Smart microrobots for mechanical cell characterization and cell convoying.

Médi Boukallel, Michaël Gauthier, Michaël Dauge, Emmanuel Piat, Joël Abadie

To cite this version:

Medhi Boukallel, Michaël Gauthier, Michaël Dauge, Emmanuel Piat, Joël Abadie. Smart microrobots for mechanical cell characterization and cell convoying. IEEE Transactions on Biomedical Engineering, 2007, 54 (8), pp.1536-1540. hal-00179481

HAL Id: hal-00179481
https://hal.science/hal-00179481
Submitted on 15 Oct 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract—This paper deals with the effective design of smart microrobots for both mechanical cell characterization and cell convoying for *in vitro* fertilization. The first microrobotic device was developed to evaluate oocyte mechanical behavior in order to sort oocytes. A multi-axial micro-force sensor based on a frictionless magnetic bearing was developed. The second microrobotic device presented is a cell convoying device consisting of a wireless micropusher based on magnetic actuation. As wireless capabilities are supported by this microrobotic system, no power supply connections to the micropusher are needed. Preliminary experiments have been performed regarding both cell transporting and biomechanical characterization capabilities under *in vitro* conditions on human oocytes so as to demonstrate the viability and effectiveness of the proposed setups.

Index Terms—Microrobotics, *in vitro* fertilization process, mechanical cell characterization, cell convoying.

Sorting fertilized oocytes (embryos) in order to select a good pattern for the transfer process is an important issue. The quality of the transferred embryos and the quality of the oocytes is a crucial parameter of the resulting embryo quality. To date, fertilized oocytes are sorted based on the visual optical microscope information relayed to the operator for evaluation. Experimental observations have shown that cell morphological transformation is observed from 48 to 72 hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development. Some recent studies [1][2] have shown that strong mechanical behavior modifications are observed a few hours after the fertilization process. Thus, fertilization failures are usually detected only at an advanced stage when the fertilized oocytes fail to divide or stop their development.
the tip are placed between two plates of a diamagnetic material (graphite from ForceField). According to the magnetic polarity arrangement (cf. figure 2), magnets M_1 induce attractive forces on magnets M_2. Without using a diamagnetic material the latter configuration of levitation is unstable. In fact, the magnetic properties of graphite ensure stable levitation of magnets M_2 and thus the stability of the cylindrical glass tip position. A laser sensor (ELITEC Telemeter) is used to monitor the displacement of the sensing part along the longest length of the cylindrical glass tip. Table I shows the main characteristics of the force sensing device components.

A. Force measurements model

The attractive magnetic forces \vec{F}_u^m (cf. figure 2) along a direction \vec{u} ($\vec{u} \in \{\vec{x}, \vec{y}, \vec{z}\}$) can be expressed in cartesian coordinates according to both remanent magnetic induction B_r of the magnet M_2 and the magnetic induction B_1 produced by the magnets M_1 as [12]

\[
\vec{F}_u^m = \frac{V B_r}{2\mu_0} \nabla_u \left\| \vec{B}_1(G) \right\|^2
\]

Where $B_1(G)$ is the magnetic induction produced by M_1 at the center of gravity G of M_2, ∇ is the nabla operator $(\nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})^T)$, μ_0 the vacuum permeability and V the volume of M_2.

The repulsive diamagnetic forces \vec{F}_u^d (cf. figure 2) along a direction \vec{u} produced by a small element P of the graphite on M_2 can be expressed in cartesian coordinates according to both dimensionless scalar magnetic susceptibility χ_m and the magnetic induction $B_2(P)$ produced by the magnets M_2 as [12]

\[
\vec{F}_u^d = \frac{\chi_m}{2\mu_0} \iiint_{v'} \nabla_u \left\| \vec{B}_2(p) \right\|^2 dv'
\]

Table I

<table>
<thead>
<tr>
<th>Material</th>
<th>Magnetic property</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet M1</td>
<td>NdFeB</td>
<td>$B_r = 1.3$ T</td>
</tr>
<tr>
<td>Magnet M2</td>
<td>NdFeB</td>
<td>$B_r = 0.95$ T</td>
</tr>
<tr>
<td>Levitating part</td>
<td>Glass</td>
<td>$\phi 0.5$ mm x 95 mm</td>
</tr>
<tr>
<td>Tip of the endeffector</td>
<td>Glass</td>
<td>5 mm x $\phi 0.02$ mm</td>
</tr>
<tr>
<td>Diamagnetic material</td>
<td>Graphite</td>
<td>40 mm x 40 mm x 10 mm</td>
</tr>
</tbody>
</table>

TABLE I
Components of the force sensing device.

