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INTRODUCTION

Free-surface flow due to a ship that advances at constant speed along a straight course in calm water, i.e. a ship in steady motion, is considered in this study. More precisely, the study considers ship bow waves, arguably the most conspicuous, complex, and important feature of free-surface flows about a ship. Elementary questions related to a ship bow wave are: what is the height of the bow wave? What is the distance between a ship stem and the crest of the bow wave? What is the height of the water at ship stem? What is the shape of the bow wave? A ship in steady motion is usually assumed-notably for numerical-calculation and analytical purposes-to generate a steady bow wave, but this is not always true. Indeed, common observations show that a ship in steady motion can generate an unsteady bow wave. More generally, steady motion of a body through a fluid at rest does not necessarily result in a steady flow; a classical example of unsteady flow generated by steady motion of a body is the von Karman vortex sheet that can be observed (under some conditions) behind a bluff body. Thus, basicquestion is: when does a ship in steady motion generate an unsteady bow wave? Common observation of the bow wave generated by a ship in steady motion, in the "steady bow-wave regime," shows that an overturning thin sheet of water is typically generated by a ship bow. Accurate prediction of this highly nonlinear, turbulent, two-phase, wave-breaking flow is problematic. Furthermore, CFD methods suited to compute such complicated free-surface flows (e.g. VOF method) may be overly complicated and not efficient enough for many practical applications, notably for hydrodynamic design at the preliminary and early stages. Thus, the question here is: can the main features of the overturning thin sheet of water that is typically generated at the bow of a fast ship be predicted without resorting to overly complex numerical methods?

A last question-of considerable importance for practical applications to ship design is: what is the relationship between the main characteristics of a ship bow wave (wave height and location, steadiness, geometry of overturning bow wave) and the main design parameters (ship speed, draft, waterline entrance angle, and flare angle) that define a ship? In other words, how do things work? The object of this study is to provide simple fully-analytical answers to the basic questions listed above. The analytical results given in the study are compared with experimental observations and measurements for the wave generated by an inclined flat plate. A relatively large set of experimental measurements was available for the analysis reported in this study as a result of cheap experiments performed by the authors with a rectangular flat plate that was towed at various immersion depths D, speeds U, yaw angles α and heel angles γ . The usefulness of this substitute for a systematic series of ship models is validated by the results. This cheap substitute to a ship bow form made it possible to perform measurements for a broad range of the critical parameters U, D, α and γ ; and to derive simple "cause-and-effect" relationships between basic design parameters (U, D, α, γ) and flow features (bow-wave height Z b and water height Z S at ship stem) of importance for ship design. In spite of their remarkable simplicity, the analytical results are in reasonable agreement with experimental observations.

EXPERIMENTAL STUDY

A series of experimental observations and measurements were performed in the towing tank of Ecole Centrale de Nantes with a rectangular flat plate 0.782 m long and 0.5 m high immersed at a draft D=0.2 m or 0.3 m. The flat plate was towed at speeds U=1.5, 1.75, 2., 2.25, 2.5 m/s with the draft Froude number varies from 0.6 to 1.8. The values of the incidence angle are α E =10-15-20-25-30-45-60-75 and 90°a nd the values of the flare angle are γ=0-10-15-20, 30 and 40°. For each run, numerical pictures have been taken. In order to obtain a good accuracy for the shape of the contact line, circular points of 5 mm diameter with horizontal and vertical spacings of 2 cm are located on the plate. All values of incidence angles and velocities are summarized on m/s where several pictures are taken during each run. The first series is done when water is at rest for 3 hours and the second one 20 mn later. The shape of the bow wave is given in Fig. 3 and numerical results in table 1. It can be seen that accuracy of measurements is better on wave height than on location of the wave crest. 

BOW-WAVE HEIGHT

A simple analytical expression for the height (above the mean free-surface plane) Z b of the bow wave generated by a ship that advances at constant speed U in calm water is given in Noblesse et al. [START_REF] Noblesse | Simple analytical expressions for the height, location, and steepness of a ship bow wave[END_REF] . This expression directly defines z b = Z b g/U 2 , where g is the acceleration of gravity, in terms of the ship speed U, draft D and waterline entrance angle 2α E . Specifically, elementary fundamental theoretical considerations (dimensional analysis, and asymptotic behaviors in limits 1) is used to define an effective draft D and waterline entrance angle 2α E . This agreement between experimental measurements and theoretical predictions can be verified in Fig. 4 , where the normalized bow-wave height (Z b g/U 2 ) cosα E / tanα E is depicted as a function of the draft-based Froude number F D given by (1b) . Experimental measurements for eleven ship hulls are shown in Fig. 4, where the solid line is the approximation [START_REF] Noblesse | Simple analytical expressions for the height, location, and steepness of a ship bow wave[END_REF]. These results are also in good agreements for a flat plate towed in heel and drift as shown on Fig. 5. 
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UNSTEADY BOW-WAVE CRITERION

