Bruno Escoffier
email: escoffier@lamsade.dauphine.fr

Jérôme Monnot
email: monnot@lamsade.dauphine.fr

Olivier Spanjaard
email: olivier.spanjaard@lip6.fr

Some tractable instances of interval data minmax regret problems: bounded distance from triviality

Keywords: Robust optimization, Interval data, Shortest path, Spanning tree, Bipartite perfect matching

This paper focuses on tractable instances of interval data minmax regret graph problems. More precisely, we provide polynomial and pseudopolynomial algorithms for sets of particular instances of the interval data minmax regret versions of the shortest path, minimum spanning tree and weighted (bipartite) perfect matching problems. These sets are defined using a parameter that measures the distance from trivial instances. Tractable cases occur when the parameter is bounded by a constant. Two kinds of parameters are investigated, measuring either the distance from special weight structures or the distance from special graph structures.

Introduction

In recent years there has been a growing interest in robust optimization problems [START_REF] Kouvelis | Robust Discrete Optimization and Its Applications[END_REF]. Studies in this field concern problems where some parameters are ill-known due to uncertainty or imprecision. Usually, in valued graph optimization problems, the ill-known parameters are the valuations. In such a case, a set of scenarios is defined, with one scenario for each possible assignment of valuations to the graph. Two approaches can be distinguished according to the way the set of scenarios is defined: the interval model where each valuation is an interval and the set of scenarios is defined implicitly as the cartesian product of all the intervals; the discrete scenario model where each valuation is a vector, every component of which is a particular scenario. Intuitively, a robust solution is a solution that remains suitable whatever scenario finally occurs. Several criteria have been proposed to formalize this: the minmax criterion consists of evaluating a solution on the basis of its worst value over all scenarios, and the minmax regret criterion consists of evaluating a solution on the basis of its maximal deviation from the optimal value over all scenarios. We will mainly focus here on the robust shortest path problem (RSP for short), the robust minimum spanning tree problem (RST for short) and the robust weighted (bipartite) perfect matching problem (R(B)PM for short), with the minmax regret criterion in the interval model.

Formally, an interval data minmax regret network optimization problem can be defined as follows. Let G = (V, E) be a given directed or undirected graph. A feasible solution is a subset π ⊆ E satisfying a given property Π (for example, being a path or a tree). Each edge e ∈ E is valued by an interval I e = [l e ; u e] of possible weights. The set of scenarios is the cartesian product S = e∈E I e . In other words, a scenario s ∈ S consists in assigning a weight w s (e) ∈ I e for every e ∈ E. For any feasible solution π and any scenario s ∈ S, the value of π under scenario s is w s (π) = e∈π w s (e) and its regret under scenario s is R s (π) = |w s (π)opt(s)|, where opt(s) is the value of an optimal solution for the standard instance valued by w s . The max regret of solution π is defined by R(π) = max s∈S R s (π). The aim of a minmax regret optimization problem is to find a feasible solution π * minimizing R(π *). Note that, for a minimization problem, R(π) = R s(π) (π), where s(π), called worst case scenario for π, is defined by w s(π) (e) = u e if e ∈ π and w s(π) (e) = l e otherwise [START_REF] Averbakh | On the complexity of a class of combinatorial optimization problems with uncertainty[END_REF].

In this paper, we consider tractable instances of RSP and RST, that have been proved strongly NP-hard [START_REF] Averbakh | Interval data minmax regret network optimization problems[END_REF] in the general case, as well as tractable instances of RBPM, the restriction of which to complete bipartite graphs (known as the interval data minmax regret assignment problem) has been proved NP-hard [START_REF] Kasperski | Minimizing maximal regret in the linear assignment problems with interval costs[END_REF]. For this purpose, as suggested by Guo et al. [START_REF] Guo | A structural view on parameterizing problems: Distance from triviality[END_REF], we introduce parameters that measure the distance from trivial instances. For example, if all the intervals of an instance reduce to a single pointdegenerate intervals-, then the robust optimization problem reduces to a standard optimization problem, and is therefore polynomially solvable provided that the standard version is polynomial. One can define the distance from this trivial case as the number k of non degenerate intervals. If this distance k is bounded by a constant, then the robust optimization problem is polynomially solvable by a brute force algorithm [START_REF] Averbakh | Interval data minmax regret network optimization problems[END_REF]. In this work, we focus on two kinds of parameters: the ones that measure the distance from special valuation structures (instances the minmax regret of which is zero, instances with linearly ordered valuations), and the ones that measure the distance from special graph structures (series-parallel graphs, trees). The paper is organized as follows. The first two sections deal with the first kind of parameters: we show that RSP and RBPM are polynomially solvable when the minmax regret is bounded by a constant k (Section 2), as well as RST when the number of intersecting intervals in the instance is bounded by a constant k (Section 3). More precisely, following parameterized complexity terminology [START_REF] Downey | Parameterized Complexity[END_REF], these two problems are respectively in XP (problems solvable in O(n f (k)) for some function f) and in FPT (problems solvable in O(f (k)n c) for some constant c). The next sections deal with the second kind of parameters: we show that RSP is pseudopolynomial for graphs which are close to be series-parallel (Section 4), and that RSP and RBPM are pseudopolynomial for graphs with bounded treewidth and bounded degree (Section 5).