B. Magnetic model validation

Since the magnetic and diamagnetic forces are expressed as a function of the magnetic induction produced by the magnets configuration M_1 as well as the magnets M_2, the determination of \vec{B}_1 and \vec{B}_2 are crucial. Hence, the more accurate the determination of the \vec{B}_1 and \vec{B}_2 the more accurate is the force measurements process. For this reason, we used a finite element analysis method achieved with Flux3D software. Figure 3 shows the simulated magnetic induction produced by a single magnet M_1 at different heights z and compared to the averaged experimental measurements achieved by means of a calibrated Hall sensor (F.W. BELL Teslameter). The experimental measurements are performed by means of a servomotor.
which accurately move the probe above the magnet. In the present validation study, the travel range and the resolution step measurements are 20 mm and 1 μm respectively. We observed a small deviation between the simulated and the experimental curves (a relative error of less than 1%). The results show good agreement between the simulated and the observed a small deviation between the simulated and the

\[
\int \int d\mathbf{F}_m(P) = \mathbf{P} \times \mathbf{B}_0 \cdot dv
\]

\[
\frac{d\mathbf{F}_m}{d\mathbf{P}_m}(P) = \nabla(\mathbf{M} \times \mathbf{B}_0) \cdot dv
\]

\[
\mathbf{F}_m(P) = \mathbf{P} \times \mathbf{B}_0
\]

\[
\mathbf{M} \times \mathbf{B}_0 = \mathbf{P} \times \mathbf{B}_0
\]

\[
\int \int d\mathbf{F}_m(P) = - \int \int d\mathbf{F}_m(P) \wedge \mathbf{P}\]

where \(\mathbf{B}_0\) is the magnetic field of the permanent magnet calculated by the Finite Element Model FLUX3D and \(\mathbf{M}\) is the internal magnetization which represents the magnetic behavior of the soft ferromagnetic micro-pusher. To determine the magnetization, two hypotheses are assumed: The micropusher is a flat surface \(S\); the magnetization module reached the magnetic saturation \(M_{sat} = 5.1 \times 10^6 A.m^{-1}\). Magnetization orientation can be calculated classically by computing the well-known continuity relation of the magnetic field on the surface \(S\) as described in [15].

Considering the very low inertia of micro-objects, the angular dynamic time constant of the micro-pusher is in the order of 10 μs, thus we consider only the static position given by

\[
\int \int d\mathbf{F}_m(P) = - \int \int d\mathbf{F}_m(P) \wedge \mathbf{P}
\]

Fig. 4. Magnetic Cell Micropusher Principle: Cells are pushed in a channel by a ferromagnetic micropusher which follows the movement of a permanent magnet. Permanent magnet is moved in two directions (x: vertical movement and y: lateral movement). Consequently, the pusher is able to push a cell along y axis and to go over a cell along x axis.

The micropusher behavior is divided into two types: rotation around the contact point and translation of the contact point. As the angular behavior is a keypoint which allows precise positioning [14], this paper focuses on the angular model.

The magnet position is characterized by the reference \((O, \mathbf{x}, \mathbf{y}, \mathbf{z})\) defined in figure 4. The pushing point is defined by the point \(I\), center of the contact line between the pusher and the wall. Micropusher orientation is defined by the angles \(\alpha\) and \(\beta\) respectively around \(\mathbf{z}\) and \(\mathbf{x}\).

A. Angular Behavior Modeling

Angular behavior is given by the magnetic efforts applied by the magnet on the micropusher. The magnetic torque \(d\mathbf{T}_m(P)\) and magnetic force \(d\mathbf{F}_m(P)\) applied on an elementary volume \(dv\) in point \(P\) is considered as

\[
\mathbf{T}_m(P) = \mathbf{M} \times \mathbf{B}_0
\]

\[
\mathbf{F}_m(P) = \nabla(\mathbf{M} \times \mathbf{B}_0)
\]

\[
\int \int \mathbf{dF}_m(P) = - \int \int \mathbf{dF}_m(P) \wedge \mathbf{P}
\]

II. OOCYTE CONVEYOR SYSTEM

The aim of the oocyte conveyor system is to perform cell transport (see figure 4). Our original cell transport system consists of a wireless soft ferromagnetic micropusher which pushes a single cell. This soft ferromagnetic particle (200 × 200 × 20 μm\(^3\)) is made of electroplated nickel as described in [13] and is actuated by an external magnetic field. This magnetic field is induced by a cylindrical magnet (NdFeB, \(\phi\) 1.6 mm, \(h=0.74\) mm) placed in the external medium on the other side of a vertical wall (see in figure 4). The magnet displacements are performed by two motorized translation stages (M-111.2, Physik Instrumente) controlled by computer. The micropusher placed against the wall is used to place oocytes in front of tools such as an injector, aspiration pipe or force sensor described in section I, etc. Contrary to fluid flow transfer, the micropusher can push one cell without modifying the position of other cells under treatment. The first Degree Of Freedom \(DOF\) (lateral movement in figure 4) is used to push the cells. The second \(DOF\) (vertical movement in figure 4) is used to go over the cells. At the present time the device is not able to change the pushers.

