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Shape Memory Alloys Cyclic Behavior: Experimental Study and Modeling 1 Introduction

The phase transformation from a mother phase called austenite to a product phase called martensite in the shape memory alloys ͑SMA͒ makes them potential candidates for vibration damping systems. SMA are already studied for applications in structural vibration control ͓1͔ and as vibration dampers for example in seismic applications ͓2,3͔. From a mechanical point of view we can distinguish, to explain this potential, two different phenomena linked to the phase transformation: the existence of an hysteresis and a stiffness variation. In order to understand the impact of these two phenomena on the dynamic of a system, a first study was presented in ͓4͔. In this previous work, an equivalent nonlinear complex Young's modulus was used to quantify the balanced harmonic response of the material. It was calculated using a simplified RL model ͓5͔ without taking into account the modification of the behavior with the cycling and the strain rate. A new phenomenological model is developed in the present paper in order to take into account the SMA behavior alteration due to the cycling. Basically, an experimental study is performed in order to quantify the SMA behavior modification generated by the cycling and the strain rate. This experimental study allows to analyze the thermal dissipation and the evolution of the hysteresis width. A review of the literature about experimental works on SMA cyclic behavior ͓6-9͔ led to the conclusion that no previous experimental study had been driven on Cu-Al-Be SMA, so we mainly used this material to enlarge our skills field.

The present paper is divided into 4 parts:

1. A complete experimental study is presented. First, a Ni-Ti alloy was briefly studied by performing a quasistatic cyclic tensile test and a tensile cyclic test at 5 Hz with increasing maximum strain. These tests were mainly performed on JRC-ISPC in ISPRA ͑Italy͒. Then two Cu-Al-Be were studied, the first one was austenitic at room temperature and the second one was martensitic at room temperature. For these two materials, large strain rate amplitudes were applied on cyclic tensile tests. Moreover an infrared camera was used to measure the temperature variation on the sample surface during each test. 2. A phenomenological cyclic thermomechanical model is developed. This modeling is based on the general thermodynamic framework built by Raniecki and Lexcellent ͓5͔ where three internal variables have been introduced: the residual stress, the residual strain, and the volume fraction of residual martensite at free stress state accumulated during the cycling. In order to complete this part, a modeling of the thermal dissipation during cyclic tests is developed by performing a study based on the heat equation. 3. In this part the concept of equivalent complex Young's modulus is introduced in order to describe the damping and the stiffness of the SMA samples. Therefore this modulus is linked to the phenomenological model through the strain energy densities over one period and one quarter of a period. 4. The numerical predictions given by the cyclic thermomechanical model are presented and compared to the experimental results. The impact of the phenomenological cyclic modeling on the equivalent complex Young's modulus real and imaginary parts is discussed. Finally, temperature variation predictions are presented.

1 Corresponding author.

Shape memory alloys (SMA) are good candidates for being integrated in composite laminates where they can be used as passive dampers, strain sensors, stiffness or shape drivers. In order to improve the SMA modeling and develop the use of these alloys in structural vibration control, better understandings of cyclic behavior and thermal dissipation are needed. The present study investigates experimentally the cyclic behavior of SMA and more particularly, the influence of strain rates on three different materials. The thermal dissipation aspect is also studied using an infrared camera. A phenomenological model based on the RL model [START_REF] Raniecki | R L Models of Pseudoelasticity and Their Specifications for Shape Memory Solids[END_REF], "RL Models of Pseudoelasticity and Their Specification for Shape Memory Solids." Eur. J. A/Solids, 13, pp. 21-50) is then presented with the intention of modeling the behavior's alterations due to the cycling. By introducing the thermodynamic first principle, a study of the heat equation is developed in order to predict the temperature evolution during a cyclic tensile test. Furthermore, in order to model the damping effect created by the hysteresis phenomenon and the stiffness variation due to the phase transformation, an equivalent nonlinear complex Young's modulus is introduced. This notion usually used for viscoelastic materials is adapted here to SMA. Moreover, the impact of cycling on the equivalent modulus is presented. As a conclusion, a numerical results panel obtained with the phenomenological cyclic SMA model, the heat equation, and the equivalent complex Young modulus is presented.

Keywords: shape memory alloys, cyclic behavior, thermal dissipation, thermomechanical modeling, nonlinear modeling The first for modeling the cyclic behavior of SMA is to build a database with experimental tests on different materials. Three different materials were studied: a Ni-Ti and two Cu-Al-Be. The Ni-Ti and the first Cu-Al-Be were austenitics at room temperature while the second Cu-Al-Be was martensitic at room temperature. These three materials allowed to explore a large field of SMA behaviors in order to quantify the effect of cycling and the strain rate impact.

Ni-Ti Study.

For this material the tests were performed partly in our laboratory on an electrical powered tensile machine Instron 6250. The other part of the tests was done on the JRC-ISPC laboratory tensile machines. Both of these tests were performed on 2 mm diameter Ni-Ti wires.

