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One way to design the control law of a mini-UAV

B. Lang", P. Paquier
National Engineering Institute in Mechanics and Microtechnologies (ENSMM), Besancon, France

and

J.-M. Friedt*
Business or Academic Affiliation 2, Besancon, France

This paper deals with a method used to design the control law of the pDrone MAV.
This vehicle uses six propellers to fly and the dynamic model approximation for the
motion is a MIMO linear time-invariant system. As we want to design a linear regulator,
it is necessary to build a robust feedback control law. The LQ state feedback regulator
design is applied to a standard model, tacking into account some perturbations. This is
why the model is augmented with a perturbation vector and an observable subsystem is
extracted in order to build a state estimator whose gain is the solution of a LQ problem.
The subsystem is then decomposed into a controllable set and an uncontrollable one. The
use of an asymptotic rejection strategy of the influence of uncontrollable modes gives the
possibility to find a state feedback applied only to the controllable ones. Here again
feedback matrix is chosen as the solution of a LQ problem. To compute the weighting
matrices of quadratic criterions we use a “partial observability gramian”. The great
advantage of this method is due to the use of only three scalars to synthesize the control

law.
Nomenclature

X,¥,z = centre of gravity coordinates of the MAV
a = roll angle
p = pitch angle
A = yaw angle
u, = actuator control input for solid S,
F, = thrust produced by the ith actuator
M, = moment produced by the ith actuator
T, = time constant of the ith actuator
K, = DC gain of the ith actuator
u = [u, u, u, u, u, u,] inputvector
y =[x y z a B 2] outputvector
y = reference vector
.
X = state vector of initial linear MAV model e R™
A,B,C = matrices of initial state-space model
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X, = perturbation vector

I.  Introduction

HIS paper deals with a method used to design the control law of the uDrone. This MAV

uses six propellers to fly and it is not obvious to control the six brushless motors
simultaneously. In order to build a dynamical model of the MAV, we worked on the
assumption that it can be described with seven solids in interaction. After a linearization of
the equations in the vicinity of a horizontal trim, the model is a multi-input, multi-output
(MIMO) linear time-invariant dynamic system. This approximation can be used only if it is
possible to build a robust feedback control law.

The interest of the present paper is to provide a simple method to reach the needed
robustness, using the LQ state-feedback regulator design applied to a “standard model”,
tacking into account some perturbations. This method is detailed in Ref. 1 and very recently
in Ref. 2.

The paper is organized as follows. Section Il gives some details on the MAV model
and the control design is explained in section Il1. Section IV gives complements about the
choice of adjustment parameters.

Il.  Model of the pDrone

The pDrone is a “gyro dyne” with six propellers. We worked on the assumption that it can be described with
seven solids in interaction.

Solid S, is the body.
Solids S, and S, are made up of a fix pitch propeller, the motor shaft and the blades holder. The two
propellers are counter-rotating and provide the lift of the MAV.
Solids S, and S, include a variable pitch propeller, the motor shaft and the variable pitch system. These
propellers provide the trim stabilization.
Solids S and S are like the two precedents and provide MAV propulsion.
The detailed description of this mechanical system modeling can be found in Ref. 3.
Let F, denotes the thrust produced by the ith actuator and M, the associated moment. If u, denotes the
control input of the actuator, we assume that
9F, F () =k, .u,(t
PR ICR L0
M, (t) = k,.F, (t)
With this assumption and after linearization of the mechanical model, the MIMO linear time-invariant
system, denoted DRO, is an approximation of the MAV behavior*®. DRO is a system with 6 inputs, 6 outputs,

and state-vector x is of size 18.

dx

— =AX+Bu
2 dt

y=Cx

The eigenvalues of the A matrix are so defined: 10 are zero, 6 are real negative and 2 are purely imaginary.
The rank of controllability matrix is 2 and that of observability matrix is 4.

