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This paper is concerned with Hölder regularity of viscosity solutions of second-order, fully non-linear elliptic integro-differential equations. Our results rely on two key ingredients: first we assume that, at each point of the domain, either the equation is strictly elliptic in the classical fully non-linear sense, or (and this is the most original part of our work) the equation is strictly elliptic in a non-local non-linear sense we make precise. Next we impose some regularity and growth conditions on the equation. These results are concerned with a large class of integro-differential operators whose singular measures depend on x and also a large class of equations, including Bellman-Isaacs Equations.

Introduction

The aim of this paper is to show that viscosity solutions of fully non-linear elliptic integro-differential equations are Hölder continuous under general suitable strict ellipticity and regularity/growth conditions on the equations. We also obtain explicit C 0,α estimates in terms of the space dimension, the non-linearity, the singular measure and the (local) L ∞ -bound of the solution.

To be more specific, we describe the general framework we consider. We are interested in equations of the type [START_REF] Barles | Interior gradient bounds for the mean curvature equation by viscosity solutions methods[END_REF] F (x, u, Du, D 2 u, I[x, u]) = 0 in Ω

where Ω is a domain of R N (not necessarily bounded) and I[x, u] is an integro-differential operator.

The function u is real-valued and Du, D 2 u stand respectively for its gradient and Hessian matrix. The non-linearity F is a (continuous) function which is degenerate elliptic: in this context, this means that F is non-increasing with respect to its last two variables (see below for a precise statement and [START_REF] Barles | Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited[END_REF] for further details). The integro-differential operators we will consider in the present paper are defined as follows

(2)

I[x, u] = R N (u(x + z) -u(x) -Du(x) • z1 B (z))µ x (dz)
where 1 B denotes the indicator function of the unit ball B and {µ x } x∈R N is a family of Lévy measures, i.e. non-negative, possibly singular, Borel measures on R N such that

(3)

R N min(|z| 2 , 1) µ x (dz) < +∞.
We point out that the solution u has to be given in the whole space R N even if [START_REF] Barles | Interior gradient bounds for the mean curvature equation by viscosity solutions methods[END_REF] is satisfied on a domain Ω; see Section 1 for further details.

Important "special cases" of operators of the form (2) are Lévy-Itô operators, namely (4)

I LI [x, u] = R N (u(x + j(x, z)) -u(x) -Du(x) • j(x, z)1 B (z))µ(dz)
where µ is a Lévy measure and j(x, z) is the size of the jumps at x. For the operator to be well-defined, one usually assumes |j(x, z)| ≤ C 0 |z| for some constant C 0 and for any x ∈ Ω, z ∈ R N .

Model examples for a Lévy measure µ and jump function j are the one associated with fractional Laplacian: µ(dz) = dz/|z| N +α (with 0 < α < 2) and j(x, z) = z. This class of operators appears in the context of stochastic control of jump processes and it is also worth pointing out that, at least to the best of our knowledge, general comparison results (for viscosity solutions) are only available for operators in the form [START_REF] Barles | Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited[END_REF].

Many papers deal with Hölder estimates for fully non-linear elliptic equations. There are two kinds of approaches: for uniformly elliptic equations, one can use the powerful approach by Harnack inequalities which leads also to further regularity results; we refer the reader to Cabré and Caffarelli [START_REF] Caffarelli | Fully non-linear elliptic equations[END_REF] or Trudinger [START_REF] Trudinger | Comparison principles and pointwise estimates for viscosity solutions of non-linear elliptic equations[END_REF][START_REF] Trudinger | On regularity and existence of viscosity solutions of non-linear second order, elliptic equations[END_REF] and references therein for results in this direction. A simpler method, more closely related to classical viscosity solutions theory, was introduced by Ishii and Lions in [START_REF] Ishii | Viscosity solutions of fully non-linear second-order elliptic partial differential equations[END_REF]. Besides of its simplicity, it has the further advantage to provide results under weaker ellipticity assumptions and even for some degenerate equations; it was next used in [START_REF] Barles | Interior gradient bounds for the mean curvature equation by viscosity solutions methods[END_REF], [START_REF] Chen | C 1,α regularity of viscosity solutions of fully non-linear elliptic PDE under natural structure conditions[END_REF] where further regularity results are also proved and later in [START_REF] Barles | Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations[END_REF][START_REF] Barles | Local C 0,α estimates for viscosity solutions of Neumann-type boundary value problems[END_REF]. As far as integro-differential elliptic equations are concerned, many papers were published in potential theory and equations are linear in most of these papers; moreover they rely on probabilistic techniques. See for instance [START_REF] Bass | Harnack inequalities for jump processes[END_REF]. One of the first paper about Hölder estimates for integro-differential equations with PDE techniques is probably [START_REF] Silvestre | Hölder estimates for solutions of integro-differential equations like the fractional Laplace[END_REF]. The author mainly deals with linear equations where singular measures µ x have a very general x-dependence, improving the previous literature. He is also able to deal with quite particular non-linear equations; more precisely, he treats the case of equations like F (I[x, u], J [x, u]) = 0 where I and J are two different non-local terms, and for "strictly elliptic" functions F (in a suitable sense).

In the present paper, we deal with fully non-linear elliptic equations and we obtain local C 0,α regularity and estimates for a quite general class of integro-differential operators, namely operators of the form (2) satisfying proper assumptions (see ( 6)-( 8)). Even if important operators (4) can be seen as special cases of the general one, we will give specific results with specific assumptions. In other words, our second main theorem is not a corollary of the first one.

Let us mention that, on the one hand, we cannot treat all the examples given in [START_REF] Silvestre | Hölder estimates for solutions of integro-differential equations like the fractional Laplace[END_REF] (in particular the examples of the Section 3.4 of [START_REF] Silvestre | Hölder estimates for solutions of integro-differential equations like the fractional Laplace[END_REF]) and, on the other hand, we can treat examples out of the scope of [START_REF] Silvestre | Hölder estimates for solutions of integro-differential equations like the fractional Laplace[END_REF]; indeed, we only assume that the measure µ x is bounded at infinity (uniformly with respect to x), while Condition (2.2) of [START_REF] Silvestre | Hölder estimates for solutions of integro-differential equations like the fractional Laplace[END_REF] requires a (small) power of |z| to be integrable at infinity. Moreover, we can handle much more general non-linear equations, in particular the important Bellman-Isaacs equations and we can also identify the critical Hölder exponent α of the solution. To be more precise, we are able to prove that the solution is α-Hölder continuous for any α < β (and even α = β under stronger assumptions in the case β < 1) where β characterizes the singularity of the measure associated with the integral operator.

In order to treat a large class of non-linear elliptic equations, we decided to present the main results by assuming that the non-linearity F in (1) satisfies a proper ellipticity-growth condition (see (H) in Section 2). Loosely speaking, this structure condition ensures that either the equation is strictly elliptic in the classical fully non-linear sense or it is strictly elliptic in a non-linear and non-local sense. Since this condition is rather technical, a whole section is devoted to comments and examples (see Section 3).

The techniques we use in the present paper do not seem to yield Lipschitz regularity when β ≥ 1 and we would like to investigate this question in a future work. Let us mention that we proved [START_REF] Barles | Dirichlet boundary conditions for second order elliptic non-linear integrodifferential equations[END_REF] in quite a general framework that there exists a viscosity solution of the Dirichlet problem without loss of boundary condition. The local Hölder estimates we obtain in the present paper applies to the Dirichlet problem too and we will address naturally in a future work the question of boundary estimates. We would like also to point out that the techniques we develop here can be readily applied to parabolic integro-differential equations. Finally, another possible interesting application of these results is the study of the ergodicity of non-local equations.

We would like to conclude this introduction by mentioning that after this work was completed, we found out that Caffarelli and Silvestre [START_REF] Caffarelli | Regularity theory for fully nonlinear integro-differential equations[END_REF] obtained regularity results for a large class of nonlinear integrodifferential equations that are invariant under x-translations and uniformly elliptic in a non-local way. In particular, they are able to get C 1,α regularity of solutions.

