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This paper deals with a method used to design the control law of the μDrone MAV. 

This vehicle uses six propellers to fly and the dynamic model approximation for the 

motion is a MIMO linear time-invariant system. As we want to design a linear regulator, 

it is necessary to build a robust feedback control law. The LQ state feedback regulator 

design is applied to a standard model, tacking into account some perturbations. This is 

why the model is augmented with a perturbation vector and an observable subsystem is 

extracted in order to build a state estimator whose gain is the solution of a LQ problem. 

The subsystem is then decomposed into a controllable set and an uncontrollable one. The 

use of an asymptotic rejection strategy of the influence of uncontrollable modes gives the 

possibility to find a state feedback applied only to the controllable ones. Here again 

feedback matrix is chosen as the solution of a LQ problem. To compute the weighting 

matrices of quadratic criterions we use a “partial observability gramian”. The great 

advantage of this method is due to the use of only three scalars to synthesize the control 

law. 

Nomenclature 

zyx ,,  = centre of gravity coordinates of the MAV 

  = roll angle 

  = pitch angle 

  = yaw angle 

i
u  = actuator control input for solid 

i
S  

i
F  = thrust produced by the ith actuator 

i
M  = moment produced by the ith actuator 

i
  = time constant of the ith actuator 

i
k  = DC gain of the ith actuator 

u  =  
T

uuuuuu
654321

 input vector 

y  =  
T

zyx   output vector 

r
y  = reference vector 

x  = state vector of initial linear MAV model 
18

R  

CBA ,,    = matrices of initial state-space model 
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p
x  = perturbation vector 

 

I. Introduction 

HIS paper deals with a method used to design the control law of the μDrone. This MAV 

uses six propellers to fly and it is not obvious to control the six brushless motors 

simultaneously. In order to build a dynamical model of the MAV, we worked on the 

assumption that it can be described with seven solids in interaction. After a linearization of 

the equations in the vicinity of a horizontal trim, the model is a multi-input, multi-output 

(MIMO) linear time-invariant dynamic system. This approximation can be used only if it is 

possible to build a robust feedback control law. 

 The interest of the present paper is to provide a simple method to reach the needed 

robustness, using the LQ state-feedback regulator design applied to a “standard model”, 

tacking into account some perturbations. This method is detailed in Ref. 1 and very recently 

in Ref. 2. 

 The paper is organized as follows. Section II gives some details on the MAV model 

and the control design is explained in section III. Section IV gives complements about the 

choice of adjustment parameters. 
 

II. Model of the μDrone 

The μDrone is a “gyro dyne” with six propellers. We worked on the assumption that it can be described with 

seven solids in interaction. 

Solid 
0

S  is the body. 

Solids 
1

S  and 
2

S  are made up of a fix pitch propeller, the motor shaft and the blades holder. The two 

propellers are counter-rotating and provide the lift of the MAV. 

Solids 
3

S  and 
4

S  include a variable pitch propeller, the motor shaft and the variable pitch system. These 

propellers provide the trim stabilization. 

Solids 
5

S  and 
6

S  are like the two precedents and provide MAV propulsion. 

The detailed description of this mechanical system modeling can be found in Ref. 3. 

Let 
i

F  denotes the thrust produced by the ith actuator and 
i

M  the associated moment. If 
i

u  denotes the 

control input of the actuator, we assume that 

 (1) 

)(.)(

)(.)(

tFktM

tuktF
dt

dF

iii

iii

i

i




 

With this assumption and after linearization of the mechanical model, the MIMO linear time-invariant 

system, denoted DRO, is an approximation of the MAV behavior
4,5

. DRO is a system with 6 inputs, 6 outputs, 

and state-vector x  is of size 18. 

 (2) 

xCy

uBxA
dt

xd

.

..




 

The eigenvalues of the A  matrix are so defined: 10 are zero, 6 are real negative and 2 are purely imaginary. 

The rank of controllability matrix is 2 and that of observability matrix is 4. 

 

III. Control design of the MAV 

 

T 
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In order to build a “standard model” we introduce a perturbation vector 
p

x  and we work on the assumption 

that each perturbation is constant. It is then possible to give a simple model for these perturbations 

 (3) 
pp

p
xA

dt

xd
.  

where 
p

A  is a square matrix of zeros. In our application 
2

Rx
p
 and the perturbations are moments acting 

on roll and pitch rates. The initial system DRO is augmented and becomes 

 (4) 

ee

eee

e

xCy

uBxA
dt

xd

.

