
HAL Id: hal-00179894
https://hal.science/hal-00179894

Submitted on 14 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reed-solomon behavioral virtual component for
communication systems

Bertrand Le Gal, Emmanuel Casseau, Chirstophe Jégo, Nathalie Le Héno,
Eric Martin

To cite this version:
Bertrand Le Gal, Emmanuel Casseau, Chirstophe Jégo, Nathalie Le Héno, Eric Martin. Reed-solomon
behavioral virtual component for communication systems. IEEE International Symposium on Circuits
and Systems (ISCAS’04), May 2004, Vancouver, Canada. pp.000. �hal-00179894�

https://hal.science/hal-00179894
https://hal.archives-ouvertes.fr

REED-SOLOMON BEHAVIORAL VIRTUAL
COMPONENT FOR COMMUNICATION SYSTEMS

B. Le Gal1, E. Casseau1, C. Jego2, N. Le Heno3, E. Martin1

1. LESTER Laboratory
UBS University FRANCE

{First-Name.Surname}@univ-ubs.fr
http://lester.univ-ubs.fr:8080

2. ENST Bretagne, FRANCE
christophe.jego@enst-bretagne.fr

http://www.enst-bretagne.fr

3. Turbo Concept SAS, FRANCE
nathalie.leheno@turboconcept.com

http://www.turboconcept.com

ABSTRACT

In this paper, we focus on the design of a communication system
based on reusing IP cores. We consider that traditional methods
for hardware design at the RT level suffer from heavy
limitations that prevent them from efficiently addressing the
algorithmic complexity and the high flexibility required by the
various application profiles. We propose to raise the abstraction
level of the specification and introduce the notion of
architectural flexibility of an IP core by benefiting from the
emerging high-level synthesis tools. Our method has been
successfully applied to the design of a Reed-Solomon (RS)
decoder IP core, targeting the DVB-DSNG digital video
broadcasting standard. We are able to generate a variety of RS
decoder architectures, with varying hardware complexity and
computation speed, from a single behavioral-level VHDL
specification.

1. INTRODUCTION

As VLSI technology advances continuously, the
complexity of hardware components has quickly
increased and makes the design of SoC possible. Design
teams are thus currently faced with increased device sizes
and time to market constraint. As it is no longer practical
to manage million gate systems at the gate-level, design
by reuse - i.e. the use of intellectual property components
(IPs) or so called virtual components (VCs) - seems to be
the only way to cope [1]. However, the increasing
complexity of the applications and of the IPs themselves
require methodologies to be used, from the side of IP
providers as well as IP integrators.
Our approach consists in raising the abstraction level of IP
cores by benefiting from the emerging High-Level
Synthesis (HLS) tools. Our methodology aims at
facilitating design, validation and synthesis of IP cores at
the behavioral level, and exploits functional as well as
architectural flexibility by allowing straightforward
instantiation of various RTL architectures – fulfilling
various sets of functional parameters and performance
constraints such as gate count, speed, etc. – starting from
a single high-level description of the behavior.

This methodology is currently developed in the ALIPTA1

(Algorithmic Level IP for Telecom Applications) project.
In this paper, we detail the design and synthesis of a
Reed-Solomon decoder for channel decoding. This
decoder is one of the blocks of the DVB-DSNG plate-
form we develop. A behavioral description of this core
has been written and synthesized using a HLS tool. From
a single behavioral description, a variety of architectures
were generated, spanning a wide range of performance,
including the constraints of the DVB-DSNG standard we
target.
This paper is organized as follows: in section 2, we
introduce the notion of behavioral virtual component and
provide a brief introduction to high-level synthesis.
Section 3 is a summary of the Reed-Solomon decoder
algorithm. In section 4, we detail the followed strategy for
designing a Reed-Solomon IP core at the behavioral level.
Finally, section 5 provides high-level synthesis results that
demonstrate the flexibility of our IP core.