The paper is organized as follows. In Section 1, we recall the definition of a viscosity solution of (1). In Section 2, we state two main results: the first one deals with general x-dependent Lévy measure and the second one deals with integro-differential operators under the Lévy-Itô form. In Section 3, we make comments on the main structure assumption on the non-linearity F and we give examples of direct applications of our results. Section 4 is devoted to proofs of the main results.

Acknowledgements. The authors want to thank the referees for their very careful reading of the article and for valuable suggestions which lead to a real improvement of the presentation of our results. They are particularly grateful to one of the referees who provided a technical idea which allows them to slightly weaken the assumptions of their results.

Notation. The scalar product in R N is denoted by x • y. A ball centered at x of radius r is denoted by B(x, r). If x = 0, we simply write B r and if r = 1, we even write B. S N -1 denotes the unit sphere of R N .

The transpose of a matrix A is denoted A * and ||A|| stands for the usual norm of A, namely ||A|| := max |z|=1 |Az|. S N is the space of N × N , real symmetric matrices. We recall that X ≥ Y if all the eigenvalues of X -Y are non-negative. If X ∈ S N and ε ∈ (0, 1) is such that all the eigenvalues of X are strictly less than 1 (resp. strictly greater than -1), we set X ε = (I -εX) -1 X (resp. X ε = (I + εX) -1 X). These matrices are obtained from X by applying a sup-convolution procedure (resp. an inf-convolution procedure), namely, for any

ξ ∈ R N X ε ξ • ξ = sup ζ∈R N Xζ • ζ - |ξ -ζ| 2 ε , X ε ξ • ξ = inf ζ∈R N Xζ • ζ + |ξ -ζ| 2 ε .

Viscosity solutions for PIDE

In this section, we recall the notion of degenerate ellipticity for non-linear non-local equations and the definition of viscosity solutions for such equations.

1.1. Degenerate ellipticity. Throughout the paper, the domain Ω is an open subset of R N and the non-linearity F is a continuous function. We also assume that (1) is degenerate elliptic. In this framework, this means that we make the following

Assumption (E). For any x ∈ R N , u ∈ R, p ∈ R N , X, Y ∈ S N , l 1 , l 2 ∈ R F (x, u, p, X, l 1 ) ≤ F (x, u, p, Y, l 2 ) if X ≥ Y, l 1 ≥ l 2 .
1.2. Non-Local operators. In order to define viscosity solutions for (1), we introduce two associated operators I 1,δ and I 2,δ

I 1,δ [x, p, u] = |z|<δ [u(x + z) -u(x) -p • z1 B (z)]µ x (dz), I 2,δ [x, p, u] = |z|≥δ [u(x + z) -u(x) -p • z1 B (z)]µ x (dz).
In the case of Lévy-Itô operators (4), I 1,δ and I 2,δ are defined as follows

I 1,δ [x, p, u] = |z|<δ [u(x + j(x, z)) -u(x) -p • j(x, z)1 B (z)]µ(dz), I 2,δ [x, p, u] = |z|≥δ [u(x + j(x, z)) -u(x) -p • j(x, z)1 B (z)]µ(dz).
1.3. Definition. We now recall the definition of a viscosity solutions for [START_REF] Barles | Interior gradient bounds for the mean curvature equation by viscosity solutions methods[END_REF]. We assume that we are given a function u defined on the whole space R N . Definition 1 (Viscosity solutions). An upper semi-continuous (usc in short) function u : R N → R is a subsolution of (1) if for any test function φ ∈ C 2 (B(x, δ)) such that u -φ attains a maximum on B(x, δ)

at x ∈ Ω, F (x, u(x), Dφ(x), D 2 φ(x), I 1,δ [x, p, φ] + I 2,δ [x, p, u]) ≥ 0
where p = Dφ(x).

A lower semi-continuous (lsc in short) function u : R N → R is a supersolution of (1) if for any test function φ ∈ C 2 (R N ) such that u -φ attains a maximum on B(x, r) at x ∈ Ω for some r > 0,

F (x, u(x), Dφ(x), D 2 φ(x), I 1,r [x, p, φ] + I 2,r [x, u]) ≤ 0,
where p = Dφ(x).

A continuous function u : R N → R is a solution of (1) if it is both a sub and a supersolution. Remark 1. It is possible to construct solutions of (1) in the case where Ω = R N . If Ω = R N , boundary conditions must be imposed. For instance, as far as the Dirichlet problem is concerned, the function u can be prescribed outside of Ω. See [START_REF] Barles | Dirichlet boundary conditions for second order elliptic non-linear integrodifferential equations[END_REF] for further details.

Remark 2. As remarked in [START_REF] Barles | Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited[END_REF], one can choose r = 0 in the previous definition, at least in the case of Lévy-Itô operators. See [START_REF] Barles | Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited[END_REF] for further details.

Main results

In this section, we state the two main results of this paper: the first one is concerned with non-local operators of the form (2) (Theorem 1) and the second one provides other (distinct) results for Lévy-Itô operators (4) (Theorem 2).

The two results rely on a structure condition imposed to the non-linearity F . In order to formulate it, we consider two functions Λ 1 , Λ 2 : Ω → [0, +∞) such that Λ 1 (x) + Λ 2 (x) ≥ Λ 0 > 0 on Ω.

(H) (Ellipticity-Growth condition) For any R > 0, there exist constants k ≥ 0, τ, θ ∈ (0, 1], a locally bounded function χ : R + × R + → R + , a modulus of continuity ω F : (0, +∞) → (0, +∞), ω F (0+) = 0 and two constants η, ε0 > 0 such that for any x, y ∈ Ω with |x -y| ≤ η, u, v ∈ R with |u|, |v| ≤ R, p, q ∈ R N , |q| ≤ R, l 1 ≤ l 2 , ̟ ∈ (0, 1/3), L > 0, ε ∈ (0, ε0 ) and â ∈ S N -1 , we have

F (y, u, p, Y, l 2 ) -F (x, v, p + q, X, l 1 ) ≤ Λ 1 (x) Tr(X -Y ) + ω F (|x -y|) ε + |x -y| τ |p| 2+τ + |p| 2 + χ(L, η) +Λ 2 (x) (l 1 -l 2 ) + |x -y| 2θ ε + |x -y| τ |p| k+τ + C F |p| k + χ(L, η) , if the matrices X, Y satisfy (5) - 4 ε I ≤ X 0 0 -Y ≤ 2 ε Z -Z -Z Z + L I 0 0 0 ,
where I denotes the identity matrix and

Z = I -(1 + ̟)â ⊗ â.
In the next subsection, we will make comments on this structure condition and give several examples. The general results are the following.

Theorem 1 (Hölder continuity for general non-local operators). Assume that the measures µ x satisfy the following: there exist β ∈ (0, 2), a constant Cµ > 0, a modulus of continuity ω µ : (0, +∞) → (0, +∞), ω µ (0+) = 0 and, for η ∈ (0, 1), a constant C µ (η) > 0 such that for any x, y ∈ Ω, d ∈ S N -1 , η, δ ∈ (0, 1), ( 6)

B |z| 2 µ x (dz) + R N \B µ x (dz) ≤ Cµ , {z:|z|≤δ,|d•z|≥(1-η)|z|} |z| 2 µ x (dz) ≥ C µ (η)δ 2-β (7) B δ |z| 2 |µ x -µ y |(dz) ≤ ω µ (|x -y|)δ 2-β (8) B\B δ |z||µ x -µ y |(dz) ≤ ω µ (|x -y|)δ 1-β if β = 1 , ω µ (|x -y|)| ln δ| if β = 1 , with, if β = 1, ω µ (•) such that ω µ (r)| ln r| → 0 as r → 0.
Suppose also that the non-linearity F satisfies (H) for some parameters k, τ, θ.