In the remainder of the paper, an edge e will be denoted by e = [v, w] if the graph is undirected and by e = (v, w) if the graph is directed with v as initial endpoint, and w as terminal endpoint. A directed graph will be denoted by G = (V, A) whereas an undirected graph will be denoted by G = (V, E). Given a (di)graph G = (V, E), n = |V | denotes the number of vertices and m = |E| denotes the number of edges. For graph theoretical terms not defined here, the reader is referred to Berge [START_REF] Berge | Graphs and hypergraphs[END_REF].

Upper bounded minmax regret

In this section, we investigate the hardness of solving an interval data minmax regret graph optimization problem when there exists a solution with bounded maximal regret. Note that studying instances where the optimum value is upper bounded is a classical way to understand the intrinsic difficulty of a combinatorial optimization problem (problems which become polynomially solvable in this case are called simple, see Paz and Moran [START_REF] Paz | Non deterministic polynomial optimisation problems and their approximation[END_REF]). Here, we first show that we can easily determine if there is a solution of maximal regret 0, i.e. a solution which is optimal under every possible scenario. Next, we show that for RSP and RBPM, we can extend this result to polynomially determine if there exists a solution of maximal regret at most k.

First, let us prove that the problem of the existence of a solution of maximal regret 0 can be easily solved for any interval data minmax regret graph optimization problem Π. We use a nice generic 2-approximation algorithm proposed by Kasperski and Zielinski [START_REF] Kasperski | An approximation algorithm for interval data minmax regret combinatorial optimization problems[END_REF]. For any instance I this algorithm outputs a solution π such that R(π) ≤ 2R(I) (where R(I) is the minmax regret of I). If R(I) = 0, then R(π) = 0, else since R(π) ≥ R(I), we have R(π) > 0. The expected result follows (Π being assumed to be polynomial). Now, by a reduction to the regret 0 case, we prove the following: Proposition 1 For RSP, the problem of determining if the minmax regret is at most k can be solved in time O(n 2 m k).

Proof.

Let I = (G, I E) be an instance of RSP and denote by r its optimum regret. Let us remark that if there exists a degenerate interval I e = {0} in I with e = (v 1 , v 2), then one can merge nodes v 1 and v 2 and get an equivalent instance (possibly with multiedges). In particular, we can assume that u e > 0 for any e. We construct m instances I 1 , . . . , I m of RSP as follows: I i is the same instance as I up to the interval [l i , u i] associated in I to e i which is transformed into [max{l i -1; 0}, u i -1]. We claim that:

1. r * i ≥ r -1 (where r * i denotes the optimum regret of I i); 2. if r * i = r -1 then any optimum solution for I i is optimum for I;

3. there exists at least one i such that r * i = r -1 (if r > 0).

If the claims are true, then by applying k times these procedures, I has an optimum regret at most k if and only if (at least) one of the final instances has optimum regret 0 (if at some point, we find an interval reduced to {0}, we can merge the corresponding nodes). We get m k instances; the generic 2-approximation algorithm is in O(n 2) for RSP, and the complexity follows. Claims (1) and (2) hold since the regret of any path π verifies R i (π) ≥ R(π)-1 (under any scenario, the value of any path has decreased by at most 1). For Claim (3), consider an optimum solution

