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It is known that the couple formed by the two dimensional Brownian motion and its Lévy area leads to the heat kernel on the Heisenberg group, which is one of the simplest sub-Riemannian space. The associated diffusion operator is hypoelliptic but not elliptic, which makes difficult the derivation of functional inequalities for the heat kernel. However, Driver and Melcher and more recently H.-Q. Li have obtained useful gradient bounds for the heat kernel on the Heisenberg group. We provide in this paper simple proofs of these bounds, and explore their consequences in terms of functional inequalities, including Cheeger and Bobkov type isoperimetric inequalities for the heat kernel.

Introduction

Gradient bounds had proved to be a very efficient tool for the control of the rate of convergence to equilibrium, quantitative estimates on the regularization properties of heat kernels, functional 1 inequalities such as Poincaré, logarithmic Sobolev, Gaussian isoperimetric inequalities for heat kernel measures. The reader may take a look for instance at [START_REF] Bakry | On Sobolev and logarithmic Sobolev inequalities for Markov semigroups[END_REF][START_REF] Th | Small time Gaussian estimates of heat diffusion kernels. I. The semigroup technique[END_REF][START_REF] Th | Analysis and Geometry on Groups[END_REF][START_REF] Ledoux | The geometry of Markov diffusion generators[END_REF][START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF] and references therein. When dealing with the simplest examples, such as linear parabolic evolution equations (or heat kernels), those gradient bounds often rely on the control of the intrinsic Ricci curvature associated to the generator of the heat kernel. Those methods basically require some form of ellipticity of the generator.

The elliptic case

Let M be a complete connected Riemannian manifold of dimension n and let L be the associated Laplace-Beltrami operator, written in a local system of coordinates as

L(f )(x) = n i,j=1 a i,j (x)∂ 2 xixj f (x).
The coefficients x → a i,j (x) are smooth and the symmetric matrix (a i,j (x)) 1≤i,j≤n is positive definite for every x. The "length of the gradient" |∇f | of a smooth f : M → R is given by

Γ(f, f ) = |∇f | 2 = 1 2 (L(f 2 ) -2f Lf ) = n i,j=1 a i,j (x)∂ xi f ∂ xj f.
Let (P t ) t≥0 = (e tL ) t≥0 be the heat semigroup generated by L. For every smooth f : M → R, the function (t, x) → P t (f )(x) is the solution of the heat equation associated to L term local means that they concern the probability measure P t (•)(x) for any fixed t and x. One may also replace in these inequalities e -ρt by any function c(t) continuous and differentiable at t = 0 with c(0) = 1 and c ′ (0) = -ρ. In the present paper, we will focus on the Heisenberg group, a non elliptic situation where these equivalences do not hold, but where some gradient bounds are still available and provide local inequalities of various types.

The Heisenberg group

In recent years, some focus had been set on some degenerate situations, where the methods used for the elliptic case do not apply. One of the simplest example of such a situation is the Heisenberg group (see section 2 for the group structure). Namely, we consider on H = R 3 the vector fields

X = ∂ x - y 2 ∂ z and Y = ∂ y + x 2 ∂ z
and the operator

L = X 2 + Y 2 = ∂ 2 x + ∂ 2 y + 1 4 (x 2 + y 2 )∂ 2 z + x∂ 2 y,z -y∂ 2 x,z . (1) 
This operator is self-adjoint for the Lebesgue measure on R 3 . The matrix of second order derivatives associated to L is degenerate and thus L is not elliptic. If [U, V ] = U V -V U stands for the commutator of U and V , then

Z := [X, Y ] = ∂ z and [X, Z] = [Y, Z] = 0.
In particular, L is hypoelliptic in the Hörmander sense (the Lie algebra described by {X, Y, Z} is the Lie algebra of the Heisenberg group, see section 2). As a consequence, the heat semigroup (P t ) t≥0 = (e tL ) t≥0 obtained by solving the heat equation associated to L admits a smooth density with respect to the Lebesgue measure on R 3 . It is remarkable that the Markov process associated to this semigroup is the couple formed by a Brownian motion on R 2 and its Lévy area, and for every fixed t > 0 and x ∈ H, the probability distribution P t (•)(x) is a sort of Gaussian on H. We refer to [START_REF] Baudoin | An introduction to the geometry of stochastic flows[END_REF] and [START_REF] Neuenschwander | Probabilities on the Heisenberg group. Limit theorems and Brownian motion[END_REF] for such probabilistic aspects. For this operator L we have also

Γ(f, f ) = X(f ) 2 + Y (f ) 2 (2) 
and

Γ 2 (f, f ) = X 2 (f ) 2 + Y 2 (f ) 2 + 1 2 (XY + Y X)(f ) 2 + 1 2 (Zf ) 2 + 2(XZ(f )Y (f ) -Y Z(f )X(f )).
The presence of Y Z(f ) and XZ(f ) in the Γ 2 expression forbids the existence of a constant ρ ∈ R such that Γ 2 ≥ ρΓ as functional quadratic forms. Therefore the methods used in the elliptic case to prove gradient bounds could not work. In other words, the Ricci tensor is everywhere -∞.

In fact, a closer inspection of the Ricci tensor of the elliptic operator X 2 + Y 2 + ǫZ 2 when ǫ goes to 0 shows that this operator has everywhere a Ricci tensor which is

  -1 2ǫ 0 0 0 -1 2ǫ 0 0 0 1 2ǫ 2   .
In the limit, one may consider that the lower bound of the Ricci tensor for L is everywhere -∞. Despite this singularity, B. Driver and T. Melcher proved in [START_REF] Driver | Hypoelliptic heat kernel inequalities on the Heisenberg group[END_REF] the existence of a finite positive constant C 2 such that

∀f ∈ P ∞ (H), ∀t ≥ 0, |∇P t f | 2 ≤ C 2 P t (|∇f | 2 ). ( 3 
)
where P ∞ (H) is the class of smooth function from H to R with all partial derivatives of polynomial growth. Here C 2 is the best constant, i.e. the smallest possible. As in the elliptic case, the gradient bound (3) implies a Poincaré inequality for P t , since

P t (f 2 ) -(P t f ) 2 = 2 t 0 P s (|∇P t-s f | 2 ) ds ≤ 2tC 2 P t (|∇f | 2 ). (4) 
The gradient bound [START_REF] Bakry | On Sobolev and logarithmic Sobolev inequalities for Markov semigroups[END_REF] gives also a reverse Poincaré inequality for P t , since

P t (f 2 ) -(P t f ) 2 = 2 t 0 P s (|∇P t-s f | 2 ) ds ≥ 2t C 2 |(∇P t f )| 2 . ( 5 
)
¿From the point of view of regularization, [START_REF] Bakry | Lévy-Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator[END_REF] is the most important, while ( 4) is more concerned with estimates on the heat kernel and concentration properties. More recently, H.-Q. Li showed in [START_REF] Li | Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg[END_REF] that there exists a finite positive constant C 1 such that

∀f ∈ P ∞ (H), ∀t ≥ 0, |∇P t f | ≤ C 1 P t (|∇f |). (6) 
It is shown in [START_REF] Driver | Hypoelliptic heat kernel inequalities on the Heisenberg group[END_REF] that

C 1 ≥ √ 2 and C 2 ≥ 2.
The Jensen or Cauchy-Schwarz inequality for P t gives C 2 ≤ C 2 1 , however, the exact values of C 1 and C 2 are not known to the authors knowledge. The gradient bound ( 6) is far more useful than (3), and has for instance many consequences in terms of functional inequalities for P t , including Poincaré inequalities, Gross logarithmic Sobolev inequalities, Cheeger type inequalities, and Bobkov type inequalities, as presented in section 6. As we shall see later, ( 6) is much harder to obtain than [START_REF] Bakry | On Sobolev and logarithmic Sobolev inequalities for Markov semigroups[END_REF].

More generally, one may consider for any p ≥ 1 and t ≥ 0 the best constant C p (t) in [0, ∞] (i.e. the smallest possible, possibly infinite) such that

∀f ∈ P ∞ (H), |∇P t f | p ≤ C p (t)P t (|∇f | p ).
It is immediate that C p (0) = 1. According to [START_REF] Driver | Hypoelliptic heat kernel inequalities on the Heisenberg group[END_REF] and [START_REF] Li | Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg[END_REF], for every p ≥ 1 and t > 0, the quantity C p (t) belongs to (1, ∞) and does not depend on t. In particular, C p is discontinuous at t = 0, and this reflects the fact that the Γ 2 curvature of L is -∞. The aim of this paper is mainly to provide simpler proofs of the gradient bounds (3) and [START_REF] Barthe | Some remarks on isoperimetry of Gaussian type[END_REF]. We also give in section 6 a collection of consequences of (6) in terms of functional inequalities for the heat kernel of the Heisenberg group. Section 2 gathers some elementary properties of the Heisenberg group used elsewhere. Section 3 provides a direct simple proof of the reverse Poincaré inequality (5) without using (3) or [START_REF] Barthe | Some remarks on isoperimetry of Gaussian type[END_REF]. Sections 4 and 5 provide elementary proofs of (3) and ( 6) respectively.

