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A NEW UPPER BOUND FOR THE CROSS NUMBER

OF FINITE ABELIAN GROUPS

by

Benjamin Girard

Abstract. — In this paper, building among others on earlier works by U. Krause and
C. Zahlten (dealing with the case of cyclic groups), we obtain a new upper bound for the
little cross number valid in the general case of arbitrary finite Abelian groups. Given a finite
Abelian group, this upper bound appears to depend only on the rank and on the number of
distinct prime divisors of the exponent. The main theorem of this paper allows us, among
other consequences, to prove that a classical conjecture concerning the cross and little cross
numbers of finite Abelian groups holds asymptotically in at least two different directions.

1. Introduction

Let G be a finite Abelian group, written additively. By r(G) and exp(G) we denote
respectively the rank and the exponent of G. If G is cyclic of order n, it will be denoted
by Cn. In the general case, we can decompose G (see for instance [27]) as a direct product
of cyclic groups Cn1 ⊕ · · · ⊕ Cnr

where 1 < n1 | . . . | nr ∈ N, so that every element g of
G can be written g = [a1, . . . , ar] (this notation will be used freely along this paper), with
ai ∈ Cni

for all i ∈ J1, rK = {1, . . . , r}.

In this paper, any finite sequence S = (g1, . . . , gl) of l elements from G will be called a
sequence of G with length l. Given a sequence S = (g1, . . . , gl) of G, we say that s ∈ G is
a subsum of S when it lies in the following set, called the sumset of S:

Σ(S) =

{

∑

i∈I

gi | ∅  I ⊆ {1, . . . , l}

}

.

If 0 is not a subsum of S, we say that S is a zero-sumfree sequence. If
∑l

i=1 gi = 0, then S
is said to be a zero-sum sequence. If moreover one has

∑

i∈I gi 6= 0 for all proper subsets
∅ ( I ( {1, . . . , l}, S is called a minimal zero-sum sequence.

In a finite Abelian group G, the order of an element g will be written ord(g) and for
every divisor d of the exponent of G, we denote by Gd the subgroup of G consisting of all
the elements of order dividing d:

Gd = {x ∈ G | dx = 0} .
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In a sequence S of elements of G, we denote by Sd the subsequence of S consisting of all
the elements of order d contained in S.

Let P = {p1 = 2 < p2 = 3 < . . . } be the set of prime numbers. Given a positive integer
n ∈ N∗ = N\{0}, we denote by Dn the set of its positive divisors. If n > 1, we denote by
P−(n) the smallest prime element of Dn, and we put by convention P−(1) = 1. By τ(n)
and ω(n) we denote respectively the number of positive divisors of n and the number of
distinct prime divisors of n.

By D(G) we denote the smallest integer t ∈ N∗ such that every sequence S of G
with length |S| ≥ t contains a zero-sum subsequence. The constant D(G) is called the
Davenport constant of the group G.

By η(G) we denote the smallest integer t ∈ N∗ such that every sequence S of G with
length |S| ≥ t contains a zero-sum subsequence S ′ ⊆ S with length |S ′| ≤ exp(G). Such
a subsequence is called a short zero-sum subsequence.

The constants D(.) and η(.) have been extensively studied during last decades and even
if numerous results were proved (see Chapter 5 of the book [13] or [9] for a survey and
many references on the subject), their exact values are known for very special types of
groups only. In the sequel, we shall need some results on some of the groups for which
we know the exact values, so we gather what is known concerning them in the following
theorem.

Theorem 1.1. — The two following statements hold:

(i) Let p ∈ P, r ∈ N∗ and α1 ≤ · · · ≤ αr, where αi ∈ N
∗ for all i ∈ J1, rK. Then, for the

p-group G ≃ Cpα1 ⊕ · · · ⊕ Cpαr , we have:

D(G) =
r
∑

i=1

(pαi − 1) + 1.

(ii) For every m, n ∈ N∗ with m|n, we have:

D(Cm ⊕ Cn) = m + n − 1 and η(Cm ⊕ Cn) = 2m + n − 2.

In particular, we have D(Cn) = η(Cn) = n.

Proof. — (i) This result was proved by J. Olson in [21] using the notion of group algebra.
The special case of elementary p-groups, which says that D(Cr

p) = r(p − 1) + 1, can
be easily deduced from the Chevalley-Warning theorem (see [7] for example).

(ii) The value of D(.) for groups with rank 2 is also due to J. Olson (see [22]), and uses
the special case η(C2

p) = 3p − 2 with p prime. The complete statement for η(.) has
been proved by A. Geroldinger and F. Halter-Koch (see [13], Theorem 5.8.3).

The value of η(.) for Abelian p-groups with rank r ≥ 3 is not known in general, even
in the special case of elementary p-groups. It is only known that for every r ∈ N∗, we
have η(Cr

2) = 2r, and it is conjectured that for every odd p ∈ P, we have η(C3
p) = 8p − 7

and η(C4
p) = 19p − 18. The interested reader is for instance referred to [5] and [10], for a

complete account on this topic.

Yet, N. Alon and M. Dubiner showed in [1] an important theorem related to the constant
η(.) of elementary p-groups. We will use the following corollary of this result.
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Theorem 1.2. — For every r ∈ N∗, there exists a constant cr > 0 such that for every

p ∈ P, the following holds:

η
(

Cr
p

)

≤ cr(p − 1) + 1.

