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Abstract

It is known that the couple formed by the two dimensional Brownian motion and its

Lévy area leads to the heat kernel on the Heisenberg group, which is one of the simplest

sub-Riemannian space. The associated diffusion operator is hypoelliptic but not elliptic,

which makes difficult the derivation of functional inequalities for the heat kernel. However,

Driver and Melcher and more recently H.-Q. Li have obtained useful gradient bounds for the

heat kernel on the Heisenberg group. We provide in this paper simple proofs of these bounds,

and explore their consequences in terms of functional inequalities, including Cheeger and

Bobkov type isoperimetric inequalities for the heat kernel.
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1 Introduction

Gradient bounds had proved to be a very efficient tool for the control of the rate of convergence
to equilibrium, quantitative estimates on the regularization properties of heat kernels, functional
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inequalities such as Poincaré, logarithmic Sobolev, Gaussian isoperimetric inequalities for heat
kernel measures. The reader may take a look for instance at [3, 38, 39, 28, 2] and references
therein. When dealing with the simplest examples, such as linear parabolic evolution equations
(or heat kernels), those gradient bounds often rely on the control of the intrinsic Ricci curvature
associated to the generator of the heat kernel. Those methods basically require some form of
ellipticity of the generator.

The elliptic case

Let M be a complete connected Riemannian manifold of dimension n and let L be the associated
Laplace-Beltrami operator, written in a local system of coordinates as

L(f)(x) =

n
∑

i,j=1

ai,j(x)∂2
xixj

f(x).

The coefficients x 7→ ai,j(x) are smooth and the symmetric matrix (ai,j(x))1≤i,j≤n is positive
definite for every x. The “length of the gradient” |∇f | of a smooth f : M → R is given by

Γ(f, f) = |∇f |2 =
1

2
(L(f2) − 2fLf) =

n
∑

i,j=1

ai,j(x)∂xi
f∂xj

f.

Let (Pt)t≥0 = (etL)t≥0 be the heat semigroup generated by L. For every smooth f : M → R,
the function (t, x) 7→ Pt(f)(x) is the solution of the heat equation associated to L

∂tPt(f)(x) = LPt(f)(x) and P0(f)(x) = f(x).

For every real number ρ ∈ R, the following three propositions are equivalent (see [3, 28, 37]).

1. ∀f ∈ C∞
c (M), Ricci(∇f,∇f) ≥ ρ |∇f |2

2. ∀f ∈ C∞
c (M), ∀t ≥ 0, |∇Ptf |2 ≤ e−2ρt Pt(|∇f |2)

3. ∀f ∈ C∞
c (M), ∀t ≥ 0, |∇Ptf | ≤ e−ρt Pt(|∇f |)

This is the case for some ρ ∈ R when M is compact. This is also the case with ρ = 0 when
M is R

n equipped with the usual metric since Ricci ≡ 0. In this last example, L is the usual
Laplace operator ∆ and the explicit formula for the heat kernel gives ∇Ptf = Pt∇f for the usual
gradient ∇ and thus |∇Ptf | ≤ Pt |∇f |. Back to the general case, and following [3], the gradient
bounds 2. or 3. above are equivalent to their infinitesimal version at time t = 0, which reads

Γ2(f, f) ≥ ρΓ(f, f)

where

Γ2(f, f) =
1

2
(LΓ(f, f) − 2Γ(f, Lf)) = |∇∇f |2 + Ric(∇f,∇f).

The bound Γ2 ≥ ρΓ had proved to be a very efficient criterion for the derivation of gradient
bounds for more general Markov processes, including for instance processes generated by an
operator L with a first order linear part (i.e. with a potential).

In the equivalence above, one may add several other inequalities, including local Poincaré
inequalities, local logarithmic Sobolev inequalities, and local Bobkov isoperimetric inequalities,
and their respective reverse forms, with a specific constant involving e−ρt, see [3, 28]. Here the
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term local means that they concern the probability measure Pt(·)(x) for any fixed t and x. One
may also replace in these inequalities e−ρt by any function c(t) continuous and differentiable at
t = 0 with c(0) = 1 and c′(0) = −ρ. In the present paper, we will focus on the Heisenberg group,
a non elliptic situation where these equivalences do not hold, but where some gradient bounds
are still available and provide local inequalities of various types.

The Heisenberg group

In recent years, some focus had been set on some degenerate situations, where the methods
used for the elliptic case do not apply. One of the simplest example of such a situation is the
Heisenberg group (see section 2 for the group structure). Namely, we consider on H = R

3 the
vector fields

X = ∂x − y

2
∂z and Y = ∂y +

x

2
∂z

and the operator

L = X2 + Y 2 = ∂2
x + ∂2

y +
1

4
(x2 + y2)∂2

z + x∂2
y,z − y∂2

x,z. (1)

This operator is self-adjoint for the Lebesgue measure on R3. The matrix of second order
derivatives associated to L is degenerate and thus L is not elliptic. If [U, V ] = UV − V U stands
for the commutator of U and V , then

Z := [X, Y ] = ∂z and [X, Z] = [Y, Z] = 0.

In particular, L is hypoelliptic in the Hörmander sense (the Lie algebra described by {X, Y, Z}
is the Lie algebra of the Heisenberg group, see section 2). As a consequence, the heat semigroup
(Pt)t≥0 = (etL)t≥0 obtained by solving the heat equation associated to L admits a smooth density
with respect to the Lebesgue measure on R3. It is remarkable that the Markov process associated
to this semigroup is the couple formed by a Brownian motion on R2 and its Lévy area, and for
every fixed t > 0 and x ∈ H, the probability distribution Pt(·)(x) is a sort of Gaussian on H. We
refer to [7] and [36] for such probabilistic aspects. For this operator L we have also

Γ(f, f) = X(f)2 + Y (f)2 (2)

and

Γ2(f, f) = X2(f)2 + Y 2(f)2 +
1

2
(XY + Y X)(f)2 +

1

2
(Zf)2 + 2(XZ(f)Y (f)− Y Z(f)X(f)).

The presence of Y Z(f) and XZ(f) in the Γ2 expression forbids the existence of a constant ρ ∈ R

such that Γ2 ≥ ρΓ as functional quadratic forms. Therefore the methods used in the elliptic case
to prove gradient bounds could not work. In other words, the Ricci tensor is everywhere −∞.
In fact, a closer inspection of the Ricci tensor of the elliptic operator X2 + Y 2 + ǫZ2 when ǫ goes
to 0 shows that this operator has everywhere a Ricci tensor which is





− 1
2ǫ 0 0

0 − 1
2ǫ 0

0 0 1
2ǫ2



 .

In the limit, one may consider that the lower bound of the Ricci tensor for L is everywhere −∞.
Despite this singularity, B. Driver and T. Melcher proved in [16] the existence of a finite positive
constant C2 such that

∀f ∈ P∞(H), ∀t ≥ 0, |∇Ptf |2 ≤ C2Pt(|∇f |2). (3)
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where P∞(H) is the class of smooth function from H to R with all partial derivatives of polynomial
growth. Here C2 is the best constant, i.e. the smallest possible. As in the elliptic case, the
gradient bound (3) implies a Poincaré inequality for Pt, since

Pt(f
2) − (Ptf)2 = 2

∫ t

0

Ps(|∇Pt−sf |2) ds ≤ 2tC2Pt(|∇f |2). (4)

The gradient bound (3) gives also a reverse Poincaré inequality for Pt, since

Pt(f
2) − (Ptf)2 = 2

∫ t

0

Ps(|∇Pt−sf |2) ds ≥ 2t

C2
|(∇Ptf)|2 . (5)

¿From the point of view of regularization, (5) is the most important, while (4) is more concerned
with estimates on the heat kernel and concentration properties. More recently, H.-Q. Li showed
in [29] that there exists a finite positive constant C1 such that

∀f ∈ P∞(H), ∀t ≥ 0, |∇Ptf | ≤ C1Pt(|∇f |). (6)

It is shown in [16] that C1 ≥
√

2 and C2 ≥ 2. The Jensen or Cauchy-Schwarz inequality for Pt

gives C2 ≤ C2
1 , however, the exact values of C1 and C2 are not known to the authors knowledge.

The gradient bound (6) is far more useful than (3), and has for instance many consequences in
terms of functional inequalities for Pt, including Poincaré inequalities, Gross logarithmic Sobolev
inequalities, Cheeger type inequalities, and Bobkov type inequalities, as presented in section 6.
As we shall see later, (6) is much harder to obtain than (3).

More generally, one may consider for any p ≥ 1 and t ≥ 0 the best constant Cp(t) in [0,∞]
(i.e. the smallest possible, possibly infinite) such that

∀f ∈ P∞(H), |∇Ptf |p ≤ Cp(t)Pt(|∇f |p).

It is immediate that Cp(0) = 1. According to [16] and [29], for every p ≥ 1 and t > 0, the
quantity Cp(t) belongs to (1,∞) and does not depend on t. In particular, Cp is discontinuous at
t = 0, and this reflects the fact that the Γ2 curvature of L is −∞.

The aim of this paper is mainly to provide simpler proofs of the gradient bounds (3) and (6).
We also give in section 6 a collection of consequences of (6) in terms of functional inequalities
for the heat kernel of the Heisenberg group. Section 2 gathers some elementary properties of
the Heisenberg group used elsewhere. Section 3 provides a direct simple proof of the reverse
Poincaré inequality (5) without using (3) or (6). Sections 4 and 5 provide elementary proofs of
(3) and (6) respectively.