Elementary properties of the Heisenberg group

We summarize in this section the main properties of the Heisenberg group that we use in the present paper. For more details on the geometric aspects, we refer to [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF][START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF][START_REF] Juillet | Geometric inequalities and generalized Ricci bounds on the Heisenberg group[END_REF]. The link with the Brownian motion and its Lévy area is considered for instance in [START_REF] Baudoin | An introduction to the geometry of stochastic flows[END_REF] and [START_REF] Neuenschwander | Probabilities on the Heisenberg group. Limit theorems and Brownian motion[END_REF]. From now on, we shall use the notations f and f, g = f g to denote the integral of a function f with respect to the Lebesgue measure in R 3 and the scalar product of two functions f, g in L 2 (R 3 , R). The Heisenberg group H is the set of matrices

M (x, y, z) =   1 x z 0 1 y 0 0 1   equipped with the following non-commutative product M (x, y, z)M (x ′ , y ′ , z ′ ) = M (x + x ′ , y + y ′ , z + z ′ + xy ′ ).
The inverse of M (x, y, z) is M (-x, -y, xy -z). It is often more convenient to work with the Lie algebra of the group. For that, we define

X =   0 1 0 0 0 0 0 0 0   , Y =   0 0 0 0 0 1 0 0 0   , Z =   0 0 1 0 0 0 0 0 0   and we consider N (x, y, z) = exp(xX + yY + zZ), which gives N (x, y, z) = M x, y, z + xy 2 .
We shall therefore identify a point x = (x, y, z) in R 3 with the matrix N (x, y, z) and endow R 3 with this group structure that we denote x • y which is

(x, y, z) • (x ′ , y ′ , z ′ ) = (x + x ′ , y + y ′ , z + z ′ + 1 2 (xy ′ -yx ′ )).
The left invariant vector fields which are given by

X(f ) = lim ǫ→0 f (x • (ǫ, 0, 0)) -f (x) ǫ = (∂ x - y 2 ∂ z )(f ), Y (f ) = lim ǫ→0 f (x • (0, ǫ, 0)) -f (x) ǫ = (∂ y + x 2 ∂ z )(f ), Z(f ) = lim ǫ→0 f (x • (0, 0, ǫ)) -f (x) ǫ = ∂ z (f ),
while the right invariant vector fields are given by

X(f ) = lim ǫ→0 f ((ǫ, 0, 0) • x) -f (x) ǫ = (∂ x + y 2 ∂ z )(f ), Ŷ (f ) = lim ǫ→0 f ((0, ǫ, 0) • x) -f (x) ǫ = (∂ y - x 2 ∂ z )(f ).
And Ẑ = Z since for the points on the z axis, left and right multiplications coincide. The Lie algebra structure is described by the identities [X

, Y ] = Z and [X, Z] = [Y, Z] = 0.
In what follows, we are mainly interested in the operator L = X 2 + Y 2 , and the associated heat semigroup (P t ) t≥0 = (e tL ) t≥0 . We shall make a strong use of symmetries in what follows. They are described by the Lie algebra of the vector fields which commute with L. This Lie algebra is 4-dimensional and is generated by the vector fields X, Ŷ , Z, and Θ = x∂ y -y∂ x . The first ones, which correspond to the right action, commute with X, Y, Z (as it is the case on any Lie group), the last one reflects the rotational invariance of L. There is also another vector field which plays an important role : the dilation operator D, described by

D = 1 2 (x∂ x + y∂ y ) + z∂ z . This operator D satisfies [L, D] = L. (7) 
Let (T t ) t≥0 = (e tD ) t≥0 be the group of dilations generated by D, that is

T t f (x, y, z) = f (e t/2
x, e t/2 y, e t z).

¿From the commutation relations, one deduces

P t T s = T s P e s t , (8) 
and

P t D = DP t + tP t L. (9) 
Since P t commutes with left translations, if l x (f )(y) = f (xy), then

P t (f )(x) = l x P t (f )(0) = P t (l x f )(0).
Here we have just formalized the fact that (P t ) t≥0 is a heat semigroup on a group. Moreover, since 0 is a fixed point of the dilation group, one has from equation ( 8)

P t (f )(0) = P 1 (T log t f )(0).
This explains why P 1 (f )(0) gives the whole (P t f ) t≥0 . It is well known that

P 1 (f )(0) = R 3 f (y)h(y)dy,
where dy is the Lebesgue measure on R 3 and the function h has the following Fourier representation in the z variable

h(x, y, z) = 1 8π 2 +∞ -∞ e iλz exp - r 2 4 λ coth λ λ sinh λ dλ. ( 10 
)
where r 2 = x 2 + y 2 if x = (x, y, z). This formula appeared independently in the works of Gaveau and Lévy. It is not easy to deduce from this formula any good estimates on h, and it is not even easy to see that h is positive. Nevertheless, there are quite precise bounds on this function and its derivatives, see for instance [START_REF] Gaveau | Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents[END_REF][START_REF] Beals | Hamilton-Jacobi theory and the heat kernel on Heisenberg groups[END_REF] and [START_REF] Li | Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg[END_REF][START_REF] Li | Estimations asymptotiques du noyau de la chaleur sur les groupes de Heisenberg[END_REF], which may be expressed in terms of the Carnot-Carathéodory distance. The Carnot-Carathéodory distance may be defined as

d(x, y) = sup {f such that Γ(f,f )≤1} f (x) -f (y)
where Γ is as in [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF]. Here, the explicit form is not easy to write, but we shall only need to express the distance from 0 to x. In order to do that, it is better to describe the constant speed geodesics starting from 0. First, straight lines in the (x, y) plane passing through (0, 0) are geodesics, and the other ones are helices, whose orthogonal projection on the horizontal plane {z = 0} is a circle containing the origin (see [START_REF] Baudoin | An introduction to the geometry of stochastic flows[END_REF]). If a point x(s) is moving at constant speed (for the Carnot-Carathéodory distance on the geodesic, its horizontal projection p(s) moves with unit speed (for the Euclidean distance) on this circle. Moreover, the height z(t) of the point x(s) is the surface between the segment (0, p(s)) and the circle, which comes from the fact that for any curve in R 3 whose tangent vector is a linear combination of X and Y , one has

dz = 1 2 (xdy -ydx),
that is the area spanned by the point p(s) in the plane. Note that all the geodesics end on the z axis, which is therefore the cut-locus of the point 0. Those geodesics may be parameterized as follows, using a complex notation for the horizontal projection p(s)

p(s) = u 1 -exp is |u| and z(s) = |u| 2 2 s |u| -sin s |u| . (11) 
Here, u is the center of the circle which is the horizontal projection of the geodesic, and s is distance from 0 (s ∈ (0, 2π |u|)). When |u| goes to infinity, we recover the straight lines.

If we call d(x) the Carnot-Carathéodory distance from 0 to x, it is easy to see from that if x = (x, y, z), and s = d(x), then

d x s , y s , z s 2 = 1.
This corresponds to a change of u into u s . Now, the unit ball for the Heisenberg metric is between two balls for the usual Riemannian metric of R 3 , and therefore one concludes easily that the ratio

(x 2 + y 2 ) 2 + z 2 d 4 (x, y, z)
is bounded above and below. Although, if R = ((x 2 + y 2 ) 2 + z 2 ) 1/4 , the function Γ(R, R) is bounded above but not below. Let h be the heat kernel density at time 1 and at the origin, given by [START_REF] Bobkov | An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space[END_REF]. The main properties of h used in the present paper are the following. Here for real valued functions a and b, we use the notation a ≃ b when the ratio a/b is bounded above and below by some positive constants. First,

h(x) ≃ exp(-d 2 (x) 4 ) 1 + x d(x) , (12) 
where x denotes the Euclidean norm of the projection of x onto the plane {z = 0}. Then, for some constant C Γ(log h, log h)(x) ≤ C(1

+ d(x)) (13) 
and

|Z(log h)| ≤ C. ( 14 
)
The last one is not completely explicited in [START_REF] Li | Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg[END_REF] but follows easily from the estimation of W 1 page 376 of this paper.

Lemma 2.1. The Schwartz space S of smooth rapidly decreasing functions on the Heisenberg group H is left globally stable by L and by P t for any t ≥ 0.

Proof. If R = (x 2 +y 2 ) 2 +z 2 , then an elementary computation shows that for any positive integer q, there exists a real constant B q > 0 such that L((1 + R) -q ) ≤ B q (1 + R) -q . As a consequence, P t ((1 + R) -q ) ≤ e Bqt (1 + R) -q . We may see the class S as the class of smooth functions such that for any non negative integers a, b, c and any positive integer q, the function Xa Ŷ b Z c (f ) is bounded above by (1 + R) -q . From that and the above, it is clear that if f is in S, such is P t f . On the other hand, the stability of S by L is straightforward.

Reverse Poincaré inequalities

We show here how to deduce a reverse Poincaré inequality as [START_REF] Bakry | Lévy-Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator[END_REF]. The method is simple and direct, and does not rely on a gradient bound such as (3) or [START_REF] Barthe | Some remarks on isoperimetry of Gaussian type[END_REF].