(i) If θ > 1 2 (2 -β) and k = β if β > 1, k < β if β ≤ 1,
then any bounded continuous viscosity solution u of (1) is locally α-Hölder continuous for α small enough. Precisely, α must satisfy:

α < 1 if β ≥ 1 and α < β-k 1-k if β < 1. (ii) If β < 1 and if we assume moreover that C F = 0 in (H) and τ > k(β -1 -1), then u is β-Hölder continuous.
Moreover, in both cases (i) and (ii), the C 0,α and C 0,β estimates depend on ||u|| ∞ , N (dimension), the constants Cµ , C µ (η) and the function ω µ appearing in (6)-( 8

), on the constants and functions appearing in (H).

We now turn to Lévy-Itô operators.

Theorem 2 (Hölder continuity with Lévy-Itô operators). Assume that the function j appearing in the definition of I LI satisfies: there exist c 0 , C 0 > such that, for any x ∈ Ω and z ∈ R N ,

(9) c 0 |z| ≤ |j(x, z)| ≤ C 0 |z| |j(x, z) -j(y, z)| ≤ C 0 |z||x -y| θ
with θ ∈ (0, 1). Assume, in addition, that the measure µ satisfies: there exist β ∈ (0, 2), a constant Cµ > 0 and, for any η ∈ (0, 1), a constant C µ (η) > 0 such that for any

x ∈ Ω, d ∈ S N -1 , η, δ ∈ (0, 1), ( 10 
) B |j(x, z)| 2 µ(dz) + R N \B µ(dz) ≤ Cµ , C δ,η (x) |j(x, z)| 2 µ(dz) ≥ C µ (η)δ 2-β where C δ,η (x) := {z : |j(x, z)| ≤ δ, |d • j(x, z)| ≥ (1 -η)|j(x, z
)|}, and that, moreover, for δ small enough (11)

B\B δ |z|µ(dz) ≤ Cµ δ 1-β if β = 1 , Cµ | ln δ| if β = 1 ,
Assume, finally, that the non-linearity F satisfies (H) with parameters k, τ, θ. If

θ, θ > 1 2 (2 -β) and k = β if β > 1, k < β if β ≤ 1,
then any bounded continuous viscosity solution u of (1) with I[x, u] replaced with (4) is locally α-Hölder continuous for any α < min(1, β).

If, in addition,

C F = 0 in (H) and τ > k(1 -β)β -1 , then u is β-Hölder continuous when β < 1.
Moreover, the C 0,α estimate depends on ||u|| ∞ , N and on the constants and functions appearing in (H) and ( 9)- [START_REF] Crandall | The maximum principle for semicontinuous functions[END_REF].

Remark 3. It is worth pointing out that ( 9)-( 10)-( 11) are the analogues of ( 6)-( 7)-(8) but they do not imply them. It is easy to see that the first line of (9) together with (10) imply ( 6) but ( 7) and ( 8) do not derive from the second line of ( 9) and [START_REF] Crandall | The maximum principle for semicontinuous functions[END_REF].

Typically we have in mind the measures µ which satisy for some C ± µ > 0 and β ∈ (0, 2)

(12) C - µ |z| N +β dz ≤ µ(dz) ≤ C + µ |z| N +β dz.
and functions j(x, z) such that z → j(x, z) has an inverse function J(x, Z) and that there exist c 0 , C 0 > 0 such that ( 13)

       ∀(x, z) ∈ B r (x 0 , 0), c 0 |z| ≤ |j(x, z)| ≤ C 0 |z|, ∀(x, Z) ∈ B R (x 0 , 0), c 0 |Z| ≤ |j(x, Z)| ≤ C 0 |Z| ∀Z ∈ R N , c 0 ≤ | det D z J(x 0 , Z)| ∀z ∈ R N , |j(x, z) -j(y, z)| ≤ C 0 |z||x -y| θ
and these are the properties we will use. We are in such a case if, for instance, for any x, D z j(x, z) exists for |z| small enough, is continuous in (x, z) and non-singular for z = 0. Such a condition appears in [START_REF] Bass | Harnack inequalities for jump processes[END_REF].

Comments and examples

In this section, we make comments on assumptions of the main theorems and give examples of applications. More precisely, we illustrate the different terms appearing in the structure condition (H); we give examples of non-local operators of type ( 2) and ( 4); eventually, we give a regularity result that applies to the Bellman-Isaacs equation.

3.1. Non-Linearities. In this subsection, we illustrate the structure condition (H) we used in Theorems 1 and 2 and, to do so, we consider the model equation ( 14) 2) or (4). First, Equation ( 14) has to be degenerate elliptic and therefore we assume: for all x ∈ Ω, A(x) ≥ 0 and c(x) ≥ 0. For A, we are even going to use the more restrictive assumption (but natural in the probabilistic framework)

-tr (A(x)D 2 u) -c(x)I[x, u] + H(x, u, Du) = 0 in Ω , where A : Ω → S N , c : Ω → R and H : Ω × R × R N → R are continuous functions and I[x, u] is a non-local term of type (
for all x ∈ Ω, A(x) = σ(x)σ * (x)
where σ is a continuous function which maps Ω into the space of N × p-matrices for some p ≤ N .

We come back to the structure condition (H). It combines two different terms: the first one permits to handle equations that are strictly elliptic in the usual sense. The second one permits to handle non-local equations that are strictly elliptic in a generalized (non-local) sense. Notice that imposing Λ 1 (x) + Λ 2 (x) ≥ Λ 0 > 0 means that, at each point x ∈ Ω, the non-linearity is either strictly elliptic in the classical (non-linear) sense or strictly elliptic in the generalized (non-local) sense.

A typical situation is the following: we are given two open subsets

O 1 , O 2 of Ω such that O 1 ∪ O 2 = Ω and the closure of (O 1 ) c is included in O 2 ; moreover we know that F satisfies (H) in O 1 with Λ 1 (x) ≡ 1, Λ 2 (x) ≡ 0 while F satisfies (H) in O 2 with Λ 1 (x) ≡ 0, Λ 2 (x) ≡ 1.
Then, if Λ is a continuous function in Ω which equals 1 on the closure of (O 1 ) c and which has support included in O 2 , then it is easy to check that F satisfies (H) with Λ

1 (x) ≡ 1 -Λ(x), Λ 2 (x) ≡ Λ(x).
On Equation ( 14), the structure condition (H) means that we assume

A(x) ≥ Λ 1 (x)I and c(x) ≥ Λ 2 (x) in Ω .
Typically this means that the second-order -tr

(A(x)D 2 u) is uniformly elliptic in O 1 , while there is no degeneracy in the non-local variable l in O 2 . Of course, in conditions "Λ 1 (x) ≡ 1 in O 1 " or "Λ 2 (x) ≡ 1 in O 2 "
, the "≡ 1" may be replaced by "≡ Λ" with Λ > 0.

Besides of this ellipticity assumption, we have to assume that A (or more precisely σ) satisfies suitable continuity assumptions in O 1 and O 2 : this appears in (H) in the second subterms of the Λ 1 , Λ 2 -terms. To describe these assumptions, we recall a standard computation which appeared for the first time in Ishii [START_REF] Ishii | On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs[END_REF]: we assume that σ is bounded uniformly continuous in Ω and we denote by ω σ its modulus of continuity. We apply (5) to the vector z = (z 1 , z 2 ) with z 1 = σ(x)e, z 2 = σ(ȳ)e and an arbitrary e ∈ S N -1 , and get

σ T (x)Xσ(x)e • e -σ T (ȳ)Y σ(ȳ)e • e ≤ 1 ε ω 2 σ (|x -ȳ|) + L||σ|| 2 ∞ (we used that Z ≤ I). Therefore Tr(A(x)X) -Tr(A(ȳ)Y ) ≤ 1 ε dω 2 σ (|x -ȳ|) + Ld σ 2 ∞ .
Hence, choose ω F (r) = dω 2 σ (r) and χ(L, η) = Ld σ 2 ∞ . It is worth pointing out that, in the uniformly elliptic case (i.e. in O 1 ), A or σ is only required to be continuous while, in O 2 , σ has to be Hölder continuous (the same computations as above provide the |x -y| 2θ -term if ω σ (r) = Cr θ ) in order to take advantage of the ellipticity of the non-local term.