In this paper, we will study the cross number of finite Abelian groups. For this purpose,
we recall some definitions and also the results known so far, to the best of our knowledge,
concerning this constant. Let G be a finite Abelian group. If G ≃ Cν1 ⊕ · · · ⊕ Cνs

, with
νi > 1 for all i ∈ J1, sK, is the longest possible decomposition of G into a direct product
of cyclic groups, then we set:

k
∗(G) =

s
∑

i=1

νi − 1

νi
,

and

K
∗(G) =

s
∑

i=1

νi − 1

νi

+
1

exp(G)
= k

∗(G) +
1

exp(G)
.

The cross number of a sequence S = (g1, . . . , gl), denoted by k(S), is defined by:

k(S) =
l
∑

i=1

1

ord(gi)
.

Then, we define the little cross number k(G) of G:

k(G) = max{k(S)|S zero-sumfree sequence of G},

as well as the cross number of G, denoted by K(G):

K(G) = max{k(S)|S minimal zero-sum sequence of G}.

The cross number was introduced by U. Krause in [19] in order to clarify the relationship
between the arithmetic of a Krull monoid and the properties of its ideal class group. For
this reason, the cross number plays a key rôle in the theory of non-unique factorization
(see [19], [8], [15], [28], [23], [24] and [25] for some applications of the cross number, the
surveys [3], [14] and the book [13] which presents exhaustively the different aspects of the
theory).

For the sake of completeness, we mention that the cross number has been studied in
other directions also (see for example [4], [18] and [2]), and that this concept arose in a
natural way in combinatorial number theory (see for instance [11] and [6]).

Given a finite Abelian group G, a natural construction (see [19] or [13], Proposition
5.1.8) gives the following lower bounds:

k
∗(G) ≤ k(G) and K

∗(G) ≤ K(G),

yet, except for Abelian p-groups (see [12]) and other special cases (see [16]), the exact
values of the cross and little cross numbers are also unknown in general, even for cyclic
groups. In addition, still no counterexample is known for which equality does not hold in
the previous inequalities, which would allow us to disprove the following conjecture.
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Conjecture 1.3. — For every finite Abelian group G, one has the following:

k
∗(G) = k(G) and K

∗(G) = K(G).

Regarding upper bounds, and since the constants k(.) and K(.) are closely related to
each other, it suffices, according to the following proposition (see [13], Proposition 5.1.8),
to bound from above the little cross number so as to bound from above the cross number,
but also the Davenport constant. Since k(.) is easier to handle, one usually prefers to
study the cross number via the little cross number, and we will do so in this paper.

Proposition 1.1. — Let G be a finite Abelian group with exp(G) = n. Then, the two

following statements hold:

(i)

k(G) +
1

n
≤ K(G) ≤ k(G) +

1

P−(n)
,

(ii)

D(G) ≤ nk(G) + 1.

Two types of upper bounds are currently known for k(.). The first one holds for any
finite Abelian group, and was obtained by A. Geroldinger and R. Schneider in [17] and
in [13], Theorem 5.5.5, using character theory and the notion of group algebra.

Theorem 1.4. — Let G be a finite Abelian group with exp(G) = n. Then, for every

d ∈ Dn, one has the following:

k(G) ≤
d − 1

P−(n)
+ log

(

|G|

d

)

.

In particular k(G) ≤ log |G|.

Eventhough this upper bound is general and easy to compute, it does not really fit what
we know about the behaviour of the cross number. For example, let r > 1 be an integer.
If we consider an elementary p-group with rank r, it is known that k

(

Cr
p

)

= k
∗
(

Cr
p

)

≤ r,

yet log
(

|Cr
p |/p

)

= (r − 1) log p diverges when p tends to infinity.

From this point of view, and in the special case of cyclic groups, a more precise upper
bound was found by U. Krause and C. Zahlten in [20] which, expressed with our notations,
gives the following.

Theorem 1.5. — For every n ∈ N∗, one has the following:

k(Cn) ≤ 2ω(n).

It should be underlined that this upper bound has the right order of magnitude, since
one has k(Cn) ≥ k

∗(Cn) ≥ ω(n)/2 by definition.
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2. New results and plan of the paper

In this paper, we generalize the work of [20] to every finite Abelian group so as to
obtain a new upper bound for the little cross number in the general case, which no longer
depends on the cardinality of the group considered, and which supports the conjecture
that the little cross number of a finite Abelian group G with rank r and exponent n is
less than rω(n).

For this purpose, we introduce the two following constants. Let G be a finite Abelian
group and d′, d ∈ N∗ be two integers such that d ∈ Dexp(G) and d′ ∈ Dd.

By D(d′,d)(G) we denote the smallest integer t ∈ N∗ such that every sequence S of Gd

with length |S| ≥ t contains a subsequence of sum in Gd/d′ .

By η(d′,d)(G) we denote the smallest integer t ∈ N∗ such that every sequence S of Gd

with length |S| ≥ t contains a subsequence S ′ ⊆ S of length |S ′| ≤ d′ and of sum in Gd/d′ .

To start with, we will prove in Section 3 (Proposition 3.1), that for any finite Abelian
group G and every 1 ≤ d′ | d | exp(G), D(d′,d)(G) and η(d′,d)(G) are linked to the constants
D(.) and η(.) of a particular subgroup Gυ(d′,d) of G.

In Section 4, we will prove the main theorem (Theorem 2.1). This result will be stated
at the end of this section. Before giving this general and technical theorem, we emphasize
the many consequences it has.

To obtain these results, we introduce the two following arithmetic functions:

α(n) =
∑

d∈Dn

P−(d) − 1

d
and β(n) =

∑

d∈Dn∩P

P−(d) − 1

d
,

which will be investigated in Section 5. In particular, simple upper bounds for these
functions lead, by applying the main theorem, to the following qualitative result, proved
in Section 6.