Theorem 3.1 (Reverse local Poincaré inequality). For any t ≥ 0 and any f ∈ C ∞ c (H),

tΓ(P t f, P t f ) ≤ P t (f 2 ) -(P t f ) 2 .
Proof. Since we work on a group, it is enough to prove this for x = 0. Then, thanks to the dilation properties, it is enough to prove it for t = 1. Now, consider the vector field X, which coincides with X at x = 0, and let as before h be the density of the heat kernel for t = 1 and x = 0 given by [START_REF] Bobkov | An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space[END_REF]. We want to bound, for a smooth compactly supported function f

( XP 1 f ) 2 = (P 1 ( Xf )) 2 = f, Xh 2
where the last identity comes from integration by parts. The first remark is that we may suppose that f h = 0 since we may always add any constant to f . We then use Cauchy-Schwartz inequality under the measure h(x)dx to get

( XP 1 f ) 2 ≤ P 1 (f 2 ) X(log h) 2 h .
Using the same method for Y , we get

Γ(P 1 f, P 1 f ) ≤ (P 1 (f 2 ) -(P 1 f ) 2 ) Γ(log h, log h)h where Γ(u, u) = X(u) 2 + Ŷ (u) 2 .
Now, the rotational invariance of h, which comes from [Θ, L] = 0, shows that Γ(log h) = Γ(log h), and gives a reverse local Poincaré inequality with the constant C = Γ(log h)h . It remains to compute this constant. For that, we use the dilation operator D and the formula [START_REF] Bobkov | A functional form of the isoperimetric inequality for the Gaussian measure[END_REF]. In 0, we have Df = 0, and therefore it reads for t = 1, for any f ,

P 1 ((L -D)f ) = 0,
which means that h is the invariant measure for the operator L -D, or in other words that

(L + D + 2)h = 0 since the adjoint of D is -D -2.
Multiply both sides by log h and using integration by parts (can be rigorously justified by using estimates on h) gives log h, Lh = -Γ(log h, log h), h .

Moreover, we have

log h, (D + 2)h = -h, D log h = -Dh = 2 h = 2 and therefore Γ(log h, log h), h = 2.
If we had done the same reasoning on R n with the usual Laplace operator, and the corresponding dilation operator, we would have find a reverse Poincaré inequality with constant n/2 instead of 1 2 . The reason comes from symmetry properties and the same will allow us to divide the constant by 2 in the Heisenberg case. In fact, because of the rotational invariance of h, we have, for any vector

(a, b) ∈ R 2 with a 2 + b 2 = 1, (a X(log h) + b Ŷ (log h)) 2 , h = ( X(log h)) 2 , h = 1 2 Γ(log h, log h), h = 1.
Now, we may write

Γ(P 1 f, P 1 f )(0) = sup a 2 +b 2 =1 (a XP 1 (f ) + b Ŷ P 1 (f )) 2
and use the same Cauchy-Schwarz inequality to improve the bound to

Γ(P 1 f, P 1 f ) ≤ P 1 (f 2 ) -(P 1 f ) 2 .
Remark 3.2 (Optimal constants). Equality is achieved in theorem (3.1) when f = X(log h) for instance. To see it, note that by symmetry, ( X log h)

2 h = ( Ŷ log h) 2 h = 1.
By the rotational invariance of h, we get more generally that (a X log h

+ b Ŷ log h) 2 h = 1 for any a 2 + b 2 = 1. As a consequence, X(log h) Ŷ (log h), h = 0. For f = X(log h), this gives XP 1 f (0) = Xf, h = -f, X(log h)h = -1 and Y P 1 f = 0
, which is the desired equality. Note the difference with the elliptic case: for the heat semigroup (P t ) t≥0 in R n or for any manifold with non negative Ricci curvature, one has for every t ≥ 0 and any smooth f ,

2tΓ(P t f, P t f ) ≤ P t (f 2 ) -(P t f ) 2 .
Note also, as we already mentioned in the introduction, that the H.-Q. Li gradient bound (6) provides simply by semigroup interpolation a result similar to theorem 3.1, with a constant 2tC -2 1 instead of t. These two constants are equal if and only if

C 1 = √ 2.
At the level of reverse local Poincaré inequalities, a necessary and sufficient condition for the efficiency of the semigroup interpolation technique is that

C 1 = √ 2.
Similarly, by using the Drivier and Melcher gradient bound (3) we obtain the condition

C 2 = 2. It is thus tempting to conjecture that C 2 1 = C 2 = 2. Remark 3.3 (Carnot groups).
In the class of nilpotent groups, there is an interesting subclass, which are the Carnot groups, that is the nilpotent groups with dilations, see [START_REF] Baudoin | An introduction to the geometry of stochastic flows[END_REF], [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF]. Let (X 1 , . . . , X n0 ) the generators at the first level of such a Carnot group, and

L = X 2 1 + • • • + X 2 n0
. In those groups again there is a dilation operator D such that [L, D] = L and D * = -D -n 2 Id. The parameter n is what is called the homogeneous dimension of the group. The same applies in this case, except that we no longer have always enough rotations to insure that Γ(h, h) = Γ(h, h) where the hat corresponds to the "chiral" action. But we may replace this argument by the fact that Pt (•)(0) = P t (•)(0) where ( Pt ) t≥0 = (exp(t L)) t≥0 and we would get as a bound

Γ(P t f, P t f ) ≤ n 2n 0 t (P t (f 2 ) -(P t f ) 2 )
recovering at the same time the Heisenberg and Euclidean cases. For the (2p + 1)-dimensional Heisenberg group H 2p+1 we have n 0 = 2p while the homogeneous dimension is 2p + 2, and therefore here the inequality writes

Γ(P t f, P t f ) ≤ p + 1 2pt (P t (f 2 ) -(P t f ) 2 )
and the constant approaches the Euclidean one when p goes to infinity.

A proof of the Driver-Melcher inequality

We give here an elementary proof of the Driver and Melcher gradient bound (3). The argument is simply an integration by parts followed by the upper bound on Γ(log h, log h) obtained in section 3. Indeed, from the inequalities ( 12) and ( 13), it is quite clear that the constant

A = x Γ(log h, log h)(x)h(x)dx (15) 
is finite, where x denotes as usual the Euclidean norm of the horizontal projection of the point x. Then, we have the following theorem.

Theorem 4.1. With the constant A defined by (15), we have for every t ≥ 0 and f ∈ C ∞ c (H), Γ(P t f, P t f ) ≤ 2(A + 4)P t (Γ(f, f )).

Proof. We assume that x = 0 (by group action) and t = 1 (by dilation). Then, we write

XP 1 f (0) = P 1 ( Xf )(0) = (X + yZ)f h .
An integration by parts for yZ(f

), h = y(XY -Y X)(f ), h gives X(f ), (yY (log h) + 1)h -Y (f ), yX(log h)h
and a similar formula holds for Y P 1 f . Next, we take a vector (a, b) ∈ R 2 of unit norm and we use the Cauchy-Schwarz inequality to get

(aXP 1 (f )(0) + bY P 1 (f )(0)) 2 ≤ P 1 (X(f ) 2 )A 1 + P 1 (Y (f ) 2 )A 2
where

A 1 = P 1 [((yY (log h) + 2)a -xY (log h)b) 2 ]
and

A 2 = P 1 [((xX(log h) + 2)b -yY (log h)a) 2 ].
The desired inequality comes then from the upper bound

max(A 1 , A 2 ) ≤ A 1 + A 2 ≤ 2(A + 4).
Note that the obtained constant 2(A + 4) is certainly not the optimal one. Remark 4.2 (Counter example). Unlike the elliptic case, the reverse local Poincaré (5) and the local Poincaré (4) inequalities are not in general equivalent. A simple example is provided on R 2 with the operator L = ∂ 2 x + x∂ y for which the corresponding diffusion process starting from (x, y) is up to some constant

U t = x + B t , y + tx + t 0 B s ds
where (B t ) t≥0 is a Brownian motion on R. In this example, the heat kernel is Gaussian and the semigroup (P t ) t≥0 is quite easy to compute, while Γ(f, f ) = (∂ x f ) 2 . In this situation, it is easy to see, using Cauchy-Schwarz inequality, that

tCΓ(P t f, P t f ) ≤ P t (f 2 ) -(P t f ) 2
for some constant C < 2, while the inequality

P t f 2 -(P t f ) 2 ≤ C(t)P t Γ(f, f )
does not hold for any constant C(t), as one may see with a function f depending on y only. For example, with f (x, y) = y, one has P t f = y + tx, which depends on the variable x. This kind of hypoelliptic situation differs strongly from the case of the Heisenberg group, since here Γ(f, f ) = 0 does not imply that f is constant.

Two proofs of the H.-Q. Li inequality

In this section, we propose two alternate and independent proofs of the H.-Q. Li inequality [START_REF] Barthe | Some remarks on isoperimetry of Gaussian type[END_REF]. The first proof uses some basic symmetry considerations and a particular case of the Cheeger inequality of theorem 6.3 that we have to show by hands. The second proof relies on an explicit commutation between the complex gradient and the heat semigroup. Both mainly rely on the previous sharp estimates on the heat kernel that were obtained in [START_REF] Beals | Hamilton-Jacobi theory and the heat kernel on Heisenberg groups[END_REF].

Via a Cheeger type inequality

Lemma 5.1. For any real R > 0, there exists a real constant C > 0 such that for any smooth f : H → R which vanishes on the ball centered at 0 and of radius R for the Carnot-Carathéodory distance, we have

|f | hdx ≤ C |∇f | hdx
where h is as before the density of P 1 (0, dx).