We now turn to the non-local term. Our main remark is the following: in our formulation, the nonlocal term l is in fact c(x)I[x, u] and not only I[x, u]. In that way, assumption (H) is obviously satisfied by Equation [START_REF] Jakobsen | Continuous dependence estimates for viscosity solutions of integro-PDEs[END_REF]. On the other hand, in order to verify the assumptions of Theorem 1, one has to replace the measure µ x (dz) with μx (dz) := c(x)µ x (dz) and check if conditions are satisfied by this new measure. In other words, in the case of (2), we rewrite c(x)I[x, u] as

R N (u(x + z) -u(x) -Du(x) • z1 B (z))μ x (dz) .
Therefore, the continuity assumptions on µ x in Theorem 1 are indeed continuity assumptions on μx and, for this reason, they both contain continuity assumptions on µ x and on c.

A priori a similar approach could be used for (4) but this really means that we use Theorem 1 instead of Theorem 2 in this case.

It remains to consider the first order term H(x, u, Du) in Equation ( 14): this appears in (H) in the third, fourth and (part of the) fifth subterms of Λ 1 , Λ 2 -terms. As it is classical for (local) equations, we have to require growth conditions with respect to Du: quadratic growth (|p| 2 ) when the equation is uniformly elliptic and a |p| k -growth with k depending on the measure when the strong ellipticity comes from the non-local term.

For example, in the case of the fractional Laplacian (-∆) β 2 , the natural growth turns out to be k = β, even if Theorem 1 shows that the case β ≤ 1 is a little bit more particular. We refer the reader to Subsection 3.3 where an example of equation involving a fractional Laplacian is treated in details.

These growth conditions on the gradient have to be combined with the regularity of coefficients: we are able to treat gradient terms of the form c(x)|Du(x)| m with m = 2 if c is merely bounded and m = 2 + τ if c is locally τ -Hölder continuous. We leave details to the reader.

We say more about these assumptions in the next subsections. In particular, we treat equations that are not exactly of the form (1) but can be handled with the same techniques (see Subsection 3.4).

Singular measures.

The model singular measure is the Lévy measure associated with the fractional Laplacian (-∆) β 2 . In this case, dµ x (z) = dµ(z) = dz/|z| N +β with 0 < β < 2. A second simple example of measure µ x is c(x, z)µ(dz) with a Lévy measure µ satisfying ( 10)- [START_REF] Crandall | The maximum principle for semicontinuous functions[END_REF] with j(x, z) = z and c(x, z) satisfying for any x, y ∈ Ω and z ∈ B |c(x, z) -c(y, z)| ≤ ω(|x -y|) where ω(t) → 0 when t ↓ 0, and, for any x ∈ Ω, z ∈ R N , 0 < c ≤ c(x, z) ≤ c, for some constants c, c. One can thus easily check ( 6), [START_REF] Caffarelli | Fully non-linear elliptic equations[END_REF], [START_REF] Caffarelli | Regularity theory for fully nonlinear integro-differential equations[END_REF] and Theorem 1 applies for suitable non-linearities F . Lévy measures associated with tempered stable Lévy processes satisfy ( 10)- [START_REF] Crandall | The maximum principle for semicontinuous functions[END_REF]. Indeed, in this case

µ(dz) = 1 (0,+∞) (z) G + e -λ + |z| dz |z| N +α + 1 (-∞,0) (z) G -e -λ -|z| dz |z| N +α .
These measures appear in financial modeling, see for instance [START_REF] Carr | Stochastic volatility for Lévy processes[END_REF].

3.3.

A non-local equation involving the fractional Laplacian. In order to illustrate further our results, we next consider the following model equation

(-∆) β 2 u + b(x)|Du| k+τ + |Du| r = 0 where b ∈ C 0,τ , 0 < τ < 1, 0 < k, r < 2.
In this case, Condition (H) is satisfied with Λ 1 = 0, Λ 2 (x) = 1 > 0, θ > 0 is arbitrary and τ, k, r appear in the equation. It is easy to check that ( 6) is satisfied with exponent β: first, it is a Lévy measure and if C δ,η denotes {|z| < |δ|, (d • z) ≥ (1 -η)|z|}, then by homogeneity and symmetry of µ,

C δ,η |z| 2 µ(dz) = |C δ,η | |B δ | B δ |z| 2 µ(dz) = |C 1,η | |B 1 | B δ |z| 2 µ(dz) = |C 1,η | |B 1 | B δ |z| 2-β-N dz = C µ (η)δ 2-β .
Moreover, the other hypotheses we make on µ (namely ( 7) and ( 8)) are automatically satisfied since µ is independent of x (in other words, one can choose ω µ = 0). Since β < 2, we cannot allow here a quadratic growth for the gradient term; indeed Theorem 1 and 2 work only for k, r ≤ β in the absence of local ellipticity. It is also worth pointing out that, if r ≤ 1, we have |p| r -|p + q| r ≤ |q| r ≤ R r and therefore, even if β < 1, any such r works since the R r can be absorbed in the χ(L, η)-term. 

(15) cu + sup λ∈Λ inf γ∈Γ - 1 2 Tr(σ λ,γ (x)σ * λ,γ (x)D 2 u) -b λ,γ (x) • Du -I λ,γ LI [x, u] -f λ,γ (x) = 0
with c ≥ 0 and where I λ,γ LI [x, u] is a family of Lévy-Itô operators associated with a common Lévy measure µ and a family of functions j λ,γ (x, z). Assume that (i) µ verifies (10)-( 11) with constants independent of λ, µ, (ii) there exist c 0 , C 0 > 0 and θ ∈ (0, 1) such that for any (λ, γ) ∈ Λ × Γ, j λ,γ satisfies (9), (iii) σ λ,γ , b λ,γ and f λ,γ satisfy for some θ ∈ (0, 1) (and some constant

C F > 0) ∀α, β, σ λ,γ 0,θ + b λ,γ 0,θ + f λ,γ 0,θ ≤ C F .
If θ, θ > 1 2 (2 -β), then any bounded viscosity solution u of (15) is α-Hölder continuous for any α <

1 if β ≥ 1 and for α < β-k 1-k if β < 1.
Proof. Remark that ( 15) is not exactly of the form (1). Nevertheless, the proof of Theorem 2 we present below can be adapted to this framework. It is enough to check that structure condition (H) is satisfied by the linear equations

F λ,γ (x, u, p, A, l) = cu - 1 2 Tr(σ λ,γ (x)σ * λ,γ (x)A) -b λ,γ (x) • p -l λ,γ -f λ,γ (x) ,
with constants and functions appearing in (H) independent on λ, γ. Indeed, if it is the case, then we have just to use the standard inequality

sup λ inf γ (• • • ) -sup λ inf γ (• • • ) ≤ sup λ,γ (• • • -• • • ).
and we can conclude in this more general case too.

Proofs of Theorems 1 and 2

We prove successively Theorems 1 and 2. On one hand, the proofs are very similar and we will skip details in the proof of the second theorem when adapting arguments used in the proof of the first one. On the other hand, we need to use very precisely every parameter. This is the reason why constants are computed from line to line and explicit formulae are given for each of them in order to use them later.

Proof of Theorem 1.

Proof of Theorem 1. (i).

Without loss of generality, we assume here that C F = 1 in the ellipticity-growth condition (H). In order to prove the local Hölder continuity of u, we are going to show that, for any x 0 ∈ Ω, there exists L 2 = L 2 (x 0 ) such that, for some well chosen α ∈ (0, 1) and for L 1 = L 1 (x 0 ) > 0 large enough, we have

M = sup x,y∈R N {u(x) -u(y) -φ(x -y) -Γ(x)} ≤ 0 where φ(z) = L 1 |z| α and Γ(x) = L 2 |x -x 0 | 2 .
We point out that the role of the term Γ(x) is to localize around x 0 , while the term φ(x -y) is concerned with the Hölder continuity. Proving such a result with a suitable control on α, L 1 , L 2 clearly implies the desired property.