2 Elementary properties of the Heisenberg group

We summarize in this section the main properties of the Heisenberg group that we use in the
present paper. For more details on the geometric aspects, we refer to [20, 34, 25]. The link with
the Brownian motion and its Lévy area is considered for instance in [7] and [36]. From now on,
we shall use the notations

〈f〉 and 〈f, g〉 = 〈fg〉
to denote the integral of a function f with respect to the Lebesgue measure in R3 and the scalar
product of two functions f, g in L2(R3, R). The Heisenberg group H is the set of matrices

M(x, y, z) =





1 x z
0 1 y
0 0 1




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equipped with the following non-commutative product

M(x, y, z)M(x′, y′, z′) = M(x + x′, y + y′, z + z′ + xy′).

The inverse of M(x, y, z) is M(−x,−y, xy− z). It is often more convenient to work with the Lie
algebra of the group. For that, we define

X =





0 1 0
0 0 0
0 0 0



 , Y =





0 0 0
0 0 1
0 0 0



 , Z =





0 0 1
0 0 0
0 0 0





and we consider
N(x, y, z) = exp(xX + yY + zZ),

which gives

N(x, y, z) = M
(

x, y, z +
xy

2

)

.

We shall therefore identify a point x = (x, y, z) in R3 with the matrix N(x, y, z) and endow R3

with this group structure that we denote x • y which is

(x, y, z) • (x′, y′, z′) = (x + x′, y + y′, z + z′ +
1

2
(xy′ − yx′)).

The left invariant vector fields which are given by

X(f) = lim
ǫ→0

f(x • (ǫ, 0, 0)) − f(x)

ǫ
= (∂x − y

2
∂z)(f),

Y (f) = lim
ǫ→0

f(x • (0, ǫ, 0)) − f(x)

ǫ
= (∂y +

x

2
∂z)(f),

Z(f) = lim
ǫ→0

f(x • (0, 0, ǫ)) − f(x)

ǫ
= ∂z(f),

while the right invariant vector fields are given by

X̂(f) = lim
ǫ→0

f((ǫ, 0, 0) • x) − f(x)

ǫ
= (∂x +

y

2
∂z)(f),

Ŷ (f) = lim
ǫ→0

f((0, ǫ, 0) • x) − f(x)

ǫ
= (∂y − x

2
∂z)(f).

And Ẑ = Z since for the points on the z axis, left and right multiplications coincide. The
Lie algebra structure is described by the identities [X, Y ] = Z and [X, Z] = [Y, Z] = 0. In
what follows, we are mainly interested in the operator L = X2 + Y 2, and the associated heat
semigroup (Pt)t≥0 = (etL)t≥0. We shall make a strong use of symmetries in what follows. They
are described by the Lie algebra of the vector fields which commute with L. This Lie algebra is
4-dimensional and is generated by the vector fields X̂, Ŷ , Z, and Θ = x∂y − y∂x. The first ones,
which correspond to the right action, commute with X, Y, Z (as it is the case on any Lie group),
the last one reflects the rotational invariance of L. There is also another vector field which plays
an important role : the dilation operator D, described by

D =
1

2
(x∂x + y∂y) + z∂z.
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This operator D satisfies
[L, D] = L. (7)

Let (Tt)t≥0 = (etD)t≥0 be the group of dilations generated by D, that is

Ttf(x, y, z) = f(et/2x, et/2y, etz).

¿From the commutation relations, one deduces

PtTs = TsPest, (8)

and
PtD = DPt + tPtL. (9)

Since Pt commutes with left translations, if lx(f)(y) = f(xy), then

Pt(f)(x) = lxPt(f)(0) = Pt(lxf)(0).

Here we have just formalized the fact that (Pt)t≥0 is a heat semigroup on a group. Moreover,
since 0 is a fixed point of the dilation group, one has from equation (8)

Pt(f)(0) = P1(Tlog tf)(0).

This explains why P1(f)(0) gives the whole (Ptf)t≥0. It is well known that

P1(f)(0) =

∫

R3

f(y)h(y)dy,

where dy is the Lebesgue measure on R3 and the function h has the following Fourier represen-
tation in the z variable

h(x, y, z) =
1

8π2

∫ +∞

−∞
eiλz exp

(

−r2

4
λ coth λ

)

λ

sinh λ
dλ. (10)

where r2 = x2 + y2 if x = (x, y, z). This formula appeared independently in the works of Gaveau
and Lévy. It is not easy to deduce from this formula any good estimates on h, and it is not
even easy to see that h is positive. Nevertheless, there are quite precise bounds on this function
and its derivatives, see for instance [18, 19] and [29, 30], which may be expressed in terms of the
Carnot-Carathéodory distance. The Carnot-Carathéodory distance may be defined as

d(x,y) = sup
{f such that Γ(f,f)≤1}

f(x) − f(y)

where Γ is as in (2). Here, the explicit form is not easy to write, but we shall only need to
express the distance from 0 to x. In order to do that, it is better to describe the constant
speed geodesics starting from 0. First, straight lines in the (x, y) plane passing through (0, 0) are
geodesics, and the other ones are helices, whose orthogonal projection on the horizontal plane
{z = 0} is a circle containing the origin (see [7]). If a point x(s) is moving at constant speed
(for the Carnot-Carathéodory distance on the geodesic, its horizontal projection p(s) moves with
unit speed (for the Euclidean distance) on this circle.

Moreover, the height z(t) of the point x(s) is the surface between the segment (0,p(s)) and
the circle, which comes from the fact that for any curve in R

3 whose tangent vector is a linear
combination of X and Y , one has

dz =
1

2
(xdy − ydx),
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that is the area spanned by the point p(s) in the plane. Note that all the geodesics end on the
z axis, which is therefore the cut-locus of the point 0. Those geodesics may be parameterized as
follows, using a complex notation for the horizontal projection p(s)

p(s) = u

(

1 − exp

(

is

|u|

))

and z(s) =
|u|2
2

(

s

|u| − sin

(

s

|u|

))

. (11)

Here, u is the center of the circle which is the horizontal projection of the geodesic, and s is
distance from 0 (s ∈ (0, 2π |u|)). When |u| goes to infinity, we recover the straight lines.

If we call d(x) the Carnot-Carathéodory distance from 0 to x, it is easy to see from that if
x = (x, y, z), and s = d(x), then

d
(x

s
,
y

s
,

z

s2

)

= 1.

This corresponds to a change of u into u
s . Now, the unit ball for the Heisenberg metric is between

two balls for the usual Riemannian metric of R3, and therefore one concludes easily that the ratio

(x2 + y2)2 + z2

d4(x, y, z)

is bounded above and below. Although, if R = ((x2 + y2)2 + z2)1/4, the function Γ(R, R) is
bounded above but not below.

Let h be the heat kernel density at time 1 and at the origin, given by (10). The main
properties of h used in the present paper are the following. Here for real valued functions a and
b, we use the notation a ≃ b when the ratio a/b is bounded above and below by some positive
constants. First,

h(x) ≃ exp(− d2(x)
4 )

√

1 + ‖x‖ d(x)
, (12)

where ‖x‖ denotes the Euclidean norm of the projection of x onto the plane {z = 0}. Then, for
some constant C

Γ(log h, log h)(x) ≤ C(1 + d(x)) (13)

and
|Z(log h)| ≤ C. (14)

The last one is not completely explicited in [29] but follows easily from the estimation of W1

page 376 of this paper.

Lemma 2.1. The Schwartz space S of smooth rapidly decreasing functions on the Heisenberg
group H is left globally stable by L and by Pt for any t ≥ 0.

Proof. If R = (x2 +y2)2+z2, then an elementary computation shows that for any positive integer
q, there exists a real constant Bq > 0 such that L((1 + R)−q) ≤ Bq(1 + R)−q. As a consequence,
Pt((1 + R)−q) ≤ eBqt(1 + R)−q. We may see the class S as the class of smooth functions such
that for any non negative integers a, b, c and any positive integer q, the function X̂aŶ bZc(f) is
bounded above by (1 + R)−q. From that and the above, it is clear that if f is in S, such is Ptf .
On the other hand, the stability of S by L is straightforward.

3 Reverse Poincaré inequalities

We show here how to deduce a reverse Poincaré inequality as (5). The method is simple and
direct, and does not rely on a gradient bound such as (3) or (6).
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Theorem 3.1 (Reverse local Poincaré inequality). For any t ≥ 0 and any f ∈ C∞
c (H),

tΓ(Ptf, Ptf) ≤ Pt(f
2) − (Ptf)2.

Proof. Since we work on a group, it is enough to prove this for x = 0. Then, thanks to the
dilation properties, it is enough to prove it for t = 1. Now, consider the vector field X̂, which
coincides with X at x = 0, and let as before h be the density of the heat kernel for t = 1 and
x = 0 given by (10). We want to bound, for a smooth compactly supported function f

(X̂P1f)2 = (P1(X̂f))2 = 〈f, X̂h〉2

where the last identity comes from integration by parts. The first remark is that we may suppose
that 〈fh〉 = 0 since we may always add any constant to f . We then use Cauchy-Schwartz
inequality under the measure h(x)dx to get

(X̂P1f)2 ≤ P1(f2)〈X̂(log h)2h〉.

