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Abstract

Regularization by the sum of singular values, also referred to as the trace norm, is a
popular technique for estimating low rank rectangular matrices. In this paper, we extend
some of the consistency results of the Lasso to provide necessary and sufficient conditions
for rank consistency of trace norm minimization with the square loss. We also provide
an adaptive version that is rank consistent even when the necessary condition for the non
adaptive version is not fulfilled.

1. Introduction

In recent years, regularization by various non Euclidean norms has seen considerable inter-
est. In particular, in the context of linear supervised learning, norms such as the ℓ1-norm
may induce sparse loading vectors, i.e., loading vectors with low cardinality or ℓ0-norm.
Such regularization schemes, also known as the Lasso (Tibshirani, 1994) for least-square
regression, come with efficient path following algorithms (Efron et al., 2004). Moreover,
recent work has studied conditions under which such procedures consistently estimate the
sparsity pattern of the loading vector (Yuan and Lin, 2007, Zhao and Yu, 2006, Zou, 2006).

When learning on rectangular matrices, the rank is a natural extension of the cardinality,
and the sum of singular values, also known as the trace norm or the nuclear norm, is the
natural extension of the ℓ1-norm; indeed, as the ℓ1-norm is the convex envelope of the
ℓ0-norm on the unit ball (i.e., the largest lower bounding convex function) (Boyd and
Vandenberghe, 2003), the trace norm is the convex envelope of the rank over the unit ball
of the spectral norm (Fazel et al., 2001). In practice, it leads to low rank solutions (Fazel
et al., 2001, Srebro et al., 2005) and has seen recent increased interest in the context of
collaborative filtering (Srebro et al., 2005), multi-task learning (Abernethy et al., 2006,
Argyriou et al., 2007) or classification with multiple classes (Amit et al., 2007).

In this paper, we consider the rank consistency of trace norm regularization with the
square loss, i.e., if the data were actually generated by a low-rank matrix, will the matrix
and its rank be consistently estimated? In Section 4, we provide necessary and sufficient
conditions for the rank consistency that are extensions of corresponding results for the
Lasso (Yuan and Lin, 2007, Zhao and Yu, 2006, Zou, 2006) and the group Lasso (Bach,
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2007). We do so under two sets of sampling assumptions detailed in Section 3.2: a full
i.i.d assumption and a non i.i.d assumption which is natural in the context of collaborative
filtering.

As for the Lasso and the group Lasso, the necessary condition implies that such proce-
dures do not always estimate the rank correctly; following the adaptive version of the Lasso
and group Lasso (Zou, 2006), we design an adaptive version to achieve n−1/2-consistency
and rank consistency, with no consistency conditions. Finally, in Section 6, we present a
smoothing approach to convex optimization with the trace norm, while in Section 6.3, we
show simulations on toy examples to illustrate the consistency results.

2. Notations

In this paper we consider various norms on vectors and matrices. On vectors x in R
d,

we always consider the Euclidean norm, i.e., ‖x‖ = (x⊤x)1/2. On rectangular matrices in
R

p×q, however, we consider several norms, based on singular values (Stewart and Sun, 1990):

the spectral norm ‖M‖2 is the largest singular value (defined as ‖M‖2 = supx∈Rq
‖Mx‖
‖x‖ ),

the trace norm (or nuclear norm) ‖M‖∗ is the sum of singular values, and the Frobenius
norm ‖M‖F is the ℓ2-norm of singular values (also defined as ‖M‖F = (trM⊤M)1/2). In
Appendix A and B, we review and derive relevant tools and results regarding perturbation
of singular values as well as the trace norm.

Given a matrix M ∈ R
p×q, vec(M) denotes the vector in R

pq obtained by stacking its
columns into a single vector; and A ⊗ B denotes the Kronecker product between matrices
A ∈ R

p1×q1 and B ∈ R
p2×q2, defined as the matrix in R

p1p2×q1q2, defined by blocks of sizes
p2× q2 equal to aijB. We make constant use of the following identities: (B⊤⊗A) vec(X) =
vec(AXB) and vec(uv⊤) = v ⊗ u. For more details and properties, see Golub and Loan
(1996) and Magnus and Neudecker (1998). We also use the notation ΣW for Σ ∈ R

pq×pq

and W ∈ R
p×q to design the matrix in R

p×q such that vec(ΣW ) = Σ vec(W ) (note the
potential confusion with ΣW when Σ is a matrix with p columns).

We also use the following standard asymptotic notations: a random variable Zn is said to
be of order Op(an) if for any η > 0, there exists M > 0 such that supn P (|Zn| > Man) < η.
Moreover, Zn is said to be of order op(an) if Zn/an converges to zero in probability, i.e., if
for any η > 0, P (|Zn| > ηan) converges to zero. See Van der Vaart (1998) and Shao (2003)
for further definitions and properties of asymptotics in probability.

Finally, we use the following two conventions: lowercase for vectors and uppercase for
matrices, while bold fonts are reserved for population quantities.

3. Trace norm minimization

We consider the problem of predicting a real random variable z as a linear function of a
matrix M ∈ R

p×q, where p and q are two fixed strictly positive integers. Throughout this
paper, we assume that we are given n observations (Mi, zi), i = 1, . . . , n, and we consider
the following optimization problem with the square loss:

min
W∈Rp×q

1

2n

n
∑

i=1

(zi − trW⊤Mi)
2 + λn‖W‖∗, (1)
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where ‖W‖∗ denotes the trace norm of W .

3.1 Special cases

Regularization by the trace norm has numerous applications (see, e.g., Recht et al. (2007)
for a review); in this paper, we are particularly interested in the following two situations:

Lasso and group Lasso When xi ∈ R
m, we can define Mi = Diag(xi) ∈ R

m×m as the
diagonal matrix with xi on the diagonal. In this situation the minimization of problem
Eq. (1) must lead to diagonal solutions (indeed the minimum trace norm matrix with fixed
diagonal is the corresponding diagonal matrix, which is a consequence of Lemma 20 and
Proposition 21) and for a diagonal matrix the trace norm is simply the ℓ1 norm of the
diagonal. Once we have derived our consistency conditions, we check in Section 4.5 that
they actually lead to the known ones for the Lasso (Yuan and Lin, 2007, Zhao and Yu,
2006, Zou, 2006).

We can also see the group Lasso as a special case; indeed, if xij ∈ R
dj for j = 1, . . . ,m,

i = 1, . . . , n, then we define Mi ∈ R
(
∑m

j=1
dj)×m as the block diagonal matrix (with non

square blocks) with diagonal blocks xji, j = 1, . . . ,m. Similarly, the optimal Ŵ must share
the same block-diagonal form, and its singular values are exactly the norms of each block,
i.e., the trace norm is indeed the sum of the norms of each group. We also get back results
from Bach (2007) in Section 4.5.

Note that the Lasso and group Lasso can be seen as special cases where the singular
vectors are fixed. However, the main difficulty in analyzing trace norm regularization, as
well as the main reason for it use, is that singular vectors are not fixed and those can often
be seen as implicit features learned by the estimation procedure (Srebro et al., 2005). In
this paper we derive consistency results about the value and numbers of such features.

Collaborative filtering and low-rank completion Another natural application is col-
laborative filtering where two types of attributes x and y are observed and we consider
bilinear forms in x and y, which can be written as a linear form in M = xy⊤ (thus it corre-
sponds to situations where all matrices Mi have rank one). In this setting, the matrices Mi

are not usually i.i.d. but exhibit a statistical dependence structure outlined in Section 3.2.
A special case here is when then no attributes are observed and we simply wish to com-
plete a partially observed matrix (Srebro et al., 2005, Abernethy et al., 2006). The results
presented in this paper do not immediately apply because the dimension of the estimated
matrix may grow with the number of observed entries and this situation is out of the scope
of this paper.

3.2 Assumptions

We make the following assumptions on the sampling distributions of M ∈ R
p×q for the

problem in Eq. (1). We let denote: Σ̂mm = 1
n

∑n
i=1 vec(Mi) vec(Mi)

⊤ ∈ R
pq×pq, and we

consider the following assumptions:

(A1) Given Mi, i = 1, . . . , n, the n values zi are i.i.d. and there exists W ∈ R
p×q such that

for all i, E(zi|M1, . . . ,Mn) = trW⊤Mi and var(zi|M1, . . . ,Mn) is a strictly positive
constant σ2. W is not equal to zero and does not have full rank.
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(A2) There exists an invertible matrix Σmm ∈ R
pq×pq such that E‖Σ̂mm −Σmm‖2

F = O(ζ2
n)

for a certain sequence ζn that tends to zero.

(A3) The random variable n−1/2
∑n

i=1 εi vec(Mi) is converging in distribution to a normal
distribution with mean zero and covariance matrix σ2Σmm.

Assumption (A1) states that given the input matrices Mi, i = 1, . . . , n we have a linear
prediction model, where the loading matrix W is non trivial and rank-deficient, the goal
being to estimate this rank (as well as the matrix itself). We let denote W = UDiag(s)V⊤

its singular value decomposition, with U ∈ R
p×r , V ∈ R

q×r, and r ∈ (0,min{p, q}) denotes
the rank of W. We also let denote U⊥ ∈ R

p×(p−r) and V⊥ ∈ R
q×(q−r) any orthogonal

complements of U and V.

We let denote εi = zi−trW⊤Mi and Σ̂Mz = 1
n

∑n
i=1 ziMi ∈ R

p×q, Σ̂Mε = 1
n

∑n
i=1 εiMi =

Σ̂Mz − Σ̂mmW ∈ R
p×q. We may then rewrite Eq. (1) as

min
W∈Rp×q

1

2
vec(W )⊤Σ̂mm vec(W ) − trW⊤Σ̂Mz + λn‖W‖∗, (2)

or, equivalently,

min
W∈Rp×q

1

2
vec(W − W)⊤Σ̂mm vec(W − W) − trW⊤Σ̂Mε + λn‖W‖∗. (3)

The sampling assumptions (A2) and (A3) may seem restrictive, but they are satisfied
in the following two natural situations. The first situation corresponds to a classical full
i.i.d problem, where the pairs (zi,Mi) are sampled i.i.d:

Lemma 1 Assume (A1). If the matrices Mi are sampled i.i.d., z and M have finite fourth
order moments, and E

{

vec(M) vec(M)⊤
}

is invertible, then (A2) and (A3) are satisfied

with ζn = n−1/2.