Proposition 2.1. — For every r ∈ N∗ there exists a constant dr > 0 such that, for every

finite Abelian group G with r(G) ≤ r and exp(G) = n, the following holds:

k(G) ≤ drω(n).

Consequently, when considering the cross number of a finite Abelian group G with fixed
or bounded rank, Proposition 2.1 gives a qualitative upper bound which depends only on
the number of distinct prime divisors ω(n) of exp(G) = n, and which improves, at least
asymptotically, the one stated in Theorem 1.4, since the function ω can have arbitrary
small values in N∗ even for arbitrary large n, but mainly since it is known (see for instance
Chapter I.5 of the book [30]) that one has:

ω(n) .
log n

log log n
.

In addition, more accurate upper bounds for some sequences built with α(n) and β(n),
obtained in Lemma 5.1 (see Section 5), enable us to prove the following quantitative result
(see Section 6) which states that when r = 1 or 2, one can choose dr in the following way:

d1 =
166822111

109486080
≈ 1.5237 and d2 =

1784073894563

476759162880
≈ 3.7421.
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Once d1 and d2 are defined in such a way, one can state the following proposition.

Proposition 2.2. — (i) For every cyclic group G ≃ Cn, n ∈ N∗, we have:

k(G) ≤ α(n) ≤ d1ω(n).

(ii) For every finite Abelian group G ≃ Cm ⊕ Cn, with 1 < m | n ∈ N∗, we have:

k(G) ≤ 3α(n) − β(n) ≤ d2ω(n).

Moreover, the asymptotical behaviours of α(n) and β(n), studied in Lemma 5.2, imply
several asymptotical results, some of them being sharp, concerning the cross and little
cross numbers as well as the Davenport constant. In particular, these results show that
Conjecture 1.3 holds asymptotically in at least two different directions. These results will
be proved in Section 7, and in order to state them, we will need the following notation.
For every r ∈ N∗ and l1, . . . , lr ∈ N

∗, we set:

E(l1,...,lr) =

{

r
⊕

i=1

Cni
, 1 < n1| . . . |nr ∈ N | ∀i ∈ J1, rK, ω(ni) = li and gcd

(

ni,
nr

ni

)

= 1

}

.

Proposition 2.3. — For every r ∈ N∗ and l1, . . . , lr ∈ N
∗, the following statements hold:

(i)

lim
P−(nr) → +∞

Cn1
⊕ · · · ⊕ Cnr

∈ E(l1,...,lr)

k(Cn1 ⊕ · · · ⊕ Cnr
) =

r
∑

i=1

li,

(ii)

lim
P−(nr) → +∞

Cn1
⊕ · · · ⊕ Cnr

∈ E(l1,...,lr)

K(Cn1 ⊕ · · · ⊕ Cnr
) =

r
∑

i=1

li,

(iii)

lim sup
P−(nr) → +∞

Cn1
⊕ · · · ⊕ Cnr

∈ E(l1,...,lr)

D(Cn1 ⊕ · · · ⊕ Cnr
)

nr
≤

r
∑

i=1

li.

Concerning the groups of the form Cr
n, we obtain the following corollary by specifying

n1 = · · · = nr in Proposition 2.3.

Proposition 2.4. — For all integers r, l ∈ N∗ the three following statements hold:

(i)
lim

P−(n) → +∞
ω(n) = l

k(Cr
n) = rl,

(ii)
lim

P−(n) → +∞
ω(n) = l

K(Cr
n) = rl,

(iii)

lim sup
P−(n) → +∞

ω(n) = l

D(Cr
n)

n
≤ rl.
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It may be observed that Proposition 2.3 and Proposition 2.4 are somehow reminiscent
of [17], Theorem 2(b), since this result and our Proposition 2.3 give the value of the cross
number of ”large” groups. However, a more precise look at both results shows that they
are of a different nature. Indeed, while A. Geroldinger and R. Schneider’s result is not
asymptotical but valid only for special groups satisfying some restrictive conditions, ours,
although of asymptotical nature, is valid in a wider framework.

The following proposition will also be proved in Section 7.

Proposition 2.5. — For all r ∈ N∗, the two following statements hold:

(i)

lim
ω(n) → +∞

k(Cr
n)

ω(n)
= r,

(ii)

lim
ω(n) → +∞

K(Cr
n)

ω(n)
= r.

All these results are deduced from the following proposition, proved in Section 6 under
the stronger form of Proposition 6.1, and which is a somewhat rough corollary of the main
theorem (Theorem 2.1). For the sake of clarity, we recall that the constant cr is the one
which has been introduced in Theorem 1.2.

Proposition 2.6. — Let G be a finite Abelian group with r(G) = r and exp(G) = n.

We set H = Cr
n and also:

ϕ(G, H) =

{

k
∗(H/G) if G is a direct summand of H,

k
∗(H/G)/n otherwise.

Then, one has the following upper bound for the little cross number k(G):

k(G) ≤ cr

(

α(n) − β(n)
)

+ rβ(n) − ϕ(G, H).

The main theorem of this paper (Theorem 2.1) will be proved in Section 4. In order
to state it, we will need the following definitions and notations which will be extensively
used in Sections 3 and 4.

Let G ≃ Cn1 ⊕ · · · ⊕ Cnr
, with 1 < n1 | . . . | nr ∈ N, be a finite Abelian group with

exp(G) = n, τ(n) = m and d′, d ∈ N∗ be such that d ∈ Dn and d′ ∈ Dd. For all i ∈ J1, rK,
we set:

Ai = gcd(d′, ni), Bi =
lcm(d, ni)

lcm(d′, ni)
,

υi(d
′, d) =

Ai

gcd(Ai, Bi)
,

and
Gυ(d′,d) = Cυ1(d′,d) ⊕ · · · ⊕ Cυr(d′,d).

