmfistness, and finally, in the
parts 4 and 5, is presented complexities and resolutionargdus versions of the robust
shortest path problem.

2 Models for representing uncertain, undetermined and
random factors

We consider a directed valued graph= (X, U) such asX = {1,...,n} and|U| =
m. A pathu from 1ton in G is asequence of arcg:= {(ip = 1,41), (i1, 42), - - -, (tg_1, 1k =
n)}. Within the deterministic framework, to each are= (i, j) € U is associated a single
valuec, = ¢;;. The value of. is then given by ¢(u) = Z(me“ ¢;j. Atraditional problem
of combinatorial optimization consists in determining 8t®rtest path, denoted by,
among the se&f of paths from 1 tow in G.
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When elements of uncertainty and/or inaccuracy must be takemaccount, it can be
no more relevant, even possible, to set a single valuer each ardi, j).

In some contexts, these values are described by probalaMity. The problem then
becomes the stochastic shortest path problem that we wilkady $n this paper.

In other contexts, uncertain, inaccurate and random factnnot be efficiently mo-
deled by probability laws. Since the middle of the 90’, two ralsdvere more particularly
developed in the literature : the so-called interval model thhe discrete set of scenarios
model. In these two models, each arc is associated with a seds, this set may be
of infinite or finite size. The assumption is that on each dre,real value belongs to its
associated set. A scenario corresponds to the specifiaatmsingle value for each arc.
We will note S the set ofy relevant scenarios;; the value of ardi, j) under scenarie,
c*(u) the value of path: under scenarie, G* the graph valued according to the scenario
s, pgs the shortest path from 1 toin G*.

In the two next sections, we present the so-called intervalehand the so-called
discrete set of scenarios model.

2.1 The interval model

In the interval model, each ai@, j) is associated to an interval, denotiéd, B;;],
such as;;; € [b;;, B;;|. This interval represents the set of possible values of théigj).
The setS of scenarios is infinite and is defined as the cartesian ptaduie m intervals
(b, By]. In this context, a path can take any value belonging to the interi}:), B(u)]

EXAMPLE. Let us consider the path= (1,2,4, 5, 7) in the graphG of the figure 1 whose
arcs are valued by intervals. Under any scenayiis path has a valu€ () belonging
to the interval5, 24].

This model is considered for the shortest path problem ia34,14, 17, 19, 18, 28].

In addition, the interval model is applied to other combamit problems, for example
the minimum spanning tree [16, 26], the problem of selectimgements among with
minimal total weight [3], or the assignment problem [1].

2.2 The discrete set of scenarios model

In the discrete set of scenarios model, a finitesset scenarios is considered. Thus, gi-

veng scenarios, each aft, j) is associated to a finite setgplausible value$c}j, . cfj .
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FIG. 1 — Example of interval model

Let us note that on the contrary of interval model, any comtiam of values:;; does
not constitute a relevant scenario. Consequently, eachypatiassociated to a dimen-
sion vectorV (u) such asV(u) = (c'(p),...,c(n)), wherec*(u) = >-, c;; with

se{l,...,q}.

i,5)€Ep

ExXAMPLE. Let us consider the graph of the figure 2 whose arcs are valued according
to three scenarios.

FIG. 2 — Example of scenarios model

Elementary paths frorh to 7 and their values on the three scenarios are presented in
the table 1.

This model is considered for the shortest path problem in21524, 27].

In addition, the discrete set of scenarios model is appbeathier combinatorial pro-
blems, for example the minimum spanning tree in [15, 24],greblem of selecting
elements among with minimal total weight in [3], the 1-median location probyien
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| z |t [ ) [ ) |

m=(1,267 | 19| 4 | 6
ne=(1,2,6,5,7) | 12 | 15 | 10
ws=(1,2,4,5,7) | 6 | 20 | 10
pe = (1,2,4,3,5,7) | 13 | 15 | 12
ws=(1,3,2,6,7) | 25 | 6 | 5
pe = (1,3,2,4,57) | 12 | 22 | 9
pr=(1,3,2,6,57) | 18 | 17 | 9
us=(1,3,57) | 16 | 5 | 7

TAB. 1 — Elementary paths from 1 to 7

[12, 15], or the assignment problem [1, 7].

A more general model is presented in [8] which includes thepravious models. In
this general framework, arcs value are determined by a sepafameters. These para-
meters are not exactly known and two models are consideredciete set of parameters
r-tuples, and a continuous subsetijf delimited by constraints (for which the interval
model is a particular case).