Proof. One may safely assume that R = 1 by a simple scaling. Next, we make use of the polar coordinates which appear in [START_REF] Capitaine | Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces[END_REF]. Namely, we parameterize the exterior of the unit ball by (u, s),

with u ∈ C, |u| ≥ 1 2π and s ∈ (1, 2π |u|), with (x + iy, z) = u 1 -exp is |u| , |u| 2 2 s |u| -sin s |u| . (16) 
The unit ball is the set {s ≤ 1}, and since f is supported outside the unit ball, we write

|f (u, s)| = s 1 ∇f (u, t) • e t dt ≤ s 1 |∇f | (u, t)dt
where e t is the unit vector along the geodesic. Let us write A(u, t)dudt the Lebesgue measure on R 3 in those coordinates (we shall see the precise formula below). We write

|f (u, s)| h(u, s)A(u, s)duds ≤ |∇f | (u, t) 2π|u| t
A(u, s)h(u, s)ds dudt and we shall have proved our inequality when we have proved that

2π|u| t A(u, s)h(u, s)ds ≤ CA(u, t)h(u, t),
for any (u, t) such that |u| ≥ 1 2π and t ≥ 1. In this computation, we forget the points in the (x, y) plane and the z-axis, but this is irrelevant since they have 0-measure. The computation of the Jacobian gives

A(u, s) = 16 |u| sin s 2 |u| s 2 |u| -sin s 2 |u|
and the estimate [START_REF] Chafaï | Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities[END_REF] shows that we may replace h(u, s) by exp(-

s 2 4 ) 1 + 2s |u| sin( s 2|u| )
since the Euclidean norm of the horizontal projection of the point whose coordinates are (u, s) is 2 |u| sin( s 2|u| ). Setting τ = s 2|u| and r = |u|, the question is therefore to check that, for some constant C, for any r ≥ 1 2π , for any τ 0 ≥ 1 2r , one has

r π τ0 sin τ (τ -sin τ ) √ 1 + 4r 2 τ sin τ e -τ 2 r 2 dτ ≤ C sin τ 0 (τ 0 -sin τ 0 ) √ 1 + 4r 2 τ 0 sin τ 0 e -τ 2 0 r 2 .
Up to some constant, we may replace sin τ (τ -sin τ ) by τ 4 on (0, π 2 ) and by π -τ on ( π 2 , π). In the same way, we may replace √ 1 + 4r 2 τ sin τ by rτ when τ < π 2 (since rτ ≥ 1 2 ) and by 1 + r √ π -τ when τ ∈ ( π 2 , π). We first consider the case where τ 0 < π 2 , and divide the integral into π/2 τ0 and π π/2 . Using the above estimates, these integrals can be bounded by the correct term by using the fact that

∞ A s p exp(-s 2 )ds ≤ C p A p-1 exp(-A 2 ).
When τ 0 > π 2 , one uses the same estimates, bounding above π -τ by π -τ 0 and (1 + r √ π -τ ) -1 by 1 in the integral, and using the fact that r is bounded below on our domain.

Observe that the same reasoning on a ball of radius ǫ would provide a constant which goes to infinity when ǫ goes to 0, as for the usual heat kernel on R d .

In fact, we shall also use a slightly improved version of lemma 5.1.

Lemma 5.2. For every real R > 0, if B is the ball centered at 0 and of radius R for the Carnot-Carathéodory distance, there exists a real constant C > 0 such that for any smooth f :

H → R, B c |f -m| hdx ≤ C |∇f | hdx where B c = H \ B is the complement of B, where m = |B| -1 B f (x)
dx is the mean of f on B, and where h is as before the density of P 1 (0, dx).

For proving this last lemma, we will need the following L 1 -Poincaré, also called (1, 1) Poincaré, on balls. This inequality can be in fact thought of as a Cheeger type inequality on balls. See [START_REF] Maheux | Analyse sur les boules d'un opérateur sous-elliptique[END_REF] and references therein. This last lemma shall also be used in the next section where we prove the H.-Q. Li inequality via complex analysis. Lemma 5.3. For any real R > 0, if B denotes the ball centered at 0 and of radius R for the Carnot-Carathéodory distance, there exists a real constant C > 0 such that for any smooth

f : H → R, by denoting m = |B| -1 B f (x) dx the mean of f on B, B |f (x) -m| dx ≤ C B |∇f | (x) dx.
We can now make the proof of lemma 5.2.

Proof of lemma 5.2. As in lemma 5.1, we may safely assume that R = 1 by a simple scaling. For any auxillary function g : H → R, we have by denoting

m = |B| -1 B f dx, B c |f -m| h dx ≤ |f -g| h dx + B c
|g -m| h dx.

Now we choose g such that g(ξ, s) = f (ξ, min(s, 1)) where (ξ, s) denotes the polar coordinates in H as in the proof of lemma 5.1. More precisely, ξ ∈ ∂B and the set {s ≤ 1} is the unit ball.

For the first term the desired gradient bound follows then by elementary arguments as in lemma 5.1. For the second term, we write

|f (ξ, 1) -m| ≤ 1 s=0 (|f (ξ, 1) -f (ξ, s)| + |f (ξ, s) -m|) A(ξ, s)ds C(ξ)
where C(ξ) = 1 s=0 A(ξ, s)ds. We can now conclude by using elementary arguments similar as before and the L 1 -Poincaré inequality of lemma 5.3.

Note that lemma 5.1 can be deduced directly from lemma 5.2. We are now in position to prove the H.-Q. Li inequality [START_REF] Barthe | Some remarks on isoperimetry of Gaussian type[END_REF].

Proof of [START_REF] Barthe | Some remarks on isoperimetry of Gaussian type[END_REF]. With the help of lemmas 5.1 and 5.2, we may reduce the study of the H.-Q. Li inequality to functions which are

• either supported in a ball of radius 1 for the Carathéodory metric;

• either supported in a cylinder of radius 2 around the z axis (without the unit ball);

• either supported outside a cylinder around the z-axis.

Indeed, let see how one may reduce first to the case of a function supported either in a ball or outside a ball. If f is any smooth function and φ a smooth cutoff function with values 1 on a ball B of radius < 1 and vanishing outside a ball of radius 1, we write

f = f φ + f (1 -φ) = f 1 + f 2 .
Clearly, in order to obtain [START_REF] Barthe | Some remarks on isoperimetry of Gaussian type[END_REF], one can add any prescribed constant to f . In particular, one can assume that B f dx = 0. Assuming that we know the inequality for f 1 and f 2 , we bound We repeat the same operation with a cutoff function for the neighborhood of the z-axis. Now, when f is supported inside the ball, we may use the method that we used in the proof of theorem 4.1, and the fact that |∇ log h| (x) ≤ Cd(x), which is bounded on the unit ball. If f is supported inside the cylinder around the z-axis and vanishes on the unit ball, we write, with section 2 notations,

X(f ), h ≤ C (|∇f 1 | + |∇f 2 |), h
X(f ), h = X(f ), h + f, y 2 Z(log h)h
and then we use the fact that y 2 Z(log h) is bounded on the cylinder. It remains to observe that

|f | , h ≤ C |∇f | , h
thanks to lemma 5.1. It remains to deal with a function which is supported outside a cylinder around the z-axis. We shall choose another integration by parts. For that, let us use a complex notation and write

∇(f ) = X(f ) + iY (f ) and ∇(f ) = X(f ) -i Ŷ (f ).
Note the change of sign in front of i in the second expression. We want to bound

∇(f ), h = -f, ∇h .
Now, since h is radial, we have ∇h =

x -iy x + iy ∇h which comes from the fact that x∂ y h = y∂ x h. Let us call Ψ(x, y) = exp(-2iθ) the function x-iy x+iy , where θ is the angle in the plane (x, y). Then, we integrate again by parts and get

∇f, h = -f, Ψ(x, y)∇h = ∇f, Ψ(x, y)h + f, ∇(Ψ)h .
We then conclude observing that Ψ is bounded and |∇Ψ| is bounded outside the cylinder around the z axis. We therefore have

∇(f ), h ≤ |∇f | , h + C |f | , h
and we use again lemma 5.2 to conclude the proof.

Via a complex quasi-commutation

In R n , it is known that the gradient ∇ commute with the Laplace operator. This commutation leads to the commutation between ∇ and the heat semigroup P t = e t∆ and therefore to the inequality:

|∇P t f | = |P t ∇f | ≤ P t |∇f | .
In the Heisenberg group, we can follow the same pattern of proof. Nevertheless, several difficulties appear that make the proof quite delicate and technical at certain points. For sake of clarity, before we enter the hearth of the proof, let us precise our strategy. The Lie algebra structure:

[X, Y ] = Z, [X, Z] = [Y, Z] = 0 leads to the commutation: (X + iY )L = (L -2iZ)(X + iY ),
where L = X 2 + Y 2 . At the level of semigroups, it leads to the formal commutation:

(X + iY )P t = e t(L-2iZ) (X + iY ) = e -2itZ P t (X + iY ). ( 17 
)
This commutation is only formal because as we will see the semigroup associated to the complex operator L -2iZ is not globally well defined. More precisely, complex solutions to the heat equation ∂u ∂t = (L -2iZ)u, u(0, •) = f are represented by a kernel which is nothing esle than the holomorphic complex extension in the z variable of the heat kernel, at the point z + 2it. Unfortunately, this kernel has poles, and this solution may have singularities. Nevertheless, we will see that if the initial condition f is a complex gradient, then solutions to this equation do not explode. More precisely, we may add to this kernel any kernel which has no effect on gradients and which cancels the poles of the previous extension. Doing this, we shall produce an integral representation of the solution, without poles. This representation is of course not unique. If we could choose the kernel in such a way that the ratio of it with the density p t is bounded, then the H.-Q. Li inequality would easily follow. However, we will prove that such a kernel does not exist. To overcome this difficulty, we will use two different kernels depending on the support of the function f . By using a partition of the unity as in our previous proof of H.-Q. Li inequality and lemma 5.3 we will then be able to conclude.