2.1.1 Quasistatic Cyclic Tests. This test was performed at a strain rate of 10 -4 s -1 . On the strain-stress curve in Fig. 1 we can observe all the "classical" elements of a cyclic test. The first element to notice is the decrease of the outset of the direct phase transformation with the number of cycles. For the outset of the reverse phase transformation, no significant variation occurs during the cycling ͑Fig. 2͒. The second important fact to point out is a residual strain remaining for a free stress state. At last after a given number of cycles the sample tends to reach a stabilized behavior.

Basically for all the observed parameters the most important variation occurred between the first and the second cycle and less significantly between the second and third cycle, then the parameters variations are slower.

Strain Rate Influence.

In order to study the strain rate impact and the maximum strain influence, the test presented in Fig. 3 was performed. The sample was loaded under a cyclic, tensile deformation with an increasing maximum strain from 3.5% to 8% at a frequency of 5 Hz ͑the equivalent strain rates are given in Table 1͒. The shape of the cycles is very different from the one observed on the quasistatic tests. The phase transformation plateaus for direct and reverse transformations have disappeared. Moreover the area of the cycles is smaller and the stress reached for a strain of 7% is about 900 MPa versus 700 MPa for quasistatic tests.

From a thermal point of view a huge increase of the temperature ͑Fig. 4͒ from 25°C to 60°C can be noticed. Furthermore the slope of the temperature curve increases with the increase of the maximum stress. For this test the temperature variation was measured by a thermal probe. The tests performed on this material were done on an hydraulic powered tensile machine referenced Instron 8501. The maximum strain was imposed and controlled by an extensometer. In order to measure the thermal dissipation a CEDIP infrared system was used. This system consists of an infrared camera referenced Jade MWIR and the ALTAIR software ͓10͔. Cylindrical Cu-Al-Be samples designed for tensilecompression tests were used. The samples were loaded under a cyclic, tensile, sinusoidal deformation between the strains of 0% and 7%. It is important to underline that each test was performed on a virgin sample.

2.2.1 Quasistatic Cyclic Tests. This test was performed at a strain rate of 10 -4 s -1 . On the Cu-Al-Be strain-stress curves ͑Fig. 5͒ almost the same behaviors than for Ni-Ti can be observed: decrease of the outset of the direct phase transformation, decrease of the cycle area with the number of cycles, and no significant variation of the outset of the reverse phase transformation. Nevertheless an important difference can be underlined: the residual strain at a free stress state is more important, 3% for the Cu-Al-Be versus 1% for the Ni-Ti. At last it is important to notice the "memory point" aspect, also called "return memory point" by Ortin ͓11͔͑i.e., at the end of the loading for each cycle the sample finds back the same stress-strain state; 440 MPa for 7%͒.

Like for the Ni-Ti the most important variation for all the observed parameters occurred between the first and the second cycle and less significantly between the second and third cycle.

Strain Rate Influence on Mechanical

Behavior. In order to study the strain rate influence on the cyclic behavior of this material, cyclic, tensile, sinusoidal tests were performed at four different strain rates ͑including quasistatic tests͒ from 10 -4 s -1 to 2 ϫ 10 -1 s -1 , the results are given in Fig. 6. In this figure the shape of the hysteresis for each strain rate are compared after 100 cycles. For Piedboeuf et al. ͓9͔ the mechanical behavior is stabilized after 100 cycles. After the study of the superposition of the four stabilized cycles for this Cu-Al-Be it is clear that the strain rate has no significant influence when it comes to compare of shape, area and apparent slope of the stabilized hysteresis cycle.

Strain Rate Influence on Thermal Dissipation.

For the first test at 10 -4 s -1 Fig. 7͑a͒ shows an isothermal profile during the cycling, and the temperature variation is around 0.2°C which is not significant compared to the room temperature variation. For the second test at 10 -2 s -1 the thermal profile is different ͑Fig. 7͑b͒͒, the first cycle reaches the maximum temperature of 27.5°C.

Then, the maximum temperature decreases cycle after cycle to reach 26.5°C in the stabilized state. During each cycle of this test the temperature variation is about 4 °C. The last two tests at 10 -1 s -1 and 2 ϫ 10 -1 s -1 exhibit the same thermal profile ͑Figs. 8͑a͒ and 8͑b͒͒ the temperature constantly increases during the cycling even after more than 200 cycles. Compared to the room temperature, the increase is about 4 °C after 50 cycles. The differences between the tests come from the different equilibrium between the heat diffusion produced by the phase transformation in the material and the heat dissipation capacity of the boundaries. This experimental study demonstrates that for an increasing strain rate the used Cu-Al-Be has a different behavior than the Ni-Ti. For this Cu-Al-Be there is no significant change of the stabilized cycle when the strain rate is multiplied by 2000, whereas the thermal dissipation is greatly influenced.