3 Robustness measures

In this section, we list models to evaluate a path in term otistiess. Three ap-
proaches can be distinguished : the first one, coming frordelsion theory, models the
concept of robustness through a single criterion to be op#idy the second one uses the
mathematical programming to address data uncertainty thanthird one, coming from
the multicriteria analysis and the social choice theotgrapts to characterize the robust
solutions by a set of conditions to be checked.

3.1 Classical criteria resulting from the decision theory

3.1.1 Worst case criterion

Given a path, the scenario to be considered is the one that tlieeworst value for
this path. In this context, the value of a pathnoteduv,,ox(1), is defined by :

vwor(p) = max c*(p)
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EXAMPLE. Let us consider the pathh = (1,2,4,5,7) of the graph in the figure 1. The
worst case scenario is the one for which each arc value is &gjiialupper bound. In this
casepwor(pt) = 24.

The problem is to determine the pat}),, which minimizesv,,or as follows :

Vwor (Hwor) = N Vwor(4)
pnel

Under any scenarie € S, o, has a value lower or equal yor(iih0r). Thus,
vwor(th0r) €N be considered as an upper bound which offers an absolatargee.
That is why in the work of Kouvelis and Yu [15], solutions whicptimize this criterion
are called absolute robust solutions. In decision thebiy,driterion models the behavior
of a decision maker averse to risk.

3.1.2 The maximum regret criterion

Given a scenarig, the choice of a patp which is not necessarily a shortest path in
G”, generates a regret denotedu) = ¢*(u) — ¢*(ugs). A pathu is then evaluated by
vrec(t) ON the basis of the maximum regret scenario :

Ureo(p) = max r*(w)

EXAMPLE. Let us consider the pagh= (1, 2,4, 5, 7) of the graph in the figure 1 and the
scenarios® in which each arc value df is set to its lower bound. Then, as the shortest
path of G*" is i¢,, = (1,3,5,7), we have r*' (1) = 5 — 3 = 2. In fact, we will see in the
section 4.2 that the maximum regret associatedi®of 19, and thus tgec(1) = 19.

The optimal solution according to the maximum regret dotervill be denoted.,..
and checks :

Ureo(Hrec) = I;?elél Ures(/4)

EXAMPLE. Let us consider again the graph in the figure 2 for which thesmarios
are taking into account. Since the shortest path in eachasceis respectively.;,, =
(1,2,4,5,7) of value 6,17, = (1,2,6,7) of value 4 andu;,; = (1,3,2,6,7) of value 5,
we can determine the valuegor() anduges(2) for any pathu, presented in the table 2.

Optimal solutions according to the worst case criterion @y, andx,, and the
optimal solution according to the maximum regret criteti®the pathus.

In the work of Kouvelis and Yu [15], a solution which optimizégtmaximum regret
criterion is called a robust deviation solution. In additithey propose another criterion of
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‘ H H Uwor(f4) ‘ Urea(#) ‘

= (1,2,6,7) 19 13

pe = (1,2,6,5,7) 15 11
s = (1,2,4,5,7) 20 16
g = (1,2,4,3,5,7) 15 11
s = (1,3,2,6,7) 25 19
pe = (1,3,2,4,5,7) 22 18
pr = (1,3,2,6,5,7) 18 13
ps = (1,3,5,7) 16 10

TAB. 2 — Paths value on classical criteria

robustness in term of relative deviation which consists imradizing the regret measure
as follows :

B c*(p) — ()
e (k) = o =)
This criterion must also be minimized.

Classical criteria coming from decision theory evaluateisohs on the basis of ex-
treme scenarios. The major disadvantage is to focus on ke sognario, mainly the worst
case, without taking into account all others scenarios. Orother hand, these criteria
offer optimality guarantees. In particular, Averbakh if feoposes a very lighting inter-
pretation of the maximum regret criterion. He supposeserathturally, that a solution is
robust if it is a good solution on all the scenarios. Thusafscenaria, robust solutions
must belong to the set, denotét] of thee-optimal solutions verifying :

() — A (ugs) < e

The set, denoted?°®, of robust solutions is then the intersection ofeatiptimal solutions
sets, one per scenario, as follows :

cree =N e:

seS

It is obvious that ife is too smallCF°® will be empty, and the cardinality @f*°® increases
with e. Otherwise, ife is too large, ther@*°® will contain solutions with bad evaluations
on some scenarios. Consequently, it is particularly intemgdo determine the smallest
value ofe such asC?°® contains at least one solution. Averbakh shows that thisevislu
not other thanges(pies). INdeed, solutions aff°® are such that :