Then, for every d ∈ Dn = {d1, . . . , dm} and x = (xd1 , . . . , xdm
) ∈ Nm, we set:

fd(x) = min
d′∈Dd\{1}

(

η(Gυ(d′,d))
)

− 1 − xd,
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gd(x) = D(Gυ(d,d)) − 1 −
∑

d′∈Dd

xd′ ,

and

h(x) =
∑

d∈Dn

xd

d
− k

∗(G).

We can now state the main theorem.

Theorem 2.1. — Let G ≃ Cn1 ⊕ · · · ⊕ Cnr
, with 1 < n1 | . . . | nr ∈ N, be a finite

Abelian group with exp(G) = n and τ(n) = m. For every zero-sumfree sequence S of G
reaching the maximum k(S) = k(G), and being of minimal length regarding this property,

the m-tuple x = (|Sd1 |, . . . , |Sdm
|) is an element of the polytope PG ∩HG where:

PG = {x ∈ Nm | fd(x) ≥ 0, gd(x) ≥ 0, d ∈ Dn},

and

HG = {x ∈ Nm | h(x) ≥ 0}.

Keeping the notations of Theorem 2.1, we obtain the following immediate corollary,
which gives a general upper bound for the little cross number of a finite Abelian group,
expressed as the solution of an integer linear program.

Corollary 2.2. — For every finite Abelian group G, one has the following upper bound:

k(G) ≤ max
x∈PG

(

m
∑

i=1

xdi

di

)

.

In principle, the wide generality of Theorem 2.1 and Corollary 2.2 leaves a good hope
that it could lead to new - and maybe optimal - upper bounds for k(G) in the general
case. However, such improvements will require a precise study of the polytope PG, which
is certainly a complicated, but not hopeless, task.

3. On the quantities D(d′,d)(G) and η(d′,d)(G)

In this section, we will denote by πi, for all i ∈ J1, rK, the canonical epimorphism
from Cni

to Cυi(d′,d). Although this epimorphism clearly depends on d′ and d, we do not
emphasize this dependence here since there is no risk of ambiguity. Moreover, one can
notice that whenever d divides ni, we have υi(d

′, d) = gcd(d′, ni) = d′, and in particular
υr(d

′, d) = d′. In the sequel, when d′ = d, we will write υi(d) instead of υi(d, d).

Lemma 3.1. — Let G ≃ Cn1 ⊕ · · · ⊕ Cnr
, with 1 < n1 | . . . | nr ∈ N, be a finite

Abelian group and d′, d ∈ N∗ be such that d ∈ Dexp(G) and d′ ∈ Dd. Then, for every

g = [a1, . . . , ar] ∈ G, we have:

d

d′

[

n1

gcd(d, n1)
a1, . . . ,

nr

gcd(d, nr)
ar

]

= 0 if and only if πi(ai) = 0 for all i ∈ J1, rK.

8



Proof. — First, we have the following equalities:

d

d′

ni

gcd(d, ni)
=

lcm(d, ni)

d′

=
lcm(d, ni)ni

d′ni

=
lcm(d, ni)ni

gcd(d′, ni)lcm(d′, ni)

= Bi
ni

Ai

∈ N.

Let [a1, . . . , ar] ∈ G be such that:

d

d′

[

n1

gcd(d, n1)
a1, . . . ,

nr

gcd(d, nr)
ar

]

= 0.

For all i ∈ J1, rK, one has:

d

d′

ni

gcd(d, ni)
ai = Bi

ni

Ai
ai = 0,

which is equivalent, considering ai as an integer, to the following relation:

Ai|Biai,

that is to say, dividing each side by gcd(Ai, Bi), that one has:

υi(d
′, d)

∣

∣

∣

Bi

gcd(Ai, Bi)
ai,

which, since:

gcd

(

Ai

gcd(Ai, Bi)
,

Bi

gcd(Ai, Bi)

)

= 1,

is equivalent to:
υi(d

′, d)|ai,

and the desired result is proved.

Proposition 3.1. — Let G ≃ Cn1 ⊕ · · · ⊕ Cnr
, with 1 < n1 | . . . | nr ∈ N, be a finite

Abelian group and d′, d ∈ N∗ be such that d ∈ Dexp(G) and d′ ∈ Dd. Then, we have the

two following equalities:
{

D(d′,d)(G) = D
(

Cυ1(d′,d) ⊕ · · · ⊕ Cυr(d′,d)

)

,

η(d′,d)(G) = η
(

Cυ1(d′,d) ⊕ · · · ⊕ Cυr(d′,d)

)

.

Proof. — Let [a1, . . . , ar] ∈ Gd. We know that ord ([a1, . . . , ar]) = lcm(ord(a1), . . . , ord(ar)),
and so ord ([a1, . . . , ar]) |d implies ord(ai)|d for all i ∈ J1, rK.

By Lagrange theorem, we also have ord(ai)|ni, which implies that:

ord(ai)| gcd(d, ni) for all i ∈ J1, rK,

and since any cyclic group Cni
contains a unique subgroup of order gcd(d, ni), we can

write:
ai =

ni

gcd(d, ni)
a′

i with a′
i ∈ Cni

.
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We now consider a sequence S = (g1, . . . , gm) of Gd with m ∈ N∗. According to the
previous argument, the elements of S have the following form:

g1 = [a1,1, . . . , a1,r] =
[

n1

gcd(d,n1)
a′

1,1, . . . ,
nr

gcd(d,nr)
a′

1,r

]

,

...
...