Cu-Al-Be

Martensitic at Room Temperature. Finally, in order to complete the experimental database, a Cu-Al-Be martensitic at room temperature was tested ͑Cu-Al-Be ͑2͒͒. The testing conditions for this material are the same than previously. In a practical way, the samples were prestrained at 1.65% and loaded under a cyclic, tensile, sinusoidal deformation between the strains of 1.30% and 2%. It is important to underline that each test was performed on a virgin sample.

Quasistatic Cyclic Tests.

The material behavior is very different from the two others. Indeed this material is martensitic at room temperature and there is no phase transformation during the cycling but martensite reorientation. As shown in Fig. 9, the stress-strain curve given by this quasistatic test at 10 -4 s -1 is very different from the other quasistatic curves ͑Figs. 1 and 5͒. A small decrease of the cycle area and a significant variation of the sample stiffness during the cycling can be observed. It is relevant to notice once again that for all the observed parameters the most important variation occurred between the first and the second cycle and less significantly between the second and third cycle. Finally, after a given number of cycles the sample tends to reach a stabilized behavior.

Strain Rate Influence on Mechanical

Behavior. For this material the previous method was used in order to study the strain rate impact on the cyclic behavior: cyclic, tensile, sinusoidal tests at four different strain rates ͑including quasi static tests͒ from 10 -4 s -1 to 10 -1 s -1 were performed. The results are given in Fig. 10 where the shape of the stabilized cycle obtained after 100 cycles are compared for each strain rate. The superposition of the four stabilized cycles shows no significant influence when it comes to compare shape, area, and apparent slope.

Strain Rate Influence on Thermal Dissipation.

For this material each strain rate gives a different thermal curve. For the quasistatic-test ͑Fig. 11͑a͒͒ a temperature variation between 22.25°C and 22.5°C can be observed for each cycle ͑the room temperature is around 22.3°C͒. For the second test ͑Fig. 11͑b͒͒,at a strain rate 10 times higher, the first cycle reaches the maximum temperature of the test ͑24.75°C͒. Then the maximum temperature decreases during around 10 cycles, afterwards it is stabilized between 24.15°C and 24.55°C ͑the room temperature is around 24.5°C͒. For the third test ͑Fig. 12͑a͒͒ at 10 -2 s -1 the reverse phenomenon can be noticed. Attention can be paid to an increase of the temperature during 20 cycles from the room temperature ͑25.25°C͒ to a maximum temperature of 26°C. After these 20 cycles the temperature variation is stabilized between 25.6°C and 26°C. The last test ͑Fig. 12͑b͒͒ shows a constant increase of the temperature from 26°C to 30°C, and there is no temperature stabilization after more than 200 cycles.

As a conclusion to this experimental set it is important to highlight that for this Cu-Al-Be the heat produced by the sample does not come from phase transformation but from martensite platelets rubbing and less significantly from martensite platelets reorientation. Besides no significant differences are observed for this ma- terial between stabilized cycles when the strain rate is multiplied by 1000, but an important impact of the strain rate on the heat dissipation can be underlined.

Conclusions.

Large amplitudes of strain rates on three different materials have been studied. The three materials show different behaviors. The more sensitive material to the strain rate increase is the Ni-Ti with a huge heat dissipation and a significant decrease of the hysteresis cycle area leading to a decrease of the dissipated mechanical energy. For the two Cu-Al-Be similar conclusions can be done: there is no significant influence of the strain rate on the mechanical behavior but a relevant influence on the thermal dissipation. The martensitic Cu-Al-Be at room temperature proves to be more stable during the cycling, that is why this material seems to have a great potential for structural damping.

Modeling of Cyclic Behavior

A few good models exist in the literature ͓12-15͔ to model the cyclic behavior of SMA. An improved version of the model proposed by Lexcellent and Bourbon ͓12͔ is first developed here. Then as the experimental results presented in this paper show the importance of the thermal diffusion, a complete heat equation study based on the first principle of the thermodynamic ͑the conservation law͒ is presented.

Cyclic Thermomechanical

Modeling. This modeling of the SMA cyclic behavior is based on the general thermodynamic framework used by Raniecki and Lexcellent ͓5͔ in the R L model. Furthermore, the present modeling uses parts of the unified SMA model by Leclerq and Lexcellent ͓16͔. The main hypothesis of this unified model is to distinguish two kinds of martensites: the oriented martensite z and the self-accommodating martensite z T with z = z + z T ͑1͒

Residual Martensite.