For a steady free-surface flow observed from a Galilean system of coordinates (X Y, Z) attached to a ship that advances along a straight path with constant speed U in calm water, the velocity of the total flow (uniform stream opposing the forward speed of the ship + flow due to the ship) is (V x -U, V y , V z ) . Here, (V x , V y , V z ) is the flow due to the ship. Furthermore, the X axis lies along the ship path and points toward the bow, and the Z axis is vertical and points upward with the mean free surface taken as the plane Z=0 . The Bernoulli relation
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applied at the free surface, where the pressure P is equal to the atmospheric pressure P atm , shows that an upper bound for the free-surface elevation Z = E is :
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where the function Thus, the Bernoulli constraint (3) is satisfied for every value of
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, but is only satisfied for a sufficiently high value of the Froude number
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, the Bernoulli constraint does not permit a steady-flow solution, except at rest and unsteady flow must be expected. Expressions [START_REF] Delhommeau | A simple theory of overturning ship bow waves[END_REF] show that a ship with waterline entrance angle 2α E smaller than approximately 25°, i.e. with a sufficiently fine waterline, may be expected to generate a steady bow wave at any speed. However, a ship having a fuller waterline can only generate a steady flow if the ship speed is higher than the critical speed (4b). The unsteady flow region defined by the Bernoulli boundary (4) is shown in Fig. 6. Fig. 6 also shows three points, identified as points 1, 2 and 3, where experimental observations of the bow waves due to a rectangular flat plate were made. Specifically, a rectangular flat plate, immersed at a draft D = .3 m, was towed at an incidence angle α E and a flare angle γ with speed U. The incidence angle α E is equal to 20° for points 1 and 2, and to 15° for point 3 . The speed U is equal to 1 m/s (F D =0.58) for point 1, and to 1.5 m/s (F D =0.87) for points 2 and 3. Two flare angles γ were considered: γ =0° (for which the rectangular flat plate is vertical) and γ = 20°. The bow waves at point 1, which is located inside the unsteady-flow region defined by (4), were unsteady for both γ = 0° and γ = 20°. At point 3, located well outside the unsteady-flow region, the flat plate generated steady overturning thin sheets of water for both γ = 0° and γ = 20°. At point 2, located slightly outside the unsteady-flow region, the flat plate generated an unsteady bow wave for γ = 0° and a steady overturning bow wave for γ = 20°. Thus, these experimental observations of bow waves generated by an inclined flat plate agree with the theoretical predictions given by the Bernoulli boundary (4). 
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At a point of the free surface z = ζ (x,y) , the Bernoulli relation [START_REF] Noblesse | When is the bow wave of a ship in steady motion unsteady?[END_REF] with P = P atm and expressions (5) yield
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where q obviously stands for the magnitude of the total flow velocity (flow velocity due to the ship plus uniform stream opposing the ship speed) . At a wave crest, (6) then yields :
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This expression yields z b → 0 and q b → 1 in the highspeed limit F D → ∞. Thus, the potential energy z b is null and the kinetic energy 2 / 2 b q is equal to 1/2 in this limit. Expression (7) also yields z b → 1/2 and q b → 0 in the low-speed limit
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F α is given by (4). Thus, the kinetic energy 2 / defined by ( 7) and ( 1) are linear functions of 8) are depicted in Fig. 8 for several values of q b in the range 0 ≤ q b < 1. These curves are roughly parallel to the curve q b =0 that borders the unsteady bow wave region. In the limit q b → 1, (8) yields α E =0 and 0 ≤ F D . Curves associated with increasing values of the kinetic energy q b at a bow wave crest may be presumed to correspond to steady bow waves that are increasingly more stable. On Fig. 9, we have reported the wave height for different incidence angles up to 90° and heel angles γ up to 40°t ogether with the Bernoulli bounds for two speeds. The real draft is:
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, where H=0.615m is the height of the rotation axis in heel and D=0.2m. So the Froude
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is a function of the heel angle γ for a given speed. A remarkable conclusion is that these curves show that the simple formula (1) is available up to the Bernoulli bound. So, this formula can be used up to the maximum height of the wave. 