If Ω = R N , we first choose L 2 in order that u(x) -u(y) -φ(x -y) -Γ(x) ≤ 0 if x / ∈ Ω: to do so, we first choose

L 2 ≥ 8||u|| ∞ [d(x 0 , ∂Ω)] 2 .
If Ω = R N , L 2 is arbitrary. Then we argue by contradiction: we assume that M > 0 and we are going to get a contradiction for L 1 large enough and for a suitable choice of α.

If the supremum defining M is attained at (x, ȳ), we then deduce from M > 0 that x = ȳ and ( 16)

|x -ȳ| ≤ 2 u ∞ L 1 1 α =: A, |x -x 0 | < 2 u ∞ L 2 =: R 2 ≤ d(x 0 , ∂Ω) 2 , u(x) > u(ȳ).
If L 1 is large enough so that A < d(x 0 , ∂Ω) 2 , then we have x, ȳ ∈ Ω.

Next, we pick some ν 0 ∈ (0, 1) and we define

a = x -ȳ, ε = |a| â = a |a| , δ = ν 0 ε < ε.
First, ν 0 will be chosen small enough but fixed (independent of L 1 and ε).

From the study of the maximum point property for (x, ȳ), we also get

(17) L 1 ε α ≤ u(x) -u(ȳ) ≤ ω u (ε)
where ω u denotes the modulus of continuity of u on B(x 0 , d(x 0 , ∂Ω)/2). We will use this piece of information below (see Step 4). Notice also that if χ(x, y) denotes φ(x -y) + Γ(x), then x → u(x) -χ(x, ȳ) (resp. y → u(y) + χ(x, y)) attains a global maximum (resp. minimum) at x (resp. ȳ) with χ(•, ȳ) (resp. -χ(x, y)) of class C 2 on B(x, δ). In particular, we can use χ(x, •) and -χ(•, ȳ) as test-functions in Definition 1 with any δ ′ < δ.

The remaining of the proof is divided in four steps. We write down the viscosity inequalities and combine them (Step 1), we get suitable matrices inequalities from non-local Jensen-Ishii's lemma (Step 2), we estimate from above the difference of the non-local terms (Step 3) and we conclude (Step 4).

Step 1: writing down viscosity inequalities. Let p denote Dφ(a) and q denote DΓ(x). We use Corollary 1 of [START_REF] Barles | Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited[END_REF] which, for ι > 0 small enough, provides us with two matrices X ι , Y ι ∈ S N such that, for any δ ′ ≪ 1

F (x, u(x), p + q, X ι , I 1,δ ′ [x, p + q, χ ι (•, ȳ)] + I 2,δ ′ [x, p + q, u] + o ι (1)) ≤ 0, F (ȳ, u(ȳ), p, Y ι , I 1,δ ′ [ȳ, p, -χ ι (x, •)] + I 2,δ ′ [ȳ, p, u] + o ι (1)) ≥ 0
(where χ ι is an approximation of χ by a localized inf-convolution, see [START_REF] Barles | Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited[END_REF]) with the following matrix inequality

(18) - 1 ι I ≤ X ι 0 0 -Y ι ≤ Z -Z -Z Z + 2L 2 I 0 0 0 + o ι (1),
where Z = D 2 φ(a).

Our aim is to first let ι tend to 0 in order to get rid of all the artificial ι dependences in these inequalities: in order to do so, but also in order to apply (H) which requires a two-side bound on the matrices, we are first going to build matrices X, Y such that the above viscosity inequalities still hold if we replace X ι , Y ι by X, Y and such that the matrices X, Y satisfy the required inequality in (H).

Then, if we set

l 1 := I 1,δ ′ [x, p + q, χ ι (•, ȳ)] + I 2,δ ′ [x, p + q, u], l 2 := I 1,δ ′ [ȳ, p, -χ ι (x, •)] + I 2,δ ′ [ȳ, p, u] ,
and if we subtract the viscosity inequalities, dropping all the ι dependences, we will have (19) 0 ≤ F (ȳ, u(ȳ), p, Y, l 2 ) -F (x, u(x), p + q, X, l 1 ) .

In order to get the desired contradiction, the rest of the proof consists in obtaining various estimates, and in particular on the differences X -Y and I 2,δ ′ [x, p + q, u] -I 2,δ ′ [ȳ, p, u], in order to apply the ellipticitygrowth condition (H) to show that the right-hand side of this inequality is strictly negative. We point out that, since we are going to let first δ ′ tend to 0, the terms

I 1,δ ′ [x, p + q, χ ι (•, ȳ)], I 1,δ ′ [ȳ, p, -χ ι (x, •)]
create no difficulty because they tend to 0 with δ ′ .

Step 2: building and estimating the matrices X, Y . We follow here ideas introduced by Crandall and Ishii [START_REF] Crandall | The maximum principle for semicontinuous functions[END_REF] to obtain these matrices, by using only the upper bounds on X ι , Y ι . We rewrite Inequality (18) as: for any z 1 , z 2 ∈ R N , we have

X ι z 1 • z 1 -Y ι z 2 • z 2 ≤ Z(z 1 -z 2 ) • (z 1 -z 2 ) + 2L 2 |z 1 | 2 .
We have dropped the o ι (1)-term in the right-hand side for the sake of simplicity since it plays no role. In fact, we use the previous matrix inequality on the following form

(X ι -2L 2 I)z 1 • z 1 -Y ι z 2 • z 2 ≤ Z(z 1 -z 2 ) • (z 1 -z 2 ).
Next we have to compute Z, as well as, for the rest of the proof, the derivatives of φ. 

Dφ(b) = L 1 α|b| α-2 b D 2 φ(b) = L 1 (α|b| α-2 I + α(α -2)|b| α-4 b ⊗ b) = L 1 α|b| α-4 (|b| 2 I -(2 -α)b ⊗ b) (21) D 2 φ(b) ≤ L 1 α|b| α-2 I. ( 22 
)
We have

Z = 1 ε I -(2 -α)â ⊗ â with ε = (L 1 αε α-2 ) -1 .
Now we come back to the X ι , Y ι inequality: we apply to this inequality a sup-convolution in both variables z 1 and z 2 with a parameter which is 1 4 ε. Noticing that this corresponds to an inf-convolution on the (Y ι z 2 • z 2 )-term, we easily get, with the notation introduced at the end of the Introduction,

(X ι -2L 2 I) 1 4 εz 1 • z 1 -(Y ι ) 1 4 εz 2 • z 2 ≤ Z 1 2 ε(z 1 -z 2 ) • (z 1 -z 2 ).
On the other hand, tedious but easy, explicit computations (which are provided in the Appendix) yield Z

1 2 ε = 2ε -1 (I -(1 + ̟)â ⊗ â) with ̟ := 1 -α 3 -α > 0. Notice that 0 < ̟ < 1/3. If we set X = (X ι -2L 2 I) 1 4 ε + 2L 2 I, Y = (Y ι ) 1 4
ε, then X, Y satisfy (5) with L = 2L 2 and since X ι ≤ X and Y ≤ Y ι , the viscosity inequalities still hold for X and Y because F is degenerate elliptic.

From this new form of inequality (18), we can obtain several types of estimates on X and Y : first, choosing z 2 = -z 1 = â, we get

Xâ • â -Y â • â ≤ - 8̟ ε + O(L 2 ) = -8L 1 α̟ε α-2 + O(L 2 ) . Next choosing z 2 = z 1 = z with z being orthogonal to â, we have Xz • z -Y z • z ≤ O(L 2 ) .
In particular, this yields ( 23)

Tr(X -Y ) ≤ -8L 1 α̟ε α-2 + O(L 2 ) .
Step 3: estimates of the non-local terms. The difference of the non-local terms, denoted by T nl , can be rewritten as follows (we recall that B = B(0, 1))

T nl = |z|≥δ ′ [u(x + z) -u(x) -(p + q) • z1 B (z)]µ x(dz) - |z|≥δ ′ [u(ȳ + z) -u(ȳ) -p • z1 B (z)]µ ȳ (dz).
In order to estimate it, we part the domain of integration {|z| ≥ δ ′ } into three pieces R N \ B which leads to the T 1 term below, C = {z ∈ B δ : |z • â| ≥ (1 -η)|z|} ⊂ B which leads to the T 2 term below and B \ C which leads to the T 3 term below.