A new hypothesis is added to the R L model: the residual strain at a free stress state after a given number of loading and unloading is given by the volume fraction of residual martensite. In order to link this two parameters the same kind of relation than the usual behavior law tr = ␥ • z can be used, where ␥ is the maximum strain associated to a complete phase transformation during a tensile test,

ir = ␥ . h ͑2͒
where ir is the residual strain at =0, h is the fraction of residual martensite. The difference between h and z is similar to the difference between the notions of total and permanent strains in the classical theory of plasticity. The introduction of this new variable involves a few hypotheses about its variation. We assume that the existence and growing of the residual fraction of martensite are dependent on the volume fraction of oriented martensite,

z ˙ Ͼ 0 Þ h ˙ജ 0 z ˙ ഛ 0 Þ h ˙=0 ͑3͒
We also stipulate a second hypothesis concerning the existence of a stabilized cycle; this hypothesis is confirmed by the experiments presented in the previous part of this paper and by the work of Myazaki ͓17͔. This hypothesis imposes a saturation value h ϱ for the residual martensite.

Modeling.

The model is developed by writing the specific free energy of the system at a nonequilibrium state. The system consists of three phases: ͑1͒ the mother phase austenite, ͑2͒ the self-accommodating martensite, ͑3͒ the oriented martensite. The specific free energy of each phase is defined by 

͑1͒ = u 0 *͑1͒ -T . s 0 *͑1͒ + E 2. ͑ ͑1͒ -T ͑1͒ ͒ 2 + C v ͩT-T 0 -T •lnͩ T T 0 ͪͪ+ h *͑1͒ ͑2͒ = u 0 *͑2͒ -T . s 0 *͑2͒ + E 2. ͑ ͑2͒ -␥ . z -T ͑2͒ ͒ 2 + C v ͩT-T 0 -T •lnͩ T T 0 ͪͪ+ h *͑2͒ ͑3͒ = u 0 *͑3͒ -T . s 0 *͑3͒ + E 2. ͑ ͑3͒ -␥ . z -T ͑3͒ ͒ 2 + C v ͩT-T 0 -T •lnͩ T T 0 ͪͪ+ h *͑3͒

͑4͒

The term h *͑␣͒ is the contribution of the cycling to the free energy, and is defined by the equation

h *͑␣͒ ͑h,T͒ = u h *͑␣͒ -T . s h *͑␣͒ avec h *͑␣͒ ͑0,T͒ =0 ͑5͒
The specific free energy of the system is written as follows:

= ͑1-z͒ ͑1͒ + z T ͑2͒ + z ͑3͒ + ⌬ ͑6͒ with ⌬ = z T ͑1-z͒ 12 + z ͑1-z͒ 13 + z T z 23 ͑7͒
where ␣␤ is the energy of interaction between phases ␣ and ␤.It is important to underline that the two kinds of martensite cannot be distinguished from a physical point of view so

12 = 13 = it 23 = m it u 0 2 = u 0 3 = u 0 m s 0 2 = s 0 3 = s 0 m ͑8͒
Thus, at a constrained equilibrium state, the specific free energy of the system can be written:

͑,T,z T ,z ,h͒ = E 2. ͑ -␥ . z -T ͒ 2 + C v ͩ͑T-T 0 ͒ -T lnͩ T T 0 ͪͪ+ * ͑T,z͒ + tr ͑T,z,h͒͑ 9͒ with ͩ-. ץ ץ ͪ ˙-. ͩs+ ץ ץT ͪT ˙-ץ ץz z ˙- ץ ץz T z T ˙-. ץ ץh h ˙ജ 0 ͑12͒
So, the entropy and the stress are written

s =- ץ ץT = ␣ 0 + C v lnͩ T T 0 ͪ+z͑1-z͒s 0 + s 0 *͑1͒ -z⌬s * + s h *͑1͒ ͑h͒ -z⌬s h ͑h͒͑ 13a͒ = . ץ ץ = E͑ -␥z -␣ 0 ͑T -T 0 ͒͒ ͑13b͒
The three thermodynamical forces associated to z , z T , and h are

⌸ f =- ץ ץz = ⌸ 0 f + ␥ . -͑1-2z͒ it -z T it m + ⌬⌸ 0 f ͑h,T͒ ⌸ T f =- ץ ץz T = ⌸ 0 f + ␥ . -͑1-2z͒ it -z it m ⌸ h =- ץ ץh =- ץ tr ץh = z ⌬͑ץ⌸ 0 f ͑h . T͒͒ ץh - ץ h *͑1͒ ץh ͑14͒ Moreover, by introducing Ά u h *͑2͒ ͑h͒ = 1 2 u ញ 2 h 2 -u 2 h s h *͑2͒ ͑h͒ = 1 2 s ញ 2 h 2 -s 2 h · ͑15͒ ͭ ញ ͑T͒ = u ញ 2 -T . s ញ 2 ¯͑T͒ = u ¯2 -Ts ¯2 ͮ ͑16͒ we obtain ⌬⌸ 0 f =- 1 2 ញ h 2 + ¯h ͑17͒
The existence of a stabilized cycle implies

when h → h ϱ ⌬ץ⌸ 0 f ץh =0Þ h ϱ = ញ ͑18͒
The complete description of the evolution of the thermodynamical behavior requires the knowledge of the kinetics equations for the two variables z and h. They should be formulated in a way such that the Clausius Duhem inequality is satisfied

dD = ⌸ f dz + ⌸ T f dz T + ⌸ h dh ജ 0 ͑19͒
where dD is the infinitesimal energy dissipation.