...

gm = [am,1, . . . , am,r] =
[

n1

gcd(d,n1)
a′

m,1, . . . ,
nr

gcd(d,nr)
a′

m,r

]

.

Let K be a nonempty subset of {1, . . . , m}. Then, the sum
∑

k∈K [ak,1, . . . , ak,r] is an
element of Gd/d′ if and only if:

d

d′

∑

k∈K

[ak,1, . . . , ak,r] =
d

d′

[

n1

gcd(d, n1)

∑

k∈K

a′
k,1, . . . ,

nr

gcd(d, nr)

∑

k∈K

a′
k,r

]

= 0,

and by Lemma 3.1, this relation is equivalent to:

∑

k∈K

[

π1(a
′
k,1), . . . , πr(a

′
k,r)
]

= 0 in

r
⊕

i=1

Cυi(d′,d).

Therefore, from the definition of the constant D(.), one can deduce that the smallest
integer m ∈ N∗ such that for every sequence S = (g1, . . . , gm) of Gd with length |S| ≥ m,
there exists a nonempty subset K ⊆ {1, . . . , m} such that

∑

k∈K [ak,1, . . . , ak,r] is an

element of Gd/d′ is exactly D
(

Cυ1(d′,d) ⊕ · · · ⊕ Cυr(d′,d)

)

. This proves the first equality.
If moreover, one expects the additional condition |K| ≤ υr(d

′, d) = d′ to be verified,
then, by the definition of η(.), the corresponding smallest possible integer m ∈ N∗ is
exactly η

(

Cυ1(d′,d) ⊕ · · · ⊕ Cυr(d′,d)

)

, which proves the second equality.

4. Proof of the main theorem

Proof of Theorem 2.1. — Let S be a zero-sumfree sequence of G verifying k(S) = k(G),
and being of minimal length regarding this property. For every d ∈ Dn, we set xd = |Sd|,
and we suppose that the m-tuple x = (xd1 , . . . , xdm

) is not an element of the polytope
PG ∩HG. Thus, one has the three following cases.

Case 1. There exists d0 ∈ Dn such that fd0(x) < 0. Therefore, it exists d′
0 ∈ Dd0\{1}

verifying xd0 ≥ η
(

Cυ1(d′0,d0) ⊕ · · · ⊕ Cυr(d′0,d0)

)

which means, by Proposition 3.1, that xd0 ≥
η(d′0,d0)(G). So, the sequence S contains X elements of order d0, with 1 < X ≤ d′

0, the

sum of which is an element of order d̃0 dividing d0/d
′
0.

Let S ′ be the sequence obtained from S by replacing these X elements by their sum.
In particular, we have |S ′| = |S| − X + 1 < |S|. Moreover, S ′ is a zero-sumfree sequence
and verifies the following equalities:











|S ′
d0
| = |Sd0 | − X,

|S ′
d̃0
| = |Sd̃0

| + 1,

|S ′
d| = |Sd| ∀d 6= d0, d̃0.
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Since
1

d̃0

−
X

d0
≥ 0,

one has the following inequalities:

k(S) =
∑

d∈Dexp(G)

xd

d

≤
∑

d∈Dexp(G)\{d0,d̃0}

xd

d
+

xd̃0
+ 1

d̃0

+
xd0 − X

d0

= k(S ′).

So, we obtain k(S ′) = k(G) and |S ′| < |S|, which is a contradiction.

Case 2. There exists d0 ∈ Dn such that gd0(x) < 0. As a consequence, we have
∑

d∈Dd0
xd ≥ D(Cυ1(d0) ⊕ · · · ⊕ Cυr(d0)) and Proposition 3.1 gives the existence of a zero-

sum subsequence, which is a contradiction.

Case 3. One has h(x) < 0, that is to say k(S) = k(G) < k
∗(G) which is a contradiction.

An interesting special case is the one of finite Abelian groups with rank 2. Indeed, for
such groups, all the parameters used to define the polytope PG in the main theorem are
known by Theorem 1.1:

D(d,d)(G) = υ1(d) + υ2(d) − 1 and η(d′,d)(G) = 2υ1(d
′, d) + υ2(d

′, d) − 2,

and therefore allow us to compute an explicit upper bound for the little cross number
k(G) by linear programming methods (see for instance the book [29] for an exhaustive
presentation of these methods).

5. Some sequences related to the exponent of a finite Abelian group

Let (αl)l≥1 and (βl)l≥1 be the two following sequences of integers, built from the set of
prime numbers:

α1 = 1 and αl = 1 +
pl

pl − 1
αl−1 for all l ≥ 2,

as well as

βl =

l
∑

i=1

pi − 1

pi
for all l ≥ 1.

Finally, we define a third sequence (γl)l≥1 in the following fashion:

γl = 3αl − βl for all l ≥ 1.

The first values of (αl)l≥1 are the following:

α1 = 1, α2 = 2.5, α3 = 4.125, α4 = 5.8125, α5 = 7.39375 etc.

Since 2l − 1 ≤ pl, we can already show, by induction on l, the following statement:

αl ≤ 2l, for all l ≥ 1.
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Indeed, one has α1 = 1 ≤ 2, and if the statement is true for l − 1, we obtain:

αl = 1 + αl−1 +
αl−1

pl − 1
≤ 1 + 2(l − 1) +

2(l − 1)

pl − 1
≤ 2l.

In order to study more precisely the behaviours of α(n) and β(n), we will extensively
use a classical lower bound for the l-th prime number, proved by Rosser in [26], and which
is the following:

l log l ≤ pl for all l ≥ 1.