Note the further refinement when for each i, Mi = xiy
⊤
i and xi and yi are independent,

which implies that Σmm is factorized as a Kronecker product, of the form Σyy ⊗Σxx where
Σxx and Σyy are the (invertible) second order moment matrices of x and y.

The second situation corresponds to a collaborative filtering situation where two types
of attributes are observed, e.g., x and y, and for every pair (x, y) we wish to predict z as a
bilinear form in x and y: we first sample nx values for x, and ny values for y, and we select
uniformly at random a subset of n 6 nxny observations from the nxny possible pairs. The
following lemma, proved in Appendix C.1, shows that this set-up satisfies our assumptions:

Lemma 2 Assume (A1). Assume moreover that nx values x̃1, . . . , x̃nx are sampled i.i.d
and ny values ỹ1, . . . , ỹny are also sampled i.i.d. from distributions with finite fourth order
moments and invertible second order moment matrices Σxx and Σyy. Assume also that a
random subset of size n of pairs (ik, jk) in {1, . . . , nx} × {1, . . . , ny} is sampled uniformly,
then if nx, ny and n tend to infinity, then (A2) and (A3) are satisfied with Σmm = Σyy⊗Σxx

and ζn = n−1/2 + n
−1/2
x + n

−1/2
y .
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3.3 Optimality conditions

From the expression of the subdifferential of the trace norm in Proposition 21 (Appendix B),
we can identify the optimality condition for problem in Eq. (1), that we will constantly use
in the paper:

Proposition 3 The matrix W with singular value decomposition W = U Diag(s)V ⊤ (with
strictly positive singular values s) is optimal for the problem in Eq. (1) if and only if

Σ̂mmW − Σ̂Mz + λnUV ⊤ + N = 0, (4)

with U⊤N = 0, NV = 0 and ‖N‖2 6 λn.

This implies notably that W and Σ̂mmW − Σ̂Mz have simultaneous singular value decom-
positions, and the largest singular values are less than λn, and exactly equal to λn for the
corresponding strictly positive singular values of W . Note that when all matrices are diago-
nal (the Lasso case), we obtain the usual optimality conditions (see also Recht et al. (2007)
for further discussions).

4. Consistency results

We consider two types of consistency, the regular consistency, i.e., we want the probability
P(‖Ŵ − W‖ > ε) to tend to zero as n tends to infinity, for all ε > 0. We also consider
the rank consistency, i.e., we want that P(rank(Ŵ ) 6= rank(W)) tends to zero as n tends
to infinity. Following the similar properties for the Lasso, the consistency depends on the
decay of the regularization parameter. Essentially, we obtain the following results:

a) if λn does not tend to zero, then the trace norm estimate Ŵ is not consistent;

b) if λn tends to zero faster than n−1/2, then the estimate is consistent and its error is
Op(n

−1/2) while it is not rank-consistent with probability tending to one (see Sec-
tion 4.1);

c) if λn tends to zero exactly at rate n−1/2, then the estimator is consistent with error
Op(n

−1/2) but the probability of estimating the correct rank is converging to a limit
in (0, 1) (see Section 4.2);

d) if λn tends to zero more slowly than n−1/2, then the estimate is consistent with error
Op(λn) and its rank consistency depends on specific consistency conditions detailed
in Section 4.3.

The following sections will look at each of these cases, and state precise theorems. We then
consider some special cases, i.e., factored second-order moments and implications for the
special cases of the Lasso and group Lasso.

The first proposition (proved in Appendix C.2) considers the case where the regulariza-
tion parameter λn is converging to a certain limit λ0. When this limit is zero, we obtain
regular consistency (Corollary 5 below), while if λ0 > 0, then Ŵ tends in probability to a
limit which is always different from W:
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Proposition 4 Assume (A1), (A2) and (A3). Let Ŵ be a global minimizer of Eq. (1). If
λn tends to a limit λ0 > 0, then Ŵ converges in probability to the unique global minimizer
of

min
W∈Rp×q

1

2
vec(W − W)⊤Σmm vec(W − W) + λ0‖W‖∗.

Corollary 5 Assume (A1), (A2) and (A3). Let Ŵ be a global minimizer of Eq. (1). If
λn tends to zero, then Ŵ converges in probability to W.

We now consider finer results when λn tends to zero at certain rates, slower or faster than
n−1/2, or exactly at rate n−1/2.

4.1 Fast decay of regularization parameter

The following proposition—which is a consequence of standard results in M-estimation (Shao,
2003, Van der Vaart, 1998)—considers the case where n1/2λn is tending to zero, where we
obtain that Ŵ is asymptotically normal with mean W and covariance matrix n−1σ2Σ−1

mm,
i.e., for fast decays, the first order expansion is the same as the one with no regularization
parameter:

Proposition 6 Assume (A1), (A2) and (A3). Let Ŵ be a global minimizer of Eq. (1). If
n1/2λn tends to zero, n1/2(Ŵ −W) is asymptotically normal with mean W and covariance
matrix σ2Σ−1

mm.

We now consider the corresponding rank consistency results, when λn goes to zero
faster than n−1/2. The following proposition (proved in Appendix C.3) states that for such
regularization parameter, the solution has rank strictly greater than r with probability
tending to one and can thus not be rank consistent:

Proposition 7 Assume (A1), (A2) and (A3). If n1/2λn tends to zero, then P(rank(Ŵ ) >
rank(W)) tends to one.

4.2 n−1/2-decay of the regularization parameter

We first consider regular consistency through the following proposition (proved in Ap-
pendix C.4), then rank consistency (proposition proved in Appendix C.5):

Proposition 8 Assume (A1), (A2) and (A3). Let Ŵ be a global minimizer of Eq. (1). If
n1/2λn tends to a limit λ0 > 0, then n1/2(Ŵ − W) converges in distribution to the unique
global minimizer of

min
∆∈Rp×q

1

2
vec(∆)⊤Σmm vec(∆) − tr∆⊤A + λ0

[

trU⊤∆V + ‖U⊤
⊥∆V⊥‖∗

]

,

where vec(A) ∈ R
pq is normally distributed with mean zero and covariance matrix σ2Σmm.

Proposition 9 Assume (A1), (A2) and (A3). If n1/2λn tends to a limit λ0 > 0, then
the probability that the rank of Ŵ is different from the rank of W is converging to P(‖Λ −
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λ−1
0 Θ‖2 6 1) ∈ (0, 1) where Λ ∈ R

(p−r)×(q−r) is defined in Eq. (6) (Section 4.3) and
Θ ∈ R

(p−r)×(q−r) has a normal distribution with mean zero and covariance matrix

σ2
(

(V⊥ ⊗ U⊥)⊤Σ−1
mm(V⊥ ⊗ U⊥)

)−1
.

The previous proposition ensures that the estimate Ŵ cannot be rank consistent with this
decay of the regularization parameter. Note that when we take λ0 small (i.e., we get closer
to fast decays), the probability P(‖Λ − λ−1

0 Θ‖2 6 1) tends to zero, while when we take
λ0 large (i.e., we get closer to slow decays), the same probability tends to zero or one
depending on the sign of ‖Λ‖2 − 1. This heuristic argument is made more precise in the
following section.

4.3 Slow decay of regularization parameter

When λn tends to zero more slowly than n−1/2, the first order expansion is deterministic,
as the following proposition shows (proof in Appendix C.6):

Proposition 10 Assume (A1), (A2) and (A3). Let Ŵ be a global minimizer of Eq. (1).
If n1/2λn tends to +∞ and λn tends to zero, then λ−1

n (Ŵ −W) converges in probability to
the unique global minimizer ∆ of

min
∆∈Rp×q

1

2
vec(∆)⊤Σmm vec(∆) + trU⊤∆V + ‖U⊤

⊥∆V⊥‖∗. (5)

Moreover, we have Ŵ = W + λn∆ + Op(λn + ζn + λ−1
n n−1/2).

The last proposition gives a first order expansion of Ŵ around W. From Proposition 18
(Appendix B), we obtain immediately that if U⊤

⊥∆V⊥ is different from zero, then the rank

of Ŵ is ultimately strictly larger than r. The condition U⊤
⊥∆V⊥ = 0 is thus necessary for

rank consistency when λnn1/2 tends to infinity while λn tends to zero. The next lemma
(proved in Appendix 11), gives a necessary and sufficient condition for U⊤

⊥∆V⊥ = 0.

Lemma 11 Assume Σmm is invertible, and W = UDiag(s)V⊤ is the singular value de-
composition of W. Then the unique global minimizer of

vec(∆)⊤Σmm vec(∆) + trU⊤∆V + ‖U⊤
⊥∆V⊥‖∗

satisfies U⊤
⊥∆V⊥ = 0 if and only if

∥

∥

∥

∥

(

(V⊥ ⊗ U⊥)⊤Σ−1
mm(V⊥ ⊗ U⊥)

)−1 (

(V⊥ ⊗ U⊥)⊤Σ−1
mm(V ⊗ U) vec(I)

)

∥

∥

∥

∥

2

6 1.

This leads to consider the matrix Λ ∈ R
(p−r)×(q−r) defined as

vec(Λ) =
(

(V⊥ ⊗ U⊥)⊤Σ−1
mm(V⊥ ⊗ U⊥)

)−1 (

(V⊥ ⊗ U⊥)⊤Σ−1
mm(V ⊗ U) vec(I)

)

, (6)

and the two weak and strict consistency conditions:

‖Λ‖2 6 1, (7)
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‖Λ‖2 < 1. (8)

Note that if Σmm is proportional to identity, they are always satisfied because then Λ = 0.
We can now prove that the condition in Eq. (8) is sufficient for rank consistency when n1/2λn

tends to infinity, while the condition Eq. (7) is necessary for the existence of a sequence λn

such that the estimate is both consistent and rank consistent (which is a stronger result
than restricting λn to be tending to zero slower than n−1/2). The following two theorems
are proved in Appendix C.8 and C.9:

Theorem 12 Assume (A1), (A2), (A3). Let Ŵ be a global minimizer of Eq. (1). If the
condition in Eq. (8) is satisfied, and if n1/2λn tends to +∞ and λn tends to zero, then the
estimate Ŵ is consistent and rank-consistent.