V€ CR®, Vs e S, (1) — & (ugs) < e

= Vu € CX% max (¢ () — ¢*(ngs)) = vres(n) < €
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But, sinceVu € CR®, vree(it) > Ures(liies), If € < Vres(iihes) thenCRo® is empty, and
otherwise,CR°® contains at least;,... Consequentlypgec(ities) IS the smallest such
as it exists at least one solution whicheti®ptimal for all scenarios. This interpretation
may be adapted to the relative deviation criterion by madgyhe definition ok-optimal

solution as follows : for a scenarig 4 is e-optimal if and only |f% <e.
GS

3.2 Methodology coming from mathematical programming

The shortest path problem can be represented by an integar Iprogram of the

form :
min Z CijYij
(P) (i,))EU
sc yey

In studies dealing with robustness in mathematical programgymve can distinguish
those in which data uncertainty affects only the elementfefconstraint matrix, and
those in which data uncertainty concerns only objective tionccoefficients. In this
context, a very interesting approach is introduced by Bmdsiand Sim (in [5] and
[6]). They consider the following interval model for objei function coefficients :
ci; € [éy,Cij + ¢;] whereg;; is the nominal value fofi, j) andc;; > 0 represents the
deviation from the nominal coefficient;. They start from the quite natural idea that the
worst case will not happen simultaneously for all coefficsem [5], authors "stipulate
that nature will be restricted in its behavior, in that onlylaset of coefficients will change
in order to adversely affect the solution".

So, they introduce a parametérwhich represents the maximum number of coeffi-
cients that can deviate from their nominal valué = 0 means that none coefficient will
vary, whileT' = m means that all coefficients will vary in the worst case seneel'$s
interpreted as a level of robustness.

The robust version of the shortest path problem becomes :

(Pros) e (RIRCURIST) £,
sc yey
3.3 Methodology coming from multicriteria analysis

In multicriteria analysis [22], a decision problem is commtyodefined using a set of
solutions, a discrete set of criteria and an aggregationehafdhese criteria. A solution
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is thus described by its evaluation vector containing thetsm value on each criterion.
Considering a scenario as a criterion, a part of the resulésraddl in multicriteria analysis
can be used for the robustness analysis (cf [11]). In thisestdnthe robustness analysis
is based upon the choice of an evaluation vector associataceach solution, and the
definition of an aggregation model of these evaluation wscto

3.3.1 Path evaluation vector

When the set of scenarios is discrete, it is natural to consigevectorV (n), repre-
senting all possible values @f on various scenarios, as an evaluation vector (cf [8] and
[11]).

More recent work ([12] and [21]) applies the anonymous ppilecwhich consists in
admitting that the vectoV (u) = (c*(p), ..., c?(u)) is equivalent to the vectdr (u) =
(@D (), ..., c"D(u)) for any permutations(i) of the ¢ scenarios. According to this
principle, a path. can be evaluated by a vector obtained by ordering the valgesin
a decreasing order. This vector is called disutility veato12], and is denoted (1) =
(d*(),...,d%(u)), whered'(u) > ... > d?(p) with d’(u) representing the value of order
i of the pathu.

In some other studies on robustness, another so-calletyqaqinciple is proposed.
According to this principle, a solution whose evaluations ar# eistributed around the
average on the various scenarios is always preferred to @ umdralanced solution. For
that, one evaluates a solution on the basis of the followimgprecalled in [21] the gene-
ralized Lorenz vector L(y) = (I*(p), . .., 19(p)) with 7 (p) = S7_, d¥(p).

EXAMPLE. For the graph in figure 2, desutility and generalized Loresators are pre-
sented for each path in the table 3.

Desutility vectors Lorenz vectors
[ d'(p) | () | ) | () | Pp) | Pp)

w1 = (1,2,6,7) 19 6 4 19 25 29
po = (1,2,6,5,7) 15 12 10 15 | 27 | 37
pz = (1,2,4,5,7) 20 10 6 20 30 36
pa = (1,2,4,3,5,7) | 15 13 12 15 | 28 | 40
s = (1,3,2,6,7) 25 6 5 25 31 36
pe = (1,3,2,4,5,7) | 22 12 9 22 34 | 43
pr=(1,3,2,6,5,7) | 18 | 17 9 18 | 35 | 44
us = (1,3,5,7) 16 7 5 16 23 28

TAB. 3 — Evaluation vectors for paths frotrto 7
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3.3.2 Aggregation models for robustness

In multicriteria analysis, the dominance relation is dedias follows.