We can now prove Lemma 5.1, which gives accurate upper bounds for the sequences
(αl)l≥1 and (γl)l≥1, and Lemma 5.2, which states on the one hand that αl and βl are both
equivalent to l when l tends to infinity, and on the other hand that when ω(n) = l is
fixed, then both α(n) and β(n) tends to l when P−(n) tends to infinity.

Lemma 5.1. — The following statements hold:

(i) For every integer n ∈ N∗, with ω(n) = l, we have:

βl ≤ β(n) ≤ α(n) ≤ αl.

(ii) For every integer l ≥ 1, we have:

l ≤ αl ≤
α9

9
l, where

α9

9
=

166822111

109486080
≈ 1.5237.

(iii) For every integer l ≥ 1, we have:

5

2
l ≤ γl ≤

γ8

8
l, where

γ8

8
=

1784073894563

476759162880
≈ 3.7421.

Proof. — (i) Let n = qm1
1 . . . qml

l be an integer with q1 < · · · < ql. Since for all i ∈ J1, lK,
one has pi ≤ qi, we obtain the first inequality:

βl = l −
l
∑

i=1

1

pi
≤ l −

l
∑

i=1

1

qi
= β(n).

The second inequality follows directly from:

β(n) =
∑

d∈Dn∩P

P−(d) − 1

d
≤
∑

d∈Dn

P−(d) − 1

d
= α(n).

We prove the third inequality by induction on the number of distinct prime divisors
ω(n) = l of n. For l = 1, the integer n is of the form qm1

1 and we obtain:

α(qm1
1 ) =

m1
∑

i=1

q1 − 1

qi
1

=
qm1
1 − 1

qm1
1

≤ 1 = α1.
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Assume now that the statement is valid for l − 1. Therefore, we have:

α(qm1
1 . . . qml

l ) =
qml

l − 1

qml

l

+

(

ml
∑

i=0

1

qi
l

)

α(qm1
1 . . . q

ml−1

l−1 )

≤
qml

l − 1

qml

l

+

(

ml
∑

i=0

1

qi
l

)

αl−1

≤ 1 +

(

+∞
∑

i=0

1

pi
l

)

αl−1

= 1 +
pl

pl − 1
αl−1 = αl,

which proves the result.

(ii) To start with, it is straightforward that the first inequality l ≤ αl always holds.
Concerning the second inequality, one has the following:

αl+1 − αl = 1 +
αl

pl+1 − 1
for all l ≥ 1,

from which we deduce the two following relations:

αl = α1 +
l−1
∑

k=1

(αk+1 − αk) = l +
l−1
∑

k=1

αk

pk+1 − 1
,

as well as

αl+1

l + 1
−

αl

l
=

1

l + 1
+ αl

(

1

l + 1

(

1 +
1

pl+1 − 1

)

−
1

l

)

.

In the remainder of this proof, we will set ε(l) = αl − l =

l−1
∑

k=1

αk

pk+1 − 1
, for all l ≥ 1.

Using this notation, we obtain the following:

αl

l
−

α9

9
=

l−1
∑

k=9

1

k + 1
+

l−1
∑

k=9

αk

(

1

k + 1

(

1 +
1

pk+1 − 1

)

−
1

k

)

=

l−1
∑

k=9

1

k + 1
−

l−1
∑

k=9

k + ε(k)

k(k + 1)
+

l−1
∑

k=9

αk

(pk+1 − 1)(k + 1)

=
l−1
∑

k=9

1

k + 1

(

αk

(pk+1 − 1)
−

ε(k)

k

)

=

l−1
∑

k=9

(

ε(k + 1)

k + 1
−

ε(k)

k

)

=
ε(l)

l
−

ε(9)

9
.

Moreover, using Rosser’s lower bound, we obtain for all l ≥ 2:

ε(l) =
l−1
∑

k=1

αk

pk+1 − 1
≤

l−1
∑

k=1

2k

(k + 1) log(k + 1) − 1
≤ 7 +

∫ l

2

2dt

log t
= lf(l),
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where we set for all x ∈ R, x ≥ 2:

f(x) =
1

x

(

7 +

∫ x

2

2dt

log t

)

.

It is readily seen that this function is non-increasing. Moreover, since:

ε(9)

9
=

(

α9 − 9

9

)

>
1

2
,

and since f(l) ≤ 1/2 for all l ≥ 241, we obtain:

αl

l
≤

α9

9
, for all l ≥ 241.

On the other hand, an easy computation allows us to verify that α9/9 is also the
maximum value taken by (αl/l)l≥1 on 1 ≤ l ≤ 240, which proves the desired result.

(iii) The fact that the first inequality 5l/2 ≤ γl always holds is straightforward.
Moreover, for all l ≥ 1, one has the following equality:

γl+1 = 3αl+1 − βl+1

= 3 + 3αl +
3αl

pl+1 − 1
− βl − 1 +

1

pl+1

= 2 + γl +
3αl

pl+1 − 1
+

1

pl+1
.

Using the inequalities 5l/2 ≤ γl and αl ≤ α9l/9, one can deduce that:

γl+1

l + 1
−

γl

l
=

2

l + 1
+ γl

(

1

l + 1
−

1

l

)

+
3αl

(l + 1)(pl+1 − 1)
+

1

pl+1(l + 1)

≤
1

pl+1(l + 1)

(

−
pl+1

2
+

α9l

3

(

1 +
1

pl+1 − 1

)

+ 1

)

.

We set, for all x ∈ R, x ≥ 1:

g(x) = −
(x + 1) log(x + 1)

2
+

α9x

3

(

1 +
1

(x + 1) log(x + 1) − 1

)

+ 1.