Theorem 13 Assume (A1), (A2) and (A3). Let Ŵ be a global minimizer of Eq. (1). If
the estimate Ŵ is consistent and rank-consistent, then the condition in Eq. (7) is satisfied.

As opposed to the Lasso, where Eq. (7) is a necessary and sufficient condition for rank
consistency (Yuan and Lin, 2007), this is not even true in general for the group Lasso (Bach,
2007). Looking at the limiting case ‖Λ‖2 = 1 would similarly lead to additional but more
complex sufficient and necessary conditions, and is left out for future research.

Moreover, it may seem surprising that even when the sufficient condition Eq. (8) is
fulfilled, that the first order expansion of Ŵ , i.e., Ŵ = W + λn∆ + op(λn) is such that
U⊤

⊥∆V⊥ = 0, but nothing is said about U⊤
⊥∆V and U⊤∆V⊥, which are not equal to zero

in general. This is due to the fact that the first r singular vectors U and V of W + λn∆
are not fixed; indeed, the r first singular vectors (i.e., the implicit features) do rotate but
with no contribution on U⊥V⊤

⊥. This is to be contrasted with the adaptive version where
asymptotically the first order expansion has constant singular vectors (see Section 5).

Finally, in this paper, we have only proved whether the probability of correct rank
selection tends to zero or one. Proposition 9 suggests that when λnn1/2 tends to infinity
slowly, then this probability is close to P(‖Λ − λ−1

n n1/2Θ‖2 6 1), where Θ has a normal
distribution with known covariance matrix, which converges to one exponentially fast when
‖Λ‖2 < 1. We are currently investigating additional assumptions under which such results
are true and thus estimate the convergence rates of the probability of good rank selection
as done by Zhao and Yu (2006) for the Lasso.

4.4 Factored second order moment

Note that in the situation where nx points in R
p and ny points in R

q are sampled i.i.d and a
random subset of n points in selected, then, we can refine the condition as follows (because
Σmm = Σyy ⊗ Σxx):

Λ = (U⊤
⊥Σ−1

xx U⊥)−1U⊤
⊥Σ−1

xx UV⊤Σ−1
yy V⊥(V⊤

⊥Σ−1
yy V⊥)−1,

which is equal to (by the expression of inverses of partitioned matrices):

Λ = (U⊤
⊥ΣxxU)(U⊤ΣxxU)−1(V⊤ΣyyV)−1(V⊤ΣyyV⊥).

This also happens when Mi = xiy
⊤
i and xi and yi independent for all i.
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4.5 Corollaries for the Lasso and group Lasso

For the Lasso or the group Lasso, all proposed results in Section 4.3 should hold with the
additional conditions that W and ∆ are diagonal (block-diagonal for the group Lasso). In
this situation, the singular values of the diagonal matrix W = Diag(w) are the norms of
the diagonal blocks, while the left singular vectors are equal to the normalized versions
of the block (the signs for the Lasso). However, the results developed in Section 4.3 do
not immediately apply since the assumptions regarding the invertibility of the second order
moment matrix is not satisfied. For those problems, all matrices M that are ever considered
belong to a strict subspace of R

p×q and we need to satisfy invertibility on that subspace.
More precisely, we assume that all matrices M are such that vec(M) = Hx where H is a

given design matrix in R
pq×s where s is the number of implicit parameter and x ∈ R

s. If we
replace the invertibility of Σmm by the invertibility of H⊤ΣmmH, then all results presented
in Section 4.3 are valid, in particular, the matrix Λ may be written as

vec(Λ) =
(

(V⊥ ⊗ U⊥)⊤H(H⊤ΣmmH)−1H⊤(V⊥ ⊗ U⊥)
)†

×
(

(V⊥ ⊗ U⊥)⊤H(H⊤ΣmmH)−1H⊤(V ⊗ U) vec(I)
)

, (9)

where A† denotes the pseudo-inverse of A (Golub and Loan, 1996).
We now apply Eq. (9) to the case of the group Lasso (which includes the Lasso as

a special case). In this situation, we have M = Diag(x1, . . . , xm) and each xj ∈ R
dj ,

j = 1, . . . , xm; we consider w as being defined by blocks w1, . . . , wm, where each wj ∈ R
dj .

The design matrix H is such that Hw = vec(Diag(w)) and the matrix H⊤ΣmmH is exactly
equal to the joint covariance matrix Σxx of x = (x1, . . . , xm). Without loss of generality, we
assume that the generating sparsity patttern corresponds to the first r blocks. We can then
compute the singular value decomposition in closed form as U =

((Diag(wi/‖wi‖)i6r

0

)

, V =
(

I

0

)

and s = (‖wj‖)j6r. If we let denote, for each j, Oj a basis of the subspace orthogonal to

wj, we have: U⊥ =

(

Diag(Oi)i6r 0
0 I

)

and V⊥ =
(0
I

)

. We can put these singular vectors

into Eq. (9) and get (H⊤ΣmmH)−1H⊤(V ⊗U) vec(I) = (Σ−1
xx )J,JcηJ, where J = {1, . . . , r}

and ηJ is the vector of normalised wj, j ∈ J. Thus, for the group Lasso, we finally obtain:

‖Λ‖2 =
∥

∥Diag
[

((Σ−1
xx )JcJc)−1(Σ−1

xx )J,JcηJ

]
∥

∥

2

=
∥

∥

∥
Diag

[

(Σxx)JcJ(Σxx)
−1
J,JηJ

]
∥

∥

∥

2
by the partitioned matrices inversion lemma,

= max
i∈Jc

∥

∥ΣxixJ
Σ−1

xJxJ
ηJ

∥

∥ .

The condition on the invertibility of H⊤ΣmmH is exactly the invertibility of the full joint
covariance matrix of x = (x1, . . . , xm) and is a standard assumption for the Lasso or the
group Lasso (Yuan and Lin, 2007, Zhao and Yu, 2006, Zou, 2006, Bach, 2007). Moreover
the condition ‖Λ‖2 6 1 is exactly the one for the group Lasso (Bach, 2007), where the
pattern consistency is replaced by the consistency for the number of non zero groups.

Note that we only obtain a result in terms of numbers of selected groups of variables
and not in terms of the identities of the groups themselves. However, because of regular
consistency, we know that at least the r true groups will be selected, and then correct model
size is asymptotically equivalent to the correct groups being selected.

9



5. Adaptive version

We can follow the adaptive version of the Lasso to provide a consistent algorithm with no
consistency conditions such as Eq. (7) or Eq. (8). More precisely, we consider the least-
square estimate vec(ŴLS) = Σ̂−1

mm vec(Σ̂Mz). We have the following well known result for
least-square regression:

Lemma 14 Assume (A1), (A2) and (A3). Then n1/2(Σ̂−1
mm vec(Σ̂Mz) − vec(W)) is con-

verging in distribution to a normal distribution with zero mean and covariance matrix
σ2Σ−1

mm.

We consider the singular value decomposition of ŴLS = ULS Diag(sLS)V ⊤
LS , where sLS >

0. With probability tending to one, min{p, q} singular values are strictly positive (i.e. the
rank of ŴLS is full). We consider the full decomposition where ULS and VLS are orthogonal
square matrices and the matrix Diag(sLS) is rectangular. We complete the singular values
sLS ∈ R

min{p,q} by n−1/2 to reach dimensions p and q (we keep the same notation for both
dimensions for simplicity).

For γ ∈ (0, 1], we let denote

A = ULS Diag(sLS)−γU⊤
LS ∈ R

p×p and B = VLS Diag(sLS)−γV ⊤
LS ∈ R

q×q,

two positive definite symmetric matrices, and, following the adaptive Lasso of Zou (2006),
we consider replacing ‖W‖∗ by ‖AWB‖∗—note that in the Lasso special case, this exactly
corresponds to the adaptive Lasso of Zou (2006). We obtain the following consistency
theorem (proved in Appendix C.10):

Theorem 15 Assume (A1), (A2) and (A3). If γ ∈ (0, 1], n1/2λn tends to 0 and λnn1/2+γ/2

tends to infinity, then any global minimizer ŴA of

1

2n

n
∑

i=1

(zi − trW⊤Mi)
2 + λn‖AWB‖∗

is consistent and rank consistent. Moreover, n1/2 vec(ŴA−W) is converging in distribution
to a normal distribution with mean zero and covariance matrix

σ2(V ⊗ U)
[

(V ⊗ U)⊤Σmm(V ⊗ U)
]−1

(V ⊗ U)⊤.

Note the restriction γ 6 1 which is due to the fact that the least-square estimate ŴLS

only estimates the singular subspaces at rate Op(n
−1/2). In Section 6.3, we illustrate the

previous theorem on synthetic examples. In particular, we exhibit some singular behavior
for the limiting case γ = 1.

6. Algorithms and simulations

In this section we provide a simple algorithm to solve problems of the form

min
W∈Rp×q

1

2
vec(W )⊤Σ vec(W ) − trW⊤Q + λ‖W‖∗, (10)

10



where Σ ∈ R
pq×pq is a positive definite matrix (note that we do not restrict Σ to be of the

form Σ = A⊗B where A and B are positive semidefinite matrices of size p× p and q × q).
We assume that vec(Q) is in the column space of Σ, so that the optimization problem is
bounded from below (and thus the dual is feasible). In our setting, we have Σ = Σ̂mm and
Q = Σ̂Mz.

We focus on problems where p and q are not too large so that we can apply Newton’s
method to obtain convergence up to machine precision, which is required for the fine analysis
of rank consistency in Section 6.3. For more efficient algorithms with larger p and q,
see Srebro et al. (2005), Rennie and Srebro (2005) and Abernethy et al. (2006).