Transformations Kinetics.

By analogy with classical plasticity, four yield functions are defined: ⌿ AM ␣ for the direct transformation and ⌿ MA ␣ for the reverse one, with ␣ = for the oriented martensite and ␣ = T for the self-accommodated martensite. These functions are defined by

AM = ⌸ f -k AM MA =-⌸ f + k MA AM T = ⌸ T f -k AM T MA =-⌸ T f + k MA T ͑20͒
Reporting to the model developed by Leclerq ͓16͔, and applied to a cyclic loading, the functions k are defined by

k AM =2 it z -z m -h 1-h - ⌬s * a AM log 1-z + z m 1-h -⌬s * ͫ ͑T -T * ͒ + b AM b m * ͑exp͑-b m * ͑T -M s 0 ͒͒ -exp͑-b m * ͑T * -M s 0 ͒͒͒ ͬ ͑21a͒ k MA =2 it 1-z + z m 1-h - ⌬s * a MA log z -z m -h 1-h -⌬s * ͫ ͑T -T * ͒ + b MA b m ͑exp͑-b m ͑T -A s 0 ͒͒ -exp͑-b m ͑T * -M s 0 ͒͒͒ ͬ ͑21b͒ and k AM T =2 it ͑z T -z T m ͒ - ⌬s * a AM T log͑1-z T + z T m ͒͑ 22a͒ k MA T =2 it ͑z T -z T m -1͒ - ⌬s * a MA T log͑z T -z T m ͒͑ 22b͒ with a ␤ ␣ , b ␤ , b m * , b m ͑␣ = ,
T and ␤ = AM, MA͒ material parameters, and T * is the initial temperature.

The h parameter kinetic must satisfy three properties: 1. h ϱ must exist; 2. dhജ 0 when dz Ͼ 0; 3. dh= 0 when dz ഛ 0.

The simplest kinetic to comply with these properties is

dh = m 0 ͑h ϱ -h͒ p . ͗dz ͘ where ͭ ͗x͘ = xi f x ജ 0 ͗x͘ =0 if x Ͻ 0 ͮ ͑23͒
The identification of all the necessary parameters is fully explained in ͓12,16͔. Equation ͑20͒ permits us to define the transformation phases yield function and direction, so with Eqs.

͑21͒-͑23͒ we are now able to completely model the cyclic behavior of a shape memory alloy.

Thermal Dissipation

Modeling. This part presents a complete study of the heat equation using the model developed in Sec. 3.1. In the following study, the heat equation is used to calculate the temperature variation during the different tests. Indeed, the proposed model aims at linking the temperature to the different mechanical parameters.

Nature of the Problem.

The energy conservation law ͑first thermodynamic principle͒ allows us to write . u ˙= . ˙+ r -div͑q͒͑ 24͒ with u specific internal energy defined by u = + T, s; r the internal heat production volume density; q is the heat current vector, where is defined by Eq. ͑9͒ and s by Eq. ͑13a͒.

In order to obtain the usual expression of the heat equation, the equation u = + Ts has to be introduced in Eq. ͑24͒. Considering

u ˙= ˙+ sT ˙+ Ts ˙͑25͒ with ˙= ץ ץ ˙+ ץ ץT T ˙+ ץ ץz z ˙ + ץ ץz T z ˙T + ץ ץh h ˙͑26͒
and with

s ˙=-ͩ ץ 2 ‪Tץץ ˙+ ץ 2 ץ 2 T T ˙+ ץ 2 ץz ץT z ˙ + ץ 2 ץz T ץT z ˙T + ץ 2 ץhץT h ˙ͪ ͑27͒
we have to calculate

ץ ␣ץ and ץ 2 ‪Tץ␣ץ with ␣ = ͑,T,z ,z T ,h͒ 3.2.2 First Derivative Calculation ץ ץ = ͑28͒ ץ ץT =-s =-C v lnͩ T T 0 ͪ-s 0 *͑1͒ + z . ⌬s * -z͑1-z͒ . s 0 -z . z T . s 0 m -s h *͑1͒ + z . ⌬s h * ͑29͒ ץ ץz = z T . ir m - E . ␥ ͑ -␥ . z -␣ 0 ͑T -T 0 ͒͒ -⌬⌸ 0 f ͑h,T͒ -⌸ 0 f ͑T͒ + ͑1-2.z͒ it ͑30͒ ץ ץz T = z . ir m - E . ␥ ͑ -␥ . z -␣ 0 ͑T -T 0 ͒͒ -⌬⌸ 0 f ͑h,T͒ -⌸ 0 f ͑T͒ + ͑1-2.z͒ it ͑31͒ ץ ץh = ͑u 1 ញ -Ts 1 ញ ͒ . h -͑u 1 -T . s 1 ͒ -.z . ͑ ញ . h + ¯͒͑ 32͒
ץ / ץh is calculated using Eqs. ͑15͒-͑17͒.