DEFINITION. Given a familyF = (f!, ..., f9) of ¢ criteria, a path: dominates a patp’
if and only if fi(u) < fi(y/) fori = 1,. .., q, with at least one strict inequality. The path
' is then dominated by, that one noteg A r .

DEFINITION. A pathu is non dominated if and only if there is not another pathke C
such ag/Arpu.

In the interval model, it is not possible to associate to gaath a finite number of eva-
luation vectors because the number of scenarios is infidd@ever, dominance relation
remains defined in this model as follows

DEFINITION. A path dominates a patp’ if and only if ¢*(¢) < ¢*(¢/) forall s € S,
with at least one strict inequality. The pathis then dominated by that one noteg A/'.

Whatever the evaluation vector, robust solutions natubedlgng to the non-dominated
solutions set. Thus, the problem can be first to determinealldominated solutions (see
for example [8]).

ExAmMPLE. For the graph in figure 2, and regarding to the evaluatioriovéc () (in
table 1), all solutions are non-dominated excepteathich is dominated by, ; regarding
to the desutility vector (in table 3), non-dominated san$ areu,, y», 1s ; and regarding
to the Lorenz vector, non-dominated solutions @gr@&ndus. Let us remark that the path
14 Which is optimal for the worst case criterion is a dominatetthpa

The main difficulty comes from the possible huge number of-dominated paths.
Hansen in [10] has defined a bicriteria graph for which the nunabenon-dominated
paths is an exponential function of the graph order. PerdySpanjaard showed in [21]
that the non-dominated solutions set according to Lorealuation vectors is a subset of
the non-dominated solutions set according’tq.) vectors. Thus, in the graph proposed
by Hansen, only two paths remain non-dominated accordingteriz evaluation vectors.
However, in [21], a graph with an exponential number of non-chatad paths according
to Lorenz evaluation vectors is proposed.

Consequently, the determination of all non-dominated gmistis not possible in ge-
neral case. Other procedures must be defined for aggregasihagon vectors in order to
provide one or a small size set of robust solutions. Let ustioean alternative approach
based on a lexicographic procedure. This approach is appli¢l2] on the disutility
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vector for the 1-median location problem.

These three approaches are quiet different. Classicatiarteming from decision
theory only take into account extreme scenario. The metbggiantroduced by Bertsi-
mas and Sim represents a way to qualify worst case analysistsidering that only a
subset of coefficients will vary in the bad sense. In the aggrcaming from the decision
theory, a solution is robust when it optimizes a particuldedon. In the approach co-
ming from multicriteria analysis, the concept of robusmissnot characterized anymore
by optimality on a single criterion, but by a list of prinogs and conditions that leads to
determine a set of robust solutions (this set being able eniay !).

4 Complexity and resolution of robust shortest path pro-
blems in the interval model

4.1 With the worst case criterion

This version of the robust shortest path problem, n®te@INTWOR, is studied in
[13]. Let us recall that, in this version, a pathhas a value,or(it) = maxses (1)
and the problem is to determine the optimal path that miresithis value on all paths.
Given a pathu from 1 to n, the scenario which maximizes$(u) is the one for which
each arcu € U has the higher possible value, that is to g3y Since this worst case
scenario, noted?, is unique, it is enough to consider the graph evaluated isywbrst
case scenario, and to determine the shortest path whicHyegaatsponds ta;), ., since
Vwor(fhyyor) = MinuecB(1). Consequently,

THEOREM. [13] TheROBINTWOR problem is polynomial.

ExXAMPLE. In the graph of the figure 1, the optimal path according towloest case
criterion ispor = (1,2,6,7) = p; of valuel9.

4.2 With the maximum regret criterion
This version of the robust shortest path problem, dena®BINTREG, is studied in

[4, 13, 17, 18, 19, 28]. Most results are based on the followaraperty, established by
Karasan, Pinar and Yaman. Let us first recall that, in thidblero version, a path has

the valuevgec(p) = maxses 7° (1) = maxses(c® (1) — ¢ (1s))-

Propriété 1 [13] Given a pathu from 1 to n, the scenario, denotes| 1), which maxi-
mizesr®(u) is the one for which each arg, j) belonging tou has a value equals to its
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higher possible value, in other Wordg“) = B,;, and each argk, h) not belonging tqu
has a value equals to its lower bound, in other worl¥ = b,.