SIMPLE ANALYTICAL BOW WAVES

The Bernoulli relation [START_REF] Kajitani | 2nd DTNSRDC Workshop on Ship Wave-Resistance Computations[END_REF] shows that the magnitude of the flow velocity at a ship stem, where the free-surface elevation ζ is small, is given by 1 ≈ stem q (9) Define a horizontal axis that is tangent to the mean ship waterline at a ship bow, and points toward the ship stern. Let t = T g/U 2 stand for the distance along the t axis, measured from the bow (intersection of the ship stem with the mean free-surface plane z =0). Thus, the ship bow is located at t = 0 and z = 0. Furthermore, define the nondimensional time θ =Θ g/U, and let ß stand for the angle between the horizontal mean free-surface plane and the (total) flow velocity at the ship bow. The components of the flow velocity at the bow along the horizontal t axis and the vertical z axis are then equal to
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, respectively, here, (9) was used. A simple approximation to a ship bow-wave profile may be obtained by assuming that a water particle that passes through the bow (t = 0, z = 0) roughly follows a path that is determined by Newton's equations
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This elementary Lagrangian analysis, which obviously ignores interactions among water particles, shows that the path of a water particle is defined by
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(10) Here, a water particle is assumed to be located at the ship bow (t = 0 , z = 0) at time θ =0 .

The parametric equations (10) yield
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Thus, one has ζ = 0 for t = 0 and t = 2 sin ß cos ß. Equation (11) shows that the highest value of ζ is reached for t = t b = sin ß cos ß and is given by 2z b = sin 2 ß. It follows that :
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(12) These relations and the change of variable t = t 0 + t b , which places the origin t 0 =0 at the bow-wave crest and orients the t 0 axis toward the ship bow (instead of the ship stern, as for the t axis) , show that (11) can be expressed as The expression for the distance between a ship stem and bow-wave crest given in Noblesse et al. [START_REF] Noblesse | Simple analytical expressions for the height, location, and steepness of a ship bow wave[END_REF] shows that an alternative expression for t b in (13) is
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Expressions ( 13) and ( 14) are based on both elementary fundamental theoretical considerations (dimensional analysis, limits α Ε → 0, D → 0 and D → ∞) and experimental measurements. Specifically, (13) and ( 14) follow from theoretical considerations, but involve constants C Z and C X that are determined from experimental measurements. Expression (14) for the distance t b between a ship stem and bow-wave crest is depicted in Fig. 12 13: Comparison of the simple analytical bow-wave given by ( 12) and ( 14) with experimental measurements

COMPOSITE BOW WAVE

However, the simple analytical bow waves given by ( 13) with ( 12) and ( 14) do not agree with experimental measurements beyond the bow wave crest. These observations suggest that interactions among fluid particles, ignored in the elementary Lagrangian analysis, are more important in the "recovery zone" past a wave crest than in the "build-up zone" between a ship stem and bow wave crest. Thus, the parabolic bow wave defined by ( 14) with (13) may be used for -t b ≤ t 0 ≤ 0 but not for t 0 > 0. The ship bow wave is then considered here aft the wave crest, i.e. for t 0 > 0. An obvious analytical approximation for a bow wave aft the crest is an elementary wave with wavelength 2πU 
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Here, σ S =z S / z b defines the ratio of the elevation z S of the free surface at the ship stem over the height z b of the wave crest. 

WAVE HEIGHT AT SHIP STEM

The height of water at the stem of a ship hull-with a nonbulbous wedge-shaped bow-that advances at constant speed in calm water is considered using two distinct methods: (i) a theoretical-experimental approach in which elementary fundamental theoretical considerations (dimensional analysis and rudimentary asymptotic considerations in thin-ship, shallow-draft and deep-draft limits) are used in conjunction with experimental measurements for simple hull forms and a rectangular flat plate towed at several yaw and heel angles; and (ii) thin-ship theory, i.e. a fully-analytical approach. Both of these two methods yield simple expressions that define the rise of water at a ship stem explicitly-ab initio and without calculations-in terms of the ship speed, draft, and waterline entrance angle. The theoretical-experimental expression and the thin-ship expression are in good agreement except at low Froude numbers, and are also in reasonable agreement with experimental measurements.

THEORETICAL-EXPERIMENTAL APPROACH

The height Z S of the free surface at the stem of a ship, with a nonbulbous wedge-shaped bow, that advances at constant speed U in calm water mostly depends on U, the gravitational acceleration g, the hull draft D, and the entrance angle 2α at the waterline. Viscosity and surface tension, variables related to the overall ship geometry (e.g. beam/length and draft/length ratios), and the flare angle γ are expected to have a secondary influence.