Second Derivatives Calculation

ץ 2 ץ 2 T = -C v T ͑33͒ ץ 2 ‪Tץץ =-␣ 0 E ͑34͒ ץ 2 ‪zץץ =-s 0 m z T + E␥␣ 0 + ⌬s h * ͑h͒ + ⌬s * -͑1-2z͒s 0 ͑35͒ ץ 2 ‪zץץ T =-s 0 m z + E␥␣ 0 + ⌬s h * ͑h͒ + ⌬s * -͑1-2z͒s 0 ͑36͒ ץ 2 ‪hץץ =-s 1 ញ h + s 1 -zͩ ץ ញ ץT h + ץ ץ T ͪ ͑37͒
The evolutions of ញ and ¯with T are explained in ͓12,18͔. .If we consider that the heat conduction follows an isotropic, linear Fourier law, the heat current vector becomes q =-k . grad͑T͒͑ 38͒ Thus Eq. ͑24͒ becomes u ˙= ˙+ k⌬T ͑39͒

Heat Equation

where ⌬ is the Laplacian operator. From Eqs. ͑25͒ and ͑39͒ we can write

u ˙= ˙+ k⌬T = ͑ ˙+ sT ˙+ Ts ˙͒͑ 40͒
with T ˙the particular derivative of T as

T ˙= ץT ץt + v . grad͑T͒͑ 41͒
where y is the particle speed ͑negligible for metallic materials load at low rates͒. Substituting Eqs. ͑41͒ and ͑28͒-͑37͒ in Eq. ͑40͒ we obtain the following result, which links the temperature variation to the mechanical parameters:

k⌬T -C v ץT ץt + h ˙Tzͩ ץ ញ ץT h + ץ ץ T ͪ = ͩz T u 0 m - E . ␥ ͑ -␥ . z + ␣ 0 T 0 ͒ -⌬u h * -⌬u * + ͑1-2.z͒u 0 ͪz ˙+ ͩz u 0 m - E . ␥ ͑ -␥z + ␣ 0 T 0 ͒ -⌬u h * -⌬u * + ͑1-2z͒u 0 ͪz T ˙-͑z͑ ញ h + ¯͒͒h ˙. ͑42͒
Numerical results obtained with this equation are presented in Sec. 5.

Nonlinear Behavior Modeling

4.1 Equivalent Complex Young's Modulus Notion. The equivalent complex Young's modulus is a powerful tool usually used to describe the elastic behavior and the damping properties of a viscoelastic material under dynamic loading ͓19,20͔. This equivalent modulus can be generalized to quantify, on the first harmonic, the response of a nonlinear hysteretic material.

First of all let us recall that for an isotropic viscoelastic material, the relaxation modulus E͑t͒ is defined by

͑t͒ = ͵ -ϱ t E͑t -͒ d͑͒ d d ͑43͒
where ͑t͒ and ͑t͒ are the stress and the strain defined for a uniaxial relaxation test. Furthermore, E͑t͒ is the sum of an asymptotic and a time dependant term

E͑t͒ = E ϱ + E * ͑t͒͑ 44͒ where E * ͑t͒ → 0 when t → ϱ.
Thus, Eq. ͑43͒ becomes

͑t͒ = E ϱ͵ -ϱ t d͑͒ d d + ͵ -ϱ t E * ͑t -͒ d͑͒ d d ͑45͒
and can be written

͑t͒ = E ϱ ͑t͒ + ͵ -ϱ t E * ͑t -͒ d͑͒ d d ͑46͒
By using a Fourier transform on the last equation we obtain

͑͒ = E ϱ ͑͒ + iE * ͑͒͑͒͑ 47͒ The complex term E * ͑͒ is defined by E * ͑͒ = E r * ͑͒ + iE i * ͑͒͑ 48͒
Assuming Eq. ͑48͒, Eq. ͑47͒ becomes

͑͒ = ͑E ϱ -E i * ͑͒ + iE r * ͑͒͒͑͒͑ 49͒
which can be written

͑͒ = E ¯͑͒͑͒͑ 50͒
where E ¯͑͒ is the equivalent complex Young Modulus. It can also be written E ¯͑͒ = E͑͒͑1+i E͑͒ ͒͑ 51͒ For the SMA, the hypothesis of an hysteretic damping can be stipulated. This assumption entails E͑͒ = E 0 and E͑͒ = 0 , thus

E ¯͑͒ = E 0 ͑1+i 0 ͒͑ 52͒

Equivalent Complex Youngs Modulus: Application to

SMA. If we consider a given vibrating state, the equivalent stiffness and damping of the material can be modeled by the following expression:

E ¯= E * ͑1+i͒͑ 53͒
In order to reach the harmonical balance on the first harmonic, an energetic equivalence is used. This harmonic balance is a generalization to the Fourier space of the averaging harmonic method developed by Krylov and Bogoliubov ͓21͔ and Bogoliubov and Mitropolsky ͓22͔.