We now enter into the hearth of the proof. In what follows, in order to exploit the rotational invariance, we shall use the cylindric coordinates x = r cos θ, y = r sin θ in which the vector fields X and Y read

X = cos θ∂ r - sin θ r ∂ θ - 1 2 r sin θ∂ z Y = sin θ∂ r + cos θ r ∂ θ + 1 2 r cos θ∂ z Z = ∂ z .
The heat kernel associated to (P t ) t≥0 writes here in cylindric coordinates

p t (r, z) = 1 8π 2 +∞ -∞ e iλz λ sinh λt e -r 2 4 λcotanhλt dλ. (18) 
To give a sense to (17), we begin with the analytic properties of p t (r, z) in the variable z.

Lemma 5.4. Let t > 0 and r ≥ 0. The function Proof. Let t > 0 and r ≥ 0. By using the expression (18) for p t (r, z), and

z → p t (r, z) - 1 4π 2 t + iz + r 2 4 2 - 1 4π 2 t -iz + r 2
1 t + iz + r 2 4 2 =
+∞ 0 e -iλz e -λt e -λ r 2 4 λdλ,

1 t -iz + r 2 4 2 = +∞ 0
e iλz e -λt e -λ r 2 4 λdλ, we obtain

p t (r, z) - 1 4π 2 t + iz + r 2 4 2 - 1 4π 2 t -iz + r 2 4 2 = 1 8π 2 +∞ -∞ e iλz e -r 2 4 |λ|cotanh|λ|t sinh | λ | t -2e -1 4 |λ|r 2 -|λ|t | λ | dλ
and the desired result follows easily.

For any t > 0, r ≥ 0, and z ∈ C -{-i(t

+ 1 4 r 2 )} such that | Imz |< r 2 4 + 3t, let us denote p * t (r, z) = p t (r, z) - 1 4π 2 t + iz + r 2 4 2 .
We have the following commutation property.

Proposition 5.5. If f : H → R is a smooth function with compact support, then

(X + iY )P t f (0) = H p * t (r, z + 2it)(X + iY )f (r, θ, z)rdrdθdz, t > 0. Proof. Due to the identities [X, Y ] = Z and [X, Z] = [Y, Z] = 0, we have (X + iY )L = (L -2iZ)(X + iY ).
If f (r, θ, z) = e iλz g(r, θ), for some λ ∈ R and some function g, we have Zf = iλf and thus

(X + iY )Lf = (L + 2λ)(X + iY )f.
We deduce therefore,

(X + iY )P t f (0) = e 2λt (P t (X + iY )f )(0) = e 2λt H p t (r, z)((X + iY )f )(r, θ, z)rdrdθdz.
Let us now observe that for t > 0,

(X + iY ) 1 t + iz + r 2 4 2 = 0 and thus (X + iY )p * t = (X + iY )p t . Consequently, (X + iY )P t f (0) = e 2λt H p * t (r, z)((X + iY )f )(r, θ, z)rdrdθdz. Now e 2λt f (r, θ, z) = f (r, θ, z -2it)
and the result for the function f follows by integrating by parts with respect to the variable z.

For general f , we can conclude by using the Fourier transform of f with respect to the variable z.

As a first consequence, we deduce that for every R > 0, there exists a finite constant C > 0 such that for every smooth function compactly supported inside a Carnot-Carathéodory ball B R of radius R,

|∇P 1 f | (0) ≤ CP 1 (|∇f |)(0).
But of course, here, the constant C that we obtain depends on R, and we shall see below that it blows up when R → +∞. Now, if R > 0 is big enough, the ball with radius R contains the region of the Heisenberg group whose cylindric coordinates are of the form (r = 2, θ ∈ [0, 2π], z = 0) and if f is a smooth function with compact support that vanishes in a ball with radius R, we have the commutation:

(X + iY )P 1 f (0) = H p 1 (r, z + 2i)(X + iY )f (r, θ, z)rdrdθdz, t > 0.
that follows from the fact that (X + iY )p t = (X + iY )p * t and from the fact that the pole of (r, z) → p 1 (r, z) is at r = 2, z = 0. The keypoint is then the following estimate: Proposition 5.6. There exists R > 0 such that sup

r 2 +|z|≥R | p 1 (r, z + 2i) | p 1 (r, z) < +∞.
Proof. We shall proceed in two steps.

Step 1. We show that for any η > 0,

sup r≥3,r 2 ≥η|z| |p 1 (r, z + 2i)| p 1 (r, z) < +∞.
For convenience, and by symmetry, we may assume z > 0. Let us first observe that on our domain:

p 1 (r, z + 2i) = 1 8π 2 +∞ -∞ e -2λ e iλz λ sinh λ e -r 2 4 λcotanhλ dλ (19) 
¿From [START_REF] Beals | Hamilton-Jacobi theory and the heat kernel on Heisenberg groups[END_REF], it is known that for fixed r, z, the function

g : λ → -iλz + r 2 4 λcotanhλ,
has a unique critical point in the strip {| Imλ |< π 2 }. This critical point is iθ(r, z), where θ(r, z) the unique solution in (0, π 2 ) of the equation

µ( 1 2 θ(r, z))r 2 = 4z, with µ(θ) = θ sin 2 θ -cotan θ. At this critical point, we have g(iθ(r, z)) = d 2 (r, z) 4 ,
where d(r, z) is the Carnot-Carathéodory distance from 0 to the point with cylindric coordinates (r, θ, z) (this distance does not depend on θ, that is why it is omitted in the notation). In fact, our function g corresponds to g(r, z, λ) = f ( r √ 2 , z 2 , 2λ) where f is the function studied in [START_REF] Beals | Hamilton-Jacobi theory and the heat kernel on Heisenberg groups[END_REF]. Moreover the function s → Reg(s + iθ(r, z)), grows with | s |, and has a global minimum at s = 0, indeed a tedious computation shows that Re(g(s + iθ(r, z)) -g(iθ(r, z))) = sinh 2 2s sinh 2 2s + sin 2 2θ(r, z)

(2s cotanh 2s -2θ(r, z) cotan 2θ(r, z))r 2 ≥ sinh 2 2s sinh 2 2s + 1 (2s cotanh 2s -1)r 2 ≥ 0.
Let us finally observe that the previous computation also shows that there exists δ > 0 such that for s ∈ [-1, 1]

Reg(s + iθ(r, z)) ≥ d 2 (r, z) 4 + δr 2 s 2 .
With all this in hands, we can now turn to our proof. We first start by changing the contour of integration in ( 19): e -(r 2 -8)δ 2 s 2 U (s + iθ( r 2 -8, z)) ds

+ e -d( √ r 2 -8,z) 2 4 |s|≥1 e -(r 2 -8)δ 2 U (s + iθ( r 2 -8, z)) ds ≤C 1 e -d(r,z) 2 4 r ,
where we used the fact that on the domain on which we work, the difference d( √ r 2 -8, z)-d(r, z) is uniformly bounded. Finally, from the lower estimate of [START_REF] Li | Estimations asymptotiques du noyau de la chaleur sur les groupes de Heisenberg[END_REF], on the considered domain,

p t (r, z) ≥ C 2 e -d(r,z) 2 4 r .
It concludes the proof of step 1.

Step 2. We show that there exists η > 0 such that

sup |z|≥1,r 2 ≤η|z| |p 1 (r, z + 2i)| p 1 (r, z) < +∞.
We first start by giving an analytic representation of

p 1 (r, z + 2i)
that is valid on the domain on which we work. As in the previous proof, we assume z > 0. Due to the Cauchy theorem, we can change the contour of integration in the representation [START_REF] Gaveau | Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents[END_REF], to get with 0 < ε < π,

p 1 (r, z) = 1 8π 2 +∞ k=1 |λ-ikπ|=ε e iλz λ sinh λ e -r 2 4 λcotanhλ dλ = -i 8π 2 +∞ k=1 |λ|=ε e i(-iλ+ikπ)z (-iλ + ikπ) sinh(-iλ + ikπ) e -r 2 4 (-iλ+ikπ)cotanh(-iλ+ikπ) dλ = -i 8π 2 |λ|=ε e -(π-λ) z-r 2 4 cotan λ 1 + e -π z-r 2 4 cotan λ π 1 + e -π z-r 2 4 cotan λ -λ dλ sin λ Therefore, for z > 0, p * 1 (r, z + 2i) + 1 4π 2 -1 + iz + r 2 4 2 = -i 8π 2 |λ|=ε e 2iλ e -(π-λ) z-r 2 4 cotan λ 1 + e -π z-r 2 4 cotan λ π 1 + e -π z-r 2 4 cotan λ -λ dλ sin λ
On our domain, if η is small enough, when r, z → +∞, Re(z -r 2 4 cotan λ) goes uniformly on the circle | λ |= ε to +∞. Consequently, on our domain where the function θ(r, z) has been introduced above. At this stage, we can follow step by step the proof of Theorem 2.17 in [START_REF] Beals | Hamilton-Jacobi theory and the heat kernel on Heisenberg groups[END_REF] (the only difference is in the function V which we take equal to V (λ) = e 2iλ π-λ sin λ ) to get an estimate on our domain :

p * 1 (r, z + 2i) + 1 4π 2 -1 + iz + r 2
|λ|=π-2θ(r,z) e 2iλ e -(π-λ) z-r 2 4 cotan λ (π -λ) dλ sin λ ≤ c 2 e -d(r,z) 2 4 rd(r, z)
for some finite positive constant c 2 . Finally, the lower estimate of [START_REF] Li | Estimations asymptotiques du noyau de la chaleur sur les groupes de Heisenberg[END_REF] leads to the conclusion.