In order not to add further technicalities, we assume from now on that δ ′ = 0; the reader can check that if δ ′ > 0, the estimates we present below remain valid up to o δ ′ (1).

Therefore we have to estimate from above

T nl = T 1 + T 2 + T 3 + o δ ′ (1) with 
T 1 = |z|≥1 [u(x + z) -u(x)]µ x(dz) - |z|≥1 [u(ȳ + z) -u(ȳ)]µ ȳ (dz) T 2 = C [u(x + z) -u(x) -(p + q) • z]µ x(dz) - C [u(ȳ + z) -u(ȳ) -p • z]µ ȳ(dz) T 3 = B\C [u(x + z) -u(x) -(p + q) • z]µ x(dz) - B\C [u(ȳ + z) -u(ȳ) -p • z]µ ȳ(dz)
For the reader's convenience, we recall that p = Dφ(a) and q = DΓ(x).

Estimate of T 1 . Since u is bounded and so are the measures µ x away from the origin, we conclude that T 1 is bounded, uniformly with respect to all the parameters we introduced. More precisely, (24)

T 1 ≤ C 1 where (25) C 1 = 4 u ∞ sup x∈B(x0,d(x0,∂Ω)/2) µ x (R N \ B).
Estimate of T 2 . We estimate T 2 from above by using the definition of M . Indeed, its definition provides the following key inequality (26)

u(x + d) -u(x) -(p + q) • d ≤ u(ȳ + d ′ ) -u(ȳ) -p • d ′ + φ(a + d -d ′ ) -φ(a) -Dφ(a) • (d -d ′ ) + Γ(x + d) -Γ(x) -DΓ(x) • d .
We then use (26) with d = z and d ′ = 0 (resp. with d = 0 and d ′ = z). We obtain

T 2 ≤ C [φ(a + z) -φ(a) -Dφ(a) • z]µ x(dz) + C [φ(a -z) -φ(a) + Dφ(a) • z]µ ȳ(dz) + C [Γ(x + z) -Γ(x) -DΓ(x) • z]µ x(dz)
We now use a second-order Taylor expansion in each integral. First, according to the form of Γ, we have

C [Γ(x + z) -Γ(x) -DΓ(x) • z]µ x(dz) = L 2 C |z| 2 µ x(dz) = O(L 2 ) .
Next, for the two other terms and for a general φ(x) = ϕ(|x|), we recall (20) and we finally get

T 2 ≤ 1 2 C sup t∈(-1,1) ϕ ′ (|a + tz|) |a + tz| P (a+tz) ⊥ z • z + ϕ ′′ (|a + tz|)( a + tz • z) 2 (µ x + µ ȳ )(dz) + O(L 2 ).
and using next that ϕ(r) = L 1 r α , we obtain

T 2 ≤ L 1 α 2 C sup t∈(-1,1) |a + tz| α-4 (|a + tz| 2 |z| 2 -(2 -α)((a + tz) • z) 2 )(µ x + µ ȳ )(dz) + O(L 2 ).
We use the notation b for a + tz and we estimate |b| and b • z for z ∈ C as follows

|b| ≤ ε + t|z| ≤ ε + δ ≤ (1 + ν 0 )ε |b • z| = |a • z + t|z| 2 | ≥ (1 -η)ε|z| -δ|z| ≥ (1 -η -ν 0 )ε|z| |b| 2 |z| 2 -(2 -α)(b • z) 2 ≤ (1 + ν 0 ) 2 ε 2 |z| 2 -(2 -α)(1 -η -ν 0 ) 2 ε 2 |z| 2 ≤ ((1 + ν 0 ) 2 -(2 -α)(1 -η -ν 0 ) 2 )ε 2 |z| 2
where we choose η, ν 0 small enough so that 1 -η -ν 0 > 0 and

(27) (2 -α)(1 -η -ν 0 ) 2 -(1 + ν 0 ) 2 > 0.
Hence

T 2 ≤ -L 1 C 4 ε α-2 C |z| 2 (µ x + µ ȳ )(dz) + O(L 2 ) with (28) C 4 = α 2 (2 -α)(1 -η -ν 0 ) 2 -(1 + ν 0 ) 2 (1 + ν 0 ) α-4 .
Using (6), we thus obtain

(29) T 2 ≤ -L 1 C 4 C µ (η)ε α-2 δ 2-β + O(L 2 ),
and finally, (30)

T 2 ≤ -L 1 C 5 ε α-β + O(L 2 ), with (31) 
C 5 = C 4 C µ (η)ν 2-β 0 .
Estimate of T 3 . In order to estimate T 3 from above, it is convenient to introduce

U 1 (z) = u(x + z) -u(x) -(p + q) • z U 2 (z) = u(ȳ + z) -u(ȳ) -p • z
and write

T 3 = B\C U 1 (z)µ x(dz) - B\C U 2 (z)µ ȳ (dz).
We first remark that (26) with, successively (d, d ′ ) = (z, z), (d, d ′ ) = (z, 0) and (d, d ′ ) = (0, z) = 0 yields (32)

               U 1 (z) -U 2 (z) ≤ Γ(x + z) -Γ(x) -DΓ(x) • z U 1 (z) ≤ φ(a + z) -φ(a) -Dφ(a) • z + Γ(x + z) -Γ(x) -DΓ(x) • z U 2 (z) ≥ -φ(a -z) -φ(a) + Dφ(a) • z .
We next consider the signed measure µ(dz) = µ x(dz) -µ ȳ (dz). It can be represented by using its Hahn-Jordan decomposition with two non-negative measures µ ± : we write µ = µ + -µ -where µ + , µ -are respectively the positive and negative part of the measure µ. We would like next to introduce a measure min(µ x, µ ȳ ). To make it precise, we use the Hahn decomposition of R N with respect to µ: if K denotes the support of µ + , we define µ = 1 K µ ȳ + (1 -1 K )µ x. We now rewrite T 3 with these measures. We use

µ x = µ + + μ and µ ȳ = µ -+ μ
together with (32) to get

T 3 = B\C (U 1 (z) -U 2 (z))µ(dz) + B\C U 1 (z)µ + (dz) - B\C U 2 (z)µ -(dz) ≤ B\C [Γ(x + z) -Γ(x) -DΓ(x) • z]µ(dz) + B\C [φ(a + z) -φ(a) -Dφ(a) • z]µ + (dz) + B\C [Γ(x + z) --DΓ(x) • z]µ + (dz) + B\C [φ(a -z) -φ(a) + Dφ(a) • z]µ -(dz).
In order to estimate the right hand side of the previous inequality from above, we first remark that

B\C [Γ(x + z) -Γ(x) -DΓ(x) • z](µ + µ + )(dz) ≤ L 2 B |z| 2 µ x(dz) ≤ Cµ L 2 .
Next, for the two other terms, we split the integration domain into B \ B δ and B δ \ C. On B δ \ C, we use once again a second-order Taylor expansion for φ while, on B \ B δ , we use the concavity of the function t → L 1 t α on (0, +∞) to obtain

φ(a + z ′ ) -φ(a) -Dφ(a) • z ′ ≤ L 1 (|a| + |z ′ |) α -L 1 |a| α -Dφ(a) • z ′ ≤ αL 1 |a| α-1 |z ′ | + |Dφ(a) • z ′ | ≤ 2αL 1 |a| α-1 |z ′ | . (33)
Using (33) for z ′ = z and -z and (6), we are lead to

T 3 ≤ Cµ L 2 + L 1 B δ \C (ε -δ) α-2 |z| 2 |µ|(dz) + 2αL 1 ε α-1 B\B δ |z||µ|(dz) ≤ Cµ L 2 + (1 -ν 0 ) α-2 L 1 ε α-2 B δ \C |z| 2 |µ x -µ ȳ |(dz) +2αL 1 ε α-1 B\B δ |z||µ x -µ ȳ |(dz).
where

|µ| = µ + + µ -= |µ x -µ ȳ |.
We now use [START_REF] Caffarelli | Fully non-linear elliptic equations[END_REF] and [START_REF] Caffarelli | Regularity theory for fully nonlinear integro-differential equations[END_REF]. It is convenient to introduce

ψ β (r) = r 1-β if β = 1 | ln r| if β = 1.
We finally get (34)

T 3 ≤ Cµ L 2 + ν α-β 0 L 1 ω µ (ε)ε α-β + 2αL 1 ω µ (ε)ε α-1 ψ β (ν 0 ε)
for ν 0 small enough. We use here that ν α-β 0 controls (1 -ν 0 ) α-2 ν 2-β 0 from above.