Because the dual norm of the trace norm is the spectral norm (see Appendix B), the
dual is easily obtained as

max
V ∈Rp×q,‖V ‖261

−
1

2
vec(Q − λV )⊤Σ−1 vec(Q − λV ). (11)

Indeed, we have:

min
W∈Rp×q

1

2
vec(W )⊤Σ vec(W ) − trW⊤Q + λ‖W‖∗

= min
W∈Rp×q

max
V ∈Rp×q,‖V ‖261

1

2
vec(W )⊤Σ vec(W ) − trW⊤Q + λtrV ⊤W

= max
V ∈Rp×q,‖V ‖261

min
W∈Rp×q

1

2
vec(W )⊤Σ vec(W ) − trW⊤Q + λtrV ⊤W

= max
V ∈Rp×q,‖V ‖261

−
1

2
vec(Q − λV )⊤Σ−1 vec(Q − λV ),

where strong duality holds because both the primal and dual problems are convex and
strictly feasible (Boyd and Vandenberghe, 2003).

6.1 Smoothing

The problem in Eq. (10) is convex but non differentiable; in this paper we consider adding
a strictly convex function to its dual in Eq. (11) in order to make it differentiable, while
controlling the increase of duality gap yielded by the added function (Bonnans et al., 2003).

We thus consider the following smoothing of the trace norm, namely we define

Fε(W ) = max
V ∈Rp×q,‖V ‖261

trV ⊤W − εB(V ),

where B(V ) is a spectral function (i.e., that depends only on singular values of V , equal to

B(V ) =
∑min{p,q}

i=1 b(si(V )) where b(s) = (1 + s) log(1 + s) + (1− s) log(1− s) if |s| 6 1 and
+∞ otherwise (si(V ) denotes the i-th largest singular values of V ). This function Fε may
be computed in closed form as:

Fε(W ) =

min{p,q}
∑

i=1

b∗(si(W )),

where b∗(s) = ε log(1 + ev/ε) + ε log(1 + e−v/ε) − 2ε log 2. These functions are plotted in
Figure 1; note that |b∗(s) − |s|| is uniformly bounded by 2 log 2.

11
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Figure 1: Spectral barrier functions: (left) primal function b(s) and (right) dual functions
b∗(s).

We finally get the following pairs of primal/dual optimization problems:

min
W∈Rp×q

1

2
vec(W )⊤Σ vec(W ) − trW⊤Q + λFε/λ(W ),

max
V ∈Rp×q ,‖V ‖261

−
1

2
vec(Q − λV )⊤Σ−1 vec(Q − λV ) − εB(V ).

We can now optimize directly in the primal formulation which is infinitely differentiable,
using Newton’s method. Note that the stopping criterion should be an ε×min{p, q} duality
gap, as the controlled smoothing also leads to a small additional gap on the solution of the
original non smoothed problem. More precisely, a duality gap of ε × min{p, q} on the
smoothed problem, leads to a gap of at most (1 + 2 log 2)ε × min{p, q} for the original
problem.

6.2 implementation details

Derivatives of spectral functions Note that derivatives of spectral functions of the

form B(W ) =
∑min{p,q}

i=1 b(si(W )), where b is an even twice differentiable function such that
b(0) = b′(0) = 0, are easily calculated as follows; Let U Diag(s)V ⊤ be the singular value
decomposition of W . We then have the following Taylor expansion (Lewis and Sendov,
2002):

B(W + ∆) = B(W ) + tr∆⊤U Diag(b′(si))V
⊤ +

1

2

p
∑

i=1

q
∑

j=1

b′(si) − b′(sj)

si − sj
(u⊤

i ∆vj)
2,

where the vector of singular values is completed by zeros, and
b′(si)−b′(sj)

si−sj
is defined as b′′(si)

when si = sj .

Choice of ε and computational complexity Following the common practice in bar-
rier methods we decrease the parameter geometrically after each iteration of Newton’s
method (Boyd and Vandenberghe, 2003). Each of these Newton iterations has complexity

12



O(p3q3). Empirically, the number of iterations does not exceed a few hundreds for solving
one problem up to machine precision1. We are currently investigating theoretical bounds on
the number of iterations through self concordance theory (Boyd and Vandenberghe, 2003).

Start and end of the path In order to avoid to consider useless values of the regular-
ization parameter and thus use a well adapted grid for trying several λ’s, we can consider a
specific interval for λ. When λ is large, the solution is exactly zero, while when λ is small,
the solution tends to vec(W ) = Σ−1 vec(Q).

More precisely, if λ is larger than ‖Q‖2, then the solution is exactly zero (because
in this situation 0 is in the subdifferential). On the other side, we consider for which
λ, Σ−1 vec(Q) leads to a duality gap which is less than ε vec(Q)⊤Σ−1 vec(Q), where ε is
small. A looser condition is to take V = 0, and the condition becomes λ‖Σ−1 vec(Q)‖∗ 6

ε vec(Q)⊤Σ−1 vec(Q). Note that this is in the correct order (i.e. lower bound smaller than
upper bound ), because

vec(Q)⊤Σ−1 vec(Q) = 〈vec(Q),Σ−1 vec(Q)〉 6 ‖Σ−1 vec(Q)‖∗‖ vec(Q)‖2.

This allows to design a good interval for searching for a good value of λ or for computing
the regularization path by uniform grid sampling (in log scale), or numerical path following
with predictor-corrector methods such as used by Bach et al. (2004).

6.3 Simulations

In this section, we perform simulations on toy examples to illustrate our consistency results.
We generate random i.i.d. data X̃ and Ỹ with Gaussian distributions and we select a low
rank matrix W at random and generate Z = diag(X̃⊤WỸ )+ε where ε has i.i.d components
with normal distributions with zero mean and known variance. In this section, we always use
r = 2, p = q = 4, while we consider several numbers of samples n, and several distributions
for which the consistency conditions Eq. (7) and Eq. (8) may or may not be satisfied2.

In Figure 2, we plot regularization paths for n = 103, by showing the singular values of
Ŵ compared to the singular values of W, in two particular situations (Eq. (7) and Eq. (8)
satisfied and not satisfied), for the regular trace norm regularization and the adaptive
versions, with γ = 1/2 and γ = 1. Note that in the consistent case (top), the singular
values and their cardinalities are well jointly estimated, both for the non adaptive version (as
predicted by Theorem 12) and the adaptive versions (Theorem 15), while the range of correct
rank selection increases compared to the adaptive versions. However in the inconsistent case,
the non adaptive regularizations scheme (bottom left) cannot achieve regular consistency
together with rank consistency (Theorem 13), while the adaptive schemes can. Note the
particular behavior of the limiting case γ = 1, which still achieves both consistencies but
with a singular behavior for large λ.

In Figure 3, we select the distribution used for the rank-consistent case of Figure 2, and
compute the paths from 200 replications for n = 102, 103, 103 and 105. For each λ, we plot
the proportion of estimates with correct rank on the left plots (i.e., we get an estimation
of P(rank(Ŵ ) = rank(W)), while we plot the logarithm of the average root mean squared

1. MATLAB code can be downloaded from http://www.di.ens.fr/~fbach/tracenorm/

2. Simulations may be reproduced with MATLAB code available from http://www.di.ens.fr/~fbach/

tracenorm/
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Figure 2: Examples of paths of singular values for ‖Λ‖2 = 0.49 < 1 (consistent, top) and
‖Λ‖2 = 4.78 > 1 (inconsistent, bottom) rank selection: regular trace norm penal-
ization (left) and adaptive penalization with γ = 1/2 (center) and γ = 1 (right).
Estimated singular values are plotted in plain, while population singular values
are dotted.
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estimation error ‖Ŵ − W‖ on the right plot. For the three regularization schemes, the
range of values with high probability of correct rank selection increases as n increases, and,
most importantly achieves good mean squared error (right plot); in particular, for the non
adaptive schemes (top plots), this corroborates the results from Proposition 9, which states
that for λn = λ0n

−1/2 the probability tends to a limit in (0, 1): indeed, when n increases,
the value λn which achieves a particular limit grows as n−1/2, and considering the log-scale
for λn in Figure 3 and the uniform sampling for n in log-scale as well, the regular spacing
between the decaying parts observed in Figure 3 is coherent with our results.

In Figure 4, we perform the same operations but with the inconsistent case of Figure 2.
For the non adaptive case (top plot), the range of values of λ that achieve high probability
of correct rank selection does not increase when n increases and stays bounded, in places
where the estimation error is not tending to zero: in the inconsistent case, the trace norm
regularization does not manage to solve the trade-off between rank consistency and regular
consistency. However, for the adaptive versions, it does, still with a somewhat singular
behavior of the limiting case γ = 1.

Finally, in Figure 5, we consider 400 different distributions with various values of ‖Λ‖
smaller or greater than one, and computed the regularization paths with n = 103 samples.
From the paths, we consider the estimate Ŵ with correct rank and best distance to W and
plot the best error versus log10(‖Λ‖2). For positive values of log10(‖Λ‖2), the best error is
far from zero, and the error grows with the distance to zero; while for negative values, we
get low errors with lower errors for small log10(‖Λ‖2), corroborating the influence of ‖λ‖2

described in Proposition 9.

7. Conclusion

We have presented an analysis of the rank consistency for the penalization by the trace norm,
and derived general necessary and sufficient conditions. This work can be extended in several
interesting ways: first, by going from the square loss to more general losses, in particular
for other types of supervised learning problems such as classification; or by looking at the
collaborative filtering setting where only some of the attributes are observed (Abernethy
et al., 2006) and dimensions p and q are allowed to grow. Moreover, we are currently
pursuing non asymptotic extensions of the current work, making links with the recent work
of Recht et al. (2007) and of Meinshausen and Yu (2006).