..




       with         OCC

O

B
B

AO

AA
A

ee

p

e




















 ,,

12
 

As we want to elaborate the control law with a state-feedback, it is necessary to build a state estimator. The 

first step is to compute the observability staircase form of  
eee

CBA ,,  and extract an observable subsystem 

 (5) 

oeo

eooeo

o

xCy

uBxA
dt

xd

.

..




 

It is then possible to build a state estimator 

 (6) )ˆ..(.ˆ.
ˆ

oeooeooeo

o
xCyKuBxA

dt

xd
  

The gain matrix 
o

K is chosen as the solution of the LQ problem 

find 
oo

xKKv .  that minimize   dtvRvxQxJ
o

T

oo

T

oo
.....

0


   for    vCxA
dt

xd T

eoo

T

eo

o
..   

and define a positive scalar 
o

k such as 

 (7)  
T

ooo
KKkK .  

At this point, the problem is to make a good choice for the weighting matrices 
o

Q and 
o

R of the quadratic 

criterion
o

J . In order to adjust easily
o

Q , we use a “partial observability gramian” defined as 

 

 (8) dttACCtATG
eoeo

T

eo

T
T

eoooo

oo

)..exp(..)..exp()(
0  

where 
oooo

TkT .  with 
o

T  positive, called the filtering horizon and 
o

k the shape factor. 

 

As the pair  
eoeo

CA ,  is observable, )(
ooo

TG is asymmetric positive matrix, and it is possible to choose  

 

 (9) 
 

IR

TGTQ

o

oooooo




1

)(.
     with I  the identity matrix. 

 

The state estimator is then 

 (10)     










y

u
KBxCKA

dt

xd
oeooeooeo

o
.ˆ..

ˆ
 

Now let us compute the controllability staircase form of  
eoeoeo

CBA ,,  with the similarity transformation 

matrix 
oc

T    
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 (11) 

  


















































c

nc

eoceonc

eocc

nc

eoceo

eonc

c

nc

x

x
CCy

u
B

O

x

x

AA

OA

x

x

dt

d

.

..

21

       with    
ooc

c

nc
xT

x

x
.









 

 

As 
21eo

A   is not a matrix of zeros, uncontrollable modes 
nc

x  perturb controllable modes
c

x . In order to 

reject the influence of uncontrollable modes it is possible to use a linear transformation 

 (12) 
)(.)()(

~

)(.)()(

txTtxtx

txGtvtu

ncacc

nca




    where 

a
G  and 

a
T  are constant matrices, leading to 

 

 (13) 
 

 
ncaeoceoncceoc

eocncaeoceoncaaeoceoceoc

c

xTCCxCy

vBxGBATTAAxA
dt

xd

..
~

.

.....
~

.

~

21




 

 

Now, it is often possible to find 
a

G  and 
a

T  such as 

 

 (14) 
   

   OTCC

OGBATTAA

aeoceonc

aeoceoncaaeoceo





.

...
21

 

 

With these conditions equations (11) become 

 

 (15) 

ceoc

nceonc

nc

eocceoc

c

xCy

xA
dt

xd

vBxA
dt

xd

~
.

.

.
~

.

~







  where the pair  
eoceoc

BA ,  is controllable 

 

Once more, it is possible to compute the solution of the LQ problem 

 

find  
cc

xKv
~

.  which minimize  dtvRvxQxJ
c

T

cc

T

cc
...

~
..

~
0


  for  vBxA
dt

xd
eocceoc

c
.

~
.

~

  

 

In order to adjust weighting matrices 
c

Q  and 
c

R  of the quadratic criterion
c

J  , define a positive scalar
c

k ,   

a positive control horizon 
c

T  such as  

 (16) 
coc

kTT /  

and the “partial observability gramian”  

 

 (17) dttACCtATG
eoceoc

T

eoc

T
T

eoccoc

c

)..exp(..)..exp()(
0  

 

It is then possible to choose 

 (18) 

eoc

T

eocc

eoccoc

T

eoccc

CCQ

BTGBTR

.