2. BEHAVIORAL VIRTUAL COMPONENTS

2.1 Virtual Components

A hardware Virtual Component can be defined as a
hardware block with well-identified functionality, ready to
be inserted into the design flow of an integrated system.
The main purpose of IP-based design is to achieve shorter
time-to-market and higher reliability by reusing pre-
designed and pre-verified functional blocks instead of re-
designing them from scratch [2].
Today, IP design, IP trade and IP integration still suffer
from a lack of applicable methodologies for fast design of
complex cores, fast selection of cores from IP delivery
systems, fast insertion of a core into a new system and
effective protection of the intellectual property. Recent
trends in system-level design recommend that an IP core

1 this project is supported by the French National Network for
Telecommunication Research (RNRT). Industrials : TNI-Valiosys,
THALES, SACET, Turbo-Concept; Academics : LESTER-UBS and
ENST Bretagne.

be delivered with a system-level simulatable model,
written in a standard system-level language such as
SystemC, in order to accelerate system refinement and
verification. From the synthesis point of view, design-for-
reuse methodologies and standards [3] still consider “soft”
IP cores as the highest abstraction level for synthesizable
IP models. Such models are delivered in the form of
Register-Transfer Level (RTL) descriptions in a suitable
Hardware Description Language (e.g. VHDL or Verilog).
Though an RTL description may be parameterized – e.g.
by making use of VHDL constructs such as “generic”
parameters and “generate” statements – it relies on a fixed
architectural model with very restricted customization
capabilities.
Our methodology effort aims at accelerating the transition
between IP specification at the algorithmic and system
levels on the one hand, and RTL architecture generation
on the other hand. We propose to raise the abstraction
level of IP synthesizable models by introducing the
concept of “behavioral” IP core [4]. Such a core is
specified in a behavioral (algorithmic-like) fashion in a
high-level language (VHDL, C, SystemC, etc.) and relies
on High-Level Synthesis (HLS) tools for architecture
generation. The efficiency of our approach relies on the
ability of these tools to automatically and quickly
instantiate a wide variety of RTL architectures –
corresponding to various functional parameter sets and
fulfilling user-defined optimization constraints – from a
single high-level description of the behavior.

2.2 High level synthesis

HLS is analogous to software compilation transposed to
the hardware domain: the source specification is written in
a high-level language that models the behavior of a
complex hardware component; an automatic refinement
process allows to map the described behavior onto a
specific technology target depending on optimization
constraints.
A typical HLS tool performs four main tasks: (1) source
specification analyze (identify computations); (2)
hardware resources selection and allocation for each kind
of operation; (3) operations scheduling; (4) optimized
architecture generation, including a datapath and a control
finite-state machine. HLS is a constraint-based synthesis
flow: hardware resources are selected from technology-
specific libraries of components (arithmetic and logic
units, registers, multiplexors) where components are
characterized in terms of gate count, delay, power
consumption, etc; resource selection/allocation and
operation scheduling can be constrained to limit hardware
complexity (i.e. the number of allocated resources) and
reach a given computation speed (given as the number of
control steps for operation scheduling).

Due to its high abstraction level, a behavioral description
for HLS can be made customizable through functional
parameters. Each set of supported parameter values and
synthesis constraints allows to instantiate a different
dedicated architecture that will fulfill specific functional
requirements and achieve specific performance. As a
result, HLS tools can be seen as a relevant approach for
designing and reusing highly flexible IP cores.
The HLS tool used in the ALIPTA project is called
GAUT2. It is a pipeline architectural synthesis tool,
dedicated to Signal and Image Processing applications
under a real time execution constraint. The input
specification language is currently a subset of behavioral
VHDL; SystemC language is expected in 2004. Synthesis
leads to the generation of a structural and functional
VHDL description of the designed architectures. This
VHDL file is a direct input for commercial, logical
synthesis tools like Quartus from Altera and
ISE/Foundation from Xilinx. GAUT allows the designer
to check its refinements in each level of the conception
flow by permitting the use of testbenches written for
higher level specification, in order to validate the
generated architectures.