Using the same method for Y , we get

Γ(P1f, P1f) ≤ (P1(f2) − (P1f)2)〈Γ̂(log h, log h)h〉

where
Γ̂(u, u) = X̂(u)2 + Ŷ (u)2.

Now, the rotational invariance of h, which comes from [Θ, L] = 0, shows that Γ̂(log h) = Γ(log h),
and gives a reverse local Poincaré inequality with the constant C = 〈Γ(log h)h〉. It remains to
compute this constant. For that, we use the dilation operator D and the formula (9). In 0, we
have Df = 0, and therefore it reads for t = 1, for any f ,

P1((L − D)f) = 0,

which means that h is the invariant measure for the operator L − D, or in other words that

(L + D + 2)h = 0

since the adjoint of D is −D − 2. Multiply both sides by log h and using integration by parts
(can be rigorously justified by using estimates on h) gives

〈log h, Lh〉 = −〈Γ(log h, log h), h〉.

Moreover, we have

〈log h, (D + 2)h〉 = −〈h, D log h〉 = −〈Dh〉 = 2〈h〉 = 2

and therefore
〈Γ(log h, log h), h〉 = 2.

If we had done the same reasoning on Rn with the usual Laplace operator, and the corresponding
dilation operator, we would have find a reverse Poincaré inequality with constant n/2 instead of
1
2 . The reason comes from symmetry properties and the same will allow us to divide the constant
by 2 in the Heisenberg case. In fact, because of the rotational invariance of h, we have, for any
vector (a, b) ∈ R

2 with a2 + b2 = 1,

〈(aX̂(log h) + bŶ (log h))2, h〉 = 〈(X̂(log h))2, h〉 =
1

2
〈Γ̂(log h, log h), h〉 = 1.
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Now, we may write

Γ(P1f, P1f)(0) = sup
a2+b2=1

(aX̂P1(f) + bŶ P1(f))2

and use the same Cauchy-Schwarz inequality to improve the bound to

Γ(P1f, P1f) ≤ P1(f2) − (P1f)2.

Remark 3.2 (Optimal constants). Equality is achieved in theorem (3.1) when f = X̂(log h)
for instance. To see it, note that by symmetry, 〈(X̂ log h)2h〉 = 〈(Ŷ log h)2h〉 = 1. By the
rotational invariance of h, we get more generally that 〈(aX̂ log h + bŶ log h)2h〉 = 1 for any a2 +
b2 = 1. As a consequence, 〈X̂(log h)Ŷ (log h), h〉 = 0. For f = X̂(log h), this gives XP1f(0) =
〈X̂f, h〉 = −〈f, X̂(log h)h〉 = −1 and Y P1f = 0, which is the desired equality. Note the difference
with the elliptic case: for the heat semigroup (Pt)t≥0 in Rn or for any manifold with non negative
Ricci curvature, one has for every t ≥ 0 and any smooth f ,

2tΓ(Ptf, Ptf) ≤ Pt(f
2) − (Ptf)2.

Note also, as we already mentioned in the introduction, that the H.-Q. Li gradient bound (6)
provides simply by semigroup interpolation a result similar to theorem 3.1, with a constant 2tC−2

1

instead of t. These two constants are equal if and only if C1 =
√

2. At the level of reverse local
Poincaré inequalities, a necessary and sufficient condition for the efficiency of the semigroup
interpolation technique is that C1 =

√
2. Similarly, by using the Drivier and Melcher gradient

bound (3) we obtain the condition C2 = 2. It is thus tempting to conjecture that C2
1 = C2 = 2.

Remark 3.3 (Carnot groups). In the class of nilpotent groups, there is an interesting sub-
class, which are the Carnot groups, that is the nilpotent groups with dilations, see [7], [20]. Let
(X1, . . . , Xn0) the generators at the first level of such a Carnot group, and L = X2

1 + · · · + X2
n0

.
In those groups again there is a dilation operator D such that [L, D] = L and D∗ = −D − n

2 Id.
The parameter n is what is called the homogeneous dimension of the group. The same applies in
this case, except that we no longer have always enough rotations to insure that Γ(h, h) = Γ̂(h, h)
where the hat corresponds to the “chiral” action. But we may replace this argument by the fact
that P̂t(·)(0) = Pt(·)(0) where (P̂t)t≥0 = (exp(tL̂))t≥0 and we would get as a bound

Γ(Ptf, Ptf) ≤ n

2n0t
(Pt(f

2) − (Ptf)2)

recovering at the same time the Heisenberg and Euclidean cases. For the (2p + 1)-dimensional
Heisenberg group H2p+1 we have n0 = 2p while the homogeneous dimension is 2p + 2, and
therefore here the inequality writes

Γ(Ptf, Ptf) ≤ p + 1

2pt
(Pt(f

2) − (Ptf)2)

and the constant approaches the Euclidean one when p goes to infinity.

4 A proof of the Driver-Melcher inequality

We give here an elementary proof of the Driver and Melcher gradient bound (3). The argument is
simply an integration by parts followed by the upper bound on Γ(log h, log h) obtained in section
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3. Indeed, from the inequalities (12) and (13), it is quite clear that the constant

A =

∫

‖x‖Γ(log h, log h)(x)h(x)dx (15)

is finite, where ‖x‖ denotes as usual the Euclidean norm of the horizontal projection of the point
x. Then, we have the following theorem.

Theorem 4.1. With the constant A defined by (15), we have for every t ≥ 0 and f ∈ C∞
c (H),

Γ(Ptf, Ptf) ≤ 2(A + 4)Pt(Γ(f, f)).

Proof. We assume that x = 0 (by group action) and t = 1 (by dilation). Then, we write

XP1f(0) = P1(X̂f)(0) = 〈(X + yZ)fh〉.
An integration by parts for 〈yZ(f), h〉 = 〈y(XY − Y X)(f), h〉 gives

〈X(f), (yY (log h) + 1)h〉 − 〈Y (f), yX(log h)h〉
and a similar formula holds for Y P1f . Next, we take a vector (a, b) ∈ R2 of unit norm and we
use the Cauchy-Schwarz inequality to get

(aXP1(f)(0) + bY P1(f)(0))2 ≤ P1(X(f)2)A1 + P1(Y (f)2)A2

where
A1 = P1[((yY (log h) + 2)a − xY (log h)b)2]

and
A2 = P1[((xX(log h) + 2)b − yY (log h)a)2].

The desired inequality comes then from the upper bound

max(A1, A2) ≤ A1 + A2 ≤ 2(A + 4).

Note that the obtained constant 2(A + 4) is certainly not the optimal one.

Remark 4.2 (Counter example). Unlike the elliptic case, the reverse local Poincaré (5) and
the local Poincaré (4) inequalities are not in general equivalent. A simple example is provided
on R2 with the operator

L = ∂2
x + x∂y

for which the corresponding diffusion process starting from (x, y) is up to some constant

Ut =

(

x + Bt, y + tx +

∫ t

0

Bsds

)

where (Bt)t≥0 is a Brownian motion on R. In this example, the heat kernel is Gaussian and the
semigroup (Pt)t≥0 is quite easy to compute, while Γ(f, f) = (∂xf)2. In this situation, it is easy
to see, using Cauchy-Schwarz inequality, that

tCΓ(Ptf, Ptf) ≤ Pt(f
2) − (Ptf)2

for some constant C < 2, while the inequality

Ptf
2 − (Ptf)2 ≤ C(t)PtΓ(f, f)

does not hold for any constant C(t), as one may see with a function f depending on y only.
For example, with f(x, y) = y, one has Ptf = y + tx, which depends on the variable x. This
kind of hypoelliptic situation differs strongly from the case of the Heisenberg group, since here
Γ(f, f) = 0 does not imply that f is constant.
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5 Two proofs of the H.-Q. Li inequality

In this section, we propose two alternate and independent proofs of the H.-Q. Li inequality (6).
The first proof uses some basic symmetry considerations and a particular case of the Cheeger
inequality of theorem 6.3 that we have to show by hands. The second proof relies on an explicit
commutation between the complex gradient and the heat semigroup. Both mainly rely on the
previous sharp estimates on the heat kernel that were obtained in [19].

5.1 Via a Cheeger type inequality

Lemma 5.1. For any real R > 0, there exists a real constant C > 0 such that for any smooth
f : H → R which vanishes on the ball centered at 0 and of radius R for the Carnot-Carathéodory
distance, we have

∫

|f |hdx ≤ C

∫

|∇f |hdx

where h is as before the density of P1(0, dx).