I11.  Control design of the MAV



In order to build a “standard model” we introduce a perturbation vector X , and we work on the assumption
that each perturbation is constant. It is then possible to give a simple model for these perturbations

3) — = A

where A is a square matrix of zeros. In our application x , €R ? and the perturbations are moments acting

on roll and pitch rates. The initial system DRO is augmented and becomes
dx,
@
y=C.Xx,

:Ae'le+Be"‘l . |_A AlZ_] |—B—|
with A, =| |, B, = .C,=[c O]
10 Ay LOJ

As we want to elaborate the control law with a state-feedback, it is necessary to build a state estimator. The
first step is to compute the observability staircase form of (Ae ,B,.C, ) and extract an observable subsystem

dx,

(5) dt = Aeo '50 + Beo Ll
X =C €o '50
It is then possible to build a state estimator
dx, R R
(6) d_ = Aeo 'ZO + Beo'g-'- KO'(y_CeO 50)
t z

The gain matrix K is chosen as the solution of the LQ problem

o dx
find v = —KK ,.x, that minimize J_ = J' (52 Q, X, +V' .Ro.y)dt for d;° =ALx,+C v
0 t
and define a positive scalar k j such as
@ K, =k, KK
At this point, the problem is to make a good choice for the weighting matrices Q ,and R of the quadratic

criterion J | . In order to adjust easily Q , , we use a “partial observability gramian” defined as

Too T T
®) G,(T,)= jo exp( AL 1).C., .C.,.exp( A .t).dt

where T = k,.T, with T positive, called the filtering horizon and k , the shape factor.

As the pair (A,,,C,, ) isobservable, G (T, ) is asymmetric positive matrix, and it is possible to choose

- [Too 'Go (Too )]71
R =1

L
|

with | the identity matrix.

The state estimator is then
dg, ) [ul

(10) — = (Aeo - K o] C eo )'50 + [Beo K o] ]| |

dt LY]

Now let us compute the controllability staircase form of (A, ,B,,,C,, ) with the similarity transformation

eo !

matrix T,



d_rlnc—| :rAeonc (6] —|.|—lnc—|+|— 0 —|.u
(11) dt ch J LAeoﬂ Acoc JL&C J LB“’C J ) with En | =Ty X,
y=[Cc... C ]Fm} =
= e ey
As A

w0 IS NOt a matrix of zeros, uncontrollable modes x,. perturb controllable modes x . . In order to
reject the influence of uncontrollable modes it is possible to use a linear transformation
g(t) = \i(t) - Ga‘lnc (t)

(12) e 04T ) where G, and T, are constant matrices, leading to
XC t = 50 t + a'énc t
dx, ~
(13) dt = Aeoc Xt [AeOZl - Aeoc 'Ta + Ta 'Aeonc - Beoc 'Ga ]'Enc + Beoc v
X = Ceoc 'Zc + [C eonc Ceoc 'Ta ]'énc
Now, it is often possible to find G, and T, suchas
(14) [AEOZl - Aeoc 'Ta + Ta 'Aeonc - Beoc 'Ga] = [O]
[Ceonc - Ceoc 'Ta ] = [O]
With these conditions equations (11) become
dx, _
— = AEOC 'LC + BEOC \i
dt
dx,. . :
(15) d; - Aeonc 'Knc where the pair (Aeoc ! Beoc ) is controllable
t
y = CGOC 'XC
Once more, it is possible to compute the solution of the LQ problem
. -~ i L w(~T - T ) ch -
find v = —K_.x . which minimize J_ = L X.-Q.X,+Vv .R_v)dt for - A X+ B,V

In order to adjust weighting matrices Q. and R of the quadratic criterion J . , define a positive scalark _ ,
a positive control horizon T_ such as

a6 T, =T,/k,

and the “partial observability gramian”