The scenaria () is called the scenario induced py The problem to determine the
robust path, according to the maximum regret criteriony isd ;... such as :

vreo(firea) = min(e*" (1) — 1 )

EXAMPLE. For the graph of the figure 1, the table 4 presents the maxinegnet value
of each path.

| u | ™ () | W (1) | vres() |

= (L,2,6,7) 19 3 16

1 = (1,2,6,5,7) 24 6 18
s = (1,2,4,5,7) 24 5 19
p=(1,2,4,3,5,7) || 26 5 21
s = (1,3,2,6,7) 27 5 22
us = (1,3,2,4,5,7) || 32 5 27
= (1,3,2,6,5.7) || 32 8 24
s = (1,3,5,7) 20 5 15

TAB. 4 — Maximum regret value of each path frdnto 7

The pathug is optimal for the maximum regret criteriopd is also the optimal path
for the best case criterion).

Unfortunately, the difficulty comes from the fact that the rhgnof elementary paths
from 1 ton may be exponential.

4.2.1 Complexity

This problem was shown to be NP-hard for directed graphs bynidlin [28] with
a reduction to a particular version of the partition problemown as being NP-hard (see
on this subject [9]). In parallel, Averbakh and Lebedevlgisdaed in [4] thaROBINTREG
is strongly NP-hard for non-directed graphs, by making a cgdao to the Hamiltonian
path problem, denotedlamMiL . They notice that their result can be easily extended for the
case of acyclic directed graphs with a layered structurendrfallowing, we present this
extension. Let us first recall that a graph has a layeredtsteii it is possible to partition
the vertices seX into disjoint subsetsy,, ..., X,, called blocks, such as each arc goes
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from a vertex of a blockX; to a vertex of the next block; .

THEOREM. [4] The problenROBINTREGIS NP-hard even for the acyclic directed graphs
with a layered structure.

To prove this theorem, we have to introduce the decision ersi the problenro-
BINTREG Which is defined by :

Instance : an acyclic directed grapy = (X, U) with a layered structure, having two
particular verticed andn, whose arcs € U are valued by interval®,,, B,| and
an integerM,

Question : does there exist a path frotto » in G with a maximum regret value lower
or equal toM ?

TheHAMIL problem is defined as follows :
Instance : a non-directed connected graph= (V, E).

Question : does there exist i’ an Hamiltonian chain, that is to say a chain containing
each vertex only once ?

An instanceF’ = (V, E) of this problem, with V| = p, can be polynomially reduced
to an instance of the decision proble@®BINTREG in the following way. Vertices ofy
are verticesl, n and2p copies of the set’. The copy numbered, denotedV;, is the
blocki of G. For any vertex € V', we notev; its copy in the block, fori = 1,...,2p.
Thus, we haveX = (1,14, ..., Va,, n), with | X| = 2 + 2p®. The setU of G is defined as
follows :

— arcs(1,v), for any vertex € V4,

— arcs(v, n), for any vertexv € V5,

— arcs(v;, v;i11), for any vertexo € V withi = 1,...2p — 1, these arcs will be called

horizontal arcs,

— arcs(ve;, wo;1) and (weq;, v9;41), for alli = 1,...p — 1 and for all arcs(v, w)

belonging tok.

The set of horizontal arcs is notéfl. Any arc of U which is not horizontal is called
diagonal. The set of diagonal arcs is denof&camong which we distinguish the subset
D containing arcs o) not linked tol nor n. Intervals associated to horizontal arcs are
[0, 1], and those associated to diagonal arc§arg.

In the figure 3, an example of graghwith 3 vertices is represented on the left and
the graphGG corresponding to the reduction is given on its right (in whittervals|1, 1]
are replacing by the value 1). Let us observe that the veriidehe even block$s;,
i=1,...,pcan be reached by some vertices of the blggk; only with horizontal arcs.
For any vertexy € V, the path(1, vy, ..., vs, n) is called a-tunnel.
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1
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FiG. 3 — Example of the reduction of Hamiltonian path problerRG@BINTREG problem

It should be shown that an instancerodmIL problem has a positive answer if and
only if the corresponding instance ROBINTREGproblem has a positive answer fof =
2p — 2.