Remark 5.7. In order to extend the H.-Q. Li inequality to more general situations, it would be interesting to get a proof of the above proposition that would not use the explicit expression for p t (r, z).

We can now reprove H.-Q. Li's inequality by using a partition of the unity (which is here simpler than in the previous subsection) and the L 1 -Poincaré inequality of lemma 5.3 (which was also used in the previous subsection). Let f : H → R be a smooth positive function compactly supported and let 0 ≤ φ ≤ 1 be a smooth function that takes the value 1 on a ball B R1 and the value 0 outside the ball B R2 where R 1 < R 2 , with R 1 big enough. We have

(X + iY )P 1 f (0) =(X + iY )P 1 φf (0) + (X + iY )P 1 (1 -φ)f (0) = H p * 1 (r, z + 2i)(X + iY )(f φ)(r, θ, z)rdrdθdz + H p 1 (r, z + 2i)(X + iY )(f (1 -φ))(r, θ, z)rdrdθdz = H φ(r, θ, z)p * 1 (r, z + 2i)(X + iY )f (r, θ, z)rdrdθdz + H (1 -φ(r, θ, z))p 1 (r, z + 2i)(X + iY )f (r, θ, z)rdrdθdz + 1 4π 2 H f (r, θ, z) (X + iY )φ(r, θ, z) -1 + iz + r 2 4 2 rdrdθdz. Therefore | ∇P 1 f (0) |≤ CP 1 | ∇f | (0) + 1 4π 2 H f (r, θ, z) (X + iY )φ(r, θ, z) -1 + iz + r 2 4 2 rdrdθdz . Now, we estimate H f (r, θ, z) (X+iY )φ(r,θ,z) -1+iz+ r 2 4
2 rdrdθdz thanks to lemma 5.3:

H f (r, θ, z) (X + iY )φ(r, θ, z) -1 + iz + r 2 4 2 rdrdθdz = H (f (r, θ, z) -m) (X + iY )φ(r, θ, z) -1 + iz + r 2 4 2 rdrdθdz (m is the mean of f on B R2 ) ≤C 1 BR 2 | f (r, θ, z) -m | rdrdθdz ≤C 2 BR 2 | ∇f | (r, θ, z)rdrdθdz ≤C 3 P 1 | ∇f | (0).
This completes the proof of H.-Q. Li's inequality.

As we mentioned it in the beginning of this section, interestingly, it is not possible to find a function φ on H such that:

• (X + iY )φ = 0; • The ratio |p * 1 (r,z+2i)-Φ( r,θ,z)| p1(r,z) is bounded. 
Indeed, the first point implies that Φ can be written:

Φ(r, θ, z) = H r 2 4 + iz, re iθ ,
where H : {z 1 ∈ C, Re(z 1 ) ≥ 0} × C → C is analytic in z 1 and z 2 . Now, due to the estimate of Proposition 5.6 and the estimate on p 1 , it would imply that for r and z, such that

r 2 + | z | is big enough: H r 2 4 + iz, re iθ + 1 4π 2 -1 + iz + r 2 4 2 ≤ Ae -B(r 2 +|z|)
where A and B are strictly positive constants. Now, we have the following lemma that prevents the existence of such H:

Lemma 5.8. Let f : {z 1 ∈ C, Re(z 1 ) ≥ 0} × C → C be analytic in z 1 and z 2 .
If there exist strictly positive constants A and B such that

∀r ≥ 0, ∀z ∈ R, ∀θ ∈ [0, 2π], f r 2 + iz, re iθ ≤ Ae -B(r 2 +|z|) then f = 0. Proof. Let r ≥ 0, z ∈ R. The function z 2 → f r 2 + iz, z 2 is analytic, therefore from the maximum principle we have f r 2 + iz, z 2 ≤ Ae -B(|z2| 2 +|z|) , for | z 2 |≤ r. Consequently, on the set Re(z 1 ) ≥| z 2 | 2 we have |f (z 1 , z 2 )| ≤ Ae -B(|z2| 2 +|Im(z1)|) .
By using the analytic function z 1 → f (z 1 , z 2 ), a translation, and a multiplication by e -z1 we would therefore obtain a function g analytic on the set Re(z) > 0 such that

|g(z)| ≤ αe -β|z|
with α, β > 0, and such function has clearly to be 0 (Use for instance the conformal equivalence between the set Re(z) > 0 and the open unit disc to get a function h analytic on the disc that satisfy the estimate |g(z)| ≤ α ′ e -β ′ |z| ).

Functional inequalities for the heat kernel

Most of the consequences of the classical gradient bounds under a Γ 2 curvature assumption remain true under an H.-Q. Li gradient bound. In the sequel, we derive, by interpolation from the gradient bound ( 6), several local functional inequalities of Gross-Poincaré-Cheeger-Bobkov type for the heat kernel on the Heisenberg group. The term local means that these inequalities concern the probability measure P t (•)(x) at fixed t and x, in contrast to inequalities for the invariant measure. These local inequalities can be seen as global inequalities for Gaussian measures on the Heisenberg group. In the literature, these inequalities and interpolations where mainly developed in Riemannian settings under a Γ 2 curvature assumption. Rigorously, the semigroup interpolations used in the sequel rely on the existence of an algebra of functions A from H to R stable by the action of the heat kernel. Thanks to lemma 2.1, the Schwartz class S of smooth and rapidly decreasing functions in R 3 may play this role in the case of the Heisenberg group H.

Gross-Poincaré type inequalities

One of the first consequence of the gradient bound ( 6) is Gross-Poincaré type local inequalities, also called ϕ-Sobolev inequalities in [START_REF] Chafaï | Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities[END_REF][START_REF] Hu | A unified approach to several inequalities for Gaussian and diffusion measures[END_REF]. Namely, let ϕ : I → R be a smooth convex function defined on an open interval I ⊂ R such that ϕ ′′ > 0 on I and -1/ϕ ′′ is convex on I.

Theorem 6.1 (Local Gross-Poincaré inequalities). By using the notations of (6), for every t ≥ 0, every x ∈ H, and every f ∈ C ∞ c (H, I),

P t (ϕ(f )) -ϕ(P t f ) ≤ C 2 1 t P t (ϕ ′′ (f )|∇f | 2 ). ( 20 
)
Proof. One can assume that the support of f is strictly included in I. Since L is a diffusion operator, L(α(f )) = α ′ (f )Lf + α ′′ (f )Γf for any f ∈ C ∞ c (H, R) and any smooth α : R → R. By the semigroup and the diffusion properties,

P t (ϕ(f )) -ϕ(P t f ) = t 0 ∂ s P s (ϕ(P t-s f )) ds = t 0 P s (ϕ ′′ (P t-s f ) |∇P t-s f | 2 ) ds. Now, (6) gives |∇P t-s f | 2 ≤ C 2 1 (P t-s (|∇f |)) 2 .
Next, by the Cauchy-Schwarz inequality or alternatively by the Jensen inequality for the bivariate convex function (u, v) → ϕ ′′ (u)v 2 , we get ϕ ′′ (P t-s f )(P t-s (|∇f |)) 2 ≤ P t-s (ϕ ′′ (f )|∇f | 2 ), which gives the desired result.

• for ϕ(u) = u log(u) on I = (0, ∞), we get a Gross logarithmic Sobolev inequality, mentioned for instance in [START_REF] Li | Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg[END_REF] (see also [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF][START_REF] Gross | Logarithmic Sobolev inequalities and contractivity properties of semi-groups[END_REF]),

P t (f log(f )) -P t (f ) log(P t (f )) ≤ C 2 1 t P t f -1 |∇f | 2 ; (21) 
• for ϕ(u) = u p on I = (0, ∞) with 1 < p ≤ 2, we get a Beckner-Lata la-Oleszkiewicz type inequality (see [START_REF] Beckner | A generalized Poincaré inequality for Gaussian measures[END_REF][START_REF] Lata | Between Sobolev and Poincaré[END_REF])

P t (f p ) -(P t (f )) p p -1 ≤ p C 2 1 t P t (f p-2 |∇f | 2 ); (22) 
• for ϕ(u) = u 2 on I = R, we get a Poincaré inequality, mentioned in [START_REF] Driver | Hypoelliptic heat kernel inequalities on the Heisenberg group[END_REF],

P t (f 2 ) -(P t (f )) 2 ≤ 2 C 2 1 t P t (|∇f | 2 ). ( 23 
)
We have seen in the introduction that a local Poincaré inequality such as [START_REF] Hu | A unified approach to several inequalities for Gaussian and diffusion measures[END_REF] can be also obtained from the Driver and Melcher gradient bound (3), with a constant 2C 2 instead of 2C 2 1 . However, the inequalities ( 21) and ( 22) need the stronger gradient bound ( 6) of H.-Q. Li. They also imply the local Poincaré inequality [START_REF] Hu | A unified approach to several inequalities for Gaussian and diffusion measures[END_REF] by linearization. It is shown in [START_REF] Chafaï | Binomial-Poisson entropic inequalities and the M/M/∞ queue[END_REF]Theorem 4.4] that the convexity of the bivariate function (u, v) → ϕ ′′ (u)v 2 is equivalent to the convexity of the ϕ-entropy functional and also to the tensorization property of the ϕ-entropy functional. This fact is related to the infinite dimensional nature of [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF]. The inequality [START_REF] Gross | Logarithmic Sobolev inequalities and contractivity properties of semi-groups[END_REF] interpolates between (21) (let p → 1 + ) and ( 23) (take p = 2). The linearity with respect to t of the constant in front of the right hand side of ( 20) is related to the fact that (P t ) t≥0 is a convolution semigroup, namely P t (•)(x) can be obtained from P 1 (•)(0) by x-translation and √ t-dilation in H.