Defining W 1 and W 1/4 the strain energy densities, respectively, accumulated during one period of vibration and one quarter of a period,

W 1 = ͵ 0 T :d W 1/4 = ͵ 0 T/4 :d ͑54͒
the harmonic balance leads to

W 1 = E * m 2 W 1/4 = E * 2 ͩ1+ 2 ͪ m 2

͑55͒

with m the maximum strain during the loading. It appears that the equivalent complex Young's modulus only depends on the chosen model and should be useful for a finite element simulation. Such approach was used in ͓23͔ in order to characterize the pseudoelastic damping behavior of SMA wires. A complete example based on a simplified R L model is also presented in ͓1͔ for the study of a SMA cantilever beam. The simplified R L is illustrated in Fig. 13. The original contribution of our study consists of studying the influence of cycling on the stiffness variation and damping by computing W 1 and W 1/4 with the cyclic model presented in Sec. 3. The numerical results of this study are given in the next section.

Numerical Results

In this section are presented the results of the numerical simulation on the Ni-Ti used in Sec. 2. The parameters used for these simulations are given in the Appendix.

The first result presented in Fig. 14 is the strain-stress curve obtained with the cyclic model presented in Sec. 3 of this paper. For the 20 cycles presented, the simulation seems to be good from a qualitative point of view. Indeed we can notice a decrease of the outset of the direct phase transformation, an increase of the residual strain with the number of cycle. Besides the experimental tests the most important variation occurs between the first and the second cycle and less significantly between the second and third cycle. At last the appearance of a stabilized cycle can be observed.

For the first and the 20th cycles Figs. 15͑a͒ and 15͑b͒ present the comparison between the experimental and the simulated cycles. For most parameters the results are convincing. For the first cycle the simulation is in very good agreement with the experimental curve. For the 20th cycle the agreement is good for the outset of the direct phase transformation and for the residual strain but the result is less obvious for the outset of the reverse phase transformation. This problem is intrinsic to the proposed model and has to be studied further.

In order to confirm the feeling of these first observations, Figs. 16͑a͒ and 16͑b͒ are proposed. For each cycle between the first and the 20th, the outset of the direct phase transformation is well predicted as confirmed by Fig. 16͑a͒. In Fig. 16͑b͒ we can note the good agreement between the computed and the experimental fraction of residual martensite. The residual fraction of martensite is calculated from the residual strain using Eq. ͑2͒.

As a conclusion to the cyclic model, it is important to comment the influence of the cyclic behavior of the Ni-Ti on the nonlinear modeling. In Fig. 17 we can observe on the real part of the equivalent complex Young's modulus that the stiffness decreases with the number of cycles. On the imaginary part the damping seems to increase. This simple observation shows the importance in taking into account the change of the behavior with the cycling to realize a good prediction of the nonlinear behavior thanks to the equivalent complex Young's modulus. At last, predictions of the temperature variations during cyclic tests using the heat equation modeling presented in Sec. 4 are done for the austenitic Cu-Al-Be. These simulations are realized on 50 cycles. The results for the four strain rates from 10 -4 to 2 ϫ 10 -1 s -1 are presented in Figs. 18 and19. We can observe in these figures that the thermal behavior is well predicted excepted for the strain rate of 2 ϫ 10 -1 s -1 where a small drift can be noticed. It is important to highlight that the results observed in Sec. 2 for this material allows us to use a weak coupling between mechanical and thermal behaviors.

Conclusions

The cyclic behavior of the three alloys has been experimentally studied. For the Ni-Ti, the strain rate has an important influence on the mechanical behavior, but for the two Cu-Al-Be there are no significant differences on the stabilized cycles with the strain rate. For these two copper alloys, the most important fact to observe is the huge heat dissipation during the cycling. In the second part a model of the cyclic behavior of the SMA based on the notion of residual fraction of martensite was presented. It was built on an R L model base and a complete study of the heat equation was added in order to be able to predict the temperature variation during the cycling.

In the third part of the paper a simple method was presented in order to model the nonlinear behavior of SMA during dynamical loading. This equivalent complex Young's modulus is a powerful tool to be used with the finite element method for simulations.

At last the results of a few numerical simulations were presented. They show clearly that it is highly important to care about the change of the behavior with the cycling to predict the stiffness and damping variations. Moreover we succeeded in predicting the temperature variations for an austenitic SMA.