Appendix A. Tools for analysis of singular value decomposition

In this appendix, we review and derive precise results regarding singular value decompo-
sitions. We consider W ∈ R

p×q and we let denote W = U Diag(s)V ⊤ its singular value
decomposition with U ∈ R

p×r, V ∈ R
q×r with orthonormal columns, and s ∈ R

r with
strictly positive values (r is the rank of W ). Note that when a singular value si is simple,
i.e., does not coalesce with any other singular values, then the vectors ui and vi are uniquely
defined up to simultaneous sign flips, i.e., only the matrix uiv

⊤
i is unique. However, when

some singular values coalesce, then the corresponding singular vectors are defined up to a
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Figure 3: Synthetic example where consistency condition in Eq. (8) is satisfied: probabil-
ity of correct rank selection (left) and logarithm of the expected mean squared
estimation error (right), for several number of samples as a function of the reg-
ularization parameter, for regular regularization (top), adaptive regularization
with γ = 1/2 (center) and γ = 1 (bottom).
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Figure 4: Synthetic example where consistency condition in Eq. (7) is not satisfied: proba-
bility of correct rank selection (left) and logarithm of the expected mean squared
estimation error (right), for several number of samples as a function of the reg-
ularization parameter, for regular regularization (top), adaptive regularization
with γ = 1/2 (center) and γ = 1 (bottom).
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correct rank (i.e., such that rank(Ŵ ) = r and ‖Ŵ − W‖ as small as possible).
See text for details.

rotation, and thus in general care must be taken and considering isolated singular vectors
should be avoided (Stewart and Sun, 1990). All tools presented in this appendix are robust
to the particular choice of the singular vectors.

A.1 Jordan-Wielandt matrix

We use the fact that singular values of W can be obtained from the eigenvalues of the Jordan-

Wielandt matrix W̄ =

(

0 W
W⊤ 0

)

∈ R
(p+q)×(p+q) (Stewart and Sun, 1990). Indeed this

matrix has eigenvalues si and −si, i = 1, . . . , r, where si are the (strictly positive) singular

values of W , with eigenvectors 1√
2

(

ui

vi

)

and 1√
2

(

ui

−vi

)

where ui, vi are the left and

right associated singular vectors. Also, the remaining eigenvalues are all equal to zero, with

eigensubspace (of dimension p+q−2r) composed of all

(

u
v

)

such that for all i ∈ {1, . . . , r},

u⊤ui = v⊤vi = 0. We let denote Ū the eigenvectors of W̄ corresponding to non zero

eigenvalues in S̄. We have Ū = 1√
2

(

U U
V −V

)

and S̄ = 1√
2

(

Diag(s) 0
0 −Diag(s)

)

and

W̄ = Ū S̄Ū⊤, Ū Ū⊤ =

(

UU⊤ 0
0 V V ⊤

)

, and Ūsign(S̄)Ū⊤ =

(

0 UV ⊤

V U⊤ 0

)

.

A.2 Cauchy residue formula and eigenvalues

Given the matrix W̄ , and a simple closed curve C in the complex plane that does not go
through any of the eigenvalues of W̄ , then

ΠC(W̄ ) =
1

2iπ

∮

C

dλ

λI− W̄
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is equal to the orthogonal projection onto the orthogonal sum of all eigensubspaces of W̄
associated with eigenvalues in the interior of C (Kato, 1966). This is easily seen by writing
down the eigenvalue decomposition and the Cauchy residue formula ( 1

2iπ

∮

C
dλ

λ−λi
= 1 if λi

is in the interior int(C) of C and 0 otherwise), and:

1

2iπ

∮

C

dλ

λI − W̄
=

2r
∑

i=1

ūiū
⊤
i ×

1

2iπ

∮

C

dλ

λ − s̄i
=

∑

i, s̄i∈int(C)

uiu
⊤
i .

See Rudin (1987) for an introduction to complex analysis and Cauchy residue formula.
Moreover, we can obtain the restriction of W̄ onto a specific eigensubspace as:

W̄ΠC(W̄ ) =
1

2iπ

∮

C

W̄dλ

λI − W̄
= −

1

2iπ

∮

C

λdλ

λI − W̄
.

We let denote s1 and sr the largest and smallest strictly positive singular values of W ; if
‖∆‖2 < sr/2, then W +∆ has r singular values strictly greater than sr/2 and the remaining
ones are strictly less than sr/2 (Stewart and Sun, 1990). Thus, if we denote C the oriented
circle of radius sr/2, ΠC(W̄ ) is the projector on the p + q− 2r-dimensional null space of W̄ ,
and for any ∆ such that ‖∆‖2 < sr/2, ΠC(W̄ + ∆̄) is also the projector on the p + q − 2r-
dimensional invariant subspace of W̄ + ∆̄, which corresponds to the smallest eigenvalues.
We let denote Πo(W̄ + ∆̄) that projector and Πr(W̄ + ∆̄) = I−Πo(W̄ + ∆̄) the orthogonal
projector (which is the projection onto the 2r-th principal subspace).

We can now find expansions around ∆ = 0 as follows:

Πo(W̄ + ∆̄) − Πo(W̄ ) =
1

2iπ

∮

C
(λI − W̄ )−1∆̄(λI − W̄ − ∆̄)−1dλ

=
1

2iπ

∮

C
(λI − W̄ )−1∆̄(λI − W̄ )−1dλ

+
1

2iπ

∮

C
(λI − W̄ )−1∆̄(λI − W̄ )−1∆̄(λI − W̄ − ∆̄)−1dλ,

and

(W̄ + ∆̄)Πo(W̄ + ∆̄)−W̄Πo(W̄ ) = −
1

2iπ

∮

C
λ(λI − W̄ )−1∆̄(λI − W̄ − ∆̄)−1dλ

= −
1

2iπ

∮

C
λ(λI − W̄ )−1∆̄(λI − W̄ )−1dλ

−
1

2iπ

∮

C
λ(λI − W̄ )−1∆̄(λI − W̄ )−1∆̄(λI − W̄ − ∆̄)−1dλ,

which lead to the following two propositions:

Proposition 16 Assume W has rank r and ‖∆‖2 < sr/4 where sr is the smallest positive
singular value of W . Then the projection Πr(W̄ ) on the first r eigenvectors of W̄ is such
that

‖Πo(W̄ + ∆̄) − Πo(W̄ )‖2 6
4

sr
‖∆‖2

and

‖Πo(W̄ + ∆̄) − Πo(W̄ ) − (I − Ū Ū⊤)∆̄Ū S̄−1Ū⊤ − Ū S̄−1Ū⊤∆̄(I − Ū Ū⊤)‖2 6
8

s2
r

‖∆̄‖2
2.

19



Proof For λ ∈ C we have: ‖(λI − W̄ )−1‖2 > 2/sr and ‖(λI − W̄ − ∆̄)−1‖2 > 4/sr, which
implies

‖Πr(W̄ + ∆̄) − Πr(W̄ )‖2 6
1

2π

∮

C
‖(λI − W̄ )−1‖2‖∆‖2‖(λI − W̄ − ∆̄)−1‖2

6

(

1

2π
2π

sr

2

)

‖∆‖2
2

sr

4

sr
.

In order to prove the other result, we simply need to compute:

1

2iπ

∮

C
(λI − W̄ )−1∆̄(λI − W̄ )−1dλ =

∑

i,j

ūiū
⊤
i ∆ūjū

⊤
j

1

2iπ

∮

C

1

(λ − s̄i)(λ − s̄j)
dλ

=
∑

i,j

ūiū
⊤
i ∆ūj ū

⊤
j

(

1i/∈int(C)1j∈int(C)

s̄i
+

1j /∈int(C)1i∈int(C)

s̄j

)

= (I − Ū Ū⊤)∆̄Ū S̄−1Ū⊤ + Ū S̄−1Ū⊤∆̄(I − Ū Ū⊤).

Proposition 17 Assume W has rank r and ‖∆‖2 < sr/4 where sr is the smallest positive
singular value of W . Then the projection Πr(W̄ ) on the first r eigenvectors of W̄ is such
that

‖Πo(W̄ + ∆̄)(W̄ + ∆̄) − Πo(W̄ )W̄‖2 6 2‖∆‖2

and

‖Πo(W̄ + ∆̄)(W̄ + ∆̄) − Πo(W̄ )W̄ + (I − Ū Ū⊤)∆̄(I − Ū Ū⊤)‖2 6
4

sr
‖∆̄‖2

2.

Proof For λ ∈ C we have: ‖(λI − W̄ )−1‖2 > 2/sr and ‖(λI − W̄ − ∆̄)−1‖2 > 4/sr, which
implies

‖Πr(W̄ + ∆̄) − Πr(W̄ )‖2 6
1

2π

∮

C
|λ|‖(λI − W̄ )−1‖2‖∆‖2‖(λI − W̄ − ∆̄)−1‖2

6

(

1

2π
2π

sr

2

)

sr

2
‖∆‖2

2

sr

4

sr
.

In order to prove the other result, we simply need to compute:

−
1

2iπ

∮

C
λ(λI − W̄ )−1∆̄(λI − W̄ )−1dλ = −

∑

i,j

ūiū
⊤
i ∆ūjū

⊤
j

1

2iπ

∮

C

λ

(λ − s̄i)(λ − s̄j)
dλ

= −
∑

i,j

ūiū
⊤
i ∆ūj ū

⊤
j

(

1i∈int(C)1j∈int(C)

)

= −(I − Ū Ū⊤)∆̄(I − Ū Ū⊤).
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The variations of Π(W̄ ) translates immediately into variations of the singular pro-
jections UU⊤ and V V ⊤. Indeed we get that the first order variation of UU⊤ is −(I −
UU⊤)∆V S−1U⊤ and the variation of V is equal to −(I − V V ⊤)∆⊤US−1V ⊤, with errors
bounded in spectral norm by 8

s2
r
‖∆‖2

2. Similarly, when restricted to the small singular val-

ues, the first order expansion is (I−UU⊤)∆(I−V V ⊤), with error term bounded in spectral
norm by 4

sr
‖∆‖2

2. Those results lead to the following proposition that gives a local sufficient
condition for rank(W + ∆) > rank(W ):

Proposition 18 Assume W has rank r < min{p, q} with ordered singular value decompo-
sition W = U Diag(s)V ⊤. If 4

sr
‖∆‖2

2 < ‖(I−UU⊤)∆(I− V V ⊤)‖2, then rank(W + ∆) > r.