Cheeger type isoperimetric inequalities

As mentioned in the introduction, it is possible to deduce a reverse local Poincaré inequality from the gradient bounds (3) of Driver and Melcher or ( 6) of H.-Q. Li. However, the constants are not known precisely. A better constant is provided by theorem 3.1, which implies immediately that for every t ≥ 0 and every f ∈ C ∞ c (H, R),

|∇P t f | ∞ ≤ 1 √ t f ∞ . (24) 
Cheeger derived in [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF] a lower bound for the spectral gap of the Laplacian on a Riemannian manifold. This bound can be related to a sort of L 1 Poincaré inequality, which has an isoperimetric content, see [START_REF] Th | Isopérimétrie pour les groupes et les variétés[END_REF] and references therein. Here we derive such an inequality for the heat kernel by only using the gradient bound [START_REF] Barthe | Some remarks on isoperimetry of Gaussian type[END_REF], by mixing arguments borrowed from [START_REF] Bakry | Lévy-Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator[END_REF] and [START_REF] Ledoux | A simple analytic proof of an inequality by P. Buser[END_REF]. Theorem 6.2 (Local Cheeger type inequality). With the notations of (6), for every t ≥ 0, every x ∈ H, and every f ∈ C ∞ c (H, R),

P t (|f -P t (f )(x)|)(x) ≤ 4C 1 √ t P t (|∇f |)(x). (25) 
Proof. We adapt the method used in [27, p. 953 

≤ 2C 1 P t (|∇f |)(x) t 0 g ∞ (t -s) ds ≤ 4C 1 √ t P t (|∇f |)(x).
where we used the gradient bound ( 6) for f and the gradient bound [START_REF] Hsu | Stochastic analysis on manifolds[END_REF] for g. The desired result follows then by L 1 -L ∞ duality by taking the supremum over g.

Similarly, we get also the following correlation bound for every t ≥ 0 and f, g ∈ C ∞ c (H, R),

|P t (f g) -P t (f )P t (g)| ≤ 2C 2 1 t P t (|∇f | 2 ) P t (|∇g| 2 ). ( 26 
)
When f = g, we recover the Poincaré inequality [START_REF] Hu | A unified approach to several inequalities for Gaussian and diffusion measures[END_REF].

Theorem 6.3 (Yet another local Cheeger type inequality). With the notations of (6), for every t ≥ 0, every x ∈ H, and every ball B of H for the Carnot-Carathéodory metric, there exists a real constant C B,t,x > 1 such that for every function

f ∈ C ∞ c (H, R) which vanishes on B, |P t (f )(x)| ≤ C B,t,x P t (|∇f |)(x). (27) 
Proof. Let g ∈ C ∞ (H, R) be such that g ∞ < ∞ and g ≡ 1 on B c . Since f g = f , the computation made in the proof of theorem 6.2 provides

P t (f )(x) -P t (f )(x)P t (g)(x) ≤ 4C 1 √ t g ∞ P t (|∇f |)(x).
For any arbitrary real number r ≥ 1, the class of functions

C B,r = {g ∈ C ∞ (H, R) with g ∞ ≤ r and g ≡ 1 on B c }.
is not empty since it contains the constant function ≡ 1. Furthermore, since P t (•)(x) is a probability measure with non vanishing density, the following extrema α -(B, r, t, x) = inf g∈CB,r P t (g)(x) and α + (B, r, t, x) = sup g∈CB,r P t (g)(x) are finite and non zero. Moreover, an elementary local perturbative argument on any element of the class C B,r shows that α -(B, r, t, x) α + (B, r, t, x) < 0 as soon as r is large enough, say r ≥ r B,t,x . Thus, P t (f )(x)P t (g)(x) ≤ 0 for some g ∈ C B,r . The desired result follows then with C B,t,x = 4C 1 √ t r B,t,x , since one can replace f by -f in the obtained inequality. Note that C B,t,x blows up when vol(B) ց 0. Actually, this proof does not use the nature of the Heisenberg group H, and relies roughly only on the diffusion property, the smoothness of the heat kernel and the gradient bound. However, on the Heisenberg group H, the usage of translations and dilations and of the convolution semigroup nature of (P t ) t≥0 allows to precise the dependency of C B,t,x over t and x by using x-translation and √ t-dilation.

The isoperimetric content of ( 25) can be extracted by approximating an indicator with a smooth f , see for instance [START_REF] Bakry | Lévy-Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator[END_REF]. Namely, for any Borel set A ⊂ H with smooth boundary, any t ≥ 0, and any x ∈ H, we get by denoting µ t,x = P t (•)(x),

µ t,x (A)(1 -µ t,x (A)) ≤ 2C 1 √ t µ surface t,x (∂A) (28) 
where µ surface t,x (∂A) is the perimeter of A for µ t,x as defined in [1, Section 3] (see also [START_REF] Monti | Surface measures in Carnot-Carathéodory spaces[END_REF]). From (27), we get similarly for any ball B in H and any Borel set A ⊂ B c with smooth boundary,

µ t,x (A) ≤ C B,t,x µ surface t,x ( 
∂A).

(29)

Bobkov type isoperimetric inequalities

Let F γ : R → [0, 1] be the cumulative probability function of the standard Gaussian distribution γ on the real line R, given for every t ∈ R by

F γ (t) = 1 √ 2π t -∞ e -1 2 u 2 du.
The Gaussian isoperimetric function

I : [0, 1] → [0, (2π) -1/2 ] is defined by I = (F γ ) ′ • (F γ ) -1 .
The function I is concave, continuous on [0, 1], smooth on (0, 1), symmetric with respect to the vertical axis of equation u = 1/2, and satisfies to the differential equation

I(u)I ′′ (u) = -1 for any u ∈ [0, 1] (30) 
with I(0) = I(1) = 0 and

I ′ (0) = -I ′ (1) = ∞. Note that I(u) ≥ u(1 -u) for any real u ∈ [0, 1],
and that I(u) ≤ min(u, 1 -u)) when u belongs to a neighborhood of 1/2. Lemma 6.4 (Yet another uniform gradient bound). With the notations of (6), for every t ≥ 0 and f ∈ C ∞ c (H, (0, 1)),

I(P t f ) -P t (I(f )) ≤ C 2 1 √ 2t P t (|∇f |). (31) 
Proof. The inequality [START_REF] Li | Estimations optimales du noyau de la chaleur sur les groupes de type Heisenberg[END_REF] was obtained by Bobkov in [START_REF] Bobkov | A functional form of the isoperimetric inequality for the Gaussian measure[END_REF] for the standard Gaussian measure on R. Later, it was generalized in [START_REF] Bakry | Lévy-Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator[END_REF], by using semigroup techniques, to Riemannian settings under a Γ 2 curvature assumption. We give here a proof by adapting the argument given in [5, p. 261-263] from invariant measure settings to local settings. One may assume that ε ≤ f ≤ 1 -ε for some ε > 0. By the diffusion property and (30)

[I(P t f )] 2 -[P t (I(f ))] 2 = - t 0 ∂ s [P s (I(P t-s f ))] 2 ds = -2 t 0 P s (I(P t-s f ))P s I ′′ (P t-s f ) |∇P t-s f | 2 ds = +2 t 0 P s (I(P t-s f ))P s |∇P t-s f | 2 I(P t-s f ) ds.
Next, the Cauchy-Schwarz inequality or alternatively the Jensen inequality for the bivariate convex function

(u, v) → u 2 /I(v) = -I ′′ (v)u 2 gives [I(P t f )] 2 -[P t (I(f ))] 2 ≥ 2 t 0 [P s (|∇P t-s f |)] 2 ds.
Now by using the gradient bound (6) we have

C 1 P s (|∇P t-s f |) ≥ |∇P s (P t-s f )| = |∇P t f | and thus [I(P t f )] 2 -[P t (I(f ))] 2 ≥ 2t C 2 1 |∇P t f | 2 .
In particular, we obtain the following uniform gradient bound

I ′′ (P t f )|∇P t f | ∞ = |∇P t f | I(P t f ) ∞ ≤ C 1 √ 2t .
We are now able to prove [START_REF] Li | Estimations optimales du noyau de la chaleur sur les groupes de type Heisenberg[END_REF]. By the diffusion property

I(P t f ) -P t (I(f )) = - t 0 ∂ s P s (I(P t-s f )) ds = - t 0 P s (I ′′ (P t-s f ) |∇P t-s f | 2 ) ds. By (6) we get |∇P t-s f | 2 ≤ C 1 |∇P t-s f |P t-s (|∇f |)
and thus

I(P t f ) -P t (I(f )) ≤ C 1 t 0 C 1 2(t -s) ds P t (|∇f |) = C 2 1 √ 2t P t (|∇f |).
The isoperimetric content of ( 31) can be extracted by approximating an indicator with a smooth f , see [START_REF] Bakry | Lévy-Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator[END_REF]. Namely, for any Borel set A ⊂ H with smooth boundary, any t ≥ 0, and any x ∈ H, we get by denoting µ t,x = P t (•)(x),

I(µ t,x (A)) ≤ C 2 1 √ 2t µ surface t,x (∂A). ( 32 
)
Corollary 6.5 (Yet another local Bobkov Gaussian isoperimetric inequality). With the notations of (6), for every t ≥ 0 and f ∈ C ∞ c (H, (0, 1)),

I(P t f ) ≤ P t (I(f )) 2 + 2C 4 t |∇f | 2 . ( 33 
)
Proof. The desired result follows from the transportation-rearrangement argument given in [6, prop. 5 p. 427], which is inspired from [5, p. 273]. The method is not specific to the heat semigroup on the Heisenberg group. It is based in particular on a similar inequality for the standard Gaussian measure on R obtained by Bobkov in [START_REF] Bobkov | An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space[END_REF].