Final estimate for T nl . Combining (24),(30), (34), the final estimates are : for β = 1

(35) T nl ≤ -L 1 C 5 ε α-β + o(ε α-β ) + O(L 2 ),
and for β = 1

T nl ≤ -L 1 C 5 ε α-1 + ν α-1 0 L 1 ω µ (ε)ε α-1 + 2αL 1 ω µ (ε)ε α-1 | ln(ν 0 ε)| + O(L 2 ).
We see that if ω µ (r) satisfies ω µ (r)| ln r| → 0 as r → 0 (which is the case when β = 1), (35) still holds true in this case.

Step 4: conclusion. For all α < 1, we deduce from (35) that T nl ≤ 0 if L 1 is large enough. Using inequality (19) together with (H) with L = R = O(L 2 ) and Estimates ( 23) & (35), and recalling that ε := (L 1 αε α-2 ) -1 , we are thus lead to

(36) 0 ≤ Λ 1 (x)A 1 + Λ 2 (x)A 2 with A 1 = L 1 αε α-2 -8̟ + ω F (ε) + ε τ (αL 1 ε α-1 ) 2+τ + (αL 1 ε α-1 ) 2 + χ(L 2 ) A 2 = -L 1 C 5 ε α-β + o(ε α-β ) + ε 2θ ε + ε τ (αL 1 ε α-1 ) k+τ + (αL 1 ε α-1 ) k + χ(L 2 )
where we have gathered in the χ(L 2 )-term the terms that either depend on L 2 or are bounded. We use the assumption Λ 1 + Λ 2 ≥ Λ 0 > 0 by rewriting (36) as follows

0 ≤ Λ 0 max(A 1 , A 2 ) .
To get the desired contradiction and to obtain the C 0,α -estimate, it is enough to prove that A i < 0 for i = 1, 2 and L 1 large enough, and to control the size of such L 1 .

As far as A 1 is concerned and as soon as α < 1, we can ensure that -8̟ + ω F (ε) ≤ -4̟ if L 1 is large enough; using [START_REF] Trudinger | Comparison principles and pointwise estimates for viscosity solutions of non-linear elliptic equations[END_REF], it is clear that, in order to do it, the size of L 1 depends only on ||u|| ∞ , α and d(x 0 , ∂Ω). This yields an estimate of the type

A 1 ≤ L 1 ε α-2 -4̟α + α 2+τ (L 1 ε α ) 1+τ + α 2 L 1 ε α + χ(L 2 ) .
Now there are two ways to estimate L 1 ε α : either to use the first part of inequality [START_REF] Trudinger | On regularity and existence of viscosity solutions of non-linear second order, elliptic equations[END_REF] which yields the estimate L 1 ε α ≤ 2||u|| ∞ , or to use the second part and the estimate of L 1 ε α through the modulus of continuity of u. In the sequel, the strategy of the proof consists in proving the result for α small enough by using the first estimate of L 1 ε α and then to use this first step (which provides a modulus of continuity of u) to prove it for all α by using the second estimate of L 1 ε α .

Using L 1 ε α ≤ 2||u|| ∞ in the above inequality yields

A 1 ≤ L 1 ε α-2 -4̟α + α 2+τ (2||u|| ∞ ) 1+τ + 2α 2 ||u|| ∞ + χ(L 2 ) .
For α small enough (depending only on ||u|| ∞ and τ ), the bracket is less than -2̟α < 0 and, recalling [START_REF] Trudinger | Comparison principles and pointwise estimates for viscosity solutions of non-linear elliptic equations[END_REF], it is clear that the right-hand side is (strictly) negative if L 1 is large enough (depending on α, ̟, χ(L 2 )). Hence, we get the desired inequality: A 1 < 0.

For the A 2 -term, we first write

A 2 = -L 1 C 5 ε α-β + o(ε α-β ) + ε 2θ L 1 ε α-2 + ε τ (αL 1 ε α-1 ) k+τ + (L 1 αε α-1 ) k + χ(L 2 ) = L 1 ε α-β -C 5 + o ε (1) + ε 2θ-2+β + α k+τ ε β-k (L 1 ε α ) k+τ -1 + α k ε β-k (L 1 ε α ) k-1 + χ(L 2 ) = L 1 ε α-β -C 5 + o ε (1) + α k+τ ε β-k (L 1 ε α ) k+τ -1 + α k ε β-k (L 1 ε α ) k-1 + χ(L 2 )
where C 5 is given by (31); we also used 2θ + β -2 > 0.

The key difference with A 1 is the fact that the exponents of the term L 1 ε α can be non-positive and we have to argue differently if it is indeed the case.

We have the following cases.

• If β > 1, since C 5 ≥ αC ′ 5 for some constant C ′ 5 independent of α (at least for α ≤ 1/2), then one can argue as for A 1 with k = β since k + τ > 1 and k = β > 1 and obtain the C 0,α regularity and estimates for α small enough.

• If β ≤ 1, then we cannot use this argument anymore since k must satisfy (at least) k ≤ 1. In order to conclude, it is enough to ensure (37) 1) , we see that this term is o ε (1) if k < 1 and β-k+α(k-1) ≥ 0; notice that we do not know how to compare, in full generality, L 1 -terms and ε-terms. The second condition implies that k < β. In the same way, for the other term, either k + τ -1 ≥ 0 and the condition β > k is sufficient or k + τ -1 < 0 and we are lead to α ≤ (β -k)/(1 -k -τ ). Gathering all these informations yields the conditions

ε β-k (L 1 ε α ) k+τ -1 = o ε (1) and ε β-k (L 1 ε α ) k-1 = o ε (1). Writing ε β-k (L 1 ε α ) k-1 = L k-1 1 ε β-k+α(k-
1 ≥ β > k and α ≤ β -k 1 -k .
At this point, putting together the informations on A 1 and A 2 , we have shown that u is locally in C 0, ᾱ for ᾱ small enough (depending only on the data and the L ∞ -norm of u) and we have an estimate of the local C 0, ᾱ-norm of u. In order to conclude the proof, we need to come back to the estimate on A 1 and A 2 (in the case when β > 1) and to estimate the terms L 1 ε α using ( 17) and the local C 0, ᾱ-modulus of continuity. This easily yields the full result and the proof of point (i) is complete.

In order to prove the second part of the theorem, we now choose α = β and we only need to adapt the final step (Step 4) in the previous proof. We proceed as before by writing (36) with A 1 unchanged and, since C F = 0, A 2 is given by

A 2 = L 1 -C 5 + o(1) + L 1 ε β-2+2θ + ε τ (βL 1 ε β-1 ) k+τ + χ(L 2 ) ,
which we can rewrite as

A 2 = L 1 -C 5 + o(1) + L 1 ε β-2+2θ + βL 1 ε τ +(β-1)(k+τ ) + χ(L 2 ) .
At this stage of the proof, L 2 is fixed and L 1 can be chosen large enough in order to control the term χ(L 2 ). Next we notice that β -2+2θ > 0. In order to conclude, it is enough to have τ +(β -1)(k +τ ) > 0, i.e. τ > k(β -1 -1).

The proof of Theorem 1 is now complete.

Proof of Theorem 2.