Appendix B. Some facts about the trace norm

In this appendix, we review known properties of the trace norm that we use in this paper.
Most of the results are extensions of similar results for the ℓ1-norm on vectors. First, we
have the following result:

Lemma 19 (Dual norm, Fazel et al., 2001) The trace norm ‖ · ‖∗ is a norm and its
dual norm is the operator norm ‖ · ‖.

Note that the dual norm N(W ) is defined as (Boyd and Vandenberghe, 2003):

N(W ) = sup
‖V ‖∗61

trW⊤V.

This immediately implies the following result:

Lemma 20 (Fenchel conjugate) We have: max
W∈Rp×q

trW⊤V − ‖W‖∗ = 0 if ‖V ‖ 6 1 and

+∞ otherwise.

In this paper, we need to compute the subdifferential and directional derivatives of the
trace norm. We have from Recht et al. (2007) or Borwein and Lewis (2000):

Proposition 21 (Subdifferential) If W = U Diag(s)V ⊤ with U ∈ R
p×m and V ∈ R

q×m

having orthonormal columns, and s ∈ R
m is strictly positive, is the singular value decom-

position of W , then ‖W‖∗ =
∑m

i=1 si and the subdifferential of ‖ · ‖∗ is equal to

∂‖ · ‖∗(W ) =
{

UV ⊤ + M, such that ‖M‖2 6 1, U⊤M = 0 and MV = 0
}

.

This result can be extended to compute directional derivatives:

Proposition 22 (Directional derivative) The directional derivative at W = USV ⊤ is
equal to:

lim
ε→0+

‖W + ε∆‖∗ − ‖W‖∗
ε

= trU⊤∆V + ‖U⊤
⊥∆V⊥‖∗,

where U⊥ ∈ R
p×(p−m) and V⊥ ∈ R

q×(q−m) are any orthonormal complements of U and V .
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Proof From the subdifferential, we get the directional derivative (Borwein and Lewis,
2000) as

lim
ε→0+

‖W + ε∆‖∗ − ‖W‖∗
ε

= max
V ∈∂‖·‖∗(W )

tr∆⊤V

which exactly leads to the desired result.

The final result that we use is a bit finer as it gives an upper bound on the error in the
previous limit:

Proposition 23 Let W = U Diag(s)V ⊤ the ordered singular value decomposition, where
rank(W ) = r, s > 0 and U⊥ and V⊥ be orthogonal complement of U and V ; then, if
‖∆‖2 6 sr/4:

∣

∣

∣
‖W + ∆‖∗ − ‖W‖∗ − trU⊤∆V − ‖U⊤

⊥∆V⊥‖∗
∣

∣

∣
6 16min{p, q}

s2
1

s3
r

‖∆‖2
2.

Proof The trace norm of ‖W + ∆‖∗ may be divided into the sum of the r largest and the
sum of the remaining singular values. The sums of the remaining ones are given through
Proposition 17 by ‖U⊤

⊥∆V⊥‖∗ with an error bounded by min{p, q} 4
sr
‖∆‖2

2. For the first r
singular values, we need to upperbound the second derivative of the sum of the r largest
eigenvalues of W̄ + ∆̄ with strictly positive eigengap, which leads to the given bound by
using the same Cauchy residue technique described in Appendix A.

Appendix C. Proofs

C.1 Proof of Lemma 2

We let denote S ∈ {0, 1}nx×ny the sampling matrix; i.e., Sij = 1 if the pair (i, j) is observed
and zero otherwise. We let denote X̃ and Ỹ the data matrices. We can write Mk =
X̃⊤δikδ⊤jk

Ỹ and:

1

n

n
∑

k=1

vec(Mk) vec(Mk)
⊤ =

1

n

n
∑

k=1

(Ỹ ⊗ X̃)⊤ vec(δikδ⊤jk
) vec(δikδ⊤jk

)⊤(Ỹ ⊗ X̃)

=
1

n
(Ỹ ⊗ X̃)⊤ Diag(vec(S))(Ỹ ⊗ X̃),

which leads to (denoting Σ̂xx = n−1
x X̃⊤X̃ and Σ̂yy = n−1

x Ỹ ⊤Ỹ ):

(

1

n

n
∑

k=1

vec(Mk) vec(Mk)
⊤ − Σ̂yy ⊗ Σ̂xx

)

=
1

n
(Ỹ ⊗ X̃)⊤ Diag(vec(S − n/nxny))(Ỹ ⊗ X̃).
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We can thus compute the squared Frobenius norm:
∥

∥

∥

∥

∥

1

n

n
∑

k=1

vec(Mk) vec(Mk)
⊤ − Σ̂yy ⊗ Σ̂xx

∥

∥

∥

∥

∥

2

F

=
1

n2
tr Diag(vec(S − n/nxny))(Ỹ Ỹ ⊤ ⊗ X̃X̃⊤)Diag(vec(S − n/nxny))(Ỹ Ỹ ⊤ ⊗ X̃X̃⊤)

=
1

n2

∑

i,j,i′,j′

(Sij − n/nxny)(Ỹ Ỹ ⊤ ⊗ X̃X̃⊤)ij,i′j′(Si′j′ − n/nxny)(Ỹ Ỹ ⊤ ⊗ X̃X̃⊤)ij,i′j′ .

We have, by properties of sampling without replacement (Hoeffding, 1963):

E(Sij − n/nxny)(Si′j′ − n/nxny) = n/nxny(1 − n/nxny) if (i, j) = (i′, j′),

E(Sij − n/nxny)(Si′j′ − n/nxny) = −n/nxny(1 − n/nxny)
1

nxny − 1
if (i, j) 6= (i′, j′).

This implies

E(‖
1

n

n
∑

k=1

vec(Mk) vec(Mk)
⊤ − Σ̂yy ⊗ Σ̂xx‖

2
F |X̃, Ỹ )

=
1

nxnyn

∑

i,j

(Ỹ Ỹ ⊤ ⊗ X̃X̃⊤)2ij,ij −
1

(nxny − 1)nxnyn

∑

(i,j)6=(i′,j′)

(Ỹ Ỹ ⊤ ⊗ X̃X̃⊤)2ij,i′j′

6
2

nxnyn

∑

i,j

‖ỹj‖
4‖x̃i‖

4.

This finally implies that

E

∥

∥

∥

∥

∥

1

n

n
∑

k=1

vec(Mk) vec(Mk)
⊤ − Σyy ⊗ Σxx

∥

∥

∥

∥

∥

2

F

6
4

n

∑

i,j

E‖x‖4
E‖y‖4 + 2E‖Σ̂xx − Σxx‖

2
F E‖Σ̂yy‖

2
F + 2E‖Σ̂yy − Σyy‖

2
F ‖Σxx‖

2
F

6 CE‖x‖4
E‖y‖4 × (

1

n
+

1

ny
+

1

nx
),

for some constant C > 0. This implies (A2). To prove the asymptotic normality in
(A3), we use the martingale central limit theorem (Hall and Heyde, 1980) with sequence
of σ-fields Fn,k = σ(X̃, Ỹ , ε1, . . . , εk, (i1, j1), . . . , (ik, jk)) for k 6 n. We consider ∆n,k =
n−1/2εikjk

yjk
⊗ xik ∈ R

pq as the martingale difference. We have E(∆n,k|Fn,k−1) = 0 and

E(∆n,k∆
⊤
n,k|Fn,k−1) = n−1σ2yjk

y⊤jk
⊗ xikx⊤

ik
,

with E(‖∆n,k)‖
4) = O(n−2) because of the finite fourth order moments. Moreover,

n
∑

k=1

E(∆n,k∆
⊤
n,k|Fn,k−1) = σ2Σ̂mm,

and thus tends in probability to σ2Σyy ⊗ Σxx because of (A2). The assumptions of the
martingale central limit theorem are met, we have that

∑n
k=1 vec(∆n,k) is asymptotically

normal with mean zero and covariance matrix σ2Σyy ⊗ Σxx, which concludes the proof.
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C.2 Proof of Proposition 4

We may first restrict minimization over the ball {W, ‖W‖∗ 6 ‖Σ̂−1
mmΣ̂Mz‖∗} because the

optimum value is less than the value for W = Σ̂−1
mmΣ̂Mz. Since this random variable

is bounded in probability, we can reduce the problem to a compact set. The sequence of
continuous random functions W 7→ 1

2 vec(W−W)⊤Σ̂mm vec(W−W)−trW⊤Σ̂Mε+λn‖W‖∗
converges pointwise in probability to W 7→ 1

2 vec(W − W)⊤Σmm vec(W − W) + λ0‖W‖∗
with a unique global minimum (because Σmm is assumed invertible). We can thus apply
standard result of consistency in M-estimation (Van der Vaart, 1998, Shao, 2003).

C.3 Proof of Proposition 7

We consider the result of Proposition 6: ∆̂ = n1/2(Ŵ − W) is asymptotically normal with

mean zero and covariance σ2Σ−1
mm. By Proposition 18 in Appendix B, if 4n−1/2

sr
‖∆̂‖2

2 <

‖U⊤
⊥∆̂V⊥‖2, then rank(Ŵ ) > r. For a random variable Θ with normal distribution

with mean zero and covariance matrix σ2Σ−1
mm, we let denote f(C) = P(4C−1/2

sr
‖Θ‖2

2 <

‖U⊤
⊥ΘV⊥‖2). By the dominated convergence theorem, f(C) converges to one when C → ∞.