Proof. One may safely assume that R = 1 by a simple scaling. Next, we make use of the polar
coordinates which appear in (11). Namely, we parameterize the exterior of the unit ball by (u, s),
with u ∈ C, |u| ≥ 1

2π and s ∈ (1, 2π |u|), with

(x + iy, z) =

(

u

(

1 − exp

(

is

|u|

))

,
|u|2
2

(

s

|u| − sin

(

s

|u|

))

)

. (16)

The unit ball is the set {s ≤ 1}, and since f is supported outside the unit ball, we write

|f(u, s)| =

∣

∣

∣

∣

∫ s

1

∇f(u, t) · etdt

∣

∣

∣

∣

≤
∫ s

1

|∇f | (u, t)dt

where et is the unit vector along the geodesic. Let us write A(u, t)dudt the Lebesgue measure
on R

3 in those coordinates (we shall see the precise formula below). We write

∫

|f(u, s)|h(u, s)A(u, s)duds ≤
∫

|∇f | (u, t)

(

∫ 2π|u|

t

A(u, s)h(u, s)ds

)

dudt

and we shall have proved our inequality when we have proved that

∫ 2π|u|

t

A(u, s)h(u, s)ds ≤ CA(u, t)h(u, t),

for any (u, t) such that |u| ≥ 1
2π and t ≥ 1. In this computation, we forget the points in the

(x, y) plane and the z-axis, but this is irrelevant since they have 0-measure. The computation of
the Jacobian gives

A(u, s) = 16 |u| sin
(

s

2 |u|

)(

s

2 |u| − sin

(

s

2 |u|

))

and the estimate (12) shows that we may replace h(u, s) by

exp(− s2

4 )
√

1 + 2s |u| sin( s
2|u| )

11



since the Euclidean norm of the horizontal projection of the point whose coordinates are (u, s)
is 2 |u| sin( s

2|u| ). Setting τ = s
2|u| and r = |u|, the question is therefore to check that, for some

constant C, for any r ≥ 1
2π , for any τ0 ≥ 1

2r , one has

r

∫ π

τ0

sin τ(τ − sin τ)√
1 + 4r2τ sin τ

e−τ2r2

dτ ≤ C
sin τ0(τ0 − sin τ0)√

1 + 4r2τ0 sin τ0

e−τ2
0 r2

.

Up to some constant, we may replace sin τ(τ − sin τ) by τ4 on (0, π
2 ) and by π − τ on (π

2 , π).

In the same way, we may replace
√

1 + 4r2τ sin τ by rτ when τ < π
2 (since rτ ≥ 1

2 ) and by
1 + r

√
π − τ when τ ∈ (π

2 , π).

We first consider the case where τ0 < π
2 , and divide the integral into

∫ π/2

τ0
and

∫ π

π/2. Using

the above estimates, these integrals can be bounded by the correct term by using the fact that

∫ ∞

A

sp exp(−s2)ds ≤ CpA
p−1 exp(−A2).

When τ0 > π
2 , one uses the same estimates, bounding above π− τ by π− τ0 and (1+ r

√
π − τ )−1

by 1 in the integral, and using the fact that r is bounded below on our domain.
Observe that the same reasoning on a ball of radius ǫ would provide a constant which goes

to infinity when ǫ goes to 0, as for the usual heat kernel on Rd.

In fact, we shall also use a slightly improved version of lemma 5.1.

Lemma 5.2. For every real R > 0, if B is the ball centered at 0 and of radius R for the Carnot-
Carathéodory distance, there exists a real constant C > 0 such that for any smooth f : H → R,

∫

Bc

|f − m| hdx ≤ C

∫

|∇f |hdx

where Bc = H \ B is the complement of B, where m = |B|−1
∫

Bf(x) dx is the mean of f on B,
and where h is as before the density of P1(0, dx).

For proving this last lemma, we will need the following L1-Poincaré, also called (1, 1) Poincaré,
on balls. This inequality can be in fact thought of as a Cheeger type inequality on balls. See [32]
and references therein. This last lemma shall also be used in the next section where we prove
the H.-Q. Li inequality via complex analysis.

Lemma 5.3. For any real R > 0, if B denotes the ball centered at 0 and of radius R for
the Carnot-Carathéodory distance, there exists a real constant C > 0 such that for any smooth
f : H → R, by denoting m = |B|−1

∫

B
f(x) dx the mean of f on B,

∫

B

|f(x) − m| dx ≤ C

∫

B

|∇f | (x) dx.

We can now make the proof of lemma 5.2.

Proof of lemma 5.2. As in lemma 5.1, we may safely assume that R = 1 by a simple scaling. For
any auxillary function g : H → R, we have by denoting m = |B|−1

∫

B
f dx,

∫

Bc

|f − m| h dx ≤
∫

|f − g| h dx +

∫

Bc

|g − m| h dx.

12



Now we choose g such that g(ξ, s) = f(ξ, min(s, 1)) where (ξ, s) denotes the polar coordinates
in H as in the proof of lemma 5.1. More precisely, ξ ∈ ∂B and the set {s ≤ 1} is the unit ball.
For the first term the desired gradient bound follows then by elementary arguments as in lemma
5.1. For the second term, we write

|f(ξ, 1) − m| ≤
∫ 1

s=0

(|f(ξ, 1) − f(ξ, s)| + |f(ξ, s) − m|) A(ξ, s)ds

C(ξ)

where C(ξ) =
∫ 1

s=0
A(ξ, s)ds. We can now conclude by using elementary arguments similar as

before and the L1−Poincaré inequality of lemma 5.3.

Note that lemma 5.1 can be deduced directly from lemma 5.2. We are now in position to
prove the H.-Q. Li inequality (6).

Proof of (6). With the help of lemmas 5.1 and 5.2, we may reduce the study of the H.-Q. Li
inequality to functions which are

• either supported in a ball of radius 1 for the Carathéodory metric;

• either supported in a cylinder of radius 2 around the z axis (without the unit ball);

• either supported outside a cylinder around the z-axis.

Indeed, let see how one may reduce first to the case of a function supported either in a ball or
outside a ball. If f is any smooth function and φ a smooth cutoff function with values 1 on a ball
B of radius < 1 and vanishing outside a ball of radius 1, we write f = fφ + f(1 − φ) = f1 + f2.
Clearly, in order to obtain (6), one can add any prescribed constant to f . In particular, one can
assume that

∫

Bf dx = 0. Assuming that we know the inequality for f1 and f2, we bound

〈X̂(f), h〉 ≤ C〈(|∇f1| + |∇f2|), h〉

then we make use of
|∇f1| + |∇f2| ≤ |∇f | + 2 |f | |∇φ|

and since |∇φ| is supported outside the unit ball,

|f | |∇φ| ≤ ||∇φ||∞|f |1Bc

so one has by lemma 5.2
〈|f | , |∇φ|h〉 ≤ C〈|∇f | , h〉.

We repeat the same operation with a cutoff function for the neighborhood of the z-axis. Now,
when f is supported inside the ball, we may use the method that we used in the proof of theorem
4.1, and the fact that |∇ log h| (x) ≤ Cd(x), which is bounded on the unit ball. If f is supported
inside the cylinder around the z-axis and vanishes on the unit ball, we write, with section 2
notations,

〈X̂(f), h〉 = 〈X(f), h〉 + 〈f,
y

2
Z(log h)h〉

and then we use the fact that y
2Z(log h) is bounded on the cylinder. It remains to observe that

〈|f | , h〉 ≤ C〈|∇f | , h〉

13



thanks to lemma 5.1. It remains to deal with a function which is supported outside a cylinder
around the z-axis. We shall choose another integration by parts. For that, let us use a complex
notation and write

∇(f) = X(f) + iY (f) and ∇̂(f) = X̂(f) − iŶ (f).

Note the change of sign in front of i in the second expression. We want to bound

〈∇̂(f), h〉 = −〈f, ∇̂h〉.

Now, since h is radial, we have

∇̂h =
x − iy

x + iy
∇h

which comes from the fact that x∂yh = y∂xh. Let us call Ψ(x, y) = exp(−2iθ) the function x−iy
x+iy ,

where θ is the angle in the plane (x, y). Then, we integrate again by parts and get

〈∇̂f, h〉 = −〈f, Ψ(x, y)∇h〉 = 〈∇f, Ψ(x, y)h〉 + 〈f,∇(Ψ)h〉.

We then conclude observing that Ψ is bounded and |∇Ψ| is bounded outside the cylinder around
the z axis. We therefore have

∣

∣

∣
〈∇̂(f), h〉

∣

∣

∣
≤ 〈|∇f | , h〉 + C〈|f | , h〉

and we use again lemma 5.2 to conclude the proof.

5.2 Via a complex quasi-commutation

In Rn, it is known that the gradient ∇ commute with the Laplace operator. This commutation
leads to the commutation between ∇ and the heat semigroup Pt = et∆ and therefore to the
inequality:

|∇Ptf | = |Pt∇f | ≤ Pt |∇f | .
In the Heisenberg group, we can follow the same pattern of proof. Nevertheless, several difficulties
appear that make the proof quite delicate and technical at certain points. For sake of clarity,
before we enter the hearth of the proof, let us precise our strategy. The Lie algebra structure:

[X, Y ] = Z, [X, Z] = [Y, Z] = 0

leads to the commutation:
(X + iY )L = (L − 2iZ)(X + iY ),

where L = X2 + Y 2. At the level of semigroups, it leads to the formal commutation:

(X + iY )Pt = et(L−2iZ)(X + iY ) = e−2itZPt(X + iY ). (17)

This commutation is only formal because as we will see the semigroup associated to the complex
operator L − 2iZ is not globally well defined. More precisely, complex solutions to the heat
equation ∂u

∂t = (L − 2iZ)u, u(0, ·) = f are represented by a kernel which is nothing esle than
the holomorphic complex extension in the z variable of the heat kernel, at the point z + 2it.
Unfortunately, this kernel has poles, and this solution may have singularities. Nevertheless, we
will see that if the initial condition f is a complex gradient, then solutions to this equation do not
explode. More precisely, we may add to this kernel any kernel which has no effect on gradients
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and which cancels the poles of the previous extension. Doing this, we shall produce an integral
representation of the solution, without poles. This representation is of course not unique. If we
could choose the kernel in such a way that the ratio of it with the density pt is bounded, then
the H.-Q. Li inequality would easily follow. However, we will prove that such a kernel does not
exist. To overcome this difficulty, we will use two different kernels depending on the support of
the function f . By using a partition of the unity as in our previous proof of H.-Q. Li inequality
and lemma 5.3 we will then be able to conclude.