TC
(17) Gy (To) = [ exp( A, 1).C o C o -0XD( A, ).l
0

It is then possible to choose
Rc = Tc 'Be-:roc G oc (Tc )'Beoc
Qc = CJUC 'Ceoc

Now, it is possible to elaborate the feedback control

(18)



(200 v=-K_ X, +K,y
- - —r
where K isa constant matrix and y the reference vector.
—r

In order to determine K . matrix we use equations (15) in which vector v is replaced by expression (20)
dx,

1) dt = (Aeoc - Beoc 'Kc)'Zc + Beoc' o

y=C__.X

eoc '=c

In permanent rate we wanty =y . As (A, - B, -K.) isastability matrix, it is invertible and

(22) y = _Ceoc '(Aeoc -B
Then, the choice

K, )'B, K.y

—r

eoc eoc

(23) Kr = _[Ceoc'(Aeoc - Beoc'Kc)il'B B

eoc

leads to the solution. In our application, this last matrix is not invertible; it is the reason why we use the

expression of the pseudo inverse and it appears that it is not possible to choose reference o, except for the zero
value.

Now the use of expression (12) leads to the control vector
H = \_/_ Ga'énc = _Kc'zc + Kry - Ga'énc
—T
which gives
[ X, |
(24 u=-[K,T,+G, KC]'FCF K.y
X -

but with the transformation matrix T . in (11) it is possible to express u as a feedback control

(25) u=-[K,T,+G, K_]T_x, + K.y

According to separation principle and using state estimator expression (10), it follows easily the regulator
equations

dx, [y 1
— = Areg '10 + Breg | - |
dt LY ]
(26)
ST
g: reg Xo + reg N
LY ]
with
Areg = eo_K Ceo Beo [K&:T +Ga K ]‘Toc
Breg _[Beo'Kr Ko]
Creg = _[Kc'Ta + Ga Kc]Toc
Dreg :[Kr O]

IV.  Choice of the adjustment parameters

Among the main objectives, the stability of state matrix estimator A, in (26) is essential. It is clear that
parameters Tk, and k. will influence stability, acting on K and K matrices. The first step is to assign a

fixed value to k, and k_ parameters; often 5 is a good value to start. Now the filtering horizon T is adjusted



sothat A is a stability matrix; it is often effective to start with the slowest time constant value of the initial

model.
In order to quantify the robustness stability of the feedback, the regulator, without reference, can be
converted to a transfer function matrix. Starting with

(27) dt

we obtain

(28)  u(s) =-K(s).y(s)
where
K(s)= KK (sl —A, +B_.KK_ +K_,C,) K
KK, =[K,T,+G, K_|T,
(It is interesting to notice the symmetry of expression (29) in relation to matrix gains KK . andK ).
Similarly, the initial model of the MAYV is

0

(29)

(30)  y(s) = DRO (s).u(s)

Now define
(31) L,(s) = K(s).DRO (s) the input loop transfer
(32) L, (s) = DRO (s).K(s) the output loop transfer

1 1 . .
the static margin

(33) M :minj —,
Lu(]a))| max ‘Ly(ja))U

Lmax

(34) My, = min 1 : , ! l the dynamic margin
lmax|co.Lu(Ja))| max‘a).Ly(ja))“

Then, when A is a stability matrix, the stability of the global feedback is robust in relation to any relative
error such as

A DRO (jw
(35) (jo)

DRO (jw)

<M

« itiswhy M _ isexpressed in %

Similarly, the stability of the feedback is robust in relation to any relative error such as

A DRO (jo)

36
(30) DRO (jw)

dyn

Notice that: M , < M, where M, isthe time delay margin.

dyn

Now it is not difficult to compute static and dynamic margin for different values of T,k andk, . It then may

be possible to find a triplet for which the stability margins and the dynamic performances are fulfilled.

The reason why this strategy is often efficient is due to the natural robustness of a LQ problem solution and to
the notion of loop transfer recovery (LTR).

In our application the following results are obtained

M, = 422%, M, = 32.7ms.

dyn
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