Let ε > 0, thus there exists C0 > 0 such that f(C0) > 1−ε/2. By the asymptotic normality

result, P(
4C

−1/2

0

sr
‖∆̂‖2

2 < ‖U⊤
⊥∆̂V⊥‖2) converges to f(C0) thus ∃n0 > 0 such that ∀n > n0,

P(
4C

−1/2

0

sr
‖∆̂‖2

2 < ‖U⊤
⊥∆̂V⊥‖2) > f(C0) − ε/2 > 1 − ε, which concludes the proof, because

P(4n−1/2

sr
‖∆̂‖2

2 < ‖U⊤
⊥∆̂V⊥‖2) > P(

4C
−1/2

0

sr
‖∆̂‖2

2 < ‖U⊤
⊥∆̂V⊥‖2) as soon as n > C0.

C.4 Proof of Proposition 8

This is the same result as Fu and Knight (2000), but extended to the trace norm minimiza-
tion, simply using the directional derivative result of Proposition 22 and the epiconvergence
theorem from Geyer (1994, 1996). Indeed, if we denote Vn(∆) = vec(∆)⊤Σ̂mm vec(∆) −
tr∆⊤n1/2Σ̂Mε + λ0n

1/2(‖W + n−1/2∆‖∗ − ‖W‖∗) and V (∆) = vec(∆)⊤Σmm vec(∆) −
tr∆⊤A + λ0

[

trU⊤∆V + ‖U⊤
⊥∆V⊥‖∗

]

, then for each ∆, Vn(∆) converges in probability
to V (∆), and V is strictly convex, which implies that it has an unique global minimum;
thus the epi-convergence theorem can be applied, which concludes the proof.

Note that a simpler analysis using regular tools in M-estimation leads to Ŵ = W +
n−1/2∆̂ + op(n

−1/2), where ∆̂ is the unique global minimizer of

min
∆∈Rp×q

1

2
vec(∆)⊤Σmm vec(∆) − tr∆⊤(n1/2Σ̂Mε) + λ0

[

trU⊤∆V + ‖U⊤
⊥∆V⊥‖∗

]

,

i.e., we can actually take A = n1/2Σ̂Mε (which is asymptotically normal with correct mo-
ments).
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C.5 Proof of Proposition 9

We let denote ∆̂ = n1/2(Ŵ −W). We first show that lim supn→∞ P(rank(Ŵ ) = r) is smaller
than the proposed limit a. We consider the following events:

E0 = {rank(Ŵ ) = r}

E1 = {‖n−1/2∆̂‖2 < sr/2}

E2 =

{

4n−1/2

sr
‖∆̂‖2

2 < ‖U⊤
⊥∆̂V⊥‖2

}

.

By Proposition 18 in Appendix B, we have E1 ∩E2 ⊂ Ec
0, and thus it suffices to show that

P(E1) tends to one, while lim supn→∞ P(Ec
2) 6 a. The first assertion is a simple consequence

of Proposition 8.

Moreover, by Proposition 8, ∆̂ converges in distribution to the unique global optimum
∆(A) of an optimization problem parameterized by a vector A with normal distribution.
For a given η > 0, we consider the probability P(‖U⊤

⊥∆(A)V⊥‖2 6 η). For any A, when η
tends to zero, the indicator function 1‖U⊤

⊥
∆(A)V⊥‖26η converges to 1‖U⊤

⊥
∆(A)V⊥‖2=0, which

is equal to 1‖Λ(A)‖26λ0
, where

vec(Λ(A)) =
(

(V⊥ ⊗ U⊥)⊤Σ−1
mm(V⊥ ⊗ U⊥)

)−1(

(V⊥ ⊗ U⊥)⊤Σ−1
mm((V ⊗ U) vec(I)−vec(A))

)

.

By the dominated convergence theorem, P(‖U⊤
⊥∆(A)V⊥‖2 6 η) converges to a = P(‖Λ(A)‖2 6

λ0), which is the proposed limit. This limit is in (0, 1) because of the normal distribution
has an invertible covariance matrix and the set {‖Λ‖2 6 1} and its complement have non
empty interiors.

Since ∆̂ = Op(1), we can instead consider E3 = {4n−1/2

sr
M2 < ‖U⊤

⊥∆̂V⊥‖2} for a partic-
ular M , instead of E2. Then following the same line or arguments than in Appendix C.3,
we conclude that lim supn→∞ P(Ec

3) 6 a, which concludes the first part of the proof.

We now show that lim infn→∞ P(rank(Ŵ ) = r) > a. A sufficient condition for rank
consistency is the following: we let denote Ŵ = USV ⊤ the singular value decomposition of
Ŵ and we let denote Uo and Vo the singular vectors corresponding to all but the r largest
singular values. Since we have simultaneous singular value decompositions, a sufficient

condition is that rank(Ŵ ) > r and
∥

∥

∥
U⊤

o

(

Σ̂mm(Ŵ − W) − Σ̂Mε

)

Vo

∥

∥

∥

2
< λn(1 − η). If

‖Λ(n1/2Σ̂Mε)‖ 6 λ0(1− η), then, by Lemma 11, U⊤
⊥∆(n1/2Σ̂Mε)V⊥ = 0, and we get, using

the proof of Proposition 8 and the notation Â = n1/2Σ̂Mε:

U⊤
o

(

Σ̂mm(Ŵ − W) − Σ̂Mε

)

Vo = U⊤
o n−1/2

(

Σ̂mm∆(Â) − Â
)

Vo + op(n
−1/2).

Moreover, because of regular consistency and a positive eigengap for W, the projection
onto the first r singular vectors of Ŵ converges to the projection onto the first r singular
vectors of W (see Appendix A), which implies that the projection onto the orthogonal
is also consistent, i.e., UoU

⊤
o converges in probability to U⊥U⊤

⊥ and VoV
⊤
o converges in
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probability to V⊥V⊤
⊥. Thus:

∥

∥

∥
U⊤

o

(

Σ̂mm(Ŵ − W) − Σ̂Mε

)

Vo

∥

∥

∥

2
=

∥

∥

∥
UoU

⊤
o

(

Σ̂mm(Ŵ − W) − Σ̂Mε

)

VoV
⊤
o

∥

∥

∥

2

= n−1/2‖U⊥U⊤
⊥(Σ̂mm∆(Â) − Â)V⊥V⊤

⊥‖2 + op(n
−1/2)

= n−1/2‖Λ(A)‖2 + op(n
−1/2).

This implies that

lim inf
n→∞

∥

∥

∥
U⊤

o

(

Σ̂mm(Ŵ − W) − Σ̂Mε

)

Vo

∥

∥

∥

2
< λn(1− η) > lim inf

n→∞
P(‖Λ(Â)‖2 6 λ0(1− η))

which converges to a when η tends to zero, which concludes the proof.

C.6 Proof of Proposition 10

This is the same result as Fu and Knight (2000), but extended to the trace norm min-
imization, simply using the directional derivative result of Proposition 22. If we write
Ŵ = W + λn∆̂, then ∆̂ is defined as the global minimum of

Vn(∆) =
1

2
vec(∆)⊤Σ̂mm vec(∆) − λ−1

n tr∆⊤Σ̂Mε + λ−1
n (‖W + λn∆‖∗ − ‖W‖∗)

=
1

2
vec(∆)⊤Σmm vec(∆) + Op(ζn‖∆‖2

2) + Op(λ
−1
n n−1/2) + tr∆⊤Σ̂Mε

+trU⊤∆V + ‖U⊤
⊥∆V⊥‖∗ + Op(λn‖∆‖2

2)

= V (∆) + Op(ζn‖∆‖2
2) + Op(λ

−1
n n−1/2) + Op(λn‖∆‖2

2).

More precisely, if Mλn < sr/2,

E sup
‖∆‖26M

|Vn(∆) − V (∆)| = cst ×
(

M2
E‖Σ̂mm − Σmm‖F + Mλ−1

n E(‖Σ̂Mε‖
2)1/2 + λnM2

)

= O(M2ζn + Mλ−1
n n−1/2 + λnM2).

Moreover, V (∆) achieves its minimum at a bounded point ∆0 6= 0. Thus, by Markov
inequality the minimum of Vn(∆) over the ball ‖∆‖2 < 2‖∆0‖2 is with probability tending
to one strictly inside and is thus also the unconstrained minimum, which leads to the
proposition.

C.7 Proof of Proposition 11

The optimal ∆ ∈ R
p×q should be such that U⊤

⊥∆V⊥ has low rank, where U⊥ ∈ R
p×(p−r)

and V⊥ ∈ R
q×(q−r) are orthogonal complements of the singular vectors U and V. We now

derive the condition under which the optimal ∆ is such that U⊤
⊥∆V⊥ is actually equal

to zero: we consider the minimum of 1
2 vec(∆)⊤Σmm vec(∆) + vec(∆)⊤ vec(UV⊤) with

respect to ∆ such that vec(U⊤
⊥∆V⊥) = (V⊥ ⊗ U⊥)⊤ vec(∆) = 0. The solution of that

constrained optimization problem is obtained through the following linear system (Boyd
and Vandenberghe, 2003):

(

Σmm (V⊥ ⊗ U⊥)
(V⊥ ⊗ U⊥)⊤ 0

)(

vec(∆)
vec(Λ)

)

=

(

− vec(UV⊤)
0

)

, (12)
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where Λ ∈ R
(p−r)×(q−r) is the Lagrange multiplier for the equality constraint. We can solve

explicitly for ∆ and Λ which leads to

vec(Λ) =
(

(V⊥ ⊗ U⊥)⊤Σ−1
mm(V⊥ ⊗ U⊥)

)−1 (

(V⊥ ⊗U⊥)⊤Σ−1
mm(V ⊗ U) vec(I)

)

,

and
vec(∆) = −Σ−1

mm vec(UV⊤ − U⊥ΛV⊤
⊥).

Then the minimum of the function F (∆) in Eq. (5) is such that U⊤
⊥∆V⊥ = 0 (and thus

equal to ∆ defined above) if and only if for all Θ ∈ R
p×q, the directional derivative of F at

∆ in the direction Θ is nonnegative, i.e.:

lim
ε→0+

F (∆ + εΘ) − F (∆)

ε
> 0.