It is easily seen that this function is non-increasing. Moreover, since a study of g
shows that g(l) ≤ 0 for all l ≥ 9333, we obtain:

γl+1

l + 1
−

γl

l
≤ 0, for all l ≥ 9333.

On the other hand, an easy computation allows us to verify that (γl)l≥1 is increasing
from l = 1 to l = 8 and decreasing from l = 8 to l = 9333, which proves the desired
result.

Lemma 5.2. — The two following statements hold:

(i)

lim
l→+∞

αl

l
= 1 and lim

l→+∞

βl

l
= 1,
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(ii)

lim
P−(n) → +∞

ω(n) = l

α(n) = l and lim
P−(n) → +∞

ω(n) = l

β(n) = l.

Proof. — (i) Firstly, for all l ≥ 1, one has the following inequality:

l ≤ αl ≤ l +
l−1
∑

k=1

2k

pk+1 − 1
,

and since the prime number theorem reads as pk ∼ k log k, we can deduce that:

l−1
∑

k=1

k

pk+1 − 1
∼

l
∑

k=2

1

log k
∼

l

log l
.

Therefore, when l tends to infinity, we obtain lim
l→+∞

(αl/l) = 1.

Secondly, we can deduce from Rosser’s lower bound that for every l ≥ 3, one has:

βl ≥ l −
5

6
−

l
∑

i=3

1

i log i

≥ l − 2 − log log l.

Since, on the other hand, one always has βl ≤ l, we obtain lim
l→+∞

(βl/l) = 1, which is

the desired result.

(ii) The result follows from the very definition of α(n) and β(n).

6. Upper bounds for the little cross number

As previously stated, the upper bound implied by Theorem 2.1, and given in Corollary
2.2, is expressed as the solution of an integer linear program. Even if this formulation is
more precise than any explicit formula derived from Theorem 2.1, one may still like to
obtain such a formula in order to interprete the behaviour of the cross number. In the
present section, we obtain such a formula in Proposition 6.1. For the proof of this result,
we will use the following lemma, which can be found in [13], Proposition 5.1.11.

Lemma 6.1. — Let H be a finite Abelian group and G ⊆ H a subgroup. Then, one has:

(i)

k(G) +
k(H/G)

exp(G)
≤ k(H).

(ii) If G is a direct summand of H, then:

k(G) + k(H/G) ≤ k(H).

We are now ready to prove the following proposition.
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Proposition 6.1. — Let G be a finite Abelian group with r(G) = r and exp(G) = n.

We set H = Cr
n and also:

ϕ(G, H) =

{

k
∗(H/G) if G is a direct summand of H,

k
∗(H/G)/n otherwise.

Then, one has the following upper bound for the little cross number k(G):

k(G) ≤
∑

d∈Dn

min
(

η
(

Cr
P−(d)

)

, D(Cr
d)
)

− 1

d
− ϕ(G, H).

Proof. — Since the group G can be injected in the group H = Cr
n, one obtains, applying

Lemma 6.1, the relation k(G) + ϕ(G, H) ≤ k(H). Then, the desired result follows from
Theorem 2.1 applied to H .

One can notice that for all r ∈ N∗ and every p ∈ P, one always has D(Cr
p) ≤ η

(

Cr
p

)

, by
definition. Therefore, if we consider an elementary p-group with rank r, we obtain:

k
(

Cr
p

)

≤
∑

d∈Dp

D(Cr
d) − 1

d
=

r(p − 1)

p
= k

∗
(

Cr
p

)

.

Let G be a finite Abelian group with r(G) = r and exp(G) = n. Using Theorem 1.1,
one obtains that if r = 1, then for all d ∈ Dn\P, we have D(Cd) ≥ η

(

CP−(d)

)

. Moreover,
when r = 2, then for all d ∈ Dn\P, one has the following inequality:

D(C2
d) = 2d − 1 ≥ 3P−(d) − 2 = η

(

C2
P−(d)

)

.

Yet, as soon as r ≥ 3, and except for special types groups, it becomes more complicated
to know exactly, for a given d in Dn\P, what is the minimum of η

(

Cr
P−(d)

)

and D(Cr
d).

For this reason, Theorem 2.1 and Proposition 6.1 remain, in general, really stronger than
Proposition 2.6, which we are going to prove now. Even so, we will see in the next section
that Proposition 2.6 implies sharp asymptotical results on the little cross number and the
cross number.

Proof of Proposition 2.6. — Applying Proposition 6.1 and Theorem 1.2, we obtain the
desired result in the following manner:

k(G) + ϕ(G, H) ≤
∑

d∈Dn

min
(

η
(

Cr
P−(d)

)

, D(Cr
d)
)

− 1

d

≤
∑

d∈Dn∩P

r(P−(d) − 1)

d
+

∑

d∈Dn\P

cr(P
−(d) − 1)

d

= cr

(

α(n) − β(n)
)

+ rβ(n).

We can now prove the announced qualitative upper bound.
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Proof of Proposition 2.1. — Since, by the definitions of Section 5, one always has the
following straightforward inequalities:

ω(n)

2
≤ β(n) and α(n) ≤ 2ω(n),

we can deduce, by Proposition 2.6 and the inequality r ≤ cr, the following relation:

k(G) ≤ cr

(

α(n) − β(n)
)

+ rβ(n) ≤

(

3cr + r

2

)

ω(n),

which gives the desired result.

According to the previous remark, and in the case of r = 1 or 2, η
(

Cr
P−(d)

)

and D(Cr
d)

are known and easy to compare. Therefore, we can prove Proposition 2.2.

Proof of Proposition 2.2. — Applying Theorem 1.1, one can choose c1 = 1 and c2 = 3.