For a path: from 1 to n, we denotéy| its number of arcs and its vertices belonging
to Vi,..., V,. By definition of scenario induced ky and according to upper bounds on
arcs of the grapldz, we have *" () = |u| = 2p + 1. Moreover under scenarig.),
any arc ofD and any arc off which belongs tq: has a unit cost, whereas the cost of any
arc of H which does not belong to is equal to 0. Consequently, the cost of a patrom
Ltonins(u)is: W\ = [DNA +|[HNAN x| =24 DN+ |HNAN p|. With
flp, N) =W () — W ()), we have :

f(,A) =2p =1 = DA = [HOAN ) (1)
Let us suppose that there exists an Hamiltonian chaif orenoted(v', ..., v?). Then,
the sequencel, vy, vy, v3,v3, ..., v5, 1,v5,,n) is a pathy from 1 to n in G. Since each

tunnelT” does not have any arc iR and exactly one horizontal arc in common wijth
we havef(u, T') = 2p — 2. Moreover, since any pathfrom 1 to n which is not a tunnel
has at least one arc i, we have ;f (i, \) < 2p — 2. Consequently,

Urea(t) = Tglgg f(u,A) =2p—2
Let us now consider an optimal pathfrom 1 to n whose maximum regret is lower or
equal to2p — 2. T'is a tunnel such that = |H NT'N u| = |7 N & is minimum. Since
1 is optimal with a value lower or equal &p — 2, and according to the equation 1, we
have :f(u, T) =2p—1—k < 2p — 2. This impliesk > 1. Thus each tunnel intersegts
with at leastk different horizontal arcs, and one needs at Ipastl diagonal arcs im to
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connect together thegearcs. So, we have|li| =2p — 1 > kp+p — 1implying k£ < 1.
Consequentlyk = 1, f(u, T) = 2p — 2 anduges(p) = 2p — 2 with exactly one horizontal
arc of the form(v;,v;41) Yv € V and exactly one diagonal arc of the fofm;, wo;+1)
VI =1,...,p— 1in u. Finally, we obtain an Hamiltonian chain i from the diagonal
arcs off.

4.2.2 Resolution

Several algorithms for exactly solvirRpBINTREG have been proposed [13, 17, 18,
19]. In these studieROBINTREG is written as an integer linear program with variables
y;; Which represent a patihas follows :

o 1 if(i,j)eu
Yi =3 0 otherwise

The integer linear program, denot@d, is :

.

. § : S s
min max Cijyij — X

seS
(4,7)€U
P° 1 ifi=1
s.c. Z Yij — Z Y =<4 —1 ifi=n Vie X
(4,5)€U (k,i)eU 0  otherwise

Yij S {07 1} V(’L,]) eU

\
wherez?® is the length of the shortest path from Lrian G*.

According to the property 1 and given a pathepresented by, the scenario which
carries outnax,cg Z(m)eU ci;yi; — «° is the induced scenarig.). Under this scenario,
the length of any ar¢i, j) can be written in function of;; as follows :b;; + (B;; — bi; ) yi;-
Thus, by introducing variables which represent the length of the shortest path from 1 to
i under scenario(u), Karasan et al. in [13] propose a new formulatiorRafBINTREG,
notedP!.

[ min Z Bijyij — xn,

(4,7)€U
1 ifi=1
s.c Z Yij — Z yi =4 —1 ifi=n VieX (1)
P! (i,))€U (kU 0  otherwise

xj <z +bij + (Bij — bij)yij V(i,j) €U (2)
z1=0 (3)
Yij € {O, 1} V(Z,j) eU

\ ZT; 2 0 Vi € X
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P! is thus a mixed linear program. Karasan et al. in [13] soluesihg a linear pro-
gramming solver. However, whef is of big size, P! cannot be solved exactly. The
difficulty comes from the constrain{&) which, if deleated, would reduc®! to a simple
shortest path problem. Also, in [13], authors propose toyapmireprocessing procedure
which removes some constrainiy, those associated with some arcs that cannot belong
to the optimal path. By reducing the size/f, this procedure makes possible to increase
the size of exactly solved problems.

More recently, Montemanni et al. proposed two algorithmsdlve exactly the pro-
blem : a dedicated algorithm presented in [17], and a brandibaund algorithm presen-
ted in [19]. In [18], authors propose to apply a Benders de@mitipn scheme o®!. A
great number of experiments is carried out to compare theseus approaches. It seems
that the algorithm resulting from the Benders decomposisomost powerful to solve
most of the considered problems.