Dimensional considerations then show that Z S g/U 2 is a function of α and the draft-based Froude number F D .

Thin-ship theory indicates that Z S is approximately proportional to α in the limit α → 0. Thus, Ψ=(Z s g/U 2 )/α is expected to be a function of the draft-based Froude number F D , or the related variable
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. The exponent N is to be determined in the manner explained further on. Z S vanishes in the shallow-draft limit D → 0, i.e. in the high-Froude-number limits F D → ∞, and is finite in the deep-draft limit D → ∞, i.e. in the low-Froude-number limits F D → 0. The simplest function that satisfies these two boundary conditions is the linear function
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These simple basic theoretical considerations (dimensional analysis and rudimentary asymptotic considerations)

show that one has
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can be expected to be independent of δ N , i.e. of F D . The exponent N in (16), which specifies the variation of the water height Z S at a ship stem with respect to the ship speed U and draft D, is now determined-using experimental measurements-from the condition that the function C N defined by ( 16) is nearly independent of F D . The variations of C 1 , C 2 , C 3 , C 4 with respect to F D are considered for seven cases. Specifically, we compare experimental measurements, obtained by Larrarte (5) at Ecole Centrale de Nantes, for two strut-like models that have rectangular framelines and sharp-ended parabolic waterlines with entrance angle 2 α = 20° or 40°, results of measurements, obtained by the authors in the towing tank of Ecole Centrale de Nantes, for a rectangular flat plate immersed at a draft D = 0.3 m or 0.2 m and towed at several speeds U in the range 1m/s ≤ U ≤ 2.5 m/s , yaw angles α = 10° , 15° , 20° , 25°, and heel angles γ = 0° , 10° , 15° , 20°a nd measurements for the Wigley hull, obtained at the Univ. of Tokyo and the Ship Research Institute (Japan) and reported in Kajitani et 2 . The average slopes B N for the Wigley hull and the two Larrarte struts, and for the flat plate at four yaw angles, are also indicated in Table 2 . The slopes B N are shown in Fig. 14 as functions of 1 ≤ N ≤ 4 for the seven cases considered in Table 2 . Fig. 14 and Table 2 show that the slopes B 1 and B 2 are negative for the seven cases considered here. The slopes B 2 and B 4 are positive for five of the seven cases. The experimental measurements reported in Table 2 and Fig. 14 indicate that the least variation with respect to speed in ( 16) is obtained for the exponent N in the range 2 ≤ N ≤ 3 . The foregoing analysis, based on elementary fundamental theoretical considerations and experimental measurements, yields the simple analytical expression
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The function tanα / cosα provides a better fit at high incidence angles that the function α and has the same behaviour in the limiting case α → 0. The values of C S for N =2 , 2.5 or 3 are listed in Table 3 

FULLY-ANALYTICAL APPROACH

A complementary analysis of the thin-ship limit α → 0 is now considered. Specifically, we consider steady free-surface flow about an infinitely-long thin wedge defined by Y = ±X tanα with -∞ <X ≤ 0 , -D ≤Z ≤ 0 .

(19) Within the context of thin-ship theory, which is appropriate in the limit α → 0 now considered, the flow about the wedge (19) can be represented in terms of a distribution of sources, with (constant) strength 2 tan α , over the semi-infinite strip (19) in the X, Z plane, and is defined in terms of a Green function G(ξ-x, ηy, ζ, z). Here, (ξ, η,ζ) and (x, y, z) stand for coordinates of a flow-field point and a source point. The source point (x, y, z) is located in the plane y =0 with -∞ <X ≤ 0 and -d ≤ z ≤0 . The z-axis is vertical and points upward, and the mean free surface is taken as the plane z = 0. Furthermore, the coordinates (ξ,, η, ζ) and (x, y, z) and the draft d of the wedge are nondimensional in terms of the gravitational acceleration g and the speed U of the wedge. Thus, one has d = D g/U 2 = 1/F D 2 . Within the thin-ship approximation, the nondimensional free-surface elevation Z g/U 2 is given by

ξ α ξ ζ η ξ φ ∂ ∂ = ∂ = ∂ = ∫ ∫ - ∞ - G dx dz U Zg d 0 0 2 tan 2 ) 0 , , (
The Green function can be expressed in the form given in Appendix 3 of Noblesse [START_REF] Noblesse | The near-field disturbance in the centerplane Havelock source potential[END_REF]. Thus one has
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where E(F D ) stands for the function 
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A low-Froude-number correction can be added to the high-Froude-number approximation (20c) to obtain a practical approximation to the integral (20b 
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is essentially identical (20b), except for very low F D and may be used in practice instead of (20b).