Proof of Theorem 2. This proof follows along the lines of the previous one, the only difference is the way of getting Estimate (35) for the non-local term in the new framework and under the new assumptions. Let us explain this point.

In order to shed light on the fact that j has to be Hölder continuous with respect to x, we let ω(r) denote C 0 r θ and we will see at the end of the present proof that ω has to be chosen as a power law. Precisely, in this case, )

,
where the notation C δ,η (x) is defined in the statement of Theorem 2. Roughly speaking, C is the analogue of the cone used in the proof of Theorem 1 where we have replaced z by j( x+ȳ 2 , z). Notice that, because of ( 9), C ⊂ B if δ is small enough.

We have chosen such a set C for the following reason: if L 1 is large enough (or equivalently ε or δ are small enough) (38)

C ⊂ C δ,η (x) ∩ C δ,η (ȳ) , which means that both j(x, z) and j(ȳ, z) are in the "good" cones.

To check these properties, we write Estimate of T 1 . We remark that, thanks to the properties of j and µ, (24) still holds true.

Estimate of T 2 . One can check that (29) and (30) still hold true. Indeed, we use ( 10)-( 11) in order to get [START_REF] Bass | Harnack inequalities for jump processes[END_REF]. More precisely, using ( 10)- [START_REF] Crandall | The maximum principle for semicontinuous functions[END_REF] and recalling the computation we made in Subsection 3.3, we obtain ∀â,

C |z| 2 µ(dz) ≥ C µ δ 2-β
where C µ = C(c 0 , C 0 , C - µ , η, d, β). Notice that (27) is slightly modified and so is C 4 (and consequently C 5 ).

Estimate of T 3 . In the case of Lévy-Itô operators, we estimate T 3 as follows. By using (26) with d = j(x, z) and d ′ = j(ȳ, z), we get where ∆(z) = j(x, z) -j(ȳ, z). Let us first estimate T 1 3 as follows. We now turn to T 2 3 and we write T We can now estimate T 2,1 3 . In order to clarify computations, we write ω for ω(ε) in the following lines. We use ( 33 

≤ L 1 2 B |z| 2 µ(dz)(ε -δ) α-2 ω 2 ≤ L 1 2 ω 2 ε α-2 (1 -ν 0 ) α-2 B |z| 2 µ(dz) .
Gathering the estimates on T 2,1 3 and T 2,2 3 , we obtain (42)

T 2 3 ≤ 2αL 1 ε α-1 ωψ β (δω -1 ) + L 1 C 3 ω 2 ε α-2 with (43)

C 3 = 1 2 B |z| 2 µ(dz)(1 -ν 0 ) α-2

3. 4 .Corollary 1 .

 41 The Bellman-Isaacs equation. Let us illustrate Theorem 2 by considering an important secondorder non-linear elliptic integro-differential equations appearing in the study of stochastic control of processes with jumps, namely the Bellman-Isaacs equation. Let us mention the work of Jakobsen and Karlsen[START_REF] Jakobsen | Continuous dependence estimates for viscosity solutions of integro-PDEs[END_REF] in the evolution case where the authors use completely different techniques. Consider the following Bellman-Isaacs equation in R N

  It will be convenient to do the proof for φ(x) = ϕ(|x|) for a general smooth function ϕ : R + → R. We thus get for any b ∈ R N Dφ(b) = ϕ ′ (|b|) b D 2 φ(b) = ϕ ′ (|b|) |b| P b ⊥ + ϕ ′′ (|b|) b ⊗ b (20) where b = b/|b| and P b ⊥ = I -b ⊗ b is the projection on the orthogonal space of b. Hence, if ϕ(r) = L 1 r α , we get

  T nl = |z|≥δ ′ [u(x + j(x, z)) -u(x) -(p + q) • j(x, z)1 B (z)]µ(dz) -|z|≥δ ′ [u(ȳ + j(ȳ, z)) -u(ȳ) -p • j(ȳ, z)1 B (z)]µ(dz).We then write T nl = T 1 + T 2 + T 3 withT 1 = |z|≥1 [u(x + j(x, z)) -u(x)]µ(dz) -|z|≥1 [u(ȳ + j(ȳ, z)) -u(ȳ)]µ(dz) T 2 = z∈C [u(x + j(x, z)) -u(x) -(p + q) • j(x, z)]µ(dz) -z∈C [u(ȳ + j(ȳ, z)) -u(ȳ) -p • j(ȳ, z)]µ(dz) T 3 = z∈B,z / ∈C [. . . ]µ x(dz) -z∈B,z / ∈C [. . . ]µ ȳ (dz)where C is defined in the following way C := {z : |j(

≥ ( 1 -for L 1

 11 |j(x, z) • â| ≥ |j( x + ȳ 2 , z) • â| -|j(x, z) -j( η/2)|j(x, z)| -(2 -η/2)|z|ω(ε/2) ≥ (1 -η/2 -(2 -η)C -1 0 ω(ε/2)|j(x, z)| ≥ (1 -η)|j(x, z)| and |j(x, z)| ≤ |j( such that ω(ε/2) ≤ min ηc 0 4 -η , c 0 = min(C 0 , c 0 ) = c 0 for η < 1.

T 3 = 2 3 =

 323 z∈B,z / ∈C [u(x + j(x, z)) -u(x) -(p + q) • j(x, z) -u(ȳ + j(ȳ, z)) + u(ȳ) + p • j(ȳ, z)]µ(dz) x + j(x, z)) -Γ(x) -q • j(x, z)]µ(dz) T z∈B,z / ∈C [φ(a + ∆(z)) -φ(a) -p • ∆(z)]µ(dz)

D 2 Γ

 2 (x + tj(x, z))j(x, z) • j(x, z) µ(dz)

T 2 ,2 3 =

 23 ∈C,|∆(z)|≥δ [φ(a + ∆(z)) -φ(a) -Dφ(a) • ∆(z)]µ(dz), z∈B,z / ∈C,|∆(z)|≤δ [φ(a + ∆(z)) -φ(a) -Dφ(a) • ∆(z)]µ(dz).

T 2 ,1 3 ≤δω - 1 2 ,2 3 ≤ L 1 α 2 |z|≤1 sup t∈(0, 1 )

 231231 ) ; remarking that δ ≤ |∆(z)| ≤ ω|z| , we deduce ≤|z|≤12αL 1 ε α-1 |∆(z)|µ(dz) ≤ δω -1 ≤|z|≤1 2αL 1 ε α-1 ω|z|µ(dz) ≤ 2αL 1 ε α-1 ωψ β (δω -1 )where, by[START_REF] Crandall | The maximum principle for semicontinuous functions[END_REF] (41)ψ β (r) = r≤|z|≤1 |z|µ(dz) ≤ Cµ r 1-β if β = 1 , Cµ | ln r| if β = 1 ,In order to estimate T 2,2 3 , we use a Taylor expansion together with (22) and the fact that |a+ t∆(z)| ≥ ε -δ > 0. It comes T |a + t∆(z)| α-2 |∆(z)| 2 µ(dz)

Final estimate of T nl . Gathering estimates (24), (30), (39) and (42), we finally obtain (44)

Looking at the ω 2 ε α-2 -term, we see that we need to assume that j is Hölder continuous with respect to x and we thus replace ω(ε) with Cε θ. Denoting C ′ 3 = CC 3 , we get

). We claim that as in the case of Theorem 1, (35) holds true under the assumptions of Theorem 2. To see this, we write

since θ > 1 2 (2 -β) and α < β. We next distinguish cases. • If β = 1, then by (41), we get

and we conclude in this case.

and we can conclude in this case too.

The proof of Theorem 2 is now complete.

Appendix

We provide in this Appendix the explicit computation of Z 1 2 ε used in the proof of Theorem 1. We have

One checks easily that the (last) sup is achieved at a point p such that εZp = 2(p -q), i.e.

(

Taking a scalar product with â, we deduce

and inserting in the previous equality yields

Coming back to the value of the supremum and using (45), we have

• q , and now using (46), we finally obtain

Therefore 1 + ̟ = 2(2-α) 3-α and ̟ = 1-α 3-α .