Probabilistic graph-coloring in bipartite and split graphs (Exented version of cahier du LAMSADE 218) - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Probabilistic graph-coloring in bipartite and split graphs (Exented version of cahier du LAMSADE 218)

Résumé

We revisit in this paper the stochastic model for minimum graph-coloring introduced in (C. Murat and V. Th. Paschos, On the probabilistic minimum coloring and minimum k-coloring, Discrete Applied Mathematics 154, 2006), and study the underlying combinatorial optimization problem (called probabilistic coloring) in bipartite and split graphs. We show that the obvious 2-coloring of any connected bipartite graph achieves standardapproximation ratio 2, that when vertex-probabilities are constant probabilistic coloring is polynomial and, finally, we propose a polynomial algorithm achieving standardapproximation ratio 8/7. We also handle the case of split graphs. We show that probabilistic coloring is NP-hard, even under identical vertex-probabilities, that it is approximable by a polynomial time standard-approximation schema but existence of a fully a polynomial time standard-approximation schema is impossible, even for identical vertex-probabilities, unless P = NP. We finally study differential-approximation of probabilistic coloring in both bipartite and split graphs.
Fichier principal
Vignette du fichier
cahierLamsade268.pdf (553.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00179422 , version 1 (15-10-2007)

Identifiants

  • HAL Id : hal-00179422 , version 1

Citer

N. Bourgeois, Federico Della Croce, Bruno Escoffier, Cecile Murat, Vangelis Th. Paschos. Probabilistic graph-coloring in bipartite and split graphs (Exented version of cahier du LAMSADE 218). 2007. ⟨hal-00179422⟩
112 Consultations
49 Téléchargements

Partager

More