The one-term high-Froude-number approximation The two approaches that have been used in this study-thinship theory, and a theoretical-experimental method in which elementary fundamental theoretical considerations are used in conjunction with experimental measurements-may seem overly simplified and even exotic to the CFD generation. Thus, it may be useful to note here that simple analytical methods can yield useful results. In particular, analytical methods can provide simple "cause-and-effect" relationships-often of critical importance for practical applications, notably at preliminary and early design stagesthat could only be derived from numerical simulations if a huge number of systematic parametric calculations can be performed. Finally, an amusing result of the high-Froude-number slender-body studies of Sclavounos [START_REF] Sclavounos | On the intersection near a fine ship bow[END_REF] and Fontaine et al. [START_REF] Fontaine | Steady flow near a edge shaped bow[END_REF] [START_REF] Fontaine | New insight into the generation of ship bow waves[END_REF] and the thin-ship analysis considered here is that these three studies yield the high-Froude-number approximations: A main element of this theory is a fullynonlinear analysis of the steady inviscid flow along the contact curve be-tween the ship hull and the free surface. Thus, surface-tension and viscosity effects are ignored here. However, no other approximation is made, and the analysis is exact for steady inviscid flows. The ship-hull boundary condition and the kinematic and dynamic boundary conditions
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FLOW AT SHIP-HULL AND FREE-SURFACE
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at the free surface z = ζ(x,y) are presumed to hold along the contact curve between the ship hull and the free surface. The three boundary conditions (21) provide three algebraic equations (two linear equations and a quadratic equation) that can be used to determine the three velocity components v x , v y and v z in terms of ζ, ζ x and ζ y . Two orthogonal unit vectors t =(t x , t y , 0) and m =(-t y , t x , 0) that lie in a horizontal plane are defined; see top of Fig. 17. The vector m is colinear with the projection onto the mean free-surface plane z =0 of the unit vector n =(n x , n y , n z ) normal to the ship hull; bottom of Fig. 17 . The vectors n and m point outside the ship. The vector t is tangent to the ship hull surface and, on the positive side y>0 of the ship hull considered here, points toward the ship bow; top of Fig. 18 . One has t = (cosα, -sinα, 0) m = (sinα, cosα, 0) n = (sinα cosγ, cosα cosγ, -sinγ)

(22a) with 2 / 2 / and 2 / 2 / π γ π π α π ≤ ≤ - ≤ ≤ - .
In the bow region, the angle α between the unit vector t and the x axis is positive. The flare angle γ between the normal vector n to the ship hull and the mean free-surface plane z =0 is positive for a typical hull form, as in bottom of Fig. 17, and negative for a tumble hull. The unit vector s = t × n = (sinα sinγ, cosα sinγ, cosγ ) = m sinγ + k cosγ (22b) is tangent to the ship hull and points upward, as in bottom of Fig. 17. Here, k = (0, 0, 1) is the unit vector along the vertical z axis; see bottom of Fig. 17. The velocity component v along the unit vector n normal to the ship hull is null. Thus, the flow velocity is given by v total = u t + w s = u t + w t × n , where the velocity components u and w along the unit vectors t and s tangent to the hull are determined by the free-surface boundary conditions (21b) and (21c) . This approximation which is independent of the unknown angle µ may be expected to hold except near a ship stem or stern where γ and/or µ can be large. The approximation (24) defines the nondimensional total-flow velocity at the free-surface and ship-hull contact curve in terms of the ship speed U and flare angle γ , and the elevation ζ of the contact curve. The effect of the angle µ is illustrated in Fig. 18, where the angle µ in (23) is taken as

1 / 1 - with / 0 0 * ≤ ≤ = b b t t t t µ µ
and µ* =0° , 10° , 20° , 30°. Fig. 11 shows that the velocity components u and w are not drastically affected by the angle µ . Thus, the approximation µ =0 and the related expression (24) may be used in practice.