By Proposition 22, this directional derivative is equal to

trΘ⊤(Σmm∆ + UV⊤) + ‖U⊤
⊥ΘV⊥‖∗ = trΘ⊤U⊥ΛV⊥ + ‖U⊤

⊥ΘV⊥‖∗
= trΛ⊤U⊤

⊥ΘV⊥ + ‖U⊤
⊥ΘV⊥‖∗.

Thus the directional derivative is always non negative if for all Θ′ ∈ R
(p−r)×(q−r), trΛ⊤Θ′ +

‖Θ′‖∗ > 0, i.e., if and only if ‖Λ‖2 6 1, which concludes the proof.

C.8 Proof of Theorem 12

Regular consistency is obtained by Corollary 5. We consider the problem in Eq. (5) of
Proposition 10, where λnn1/2 → ∞ and λn → 0. Since Eq. (8) is satisfied, the solution ∆
indeed satisfies U⊤

⊥∆V⊥ = 0 by Lemma 11.

We have Ŵ = W + λn∆ + op(λn) and we now show that the optimality conditions
are satisfied with rank r. From the regular consistency, the rank of Ŵ is, with probability
tending to one, larger than r (because the rank is lower semi-continuous function). We now
need to show that it is actually equal to r. We let denote Ŵ = USV ⊤ the singular value
decomposition of Ŵ and we let denote Uo and Vo the singular vectors corresponding to all
but the r largest singular values. Since we have simultaneous singular value decompositions,

we simply need to show that,
∥

∥

∥
U⊤

o

(

Σ̂mm(Ŵ − W) − Σ̂Mε

)

Vo

∥

∥

∥

2
< λn with probability

tending to one. We have:

U⊤
o

(

Σ̂mm(Ŵ − W) − Σ̂Mε

)

Vo = U⊤
o

(

λnΣ̂mm∆ + op(λn) − Op(n
−1/2)

)

Vo

= λnU⊤
o (Σmm∆)Vo + op(λn).

Moreover, because of regular consistency and a positive eigengap for W, the projection
onto the first r singular vectors of Ŵ converges to the projection onto the first r singular
vectors of W (see Appendix A), which implies that the projection onto the orthogonal
is also consistent, i.e., UoU

⊤
o converges in probability to U⊥U⊤

⊥ and VoV
⊤
o converges in

probability to V⊥V⊤
⊥. Thus:

∥

∥

∥
U⊤

o

(

Σ̂mm(Ŵ − W) − Σ̂Mε

)

Vo

∥

∥

∥

2
=

∥

∥

∥
UoU

⊤
o

(

Σ̂mm(Ŵ − W) − Σ̂Mε

)

VoV
⊤
o

∥

∥

∥

2

= λn‖U⊥U⊤
⊥(Σmm∆)V⊥V⊤

⊥‖2 + op(λn)

= λn‖Λ‖2 + op(λn).
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This implies that that the last expression is asymptotically of magnitude strictly less than
one, which concludes the proof.

C.9 Proof of Theorem 13

We have seen earlier that if n1/2λn tends to zero and λn tends to zero, then Eq. (7) is
necessary for rank-consistency. We just have to show that there is a subsequence that does
satisfy this. If lim inf λn > 0, then we cannot have consistency (by Proposition 6), thus if
we consider a subsequence, we can always assume that λn tends to zero.

We now consider the sequence n1/2λn, and its accumulation points. If zero or +∞ is
one of them, then by Propositions 7 and 9, we cannot have rank consistency. Thus, for all
acccumulation points (which are finite and strictly positive), by considering a subsequence,
we are in the situation where n1/2λn tends to +∞ and λn tends to zero, which implies
Eq. (7), by definition of Λ in Eq. (6) and Lemma 11.

C.10 Proof of Theorem 15

We let denote Ur

LS and V r

LS the first r columns of ULS and VLS and Uo
LS and V o

LS the
remaining columns; we also denote sr

LS the corresponding first r singular values and so
LS

the remaining singular values. From Lemma 14 and results in the appendix, we get that
‖sr

LS − s‖2 = Op(n
−1/2) and ‖so

LS‖2 = Op(n
−1/2) and ‖Ur

LS(Ur

LS)⊤ − UU⊤‖2 = Op(n
−1/2)

and ‖V r

LS(V r

LS)⊤ −VV⊤‖2 = Op(n
−1/2). By writing ŴA = W+ n−1/2∆̂A, ∆̂A is defined as

the minimum of

1

2
vec(∆)⊤Σ̂mm vec(∆) − n1/2tr∆⊤Σ̂Mε + nλn

(

‖AWB + n−1/2A∆B‖∗ − ‖AWB‖∗
)

.

We have:

AU = ULS Diag(sLS)−γU⊤
LSU

= Ur

LS Diag(sr

LS)−γ(Ur

LS)⊤U + Uo
LS Diag(so

LS)−γ(Uo
LS)⊤U

= UDiag(s)−γ + Op(n
−1/2) + Op(n

−1/2nγ/2)

= UDiag(s)−γ + Op(n
−1/2nγ/2),

and

AU⊥ = ULS Diag(sLS)−γU⊤
LSU⊥

= Ur

LS Diag(sr

LS)−γ(Ur

LS)⊤U⊥ + Uo
LS Diag(so

LS)−γ(Uo
LS)⊤U⊥

= U⊥ Diag(so
LS)−γ + Op(n

γ/2−1/2)

= Op(n
γ/2).

Similarly we have: BV = V Diag(s)−γ + Op(n
−1/2nγ/2) and BV = Op(n

γ/2). We can

decompose any ∆ ∈ R
p×q as ∆ = (U U⊥)

(

∆rr ∆ro

∆or ∆oo

)

(V V⊥)⊤. We have assumed that

λnn1/2nγ/2 tends to infinity. Thus,
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• if U⊤
⊥∆ = 0 and ∆V⊥ = 0 (i.e., if ∆ is of the form U∆rrV

⊤),

nλn‖AWB + n−1/2A∆B‖∗ − ‖AWB‖∗ 6 λnn1/2‖A∆B‖∗
= λnn1/2‖Diag(s)−γ∆rr Diag(s)−γ‖∗ + Op(λnnγ/2)

= Op(λnn1/2)

tends to zero.

• Otherwise, nλn‖AWB + n−1/2A∆B‖∗ − ‖AWB‖∗ is larger than λnn1/2‖A∆B‖∗ −
2‖AWB‖∗. The term ‖AWB‖∗ is bounded in probability because we can write
AWB = UDiag(s)1−2γV⊤ + Op(n

−1/2+γ/2) and γ 6 1. Besides, λnn1/2‖A∆B‖∗ is
tending to infinity as soons as any of ∆or, ∆ro or ∆rr are different from zero. Indeed,
by equivalence of finite dimensional norms λnn1/2‖A∆B‖∗ is larger than a constant
times λnn1/2‖A∆B‖F , which can be decomposed in four pieces along (U,U⊥) and
(V,V⊥), corresponding asymptotically to ∆oo, ∆or, ∆ro or ∆rr. The smallest of those
terms grows faster than λnn1/2+γ/2, and thus tends to infinity.

Thus, since Σmm is invertible, by the epi-convergence theorem of Geyer (1994, 1996),
∆̂A converges in distribution to the minimum of

1

2
vec(∆)⊤Σmm vec(∆) − n1/2tr∆⊤Σ̂Mε,

such that U⊤
⊥∆ = 0 and ∆V⊥ = 0. This minimum has a simple asymptotic distribu-

tion, namely ∆ = UΘV⊤ and Θ is asymptotically normal with mean zero and covariance

matrix σ2
[

(V ⊗ U)⊤Σmm(V ⊗U)
]−1

, which leads to the consistency and the asymptotic
normality.

In order to finish the proof, we consider the optimality conditions which can be written
as A∆B and

A−1
(

Σ̂mm∆̂A − n1/2Σ̂Mε

)

B−1

having simultaneous singular value decompositions with proper decays of singular values,
i.e, such that the first r are equal to λnn1/2 and the remaining ones are less than λnn1/2.

From the asymptotic normality we get that Σ̂mm∆̂A − n1/2Σ̂Mε is Op(1), we can thus
consider matrices of the form A−1ΘB−1 where Θ is bounded, the same way we considered
matrices of the form A∆B.

We have:

A−1U = ULS Diag(sLS)γU⊤
LSU

= Ur

LS Diag(sr

LS)γ(Ur

LS)⊤U + Uo
LS Diag(so

LS)γ(Uo
LS)⊤U

= UDiag(s)γ + Op(n
−1/2),

and

A−1U⊥ = ULS Diag(sLS)γU⊤
LSU⊥

= Ur

LS Diag(sr

LS)γ(Ur

LS)⊤U⊥ + Uo
LS Diag(so

LS)γ(Uo
LS)⊤U⊥

= Op(n
−1/2) + U⊥ Diag(so

LS)γ ,
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with similar expansions for B−1V and B−1V⊥. We obtain the first order expansion:

A−1ΘB−1 = UDiag(s)γΘrr Diag(s)γV⊤ + U⊥ Diag(so
LS)γΘor Diag(s)γV⊤

+ UDiag(s)γΘro Diag(so
LS)γV⊤

⊥ + U⊥ Diag(so
LS)γΘoo Diag(so

LS)γV⊤
⊥

Because of the regular consistency, the first term is of the order of λnn1/2 (so that the
first r singular values of Ŵ are strictly positive), while the three other terms have norms
less than Op(n

−γ/2) which is less than Op(n
1/2λn) by assumption. This concludes the proof.

References

J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert. Low-rank matrix factorization with
attributes. Technical Report N24/06/MM, Ecole des Mines de Paris, 2006.

Y. Amit, M. Fink, N. Srebro, and S. Ullman. Uncovering shared structures in multiclass
classification. In Proceedings of the Twenty-fourth International Conference on Machine
Learning, 2007.

A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In Adv. NIPS 19,
2007.

F. Bach. Consistency of the group lasso and multiple kernel learning. Technical Report
HAL-00164735, HAL, 2007.

F. R. Bach, R. Thibaux, and M. I. Jordan. Computing regularization paths for learning
multiple kernels. In Advances in Neural Information Processing Systems 17, 2004.
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