We now enter into the hearth of the proof. In what follows, in order to exploit the rotational
invariance, we shall use the cylindric coordinates x = r cos θ, y = r sin θ in which the vector fields
X and Y read

X = cos θ∂r −
sin θ

r
∂θ −

1

2
r sin θ∂z

Y = sin θ∂r +
cos θ

r
∂θ +

1

2
r cos θ∂z

Z = ∂z .

The heat kernel associated to (Pt)t≥0 writes here in cylindric coordinates

pt(r, z) =
1

8π2

∫ +∞

−∞
eiλz λ

sinh λt
e−

r2

4 λcotanhλtdλ. (18)

To give a sense to (17), we begin with the analytic properties of pt(r, z) in the variable z.

Lemma 5.4. Let t > 0 and r ≥ 0. The function

z → pt(r, z) − 1

4π2
(

t + iz + r2

4

)2 − 1

4π2
(

t − iz + r2

4

)2

admits an analytic continuation on
{

z ∈ C, | Imz |< r2

4 + 3t
}

. The function

z → pt(r, z)

admits therefore a meromorphic continuation on
{

z ∈ C, | Imz |< r2

4 + 3t
}

with double poles at

−i
(

t + r2

4

)

and i
(

t + r2

4

)

.

Proof. Let t > 0 and r ≥ 0. By using the expression (18) for pt(r, z), and

1
(

t + iz + r2

4

)2 =

∫ +∞

0

e−iλze−λte−λ r2

4 λdλ,

1
(

t − iz + r2

4

)2 =

∫ +∞

0

eiλze−λte−λ r2

4 λdλ,

we obtain

pt(r, z) − 1

4π2
(

t + iz + r2

4

)2 − 1

4π2
(

t − iz + r2

4

)2

=
1

8π2

∫ +∞

−∞
eiλz

(

e−
r2

4 |λ|cotanh|λ|t

sinh | λ | t
− 2e−

1
4 |λ|r

2−|λ|t
)

| λ | dλ

and the desired result follows easily.
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For any t > 0, r ≥ 0, and z ∈ C − {−i(t + 1
4r2)} such that | Imz |< r2

4 + 3t, let us denote

p∗t (r, z) = pt(r, z) − 1

4π2
(

t + iz + r2

4

)2 .

We have the following commutation property.

Proposition 5.5. If f : H → R is a smooth function with compact support, then

(X + iY )Ptf(0) =

∫

H

p∗t (r, z + 2it)(X + iY )f(r, θ, z)rdrdθdz, t > 0.

Proof. Due to the identities [X, Y ] = Z and [X, Z] = [Y, Z] = 0, we have

(X + iY )L = (L − 2iZ)(X + iY ).

If f(r, θ, z) = eiλzg(r, θ), for some λ ∈ R and some function g, we have Zf = iλf and thus

(X + iY )Lf = (L + 2λ)(X + iY )f.

We deduce therefore,

(X + iY )Ptf(0) = e2λt(Pt(X + iY )f)(0) = e2λt

∫

H

pt(r, z)((X + iY )f)(r, θ, z)rdrdθdz.

Let us now observe that for t > 0,

(X + iY )
1

(

t + iz + r2

4

)2 = 0

and thus
(X + iY )p∗t = (X + iY )pt.

Consequently,

(X + iY )Ptf(0) = e2λt

∫

H

p∗t (r, z)((X + iY )f)(r, θ, z)rdrdθdz.

Now
e2λtf(r, θ, z) = f(r, θ, z − 2it)

and the result for the function f follows by integrating by parts with respect to the variable z.
For general f , we can conclude by using the Fourier transform of f with respect to the variable
z.

As a first consequence, we deduce that for every R > 0, there exists a finite constant C > 0
such that for every smooth function compactly supported inside a Carnot-Carathéodory ball BR

of radius R,
|∇P1f | (0) ≤ CP1(|∇f |)(0).

But of course, here, the constant C that we obtain depends on R, and we shall see below that it
blows up when R → +∞.

Now, if R > 0 is big enough, the ball with radius R contains the region of the Heisenberg
group whose cylindric coordinates are of the form (r = 2, θ ∈ [0, 2π], z = 0) and if f is a smooth
function with compact support that vanishes in a ball with radius R, we have the commutation:

(X + iY )P1f(0) =

∫

H

p1(r, z + 2i)(X + iY )f(r, θ, z)rdrdθdz, t > 0.

that follows from the fact that (X + iY )pt = (X + iY )p∗t and from the fact that the pole of
(r, z) → p1(r, z) is at r = 2, z = 0. The keypoint is then the following estimate:
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Proposition 5.6. There exists R > 0 such that

sup
r2+|z|≥R

| p1(r, z + 2i) |
p1(r, z)

< +∞.

Proof. We shall proceed in two steps.
Step 1. We show that for any η > 0,

sup
r≥3,r2≥η|z|

|p1(r, z + 2i)|
p1(r, z)

< +∞.

For convenience, and by symmetry, we may assume z > 0. Let us first observe that on our
domain:

p1(r, z + 2i) =
1

8π2

∫ +∞

−∞
e−2λeiλz λ

sinh λ
e−

r2

4 λcotanhλdλ (19)

¿From [19], it is known that for fixed r, z, the function

g : λ → −iλz +
r2

4
λcotanhλ,

has a unique critical point in the strip {| Imλ |< π
2 }. This critical point is iθ(r, z), where θ(r, z)

the unique solution in (0, π
2 ) of the equation

µ(
1

2
θ(r, z))r2 = 4z,

with µ(θ) = θ
sin2 θ − cotan θ. At this critical point, we have

g(iθ(r, z)) =
d2(r, z)

4
,

where d(r, z) is the Carnot-Carathéodory distance from 0 to the point with cylindric coordinates
(r, θ, z) (this distance does not depend on θ, that is why it is omitted in the notation). In fact,
our function g corresponds to g(r, z, λ) = f( r√

2
, z

2 , 2λ) where f is the function studied in [19].

Moreover the function s → Reg(s + iθ(r, z)), grows with | s |, and has a global minimum at
s = 0, indeed a tedious computation shows that

Re(g(s + iθ(r, z)) − g(iθ(r, z))) =
sinh2 2s

sinh2 2s + sin2 2θ(r, z)
(2s cotanh 2s− 2θ(r, z) cotan 2θ(r, z))r2

≥ sinh2 2s

sinh2 2s + 1
(2s cotanh 2s − 1)r2

≥ 0.

Let us finally observe that the previous computation also shows that there exists δ > 0 such that
for s ∈ [−1, 1]

Reg(s + iθ(r, z)) ≥ d2(r, z)

4
+ δr2s2.

With all this in hands, we can now turn to our proof. We first start by changing the contour of
integration in (19):
∫ +∞

−∞
e−2λeiλz λ

sinh λ
e−

r2

4 λcotanhλdλ =

∫

Imλ=θ(
√

r2−8,z)

e−2λeiλz λ

sinh λ
e−

r2

4 λcotanhλdλ

=

∫

Imλ=θ(
√

r2−8,z)

eiλz λ

sinh λ
e
−
(

r2

4 −2
)

λcotanhλ
e2λ−2λcotanhλdλ
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Therefore, by denoting

U(λ) = e2λ−2λcotanhλ λ

sinh λ

we get

∣

∣

∣

∣

∫ +∞

−∞
e−2λeiλz λ

sinh λ
e−

r2

4 λcotanhλdλ

∣

∣

∣

∣

≤e−
d(
√

r2−8,z)2

4

∫

|s|≤1

e−(r2−8)δ2s2
∣

∣

∣U(s + iθ(
√

r2 − 8, z))
∣

∣

∣ ds

+ e−
d(
√

r2−8,z)2

4

∫

|s|≥1

e−(r2−8)δ2
∣

∣

∣U(s + iθ(
√

r2 − 8, z))
∣

∣

∣ ds

≤C1
e−

d(r,z)2

4

r
,

where we used the fact that on the domain on which we work, the difference d(
√

r2 − 8, z)−d(r, z)
is uniformly bounded. Finally, from the lower estimate of [30], on the considered domain,

pt(r, z) ≥ C2
e−

d(r,z)2

4

r
.

It concludes the proof of step 1.
Step 2. We show that there exists η > 0 such that

sup
|z|≥1,r2≤η|z|

|p1(r, z + 2i)|
p1(r, z)

< +∞.