4.3 With the multicriteria analysis methodology

In the interval model, a path dominates a path’, denoted by:Ay/, either if6* < 0
with §* = maxges c®(p) — ¢*('), or [0* = 0 and3ds € S : ¢*(u) < ¢*(i')]. The com-
plexity of this dominance test comes from the infinite seta#rarios to be considered.
Dias and Climaco studied this problem in [8] for a more generadieh (for which the
interval model is a particular case). They introduced lyimalations to compare path eva-
luation vectors on the basis of two extreme scenarios onéypest case and the worst
case scenarios (already introduced in section 4.1). In élse dase scenario, denot€q
the value of each are € U is equal to the smallest cost, that is to 4y = b,. They
defined the following binary relations :

Relation 1: < ¢/ if and only if ¢¢” (1) < " (i)

Relation 2 : i < 4/ ifand only if [¢*" (1) = ¢’ (i) andes” (1) < " ()], or [¢*" (n) <
() ande” () = ¢ (1))

Relation 3 : u <~ 4/ ifand only if " (1) < ¢ (1) andes” (1) < " (i)

On the basis of these three relations, they establishedltbesiiog results in the com-

parison of two pathg andy’ of C :

<L = pApl.

¢’ (1) < ¢ (1) = p cannot dominatey'.

¢’ (W) < " (1) = p cannot dominatg’.

wAy = p <= ', with the corollary : ifu is not <~-dominated then: is not

dominated.
From these results, they proposed an algorithm, based centnaeration of: shortest
paths, to determine the set of non-dominated paths. In lhesithm, paths are enume-
rated in ascending order of their value on the scengridthen <~-dominated and«-
dominated paths are removed, and finally, the complete domatest is carried out only
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on remaining paths in order to eliminate the dominated ones.

In the specific case of interval model, the complete domieaest has not to be carried
out. The property below allows to conclude by considering/dhk extreme best and
worst case scenarios. Let us first denote:By,." the set of arcs that belong toand not
to /.

Propriété 2 1 dominatey/ if and only ifes” (10 \ /) < " (W \ ).

PROOF. Let us show that™” (11 \ 1) < ¢ (1 \ 1) = pAp.
S\ ) > S\ ), Vs € Sande® (1 \ p) < (i \ 1), Vs € S. Consequently,

e (u\ ) < e (' \ ) implies :

= Cp\p) (W \p),Vses
& Sp\ )+ Z s <\ )+ Z c,.VseS

uepuNp wep' Ny
& Sp) <), Vse S

Let us show now that Ay’ = ¢ (u\ 1) < " (W' \ p).
Under scenario(u), ¢*® (1) = ¢ (1) andes® (i) = " (i) + > wewrp(Bu—bu). But,
with the dominance property @f for the specific scenarie(y.), we obtain :

() < W)+ D (Bu—b)

uEu N
SB Sb
e (p\p) < W\

REMARK. If x andy’ have not any joint arc, then the property 2 becomga\’ <
¢ () < e (W)

EXAMPLE. In the graph represented in the figureid= (a,b,d,e) dominatesy’ =
(a,c,d,e). And, itis checked that*” (1 \ /) = 5 < ¢’ (i \ 1) = 6 with ¢#” (p) = 11 >
¢ (') = 10.

From the property 2, it is possible to propose an algorithmilar to the one proposed
by Dias and Climaco in [8], based on the enumeration ofitkhortest paths. Ones have
to enumerate paths in ascending order of their value on tstechge scenario and, in the
event of equality, by ascending order of their value on thestvoase scenario. Conse-
guently, the ith enumerated path, denotgdcannot be dominated hy; if i < k. On the
other hand; dominatesy;, if and only if ¢&” (4; \ i) < ¢ (s \ p:). This test is the
single test to be carried out for each enumerated path.
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FIG. 4 — Dominance test for graph with intervals

4.4 With the mathematical programming methodology

In [5], authors show that the problefzog presented in section 3.2 can easily be
solved by solving at most: + 1 shortest path problems. In fact, the optimal solution
value of Prog, denotedZ* is given by :

Z* = min ZF
k=1,..m

where
k
k ~ . — ~ ~
Z% =T, + Erél)r/l ( Z CijYij + Z(Ch - Ck)?Jh)
(3,7)€U h=1
where it is assumed that the indices of the arcs are orderédisaie;, > ¢, > ...¢,,.

Consequently, in this approach, the robust version preskatsame complexity as
the nominal one. Thus, in the case of the shortest path prmihes robust version can be
polynomially solved which makes this approach very attvacti

5 Complexity and resolution of robust shortest path pro-
blems in the discrete set of scenarios model

5.1 With the worst case criterion

5.1.1 Complexity

This version of the robust path problem, denoteDISWOR is studied in [15, 27].
Yu and Yang show that this problem is weakly NP-difficult if thenmber of scenarios is
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bounded by a constant and strongly NP-difficult otherwiseedut] they show in [27] that
the 2-partition problem

Instance : a set/ of m elements and a sizg € Z, for eachi in I.
Question : Does there exist a sub-sEtC / suchasy ,_,, a; = Zid\[, a;?
is reduced troBDISWORproblem defined as follows :

Instance : a connected grapfi = (X, U) with 2 scenarios.