).(..




 

Now, it is possible to elaborate the feedback control  
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 (20) 
rrcc

yKxKv .
~

.     

where 
r

K  is a constant matrix and 
r

y  the reference vector. 

In order to determine 
r

K  matrix we use equations (15) in which vector v  is replaced by expression (20) 

 (21) 
 

ceoc

rreoccceoceoc

c

xCy

yKBxKBA
dt

xd

~
.

..
~

..

~




 

In permanent rate we want
r

yy  . As   
ceoceoc

KBA .  is a stability matrix, it is invertible and  

 (22)  
rreocceoceoceoc

yKBKBACy .....
1

  

Then, the choice 

 

 (23)  
11

.)..(



eocceoceoceocr

BKBACK  

 

leads to the solution. In our application, this last matrix is not invertible; it is the reason why we use the 

expression of the pseudo inverse and it appears that it is not possible to choose reference 
r

  except for the zero 

value. 

Now the use of expression (12) leads to the control vector  

  
ncarrccnca

xGyKxKxGvu ..
~

..   

which gives 

 (24)  
rr

c

nc

caac
yK

x

x
KGTKu ... 









  

but with the transformation matrix 
oc

T  in (11) it is possible to express u  as a feedback control 

 (25)  
rrooccaac

yKxTKGTKu ....   

According to separation principle and using state estimator expression (10), it follows easily the regulator 

equations 

 (26) 























y

y
DxCu

y

y
BxA

dt

xd

r

regoreg

r

regoreg

o

..

..

 

with 

  

 

 

 

 OKD

TKGTKC

KKBB

TKGTKBCKAA

rreg

occaacreg

oreoreg

occaaceoeooeoreg









..

.

....

 

 

IV. Choice of the adjustment parameters 

 

 Among the main objectives, the stability of state matrix estimator 
reg

A  in (26) is essential. It is clear that 

parameters 
oo

kT ,  and 
c

k  will influence stability, acting on 
o

K  and 
c

K  matrices. The first step is to assign a 

fixed value to 
o

k  and 
c

k  parameters; often 5 is a good value to start. Now the filtering horizon 
o

T  is adjusted 



 

 

 

6 

so that 
reg

A  is a stability matrix; it is often effective to start with the slowest time constant value of the initial 

model. 

 In order to quantify the robustness stability of the feedback, the regulator, without reference, can be 

converted to a transfer function matrix. Starting with 

 

  (27) 

oreg

ooreg

o

xCu

yKxA
dt

xd

.

..




 

we obtain 

  (28) )().()( sysKsu   

where 

  (29) 
 

 
occaacc

oeooceoeoc

TKGTKKK

KCKKKBAsIKKsK

..

....)(
1






 

(It is interesting to notice the symmetry of expression (29) in relation to matrix gains 
c

KK  and
o

K ). 

Similarly, the initial model of the MAV is 

 

  (30) )().()( susDROsy   

Now define 

  (31) )().()( sDROsKsL
u

    the input loop transfer 

  (32) )().()( sKsDROsL
y

    the output loop transfer 

  (33) 
















)(max

1
,

)(max

1
min

 jLjL
M

yu

st
      the static margin 

  (34) 
















)(.max

1
,

)(.max

1
min

 jLjL
M

yu

dyn
   the dynamic margin 

Then, when 
reg

A  is a stability matrix, the stability of the global feedback is robust in relation to any relative 

error such as 

  (35) 
st

M
jDRO

jDRO




)(

)(




    it is why 

st
M  is expressed in % 

 

Similarly, the stability of the feedback is robust in relation to any relative error such as 

 

  (36) 
dyn

M
jDRO

jDRO
.

)(

)(








 

 

Notice that:  
Tddyn

MM   where 
Td

M  is the time delay margin. 

 

Now it is not difficult to compute static and dynamic margin for different values of 
oo

kT ,  and
c

k . It then may 

be possible to find a triplet for which the stability margins and the dynamic performances are fulfilled.  

The reason why this strategy is often efficient is due to the natural robustness of a LQ problem solution and to 

the notion of loop transfer recovery (LTR). 

In our application the following results are obtained 


st

M  42.2 %, 
dyn

M  32.7 ms. 
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