C. Force calibration

The calibration of the developed force sensor is performed by means of a compression calibrated load cell (Adventure AR0640, OHAUS). The latter is able to detect weight variations of less than 50 μg. Since the detection range of the load cell is bigger than the developed device, we have performed force calibration in the range of 1 μN to 20 μN. For force calibration out of detection range, we have used the magnetic model. In fact, equation 1, gives an accurate and quantitative information about the force magnitude based on the accurate determination (using the calibrated Hall sensor F.W. BELL Teslameter) of the magnetic induction \(\mathbf{B}_1\) produced by the magnets \(M_1\).

\[
\begin{align*}
\mathbf{B}_1 & = \mathbf{M}_1 \nabla \phi \\
\end{align*}
\]

Fig. 3. Simulated magnetic induction produced by a single magnet \(M_1\) compared to averaged experimental measurements.
B. Experimental Validation

Orientation is determined by the equality between both terms of (4). These two strains induce two different behaviors. The magnetic torque Γ_m consequence is the alignment of the micropusher on the external magnetic field \vec{B}_0. In contrast, the magnetic force torque $\vec{F}_m \wedge \vec{P}I$ makes the micropusher lie flat on the wall. Both phenomena have the same value order and micropusher orientation is defined by the equilibrium of both physical effects.

The experimental measurements and simulations results are presented in figure 5. The experimental conditions are $OI.\vec{z} \in [-500;500] \mu m$, $OI.\vec{y} = 0$, $OI.\vec{x} = 200 \mu m$. As presented in figure 5, experimental measurements and the model are similar.

![Fig. 5. Experimental and Simulated Micropusher Angles β: Orientation β is presented in function of the relative position between the micropusher and the magnet OI. Experimental and simulated orientations are relatively near. The micropusher orientation is different from the orientation of the magnetic field B_0 around the micropusher: The micropusher is not aligned on magnetic field lines.](image)

The alignment of the ferromagnetic objects on the magnetic field is a specificity of the microworld. In fact, the scale effect on both phenomena is different: magnetic torque Γ_{mI} is a function of l^3 while magnetic force torque $F_{mI} \wedge PI$ is a function of l^4 (with l the micropusher characteristic size). Consequently, the smaller the micropusher the closer its orientation is to the magnetic field line.

III. BIOLOGICAL EXPERIMENTATIONS

A. Cell culture

The oocytes are prepared on Petri dishes with specific culture medium formed by Dulbecco’s Modified Eagle’s Medium (DMEM) with high glucose and L-glutamine components and 10% of foetal bovine serum. The oocytes can be assayed morphologically to an spherical cells with a thin surrounding biomembrane (100 - 150 μm radius). The cell observation is performed by means of an inverted microscope (Nikon) with 60x magnification lens.

In the present study, the experiments are conducted at ambient conditions on non-fertilized human oocytes which have not been selected for ICSI process. The oocytes are from the research group on genetics and reproduction at the Besançon Hospital Center (France).

B. Oocyte mechanical characterization experiments

Figure 6 shows the overview of the developed non-invasive process for mechanical cell characterization. Instead of moving the force sensing device, we choose to keep it immobile. Accordingly, oocytes assigned for mechanical characterization study are arranged on Petri dishes with a glass head. The latter are positioned above the micropositioning stage. No holding pipette is used for the mechanical characterization process in order to reduce tensile strain. Hence, the oocytes are squeezed against a glass slide. Figure 6 shows the mechanical characterization process.

Preliminary mechanical experiments are conducted on human oocytes not selected for in vitro fertilization process. First mechanical characterization experimentation is focused on the estimation of the stiffness K of the biological sample as well as on Young’s Modulus E. Since Young’s modulus can be used to predict the elongation or compression of elastic samples as long as the stress is less than the yield strength of the sample, mechanical characterization experiments on the biological sample are restricted to mechanical behavior where elastic linear properties are satisfied. Figure 7(A) shows experimental measurements of the oocyte deformation δ as a function of the applied force F. According to figure 7(A) the linear elastic behavior is satisfied for forces less then 0.2 μN. Based on these assumptions, the stiffness K of the biological sample can be expressed by a linear analytical formula ($F = K\delta$). Hence, the stiffness of the biological sample is found in order of $K = 0.015 N/m$. Young’s Modulus E is estimated using Hook’s law ($\sigma=E\varepsilon$). Figure 7(B) shows the stress $\sigma = \frac{F}{a}$ as a function of the dimensionless strain $\varepsilon = \frac{\delta}{h}$. Using linear interpolation function, Young’s Modulus is found equal to $E = 0.14 \ M Pa$.

![Fig. 6. Overview of the developed non-invasive process which squeeze the oocyte against a glass slide. No holding pipette is used for the mechanical characterization process in order to reduce tensile strain. The displacement of the sensing part is monitored by means of the laser sensor.](image)

C. Oocyte pushing operation

Some open loop pushing operations were undertaken with the micropusher without force feedback. However, the force
approach. The design, calibration and the mechanical behavior of these devices are detailed. The results show good agreement between the simulated and the experimental data. The efficiency of the microrobotics systems is proved by successful in vitro experiments on human oocytes. Hence, accurate mechanical characterization for oocyte sorting criterion investigation is achieved as well as non-invasive transporting and positioning tasks.

ACKNOWLEDGMENTS

This research was supported by the LAB (Laboratory of Automation of Besançon - France). The authors thank Prof. C. Roux (research group on “genetics and reproduction”, Besançon) for collaboration on human oocyte micromanipulations. The authors thank the LCEP-Besançon for the fabrication of the micropusher glass sample support.

REFERENCES