We first start by giving an analytic representation of

p1(r, z + 2i)

that is valid on the domain on which we work. As in the previous proof, we assume z > 0. Due
to the Cauchy theorem, we can change the contour of integration in the representation (18), to
get with 0 < ε < π,

p1(r, z) =
1

8π2

+∞
∑

k=1

∫

|λ−ikπ|=ε

eiλz λ

sinh λ
e−

r2

4 λcotanhλdλ

=
−i

8π2

+∞
∑

k=1

∫

|λ|=ε

ei(−iλ+ikπ)z (−iλ + ikπ)

sinh(−iλ + ikπ)
e−

r2

4 (−iλ+ikπ)cotanh(−iλ+ikπ)dλ

=
−i

8π2

∫

|λ|=ε

e
−(π−λ)

(

z− r2

4 cotan λ
)

1 + e
−π

(

z− r2

4 cotan λ
)

(

π

1 + e
−π

(

z− r2

4 cotan λ
) − λ

)

dλ

sin λ

Therefore, for z > 0,

p∗1(r, z + 2i) +
1

4π2
(

−1 + iz + r2

4

)2

=
−i

8π2

∫

|λ|=ε

e2iλ e
−(π−λ)

(

z− r2

4 cotan λ
)

1 + e
−π

(

z− r2

4 cotan λ
)

(

π

1 + e
−π

(

z− r2

4 cotan λ
) − λ

)

dλ

sin λ
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On our domain, if η is small enough, when r, z → +∞, Re(z − r2

4 cotan λ) goes uniformly on
the circle | λ |= ε to +∞. Consequently, on our domain

∣

∣

∣

∣

∣

p∗1(r, z + 2i) +
1

4π2
(

−1 + iz + r2

4

)2

∣

∣

∣

∣

∣

≤ c1

∣

∣

∣

∣

∣

∫

|λ|=ε

e2iλe
−(π−λ)

(

z− r2

4 cotan λ
)

(π − λ)
dλ

sin λ

∣

∣

∣

∣

∣

for some finite positive constant c1. By choosing ε = π − 2θ(r, z), we have

∫

|λ|=ε

e2iλe
−(π−λ)

(

z− r2

4 cotan λ
)

(π − λ)
dλ

sin λ

=

∫

|λ|=π−2θ(r,z)

e2iλe
−(π−λ)

(

z− r2

4
cotan λ

)

(π − λ)
dλ

sin λ
,

where the function θ(r, z) has been introduced above. At this stage, we can follow step by step
the proof of Theorem 2.17 in [19] (the only difference is in the function V which we take equal
to V (λ) = e2iλ π−λ

sin λ) to get an estimate on our domain :

∣

∣

∣

∣

∣

∫

|λ|=π−2θ(r,z)

e2iλe
−(π−λ)

(

z− r2

4 cotan λ
)

(π − λ)
dλ

sin λ

∣

∣

∣

∣

∣

≤ c2
e−

d(r,z)2

4

√

rd(r, z)

for some finite positive constant c2. Finally, the lower estimate of [30] leads to the conclusion.

Remark 5.7. In order to extend the H.-Q. Li inequality to more general situations, it would be
interesting to get a proof of the above proposition that would not use the explicit expression for
pt(r, z).

We can now reprove H.-Q. Li’s inequality by using a partition of the unity (which is here
simpler than in the previous subsection) and the L1−Poincaré inequality of lemma 5.3 (which was
also used in the previous subsection). Let f : H → R be a smooth positive function compactly
supported and let 0 ≤ φ ≤ 1 be a smooth function that takes the value 1 on a ball BR1 and the
value 0 outside the ball BR2 where R1 < R2, with R1 big enough. We have

(X + iY )P1f(0) =(X + iY )P1φf(0) + (X + iY )P1(1 − φ)f(0)

=

∫

H

p∗1(r, z + 2i)(X + iY )(fφ)(r, θ, z)rdrdθdz

+

∫

H

p1(r, z + 2i)(X + iY )(f(1 − φ))(r, θ, z)rdrdθdz

=

∫

H

φ(r, θ, z)p∗1(r, z + 2i)(X + iY )f(r, θ, z)rdrdθdz

+

∫

H

(1 − φ(r, θ, z))p1(r, z + 2i)(X + iY )f(r, θ, z)rdrdθdz

+
1

4π2

∫

H

f(r, θ, z)
(X + iY )φ(r, θ, z)
(

−1 + iz + r2

4

)2 rdrdθdz.

Therefore

| ∇P1f(0) |≤ CP1 | ∇f | (0) +

∣

∣

∣

∣

∣

1

4π2

∫

H

f(r, θ, z)
(X + iY )φ(r, θ, z)
(

−1 + iz + r2

4

)2 rdrdθdz

∣

∣

∣

∣

∣

.
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Now, we estimate

∣

∣

∣

∣

∣

∫

H
f(r, θ, z) (X+iY )φ(r,θ,z)

(

−1+iz+ r2

4

)2 rdrdθdz

∣

∣

∣

∣

∣

thanks to lemma 5.3:

∣

∣

∣

∣

∣

∫

H

f(r, θ, z)
(X + iY )φ(r, θ, z)
(

−1 + iz + r2

4

)2 rdrdθdz

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

H

(f(r, θ, z) − m)
(X + iY )φ(r, θ, z)
(

−1 + iz + r2

4

)2 rdrdθdz

∣

∣

∣

∣

∣

(m is the mean of f on BR2)

≤C1

∫

BR2

| f(r, θ, z) − m | rdrdθdz

≤C2

∫

BR2

| ∇f | (r, θ, z)rdrdθdz

≤C3P1 | ∇f | (0).

This completes the proof of H.-Q. Li’s inequality.
As we mentioned it in the beginning of this section, interestingly, it is not possible to find a

function φ on H such that:

• (X + iY )φ = 0;

• The ratio
|p∗

1(r,z+2i)−Φ(r,θ,z)|
p1(r,z) is bounded.

Indeed, the first point implies that Φ can be written:

Φ(r, θ, z) = H

(

r2

4
+ iz, reiθ

)

,

where H : {z1 ∈ C,Re(z1) ≥ 0} × C → C is analytic in z1 and z2. Now, due to the estimate of
Proposition 5.6 and the estimate on p1, it would imply that for r and z, such that r2+ | z | is
big enough:

∣

∣

∣

∣

∣

H

(

r2

4
+ iz, reiθ

)

+
1

4π2
(

−1 + iz + r2

4

)2

∣

∣

∣

∣

∣

≤ Ae−B(r2+|z|)

where A and B are strictly positive constants. Now, we have the following lemma that prevents
the existence of such H :

Lemma 5.8. Let f : {z1 ∈ C,Re(z1) ≥ 0} × C → C be analytic in z1 and z2. If there exist
strictly positive constants A and B such that

∀r ≥ 0, ∀z ∈ R, ∀θ ∈ [0, 2π],
∣

∣f
(

r2 + iz, reiθ
)∣

∣ ≤ Ae−B(r2+|z|)

then f = 0.

Proof. Let r ≥ 0, z ∈ R. The function z2 → f
(

r2 + iz, z2

)

is analytic, therefore from the
maximum principle we have

∣

∣f
(

r2 + iz, z2

)∣

∣ ≤ Ae−B(|z2|2+|z|),

for | z2 |≤ r. Consequently, on the set Re(z1) ≥| z2 |2 we have

|f (z1, z2)| ≤ Ae−B(|z2|2+|Im(z1)|).
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By using the analytic function z1 → f(z1, z2), a translation, and a multiplication by e−z1we
would therefore obtain a function g analytic on the set Re(z) > 0 such that

|g(z)| ≤ αe−β|z|

with α, β > 0, and such function has clearly to be 0 (Use for instance the conformal equivalence
between the set Re(z) > 0 and the open unit disc to get a function h analytic on the disc that

satisfy the estimate |g(z)| ≤ α′e−
β′

|z| ).

6 Functional inequalities for the heat kernel

Most of the consequences of the classical gradient bounds under a Γ2 curvature assumption remain
true under an H.-Q. Li gradient bound. In the sequel, we derive, by interpolation from the
gradient bound (6), several local functional inequalities of Gross-Poincaré-Cheeger-Bobkov type
for the heat kernel on the Heisenberg group. The term local means that these inequalities concern
the probability measure Pt(·)(x) at fixed t and x, in contrast to inequalities for the invariant
measure. These local inequalities can be seen as global inequalities for Gaussian measures on
the Heisenberg group. In the literature, these inequalities and interpolations where mainly
developed in Riemannian settings under a Γ2 curvature assumption. Rigorously, the semigroup
interpolations used in the sequel rely on the existence of an algebra of functions A from H to R

stable by the action of the heat kernel. Thanks to lemma 2.1, the Schwartz class S of smooth
and rapidly decreasing functions in R3 may play this role in the case of the Heisenberg group H.

6.1 Gross-Poincaré type inequalities

One of the first consequence of the gradient bound (6) is Gross-Poincaré type local inequalities,
also called ϕ-Sobolev inequalities in [12, 23]. Namely, let ϕ : I → R be a smooth convex function
defined on an open interval I ⊂ R such that ϕ′′ > 0 on I and −1/ϕ′′ is convex on I.