3. REED-SOLOMON ALGORITHM OVERVIEW

Digital Satellite News Gathering (DSNG) and Digital
Video Broadcasting applications by Satellite (DVB_S)
consist in point-to-point or point-to-multipoint
transmissions, connecting fixed or transportable up-link
terminal and receiving stations, not intended to be
received by the general public. Maximum cohesion with
DVB-S1 is maintained, such as concatenated error
protection strategy based on Reed-Solomon coding,
convolutional interleaving and inner convolutional coding
[6]. The system transmission frame is synchronous with
the MEPG-2 multiplex transport packets.
Error correcting codes (channel coding) are one of the
solutions available to improve the digital communication
quality. The purpose of channel coding is to introduce, in
a controlled manner, some redundancy in the binary
information sequence to overcome the effects of noise and
interference encountered during the transmission through
the channel. Reed-Solomon codes are block error
correction codes with burst error-correcting capabilities
that have found widespread use in storage devices and
digital communication systems. In particular,
concatenated coding employing an inner convolutional
code combined with a Reed-Solomon outer code
constitutes an attractive scheme that is commonly
encountered in many applications, and in particular in the
DVB-DSNG standard that the ALIPTA project targets.

2 GAUT tool is downloadable after a free registration on LESTER web
site http://lester.univ-ubs.fr:8080

The channel coding scheme in the DVB-DSNG standard
is based on a concatenated code composed of an r=1/2,
k=7 convolutional code, a convolutional interleaver of
depth 12 and a (204,188) Reed-Solomon code. The
(204,188) RS code is a punctured version of the
RS(255,239) working on bytes. It is able to correct up to 8
erroneous bytes per received packet of 204 bytes.
Decoding of Reed-Solomon codes is based on Galois field
arithmetic. The RS(204,188) operates in GF(28) whose
generator polynomial P(x)=x8+x4+x3+x2+1 is defined in
the standard [6].
The Reed-Solomon decoder consists in five major blocks
as depicted in figure 1. One first calculates the syndrome
values (16 in this case), which represent the sequence of
errors in the frequency domain. Then one solves the key
equation by determining two polynomials, the error
locator polynomial σ(x) and the error evaluator
polynomial ω(x) from the syndrome values. This
calculation is realized in an iterative way by the
Berlekamp-Massey algorithm.
16 iterations are actually required in this case. The roots
of σ(x) are computed using the Chien search algorithm in
order to provide the errors location in the received word.
The corresponding magnitudes of the errors are then
calculated with ω(x). The received word is finally
corrected using the two aforementioned information. A
mathematical description of the algorithms can be found
in [7,8]

SYNDROME
CALCULATION

BERLEKAMP
MASSEY

ALGORITHM

r(x) Si σ(x)
CHIEN

SEARCH
ERROR

CORRECTION c(x)ERROR
MAGNITUDES

Ek

ω(x) Xk

Fig. 1: RS decoder block diagram

4. REED-SOLOMON DECODER AT THE
BEHAVIORAL LEVEL

First, an estimation step of the functional complexity of
the Reed-Solomon algorithm has been done before the
behavioral specification. The interest is to list the different

 operations of the algorithm to adapt the architectural
synthesis library. This library contains the characteristics
of components that come from logic synthesis. Different
kinds of component can be defined: standard, multi-
function, pipeline or macro-function. The use of dedicated
components (multi-function and/or macro-function) can
be noticed during the estimation step. In our study, we
have estimated the Reed-Solomon algorithm complexity
for two cases (figure 2). In the first case, only standard
operations have been used and the complexity is about
16000 operations. Two operation types are necessary:
Galois field computation (addition, inversion and
multiplication) and control (comparison and variable
control). A second case with the multi-function operation
MAC (multiplication-accumulation) has been considered.
Then, the complexity is about 11000 operations. In fact,
the total number of MAC operation is 5084 in the targeted
RS algorithm. This particularity is interesting because it
allows us to decrease the operation complexity by 30 %.
In this study, a plate-form with the Excalibur FPGA from
Altera is used. For this reason, the GAUT library has been
defined according to the EPXA family. All calculations
work on polynomials with coefficients in the Galois field
GF(28). So, the library is composed of components with a
same size of 8 bits. Moreover, the 8 bit addition
component in the Galois field is composed of only 8 XOR
gates. Consequently, the characteristics of the components
MACGF and MultGF are similar. The use of the multi-
function component MACGF that allows us to decrease the
operation complexity has a few material cost. Finally, the
inverse component in the Galois field InvGF is defined by
a table that needs no logic element but a 2048 bit memory
bloc.
The behavioral VHDL specification of the RS algorithm
has been realized and compared with a C reference
specification to validate our description. For this work, we
have written a VHDL package that contains the functions
that correspond to all the components of our architectural
synthesis library.