LAGRANGIAN ANALYSIS OF DETACHED BOW SHEET

The next main step in the theory of overturning ship bow-waves developed here is the determination of the shape of the detached sheet of water that leaves the ship hull along the ship-hull/free-surface contact curve. This step is an elementary Lagrangian analysis of the motions of fluid particles that leave the ship hull at the flow-detachment curve (ship-hull/free-surface contact curve. A particle of water leaving the hull at contact point (t, m,ζ) follows a trajectory given by . Expressions (25) define the detached sheet of water that leaves the ship hull along the flow-detachment curve in terms of the location of the flow-detachment curve and the related velocity components u and w. These velocity components are defined by (24) in terms of the ship speed, the hull geometry, and the location of the flow-detachment curve. Thus, the detached sheet of water generated at a ship bow is explicitly determined in terms of the ship speed, the hull geometry, and the location of the flow-detachment curve. Thus, the projections of the paths of water particles on the horizontal plane (m , t) and the vertical planes (k , t) and (k , m) are a straight line and parabolas, respectively, as expected. The water trajectory defined by (25) intersects the mean freesurface plane z =0 for 

and the top height is given by
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Thus, the maximum height z top reached by water particles that leave the ship-hull/free-surface contact curve at a height The second comparison is made on strut-like models simulating real hulls. These models have been used by F. Larrarte [START_REF] Larrarte | Etude experimentale et theorique des profils de vagues le long d'une carene[END_REF] for her PhD Thesis. The 2 models have identical extremities (amphidromic profile), a length L=1.5 m, a draft D=0.20 m with rectangular sections. ).

The shape of models Μaqα is given by:
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The last hull is Wigley hull. Measurements come from cooperatives experiments of Washington Workshop in 1983 [START_REF] Kajitani | 2nd DTNSRDC Workshop on Ship Wave-Resistance Computations[END_REF]. Results for practical hulls show a reasonable agreement for the shape of the wave and a good prediction of the wavelength up to a Froude number of 0.3. Above this number, the estimated wavelengths given in (15) have to be corrected for high-speed effects.

CONCLUSION

Several basic questions pertaining to the bow wave generated by a ship in steady motion have been considered and simple analytical results given. These results are now summarized. The height of a ship bow wave is explicitly defined in terms of the ship speed U, draft D and waterline entrance angle α E by expression (1). This simple analytical expression is in good agreement with experimental measurements. Expression (1) for a ship bow-wave height and the Bernoulli constraint for steady flows were used to obtain a criterion (4), which predicts when a ship in steady motion generates an unsteady bow wave. Two expressions defining a family of parabolic ship bow waves are given and compared to experimental measurements for a flat plate. A composite bow-wave (15) is deduced. Two expressions of the wave height at stem are given (18) (20). The flow velocity at the contact (flow-separation) curve between a ship hull and the free surface is given by the simple analytical expression (23). The approximation (24), which does not involve µ may be used in practice instead of (23) . The detached sheet of water (overturning bow wave) that is commonly generated by a ship bow in the "steady-bow-wave regime" is explicitly determined in terms of the ship speed, the hull geometry, and the location of the flow-detachment curve. Fig. 20, 21 and 22 show that predictions given by this simple theory are in reasonable agreement with experimental measurements for a flat plate and practical ship hulls. The simple analytical expressions obtained in this study, using elementary fundamental considerations and analysis, provide explicit relationships between main characteristics of a ship bow wave (wave height and location, steadiness, geometry of overturning bow wave) and main design parameters (ship speed, draft, waterline entrance angle, and flare angle) that define a ship. These "cause-and-effect" relations may be useful for practical applications to ship design, and should illustrate the value of analytical methods.

Three main limitations of the results given here need to be noted. (i) The theory of overturning ship bow waves does not provide a complete description of the flow. In particular, although the theory provides reasonable predictions of the main characteristics (horizontal extent and height) of the thin sheet of water that is generated by a ship bow, it provides no information about the thickness of the sheet. (ii) The expressions for the bow-wave height and shape, and the related unsteady-bow-wave criterion and overturning-bowwave theory assume a sharp wedge-like ship bow. Thus, these results cannot be applied to ships with rounded or bulbous bows. (iii) The simple theory of overturning bow waves given here does not predict the occurrence of overturning if the flare angleγ is null, i.e. for wall-sided ship hulls. Indeed, within the theory developed here, the flowseparation curve along which a detached thin sheet of water is generated becomes a streamline in the special case γ =0 .

Fig. 1 .