Theorem 6.1 (Local Gross-Poincaré inequalities). By using the notations of (6), for every
t ≥ 0, every x ∈ H, and every f ∈ C∞

c (H, I),

Pt(ϕ(f)) − ϕ(Ptf) ≤ C2
1 t Pt (ϕ′′(f)|∇f |2). (20)

Proof. One can assume that the support of f is strictly included in I. Since L is a diffusion
operator, L(α(f)) = α′(f)Lf + α′′(f)Γf for any f ∈ C∞

c (H, R) and any smooth α : R → R. By
the semigroup and the diffusion properties,

Pt(ϕ(f)) − ϕ(Ptf) =

∫ t

0

∂sPs(ϕ(Pt−sf)) ds =

∫ t

0

Ps(ϕ′′(Pt−sf) |∇Pt−sf |2) ds.

Now, (6) gives |∇Pt−sf |2 ≤ C2
1 (Pt−s(|∇f |))2. Next, by the Cauchy-Schwarz inequality or al-

ternatively by the Jensen inequality for the bivariate convex function (u, v) 7→ ϕ′′(u)v2, we get
ϕ′′(Pt−sf)(Pt−s(|∇f |))2 ≤ Pt−s(ϕ′′(f)|∇f |2), which gives the desired result.

• for ϕ(u) = u log(u) on I = (0,∞), we get a Gross logarithmic Sobolev inequality, mentioned
for instance in [29] (see also [21, 22]),

Pt(f log(f)) − Pt(f) log(Pt(f)) ≤ C2
1 t Pt

(

f−1 |∇f |2
)

; (21)

21



• for ϕ(u) = up on I = (0,∞) with 1 < p ≤ 2, we get a Beckner-Lata la-Oleszkiewicz type
inequality (see [8, 26])

Pt(f
p) − (Pt(f))p

p − 1
≤ p C2

1 t Pt(f
p−2|∇f |2); (22)

• for ϕ(u) = u2 on I = R, we get a Poincaré inequality, mentioned in [16],

Pt(f
2) − (Pt(f))2 ≤ 2 C2

1 t Pt(|∇f |2). (23)

We have seen in the introduction that a local Poincaré inequality such as (23) can be also
obtained from the Driver and Melcher gradient bound (3), with a constant 2C2 instead of 2C2

1 .
However, the inequalities (21) and (22) need the stronger gradient bound (6) of H.-Q. Li. They
also imply the local Poincaré inequality (23) by linearization. It is shown in [13, Theorem 4.4]
that the convexity of the bivariate function (u, v) 7→ ϕ′′(u)v2 is equivalent to the convexity of
the ϕ-entropy functional and also to the tensorization property of the ϕ-entropy functional. This
fact is related to the infinite dimensional nature of (20). The inequality (22) interpolates between
(21) (let p → 1+) and (23) (take p = 2). The linearity with respect to t of the constant in front of
the right hand side of (20) is related to the fact that (Pt)t≥0 is a convolution semigroup, namely
Pt(·)(x) can be obtained from P1(·)(0) by x-translation and

√
t-dilation in H.

6.2 Cheeger type isoperimetric inequalities

As mentioned in the introduction, it is possible to deduce a reverse local Poincaré inequality from
the gradient bounds (3) of Driver and Melcher or (6) of H.-Q. Li. However, the constants are
not known precisely. A better constant is provided by theorem 3.1, which implies immediately
that for every t ≥ 0 and every f ∈ C∞

c (H, R),

‖|∇Ptf |‖∞ ≤ 1√
t
‖f‖∞ . (24)

Cheeger derived in [14] a lower bound for the spectral gap of the Laplacian on a Riemannian
manifold. This bound can be related to a sort of L1 Poincaré inequality, which has an isoperi-
metric content, see [15] and references therein. Here we derive such an inequality for the heat
kernel by only using the gradient bound (6), by mixing arguments borrowed from [5] and [27].

Theorem 6.2 (Local Cheeger type inequality). With the notations of (6), for every t ≥ 0,
every x ∈ H, and every f ∈ C∞

c (H, R),

Pt(|f − Pt(f)(x)|)(x) ≤ 4C1

√
t Pt(|∇f |)(x). (25)

Proof. We adapt the method used in [27, p. 953] for the invariant measure in Riemannian
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settings. For any g ∈ C∞
c (H, R) with ‖g‖∞ ≤ 1, any t ≥ 0, and any x ∈ H,

Pt((f − Pt(f)(x))g)(x) = Pt(fg)(x) − Pt(f)(x)Pt(g)(x)

=

∫ t

0

∂sPs((Pt−sf)(Pt−sg))(x) ds

= 2

∫ t

0

Ps(Γ(Pt−sf, Pt−sg))(x) ds

≤ 2

∫ t

0

Ps(|∇Pt−sf | |∇Pt−sg|)(x) ds

≤ 2C1 Pt(|∇f |)(x)

∫ t

0

‖g‖∞
√

(t − s)
ds

≤ 4C1

√
t Pt(|∇f |)(x).

where we used the gradient bound (6) for f and the gradient bound (24) for g. The desired
result follows then by L1 − L∞ duality by taking the supremum over g.

Similarly, we get also the following correlation bound for every t ≥ 0 and f, g ∈ C∞
c (H, R),

|Pt(fg) − Pt(f)Pt(g)| ≤ 2C2
1 t

√

Pt(|∇f |2)

√

Pt(|∇g|2). (26)

When f = g, we recover the Poincaré inequality (23).

Theorem 6.3 (Yet another local Cheeger type inequality). With the notations of (6),
for every t ≥ 0, every x ∈ H, and every ball B of H for the Carnot-Carathéodory metric, there
exists a real constant CB,t,x > 1 such that for every function f ∈ C∞

c (H, R) which vanishes on
B,

|Pt(f)(x)| ≤ CB,t,x Pt(|∇f |)(x). (27)

Proof. Let g ∈ C∞(H, R) be such that ‖g‖∞ < ∞ and g ≡ 1 on Bc. Since fg = f , the
computation made in the proof of theorem 6.2 provides

Pt(f)(x) − Pt(f)(x)Pt(g)(x) ≤ 4C1

√
t ‖g‖∞ Pt(|∇f |)(x).

For any arbitrary real number r ≥ 1, the class of functions

CB,r = {g ∈ C∞(H, R) with ‖g‖∞ ≤ r and g ≡ 1 on Bc}.

is not empty since it contains the constant function ≡ 1. Furthermore, since Pt(·)(x) is a
probability measure with non vanishing density, the following extrema

α−(B, r, t,x) = inf
g∈CB,r

Pt(g)(x) and α+(B, r, t,x) = sup
g∈CB,r

Pt(g)(x)

are finite and non zero. Moreover, an elementary local perturbative argument on any element
of the class CB,r shows that α−(B, r, t,x) α+(B, r, t,x) < 0 as soon as r is large enough, say
r ≥ rB,t,x. Thus, Pt(f)(x)Pt(g)(x) ≤ 0 for some g ∈ CB,r. The desired result follows then with
CB,t,x = 4C1

√
t rB,t,x, since one can replace f by −f in the obtained inequality. Note that CB,t,x

blows up when vol(B) ց 0. Actually, this proof does not use the nature of the Heisenberg group
H, and relies roughly only on the diffusion property, the smoothness of the heat kernel and the
gradient bound. However, on the Heisenberg group H, the usage of translations and dilations
and of the convolution semigroup nature of (Pt)t≥0 allows to precise the dependency of CB,t,x

over t and x by using x-translation and
√

t-dilation.
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The isoperimetric content of (25) can be extracted by approximating an indicator with a
smooth f , see for instance [5]. Namely, for any Borel set A ⊂ H with smooth boundary, any
t ≥ 0, and any x ∈ H, we get by denoting µt,x = Pt(·)(x),

µt,x(A)(1 − µt,x(A)) ≤ 2C1

√
t µsurface

t,x (∂A) (28)

where µsurface
t,x (∂A) is the perimeter of A for µt,x as defined in [1, Section 3] (see also [35]). From

(27), we get similarly for any ball B in H and any Borel set A ⊂ Bc with smooth boundary,

µt,x(A) ≤ CB,t,x µsurface
t,x (∂A). (29)

6.3 Bobkov type isoperimetric inequalities

Let Fγ : R → [0, 1] be the cumulative probability function of the standard Gaussian distribution
γ on the real line R, given for every t ∈ R by

Fγ(t) =
1√
2π

∫ t

−∞
e−

1
2u2

du.

The Gaussian isoperimetric function I : [0, 1] → [0, (2π)−1/2] is defined by I = (Fγ)′ ◦ (Fγ)−1.
The function I is concave, continuous on [0, 1], smooth on (0, 1), symmetric with respect to the
vertical axis of equation u = 1/2, and satisfies to the differential equation

I(u)I ′′(u) = −1 for any u ∈ [0, 1] (30)

with I(0) = I(1) = 0 and I ′(0) = −I′(1) = ∞. Note that I(u) ≥ u(1−u) for any real u ∈ [0, 1],
and that I(u) ≤ min(u, 1 − u)) when u belongs to a neighborhood of 1/2.