case 1 case 2
Galois field computation control Galois field computation control
AddGF multGF invGF fc_di comp addGF MultGF InvGF MACGF fc_di comp

syndrome calculation 3248 6512 0 0 16 0 3264 0 3248 0 16
Berlekamp-Massey algo 320 502 15 13 254 0 182 15 320 13 254

Chien search 1429 3060 0 0 204 1 1632 0 1428 0 204
error magnitudes 88 192 8 0 0 0 104 8 88 0 0
error correction 8 0 0 0 204 8 0 0 0 0 204

5093 10266 23 13 678 9 5182 23 5084 13 678
total 16073 10989

Fig. 2: Complexity (number of operations) of the RS decoding algorithm main functions

5. REED-SOLOMON DECODER SYNTHESIS

Behavioral synthesis of the Reed-Solomon decoder has
been performed using the GAUT tool. Several
architectures have been generated using different bit rate
values (latency constraint). Given results are based on
EPXA Altera FPGA technology with a 10 ns clock period,
which is the maximum estimated latency of the sequential
operators in the technology library.

Fig. 3: RS architecture complexity for different throughputs

The DVB-DSNG standard allows transmissions from 1.5
Mbits/s to 72 Mbits/s. The synthesis of the behavioral RS
decoder virtual component has been done from 2 Mbits/s
to 100 Mbits/s. Figure 3 gives the complexity (number of
logic elements) of the processing unit of the decoder. The
complexity is about 650 logic elements until 20 Mbits/s. It
increases until 12500 logic elements for 100 Mbits/s. In
fact, a low computation speed allows the HLS tool to
reuse arithmetic components for operations scheduled in
separate clock cycles. This results in a significant
reduction of the allocated hardware from 13 Galois field
operators at 100 Mbits/s to only 3 when computation time
reaches 20 Mbits/s. The HLS tool generates the same
architecture for 2 Mbits/s up to 20 Mbits/s speed
constraint (only 1 allocated operator for each kind of
operation).
Figure 4 shows the floorplan of the RS decoder
processing unit with a 40 Mbits/s throughput constraint.
This constraint has been chosen according to the ALPITA
project that targets the integration of the different
functions of a first receiver at 40 Mbits/s. The RTL
VHDL description of the RS decoder generated by the
architectural synthesis tool GAUT has been synthesis and
then integrated in an EPXA10 device (ALIPTA project
target) by the Altera Quartus tool.

Fig. 4: Processing unit floorplan of RS decoder
 (EPXA10 device)

CONCLUSION

The ALIPTA behavioral virtual components based
approach has been applied to the design of a reusable
virtual component for Reed-Solomon decoding. A High-
Level Synthesis tool has been used for generating a set of
architectures fitting various application profiles starting
from a single high-level description of the behavior. We
thus quickly obtained a dedicated architecture for all of
the throughputs that the DVB-DSNG standard covers.
Further efforts in our behavioral Reed-Solomon virtual
component design will focus on exploiting the possibility
on the integrator’s side to parameterize the I/O according
to the system communication constraints.

REFERENCES

[1] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, L.
Todd, Surviving the SOC Revolution - A Guide to Platform-
Based Design, Kluwer Academic Publishers; 1999.
[2] M. Keating and P. Bricaud, Reuse Methodology Manual for
System-On-A-Chip Designs, Kluwer Academic Publishers, 240
pp., June 1998.
[3] VSIA Virtual Socket Alliance Interface, http://vsi.org.
[4] E. Casseau, SoC design using behavioral level virtual
components, ICECS 02, IEEE International Conference on
Electronics, Circuits, and Systems, Dubrovnik, Croatie, 15-18
septembre 2002, pp. 497-500.
[5] D. D. Gajski, N. D. Dutt, Allen C-H. Wu, Steve Y-L. Lin,
High-Level Synthesis: Introduction to Chip and System Design,
Kluwer Academic Publishers, Boston, MA, 1992.
[6] Standard ETSI ETS 300 429, Digital Video Broadcasting
(DVB) ; Framing structure, channel coding and modulation for
cable systems , December 1994.
[7] WW.Peterson, E.J Weldon, Jr, Error Correcting Codes,
Cambridge, Mass., MIT Press, 1961.
[8] R. Blahut, Theory and Practice of Error Control Codes,
Addison Publishing Company, 1983.