In the future, the next step will consist of using the work made on the heat equation in order to compute the temperature during the different tests for martensitic shape memory alloys. Furthermore we want to improve our knowledge of damping on SMA by performing some experiments on Cu-Al-Be wires using a nonlinear identification method based on the wavelet transform.

This study permits us to improve the nonlinear modeling of SMA in order to develop and optimize applications for the control and the damping in civil engineering. MA ϭ outset stress of the reverse phase transforma- tion M → A ␣ ϭ 1 for the austenite ␣ ϭ 2 for the oriented martensite, 3 for the self- accommodated martensite

Mechanical variables

ϭtotal strain ir ϭ residual strain at a free stress state T ϭ total thermal strain ͑␣͒ ϭ ␣ phase strain T ͑␣͒ ϭ ␣ phase thermal strain ϭ strain Thermodynamical variables and functions T ϭ system temperature T 0 ϭ reference temperature C v ϭ specific heat u 0 ϭ system configuration internal energy s 0 ϭ system configuration entropy it ϭ system configuration free specific energy ͑␣͒ ϭ ␣ phase free specific energy ϭ biphased system free specific energy u 0 *͑␣͒ ϭ ␣ phase internal energy at reference state s o *͑␣͒ ϭ ␣ phase entropy at reference state ⌸ 0 f ϭ temperature induce phase transformation at free stress state driving force ⌸ ␣ f ϭ phase transformation driving force ͑associated with z ␣ , ␣ = T, ͒ ⌸ h ϭ phase transformation driving force ͑associated with h͒ ͑␣͒ ϭ ␣ phase transformation yield function k ͑␣͒ ϭ ␣ phase transformation kinetic s ϭ system specific entropy u ϭ system free energy q ϭ system specific heat transfer ⌬⌸ 0 f ϭ thermodynamic force associated with h ញ , ¯ϭ T functions defining ⌬⌸ 0 f m 0 , p ϭ constants associated with h kinetics h ϱ ϭ h saturation value

Appendix: Simulations Main Parameters

Ni-Ti

ϭ 6500 kg m -3 E ϭ 60,000 MPa ␣ 0 ϭ 11e -6 K -1 ␥ ϭ 6% M s 0 ϭ 213 K A s 0 ϭ 248 K u 0 ϭ 1997 J Kg -1 s 0 ϭ 3.13 J kg -1 K -1 ⌬u ¯ϭ 15,898 J kg -1 ⌬s ¯ϭ 68 J kg -1 K -1 ញ ϭ 70,000 J kg -1 h ϱ ϭ 0.2 m 0 ϭ 2.1 p ϭ 1

Cu-Al-Be(1)

ϭ 7500 kg m -3 E ϭ 75,000 MPa ␣ 0 ϭ 17e -6 K -1 ␥ ϭ 6% M s 0 ϭ 213 K A s 0 ϭ 253 K C v ϭ 794 J kg -1 K -1 @25°C u 0 ϭ 472 J kg -1 s 0 ϭ 0Jk g -1 K -1 ⌬u ¯ϭ 5600 J kg -1 ⌬s ¯ϭ 24 J kg -1 K -1 ញ ϭ 100,000 J kg -1 h ϱ ϭ 0.3 m 0 ϭ 10 p ϭ 1.1 u 1 ϭ 9.7e 4 Jkg -1 u 1 ញ ϭ 1.8e 6 Jkg -1
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 2 Fig. 1 Ni-Ti cyclic test at 25°C,
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 4 Fig. 4 Ni-Ti dynamic test "5H z …: temperature variation

Fig

  Fig. 5 Cu-Al-Be"1… cyclic test at 22°C, ˙=10 -4 s -1 Fig. 6 Cu-Al-Be"1… stabilized cycles comparison after 100 cycles
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 8 Fig. 8 Cu-Al-Be"1… temperature variation: "a… test at 10 -1 s -1 ; "b… test at 2 Ã 10 -1 s -1
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 12 Fig. 12 Cu-Al-Be"2… temperature variation: "a… test at 10 -2 s -1 ; "b… test at 10 -1 s -1 Fig. 11 Cu-Al-Be"2… temperature variation: "a… test at 10 -4 s -1 ; "b… test at 10 -3 s -1
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 13 Fig. 13 Simplified nonlinear model of the adiabatic transition
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 14 Fig. 14 Ni-Ti quasistatic cyclic test: numerical simulation
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  Fig. 18 Cu-Al-Be"1… temperature variation simulation: "a… test at 10 -4 s -1 ; "b… test at 10 -2 s -1 Fig. 19 Cu-Al-Be"1… temperature variation simulation: "a… test at 10 -1 s -1 ; "b… test at 2 Ã 10 -1 s -1

Table 1 Equivalent strain rate for a frequency of 5 Hz

  

	Maximum strain ͑%͒	3.5	5	6.5	8
	Equivalent strain rate 10 -1 s -1	1.2	2.7	4.2	5.7