Lemma 6.4 (Yet another uniform gradient bound). With the notations of (6), for every
t ≥ 0 and f ∈ C∞

c (H, (0, 1)),

I(Ptf) − Pt(I(f)) ≤ C2
1

√
2t Pt(|∇f |). (31)

Proof. The inequality (31) was obtained by Bobkov in [9] for the standard Gaussian measure
on R. Later, it was generalized in [5], by using semigroup techniques, to Riemannian settings
under a Γ2 curvature assumption. We give here a proof by adapting the argument given in [5, p.
261-263] from invariant measure settings to local settings. One may assume that ε ≤ f ≤ 1 − ε
for some ε > 0. By the diffusion property and (30)

[I(Ptf)]
2 − [Pt(I(f))]

2
= −

∫ t

0

∂s[Ps(I(Pt−sf))]
2

ds

= −2

∫ t

0

Ps(I(Pt−sf))Ps

(

I ′′(Pt−sf) |∇Pt−sf |2
)

ds

= +2

∫ t

0

Ps(I(Pt−sf))Ps

(

|∇Pt−sf |2
I(Pt−sf)

)

ds.

Next, the Cauchy-Schwarz inequality or alternatively the Jensen inequality for the bivariate
convex function (u, v) 7→ u2/I(v) = −I′′(v)u2 gives

[I(Ptf)]
2 − [Pt(I(f))]

2 ≥ 2

∫ t

0

[Ps(|∇Pt−sf |)]2 ds.
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Now by using the gradient bound (6) we have

C1 Ps(|∇Pt−sf |) ≥ |∇Ps(Pt−sf)| = |∇Ptf |

and thus

[I(Ptf)]
2 − [Pt(I(f))]

2 ≥ 2t

C2
1

|∇Ptf |2.

In particular, we obtain the following uniform gradient bound

‖I ′′(Ptf)|∇Ptf |‖∞ =

∥

∥

∥

∥

|∇Ptf |
I(Ptf)

∥

∥

∥

∥

∞
≤ C1√

2t
.

We are now able to prove (31). By the diffusion property

I(Ptf) − Pt(I(f)) = −
∫ t

0

∂s Ps(I(Pt−sf)) ds = −
∫ t

0

Ps(I ′′(Pt−sf) |∇Pt−sf |2) ds.

By (6) we get |∇Pt−sf |2 ≤ C1 |∇Pt−sf |Pt−s(|∇f |) and thus

I(Ptf) − Pt(I(f)) ≤ C1

(

∫ t

0

C1
√

2(t − s)
ds

)

Pt(|∇f |) = C2
1

√
2t Pt(|∇f |).

The isoperimetric content of (31) can be extracted by approximating an indicator with a
smooth f , see [5]. Namely, for any Borel set A ⊂ H with smooth boundary, any t ≥ 0, and any
x ∈ H, we get by denoting µt,x = Pt(·)(x),

I(µt,x(A)) ≤ C2
1

√
2t µsurface

t,x (∂A). (32)

Corollary 6.5 (Yet another local Bobkov Gaussian isoperimetric inequality). With
the notations of (6), for every t ≥ 0 and f ∈ C∞

c (H, (0, 1)),

I(Ptf) ≤ Pt

(

√

(I(f))2 + 2C4t |∇f |2
)

. (33)

Proof. The desired result follows from the transportation-rearrangement argument given in [6,
prop. 5 p. 427], which is inspired from [5, p. 273]. The method is not specific to the heat
semigroup on the Heisenberg group. It is based in particular on a similar inequality for the
standard Gaussian measure on R obtained by Bobkov in [10].

One of the most important aspect of (33) is its stability by tensor product, in contrast
with (31), while maintaining the same isoperimetric content. Moreover, one may recover from
(33) the Gross logarithmic Sobolev inequality (21) by using the fact that I ′(u) ∼

√

−2 log(u)

and I(u) ∼ u
√

−2 log(u) at u = 0. We ignore if (33) can be obtained directly by semigroup
interpolation, as for the elliptic case in [5]. The proof given in [5] for the elliptic case is based
directly on a curvature bound at the level of the infinitesimal generator, which is not implied
by the gradient bound (6) on H. We ignore also if one can adapt on the Heisenberg group
the two points space approach used in [10] or the martingale representation approach used in
[6, 11, 24, 28]. There is a lack of a direct proof of (33) on the Heisenberg group, despite the fact
that (33) and (31) are equivalent, according to the argument of Barthe and Maurey in [6, prop.
5 p. 427].
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Remark 6.6 (Abstract Markov settings). In fact, up to specific constants, most of the proofs
given above have nothing to do with the group structure of the space or with the convolution
semigroup nature of (Pt)t≥0. They remain actually valid in very general settings provided that

the computations make sense. The key points are a
√

Γ−Pt sub-commutation and the semigroup
and diffusion properties. Formally, let L be a diffusion operator on a smooth complete connected
differential manifold M, generating a Markov semigroup (Pt)t≥0 = (etL)t≥0 with smooth density
with respect to some reference Borel measure on M. Let 2Γf = L(f2) − 2fLf and suppose that
there exists C : (0,∞) → (0,∞) such that

√

ΓPtf ≤ C(t) Pt(
√

Γf) (34)

pointwise for every t ≥ 0 and every smooth f : M → R. Let us define R(t) by

R(t) =

∫ t

0

C(s)

(∫ s

0

2

C(u)2
du

)− 1
2

ds.

Then for every t ≥ 0, every x ∈ M, and every smooth f : M → R,

Pt(|f − Pt(f)(x)|)(x) ≤ 2R(t) Pt(
√

Γf)(x). (35)

Moreover, for every t ≥ 0 and every smooth f : M → (0, 1),

I(Pt(f)) − Pt(I(f)) ≤ R(t) Pt(
√

Γf), (36)

and
I(Pt(f)) ≤ Pt

(

√

(I(f))2 + R(t)2 Γf
)

, (37)

where I stands for the Gaussian isoperimetric function as in (30). Furthermore, if I is an open
interval of R and ϕ : I → R is a smooth convex function such that ϕ′′ > 0 on I and −1/ϕ′′ is
convex on I, then for every t ≥ 0, every x ∈ M, and every smooth f : M → I,

Pt(ϕ(f)) − ϕ(Ptf) ≤
(∫ t

0

C(u)2 du

)

Pt(ϕ
′′(f)Γf). (38)

Finally, if Pt(·)(x) → µ weakly as t → ∞ for some x ∈ M and some probability measure µ on
M then the four inequalities (35-38) above hold for µ instead of Pt(·)(x). Here the constant in
(35) is obtained partly by using a reverse local Poincaré inequality deduced from (34). On the
Heisenberg group, we used an alternative constant for the reverse local Poincaré inequality, which
was not deduced from (34).

6.4 Multi-times inequalities

Let ϕ : I → R be fixed and as in (20). The ϕ-entropy functional

Entµ : f 7→ Entµ(f) =

∫

ϕ(f) dµ − ϕ

(∫

f dµ

)

has the tensor product property. Namely, if µ = µ1 ⊗ . . . ⊗ µn is a probability measure on a
product space E = E1 × · · · × En then for every f : E → I in the domain of Entµ,

Entµ(f) ≤
n
∑

i=1

∫

Entµi
(f)) dµ

26



where the integrals in Entµi
(f) act only on the ith coordinate. The details are given in [12].

Below, we use the notation Ent(U) = E(ϕ(U)) − ϕ(E(U)) for any real random variable U
taking its values in I. Now, let (Xt)t≥0 be the diffusion process on H generated by L, with
X0 = 0. Let also F : Hn → I be some fixed smooth function. Here Hn stands for the n-
product space H × · · · × H. Since (Xt)t≥0 has independent stationary increments, i.e. is a Lévy
process on H associated to a convolution semigroup, we have, for any finite increasing sequence
0 < t1 < · · · < tn of fixed times,

Ent(F (Xt1 , . . . , Xtn
)) = EntL(Q1,...,Qn)(F ◦ π)

where π : Hn → Hn is defined by

π(x1,x2, . . . ,xn) = (x1,x1 • x2, . . . ,x1 • · · · • xn)

for every (x1, . . . ,xn) ∈ Hn, and where Q1, . . . , Qn are independent random variables on the
Heisenberg group H with L(Qi) = L((Xti−1)−1Xti

) = L(Xti−ti−1) for every i ∈ {1, . . . , n}, with
t0 = 0. The tensor product property of the entropy given above together with (20) gives

Ent(F (Xt1 , . . . , Xtn
)) ≤ C2

1 EL(Xt1 ,...,Xtn )(ϕ
′′(F )D2

t1,...,tn
F )

where C is as in (6) and (20), and where

D2
t1,...,tn

F =

n
∑

i=1

(ti − ti−1) |∇i(F ◦ π)|2 ◦ π−1

where ∇i denote the left invariant gradient ∇ of H acting on the ith coordinate xi. Only
the distribution of ϕ′′(F )D2

t1,...,tn
F under L(Xt1 , . . . , Xtn

) is of interest. Similarly, by using an
argument of Bobkov detailed for instance in [6, p. 429-430], we get from (33), for any smooth
function F : Hn → (0, 1), by denoting ν = L(Xt1 , . . . , Xtn

),

I(Eν(F )) ≤ Eν

(√

(I(F ))2 + 2C4
2 D2

t1,...,tn
F
)

.

We ignore if such a cylindrical approach leads to functional inequalities for the paths space on
H, i.e. for the hypoelliptic Wiener measure, by letting n → ∞. It sounds interesting to try to
make a link with [17].
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inégalités de Sobolev logarithmiques. Panoramas et Synthèses, 10. Société Mathématique de France, Paris,
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