One of the most important aspect of ( 33) is its stability by tensor product, in contrast with [START_REF] Li | Estimations optimales du noyau de la chaleur sur les groupes de type Heisenberg[END_REF], while maintaining the same isoperimetric content. Moreover, one may recover from (33) the Gross logarithmic Sobolev inequality (21) by using the fact that I ′ (u) ∼ -2 log(u) and I(u) ∼ u -2 log(u) at u = 0. We ignore if [START_REF] Melcher | Hypoelliptic heat kernel inequalities on Lie groups[END_REF] can be obtained directly by semigroup interpolation, as for the elliptic case in [START_REF] Bakry | Lévy-Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator[END_REF]. The proof given in [START_REF] Bakry | Lévy-Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator[END_REF] for the elliptic case is based directly on a curvature bound at the level of the infinitesimal generator, which is not implied by the gradient bound (6) on H. We ignore also if one can adapt on the Heisenberg group the two points space approach used in [START_REF] Bobkov | An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space[END_REF] or the martingale representation approach used in [START_REF] Barthe | Some remarks on isoperimetry of Gaussian type[END_REF][START_REF] Capitaine | Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces[END_REF][START_REF] Hsu | Stochastic analysis on manifolds[END_REF][START_REF] Ledoux | The geometry of Markov diffusion generators[END_REF]. There is a lack of a direct proof of (33) on the Heisenberg group, despite the fact that [START_REF] Melcher | Hypoelliptic heat kernel inequalities on Lie groups[END_REF] and [START_REF] Li | Estimations optimales du noyau de la chaleur sur les groupes de type Heisenberg[END_REF] are equivalent, according to the argument of Barthe and Maurey in [6, prop. 5 p. 427]. Remark 6.6 (Abstract Markov settings). In fact, up to specific constants, most of the proofs given above have nothing to do with the group structure of the space or with the convolution semigroup nature of (P t ) t≥0 . They remain actually valid in very general settings provided that the computations make sense. The key points are a √ Γ -P t sub-commutation and the semigroup and diffusion properties. Formally, let L be a diffusion operator on a smooth complete connected differential manifold M, generating a Markov semigroup (P t ) t≥0 = (e tL ) t≥0 with smooth density with respect to some reference Borel measure on M. Let 2Γf = L(f 2 ) -2f Lf and suppose that there exists C : (0, ∞) → (0, ∞) such that ΓP t f ≤ C(t) P t ( Γf ) [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF] pointwise for every t ≥ 0 and every smooth f : M → R. Then for every t ≥ 0, every x ∈ M, and every smooth f : M → R, P t (|f -P t (f )(x)|)(x) ≤ 2R(t) P t ( Γf )(x).
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Moreover, for every t ≥ 0 and every smooth f : M → (0, 1),

I(P t (f )) -P t (I(f )) ≤ R(t) P t ( Γf ), (36) 
and

I(P t (f )) ≤ P t (I(f )) 2 + R(t) 2 Γf , (37) 
where I stands for the Gaussian isoperimetric function as in [START_REF] Li | Estimations asymptotiques du noyau de la chaleur sur les groupes de Heisenberg[END_REF]. Furthermore, if I is an open interval of R and ϕ : I → R is a smooth convex function such that ϕ ′′ > 0 on I and -1/ϕ ′′ is convex on I, then for every t ≥ 0, every x ∈ M, and every smooth f : M → I, P t (ϕ(f )) -ϕ(P t f ) ≤ t 0 C(u) 2 du P t (ϕ ′′ (f )Γf ). [START_REF] Th | Small time Gaussian estimates of heat diffusion kernels. I. The semigroup technique[END_REF] Finally, if P t (•)(x) → µ weakly as t → ∞ for some x ∈ M and some probability measure µ on M then the four inequalities [START_REF] Monti | Surface measures in Carnot-Carathéodory spaces[END_REF][START_REF] Neuenschwander | Probabilities on the Heisenberg group. Limit theorems and Brownian motion[END_REF][START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy, and Ricci curvature[END_REF][START_REF] Th | Small time Gaussian estimates of heat diffusion kernels. I. The semigroup technique[END_REF] above hold for µ instead of P t (•)(x). Here the constant in [START_REF] Monti | Surface measures in Carnot-Carathéodory spaces[END_REF] is obtained partly by using a reverse local Poincaré inequality deduced from [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF]. On the Heisenberg group, we used an alternative constant for the reverse local Poincaré inequality, which was not deduced from (34).

Multi-times inequalities

Let ϕ : I → R be fixed and as in [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF]. The ϕ-entropy functional where the integrals in Ent µi (f ) act only on the i th coordinate. The details are given in [START_REF] Chafaï | Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities[END_REF]. Below, we use the notation Ent(U ) = E(ϕ(U )) -ϕ(E(U )) for any real random variable U taking its values in I. Now, let (X t ) t≥0 be the diffusion process on H generated by L, with X 0 = 0. Let also F : H n → I be some fixed smooth function. Here H n stands for the nproduct space H × • • • × H. Since (X t ) t≥0 has independent stationary increments, i.e. is a Lévy process on H associated to a convolution semigroup, we have, for any finite increasing sequence 0 < t 1 < • • • < t n of fixed times, Ent(F (X t1 , . . . , X tn )) = Ent L(Q1,...,Qn) (F • π)

where π : H n → H n is defined by

π(x 1 , x 2 , . . . , x n ) = (x 1 , x 1 • x 2 , . . . , x 1 • • • • • x n )
for every (x 1 , . . . , x n ) ∈ H n , and where Q 1 , . . . , Q n are independent random variables on the Heisenberg group H with L(Q i ) = L((X ti-1 ) -1 X ti ) = L(X ti-ti-1 ) for every i ∈ {1, . . . , n}, with t 0 = 0. The tensor product property of the entropy given above together with [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF] gives

Ent(F (X t1 , . . . , X tn )) ≤ C 2 1 E L(Xt 1 ,...,Xt n ) (ϕ ′′ (F )D 2 t1,...,tn F )

where C is as in ( 6) and ( 20), and where

D 2 t1,...,tn F = n i=1 (t i -t i-1 ) |∇ i (F • π)| 2 • π -1
where ∇ i denote the left invariant gradient ∇ of H acting on the i th coordinate x i . Only the distribution of ϕ ′′ (F )D 2 t1,...,tn F under L(X t1 , . . . , X tn ) is of interest. Similarly, by using an argument of Bobkov detailed for instance in [6, p. 429-430], we get from [START_REF] Melcher | Hypoelliptic heat kernel inequalities on Lie groups[END_REF], for any smooth function F : H n → (0, 1), by denoting ν = L(X t1 , . . . , X tn ), I(E ν (F )) ≤ E ν (I(F )) 2 + 2C 4 2 D 2 t1,...,tn F .

We ignore if such a cylindrical approach leads to functional inequalities for the paths space on H, i.e. for the hypoelliptic Wiener measure, by letting n → ∞. It sounds interesting to try to make a link with [START_REF] Friz | Isoperimetry and Rough Path Regularity[END_REF].

then we make use of |∇f 1 |

 1 + |∇f 2 | ≤ |∇f | + 2 |f | |∇φ| and since |∇φ| is supported outside the unit ball, |f | |∇φ| ≤ ||∇φ|| ∞ |f |1 B c so one has by lemma 5.2 |f | , |∇φ| h ≤ C |∇f | , h .
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 222 cotan λ (π -λ) dλ sin λ for some finite positive constant c 1 . By choosing ε = π -2θ(r, z), we have |λ|=ε e 2iλ e -(π-λ) z-r cotan λ (π -λ) dλ sin λ = |λ|=π-2θ(r,z) e 2iλ e -(π-λ) z-r cotan λ (π -λ) dλ sin λ ,

  Let us define R(t) by

  Ent µ : f → Ent µ (f ) = ϕ(f ) dµ -ϕ f dµ has the tensor product property. Namely, if µ = µ 1 ⊗ . . . ⊗ µ n is a probability measure on a product space E = E 1 × • • • × E n then for every f : E → I in the domain of Ent µ , Ent µ (f ) ≤ n i=1Ent µi (f )) dµ
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