 1 Each point on this figure corresponds to 6 flare angles. The color pictures (Fig 2a) are first transformed into a grey scale, then corrected for geometric distorsion and projection by a model of second order camera. The result is a 2D picture (Fig 2b) which can be directly digitalized. Accuracy and repetitivity of measurements are obtained by 2 series of runs for α=γ=20° and U= 2

Fig. 1 :

 1 Fig. 1: Summary of experiments on a flat plate.

Fig. 2a :Fig. 3 :

 2a3 Fig. 2a: Original color picture

Fig. 6 :

 6 Fig. 6: Unsteady bow-wave region defined by the Bernoulli constraint (3) and the related boundary (4).

Point 1 ,

 1 F D =0.58, α= 20 °,γ=0°P oint 1, , F D =0.58, α= 20, γ=20 °Point 2, , F D =0.87, α= 20 °,γ=0°P oint 2, F D =0.87, α= 20 °,γ=20°4 Point 3, F D =0.87, α= 15 °,γ=0°P oint 3, F D =0.87, α= 15 °,γ=20°F ig. 7: Pictures of bow wave for different cases Nondimensional coordinates (x, y, z) and flow velocities (v x , v y , v z ) are defined in terms of the ship speed U and the acceleration of gravity g as

  the unsteady-flow boundary defined by the Bernoulli constraint (3). The potential energy z b and the kinetic

Fig. 8 :

 8 Fig. 8: Curves F D defined by (7) for given values of the kinetic energy q b at the crest of a ship bow wave This expression defines curves ) ( E D F α that correspond to specified values of the kinetic energy q b at a bow wave crest. In the special case q b =0, (7) is identical to the unsteady-flow boundary (3) shown in Fig. 6. The curves ) ( E D F α defined by (8) are depicted in Fig.8for several values of q b in the range 0 ≤ q b < 1. These curves are roughly parallel to the curve q b =0 that borders the unsteady bow wave region. In the limit q b → 1, (8) yields α E =0 and 0 ≤ F D . Curves associated with increasing values of the kinetic energy q b at a bow wave crest may be presumed to correspond to steady bow waves that are increasingly more stable.

Fig. 9 :

 9 Fig. 9: Comparison of theoretical and experimental bowwave height for high incidences.

Fig. 10 :

 10 Fig. 10: Family of parabolic bow waves defined by (12) and (13) for z b =0.05 , 0.1 , 0.15 , 0.2 , 0.25 (top) and z b =0.25 , 0.3 , 0.35 , 0.4 , 0.45 , 0.49 (bottom) . Thus, the bow wave defined by (12) and (13) becomes a vertical wall, clearly unstable, as the wave height z b approaches the upper bound z b = 0.5 allowed by the Bernoulli constraint (3) for steady flows. This property provides further insight into the unsteady-flow boundary (4). The bow-wave half-width 0 ≤ t b ≤ 1/2 defined by (12) is depicted in Fig. 10 for 0 ≤ z b ≤ 1/2 . Fig. 12 also shows the experimental measurements for five ship hulls considered in Noblesse et al. (1). These measurements are limited to the range z b < 0.3. Furthermore, the experimental measurements for the Series 60 model are shown in Noblesse et al. (1) to be somewhat marred by considerable scatter (much larger than for the Wigley hull). Nevertheless, the theoretical predictions and experimental measurements shown in Fig. 11 are in reasonable agreement.

Fig. 11 :

 11 Fig. 11: Distance t b = T b g/U 2 between a ship stem and bow-wave crest for five ship hulls. The solid circle is the approximation (12)

Fig. 12 :

 12 Fig. 12: Distance t b = T b g/U 2 between a ship stem and bowwave crest for five ship hulls.

  with the experimental measurements for five ship hulls considered in Noblesse et al.[START_REF] Noblesse | Simple analytical expressions for the height, location, and steepness of a ship bow wave[END_REF] . Fig.13compares the alternative parabolic bow waves defined by (14), with t b taken as the functions b (z b ) or t b (F D ) given by (13) or (14), to experimental measurements of bow waves due to a rectangular flat plate immersed at a draft D = 0.3 m and towed at yaw angles α E = 10° or α E = 20°, heel angles γ = 0° , 10° , 15° , 20°, and speeds U = 1.5 m/s or 2 m/s (F D =0.87 or 1.17). Theoretical predictions of the bow wave height and of the location of the bow wave crest given by (2) and (13) or (14) agree reasonably well with experimental observations.

2 /ζ 2 .

 22 Here, t 0 = 0 at the crest of the bow wave and t 0 = T g/U

  Expression (15) yield ζ= z S at a ship stem t=0 and ζ = z b at a bow-wave crest

Fig. 14 :

 14 Fig.14: Slopes B 1 , B 2 , B 3 , B 4 in the linear fit to the normalized water rise C N for the Wigley hull, the Larrarte 10° and 20° struts, and the flat plate. The three possibilities N = 2 , 5/2 , 3 are then considered.