Question : Does there exist a paghfrom 1 ton such asier(p) = v ?

For that, we only have to consider the gra@h= (X, U) reduced to the 2-partition
problem (represented in the figure 5) without directed cyalaed by two scenarios. This
graph present&@m + 2 levels with X = X, U X; U ... U X5,,.1 Where X, = {1},
Xoms1 = {n} (withn = 4m +2) andX; = {x; 1, z,-}. There are three categories of arcs
in U defined as follows :

- U, = {(1,211), (1, 212), (x2m1,n), (x2m2,n)}, €ach ardi, j) in U; is valued by

{0,0}
- Uy = U?;l{(xgk,i, Top+1,5)/t = 1,25 j =1,2}, each argi, j) in Us is also valued
by {0,0}

- Us = {(vok—14,%2k4)/7 = 1,2 ; k = 1,...,m}, each arc inJs is valued in a

different way :

FIG. 5 — Reduction of the 2-partition problem to tReBDISWORproblem

Considering a patp from 1 ton in G, let us set :

I'={k/(wor11, 72%1) € p Yk =1,...,m}
INT'={k/(zok-12, ok 2) € pVk =1,...,m}

Thusc! (1) = > 4cp ax @ande®(p) = >_ren - Consequently, a 2-partition exists if and
only if there exists a patp from 1 ton in G such asvpr(p) = max{c'(u),*(n)} =

Z’“%’“ this value being the optimal path valug,..
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5.1.2 Resolution

Yu and Yang in [27] propose an exact algorithm for solvik@sbIsSwORwhen the
number of scenarios is bounded. It is based on the dynamgrgmoming principle with
a pseudo-polynomial time complexity. In particular for éagd graphs, the complexity
iS O(JU|(Lax)?) Where L., = max,cg L, with L, denoted the length of the longest
path from1 to »n for the scenarie. Yu and Yang also propose in [27] an approximate
algorithm, denotedd. For layered graphs, the complexity @%|U|q). This algorithm
consists to compute the shortest path for each scenaridaraiictitious scenario which
is an average of the scenarios, to determine the path which minimizes the woist ca
criterion. Givenu!,. the path determined hif, the authors show that :

v maxses ¢’ (IU/VI\_IIOR)
WOR(H‘VI;IOR) < minse s CS(M%OR)

= s H
VWOR( 1 maxses ¢ (fiwor) _
(tivor) mingeg ¢® (N‘VI:/IOR) ™ q 1

5.2 With the maximum regret criterion

Yu and Yang in [27] show that the 2-partition problem is resllitoROBDISREG for
which the problem is to decide if there is a patfrom 1 ton such ages(pt) = v. The
reduction presented in the previous section remains valte$rec(1t) = vwor(p) be-
causer! (1) = ¢*(ug2) = 0. In addition, exact and approximate algorithms for solving
ROBDISWORcan be applied, after some minor modifications for SONROEBDISREG

5.3 With the multicriteria methodology

In the discrete set of scenarios model, the problem of deténgall non-dominated
paths can be solved by applying algorithms defined in mitkica analysis as suggested
in [8]. Two types of algorithms are proposed in the literatéor determining all non-
dominated paths in a multicriteria graph : graph algorithwiéch generalize classical
monocriterion graph algorithms to the multicriteria casd,ahose based on the enume-
ration of thek shortest paths. The efficiency of this approach rapidly eksms when
the number of scenarios increases since the number of nomdted paths significantly
increases with the number of scenarios.

Concerning the problem to determine all Lorenz non-domahgi&ths, Perny and
Spanjaard propose in [21] ati algorithm.
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6 Conclusion

Robust path problem has been extensively studied. For mtst abnsidered models,
robust version of the shortest path problem becomes NPdiffexcepted for the worst
case analysis with the interval model which is tractable irypomial time. However, the
worst case analysis supposes that the scenario that willdtieee will adversely affect
the solution. This hypothesis may not be relevant in somesibeccontext. In such cases,
new models of robustness have to be proposed.

Concerning the modeling of uncertain, undetermined andaanidctors, it can be
relevant in some context to consider them on graph struettdenot only on arcs’ value.
In such a model, a scenario may be a particular partial sphgrduch a "structural”
model can be seen as an extension of probabilistic combiabtgtimization (cf [20] for
the study of the longest probabilistic path).
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