(i) For every n ∈ N∗, one has by Proposition 2.6 and Lemma 5.1 (i), (ii):

k(Cn) ≤ α(n) ≤ αω(n) ≤
α9

9
ω(n),

which proves that one can take d1 = α9/9.

(ii) For all m, n ∈ N∗ with 1 < m|n, one has by Proposition 2.6 applied to G ≃ Cm ⊕Cn

and Lemma 5.1 (i), (iii):

k(G) ≤ 3α(n) − β(n) − ϕ(G, C2
n) ≤ γω(n) ≤

γ8

8
ω(n),

which proves that one can take d2 = γ8/8.

7. Asymptotical results

In the present section, we will apply the results obtained in Section 6 in order to prove
that Conjecture 1.3 holds asymptotically in the two directions of Proposition 2.3 and
Proposition 2.5.

Proof of Proposition 2.3. — First, we have:

lim
P−(nr) → +∞

Cn1
⊕ · · · ⊕ Cnr

∈ E(l1,...,lr)

k
∗(Cn1 ⊕ · · · ⊕ Cnr

) =

r
∑

i=1

li,

and since by the Chinese remainder theorem, every Cn1 ⊕ · · · ⊕Cnr
in E(l1,...,lr) is a direct

summand of Cr
nr

, we obtain using Lemma 6.1 (ii):

k(Cn1 ⊕ · · · ⊕ Cnr
) ≤ k

(

Cr
nr

)

− k
∗
(

C nr
nr−1

⊕ · · · ⊕ Cnr
n1

)

= k
(

Cr
nr

)

−
r−1
∑

i=1

k
∗
(

Cnr
ni

)

.

On the one hand, we have by Lemma 5.2 (ii):
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lim sup
P−(nr) → +∞

ω(nr) = lr

k(Cr
nr

) ≤ lim sup
P−(nr) → +∞

ω(nr) = lr

cr

(

α(nr) − β(nr)
)

+ rβ(nr) = rlr,

on the other hand, since for all i ∈ J1, rK, the equality gcd(ni, nr/ni) = 1 implies
ω(nr/ni) = ω(nr) − ω(ni), we also have:

lim
P−(nr) → +∞

Cn1
⊕ · · · ⊕ Cnr

∈ E(l1,...,lr)

r−1
∑

i=1

k
∗
(

Cnr
ni

)

=

r−1
∑

i=1

ω

(

nr

ni

)

=

r
∑

i=1

(lr − li).

Finally, we obtain:

r
∑

i=1

li ≤ lim inf
P−(nr) → +∞

Cn1
⊕ · · · ⊕ Cnr

∈ E(l1,...,lr)

k(Cn1 ⊕ · · · ⊕ Cnr
)

≤ lim sup
P−(nr) → +∞

Cn1
⊕ · · · ⊕ Cnr

∈ E(l1,...,lr)

k(Cn1 ⊕ · · · ⊕ Cnr
) ≤ rlr −

r
∑

i=1

(lr − li) =

r
∑

i=1

li.

The corresponding statements for K(.) and D(.) are then deduced from Proposition 1.1.

Since, as mentioned in Section 2, Proposition 2.4 is an immediate corollary of Propo-
sition 2.3 by specifying n1 = · · · = nr, we now prove an asymptotical result of an other
type.

Proof of Proposition 2.5. — First, we have:

lim
ω(n) → +∞

k
∗(Cr

n)

ω(n)
= r,

Moreover, by Proposition 2.6 applied to Cr
n, we obtain:

k(Cr
n)

ω(n)
≤ cr

(

α(n) − β(n)

ω(n)

)

+ r
β(n)

ω(n)
,

which implies, by Lemma 5.2 (i), the following inequalities when ω(n) tends to infinity:

r = lim
ω(n) → +∞

k
∗(Cr

n)

ω(n)
≤ lim

ω(n) → +∞

k(Cr
n)

ω(n)
≤ r.

The result for K(.) is then deduced from Proposition 1.1 (i).

Each of the two previous asymptotical results admits a corollary which may appear
more general at first sight. So as to state the first one, we will use the following notation,
which recalls the one used for the sets E(l1,...,lr). For every r, l ∈ N∗, we set:

Er,l = {G finite Abelian group | r(G) = r, ω(exp(G)) = l}.

With this notation, we obtain the following corollary.
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Corollary 7.1. — For all integers r, l ∈ N∗ the three following statements hold:

(i)
lim sup

P−(exp(G)) → +∞
G ∈ Er,l

k(G) ≤ rl,

(ii)
lim sup

P−(exp(G)) → +∞
G ∈ Er,l

K(G) ≤ rl,

(iii)

lim sup
P−(exp(G)) → +∞

G ∈ Er,l

D(G)

exp(G)
≤ rl.

Proof. — Every G in Er,l can be injected in the group H ≃ Cr
exp(G). Therefore, using

Lemma 6.1, we obtain k(G) ≤ k(H) and the desired result follows from Proposition 2.4,
applied to the group H . The corresponding statements for K(.) and D(.) are then deduced
from Proposition 1.1.

Corollary 7.2. — For all integers r ∈ N∗, the two following statements hold:

(i)

lim sup
ω(exp(G)) → +∞

r(G) ≤ r

k(G)

ω(exp(G))
≤ r,

(ii)

lim sup
ω(exp(G)) → +∞

r(G) ≤ r

K(G)

ω(exp(G))
≤ r.

Proof. — Every G with rank r(G) ≤ r can be injected in the group H ≃ Cr
exp(G). Since

we have k(G) ≤ k(H) by Lemma 6.1, the result follows from Proposition 2.5, applied to
the group H . The statement for K(.) is then deduced from Proposition 1.1 (i).
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