Fig. 15

 15 Fig.15 Normalized water height (Z s g/U 2 ) cos α/ tan α and functions

  given by Fontaine et al.[START_REF] Fontaine | Steady flow near a edge shaped bow[END_REF] [START_REF] Fontaine | New insight into the generation of ship bow waves[END_REF] are in agreement, except for the factor 2 in (20e). The six alternative expressions (20) for the function E(F D ) in (20a) are depicted in Fig.16together with experimental measurements for the Wigley hull, two struts that have sharp-ended waterlines with entrance angle 2α = 20° or 40°, and a flat plate towed at a yaw angle α = 10° , 15° , 20° , 25°.The theoretical-experimental expression (20a) and the thinship expressions (20b)-(20d) are nearly identical for F D > 0.8 but are significantly different for F D < 0.6 . The theoreticalexperimental expression (20a) and the thin-ship expressions (20b)-(20d) are in reasonable agreement with the experimental measurements shown in Fig.16. In fact, the experimental measurements are fairly evenly distributed around the theoretical-experimental approximation (20a) and the thin-ship expressions (20b)-(20d).

Fig. 16 :

 16 Fig.16: Comparison of the six alternative expressions (20) for the function E(F D ) in (20) with experimental measurements.

  Fig.17: Definition sketchSteady free-surface flow about a ship in the "steady bow-wave regime" is now considered. A simple analytical theory of overturning ship bow-waves is developed. A main element of this theory is a fully-

  The total-flow velocity at the contact curve can be shown to be given by unknown angle between the free surface and the mean free-surface plane z=0, as shown in bottom of Fig.17. Expression (23) follows from exact boundary conditions (for steady inviscid flows), at the actual locations of the ship hull and the free surface, and thus is exact.If tanγ tanµ << 1 , one obtains the approximation

1 Fig. 18 :

 118 Fig. 18 : Effect of angle µ between the free surface and the mean free-surface plane z = 0 on the velocity components u and w defined by (23), (13) and (12) for (top) z b =0.2 and γ = 15° and (bottom) z b =0.2 and γ = 20°.

  coordinates (t, m,ζ) are not independant. In particular, along a flat plate with a flare angle γ, we have : γ ζ tan = m

  variables t' and m' in (25) vary within the ranges

Fig. 19 2 U = 2 .

 1922 Fig.19shows a comparison of the analytical and experimental bow waves for four cases that illustrate the effect of the speed U, the incidence angle α E , and the

Fig. 21 :

 21 Fig. 21 : Comparison of theoretical and experimental bowwave height for ship hulls. The half bow-angles are 10 and 20°. Corrections of effective draft and bow angle for practical ship hulls are given in Noblesse and al (1). The Froude number indicated in Fig. 21 is relative to the ship length ( gL U Fn / =).

Table

  

  Expression (1) is also in good agreement with measurements for the Wigley hull and the Series 60 model, and similar ship-bow forms, like Larrarte struts (5), especially if the simple procedure given in Noblesse et al. (

	This expression is validated by comparison with
	measurements, which determine the constant C Z as	
	C	Z	≈	. 2	2	(1c)
	The simple analytical expression (1) is in excellent
	agreement with experimental measurements for
	wedge-shaped ship bows.	

Table 2 :

 2 Slopes B 1 , B 2 , B 3 , B 4 for the Wigley hull, the of the slope B N in (17) indicates that C N is independent of F D . The values of the slopes B 1 , B 2 , B 3 , B 4 are listed in Table

			al. (6)		
	Hull Wigley Strut 10° Strut 20°	B N
	B 1	-0.185	-0.203	-0.539	-0.309
	B 2	-0.103	-0.124	-0.346	-0.191
	B 3	0.028	-0.069	-0.214	-0.085
	B 4	0235	-0.028	-0.117	0.030
	Plate 10°	15°	20°	25°	B N
	B 1 -0.111 -0.114 -0.229 -0.378 -0.208
	B 2 -0.048 -0.036 -0.104 -0.168 -0.089
	B 3 0.058	0.097	0.107	0.113	0.113
	B 4 0.241	0.328	0.472	0.815	0.464
	Larrarte 10° and 20° struts, and the flat plate.
	N	2	2.5		3
	C S N	0.89	0.97	1.06
	Table 3: Constants in (18) determined from experimental
	measurements for the Wigley hull, the Larrarte 10° and 20°
	struts, and the flat plate .		

  . and bottom rows of Fig.15correspond to N =2 , 2.5 or 3 . The experimental data are those previously reported. These functions are depicted as functions of 0≤F D ≤2 .
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