π * = ((v 0 , v 1), • • • , (v p-1 , v p))
(where v 0 = s and v p = t) of I, and its worst case scenario s(π *) in I. We prove that there exists at least one edge e i ∈ π * such that no shortest path in s(π *) contains this edge. Note that if this is true, then consider instance I i : in s(π *), the value of the shortest path is the same in I and in I i , hence the regret of π * decreased by 1, and Claim (3) is true. Then, assume that for any i, there exists a shortest path π i (in s(π *)) which contains (v i-1 , v i). Let w i 1 be the value (in s(π *)) of this path between s and v i-1 and w i 2 its value between v i and t (hence w 1 1 = w p 2 = 0). Since π * has regret r, we get (s(π *) is omitted for readability) that

w(π i) = w i 1 + w i 2 + u (v i-1 ,v i) = w(π *) -r. (1)
Summing up we obtain:

p i=1 (w i 1 + w i 2) = pw(π *) -pr -p i=1 u (v i-1 ,v i) = (p -1)w(π *) -pr (2)
But remark that for each i ∈ {2, • • • , p} we can build a path of value w i 1 + w i-1 2 (composed by the initial part of π i from s to v i-1 and the final part of π i-1 from v i-1 to t). Then, since each of these paths has value at least w(π *)r:

p i=2 (w i 1 + w i-1 2) ≥ (p -1)(w(π *) -r) = (p -1)w(π *) -pr + r (3)
But since w 1 1 = w p 2 = 0, Equations (2) and (3) are incompatible for r > 0. 2

The central property, leading to Claim (3), is that, in an optimum solution π * for which R(π *) > 0, there exists at least one edge that does not belong to any optimum solution in s(π *). Actually, one can show that this property is also true for the interval data minmax regret perfect matching problem in bipartite graphs. For any instance I = (G, I E) of R(B)PM, we assume that G has a perfect matching (in particular, the number n of vertices of G is even).

Proposition 2 For RBPM, the problem of determining if the minmax regret is at most k can be solved in time O(n 2 m k).

Proof.

The proof is quite identical to the one of Proposition 1. Let I = (G, I E) be an instance of RBPM where G = (V, E) is a bipartite graph which admits a perfect matching and denote by r its optimum regret. Wlog, assume that l e > k for any e. Actually, by adding any constant c > 0 to each interval I e , we obtain an equivalent instance since all the perfect matchings have the same size. As previously, we build m instances I 1 , . . . , I m of RBPM where I i is the same instance as I up to the interval [l i , u i] associated in I to e i which is transformed to [l i -1, u i -1]. Using the same notation than those given in Proposition 1, we claim that:

(i) r * i = R(I i) ≥ r -1;
(ii) if r * i = r -1 then any optimum solution for I i is optimum for I;

(iii) there exists at least one i such that r * i = r -1 (if r > 0).

The proof of Claims (i) and (ii) is identical to the proof of Proposition 1. So, we only prove the Claim (iii). Consider an optimum solution π * = {e 1 , • • • , e n 2 } of I, and its worst case scenario s * (π *) in I. As previously, we prove that there exists at least one edge e i ∈ π * such that no perfect matching with minimum weight in s * (π *) contains this edge. Assume the reverse, and let

π i for i = 1, • • • , n
2 be a perfect matching with minimum weight w(π *)r which contains edge e i in scenario s * (π *) (note that eventually some π i are identical). Then, in scenario s * (π *) we have:

n 2 i=1 w(π i \ e i) = n -2 2 w(π *) - n 2 r (4)
On the other hand, the subgraph

G ′ induced by ∪ n 2 i=1 π i \ e i is (n 2 -1)- regular (we consider that G ′ is a multigraph, that is if an edge (x, y) appears p times in ∪ n 2
i=1 π ie i , then there are p parallel edges between x and y in G ′). Since G ′ is bipartite and (n 2 -1)-regular, G ′ can be decomposed into (n 2 -1) matchings π ′i for i = 1, . . . , n 2 -1. These matchings π ′i are perfect in G and if π ′ is a matching of minimum weight among the matchings π ′i for i = 1, . . . , n 2 -1, then the value of π ′ in scenario s * (π *) satisfies:

n -2 2 w(π ′) ≤ n 2 i=1 w(π i \ e i) (5)
Using equality (4) and inequality (5) we obtain w(π

′) ≤ w(π *) -(1 + 2 n)r, which is impossible for r > 0 since w(π ′) ≥ w(π *) -r.
By applying k times this method, we build m k instances such that I has an optimum regret at most k iff (at least) one of the final instances has optimum regret 0. Since we supposed that ∀e ∈ E, l e ≥ k for the initial instance, all the interval lower bounds in the final instances are non-negative. 2

Our method seems to be quite general and may be fruitfully applied to other problems, but however not to all of them. Indeed, the property leading to Claim (3) is no more true for some problems such as RST or RPM (in arbitrary graphs), and for them the question whether they are simple or not remains open. Figure 1 illustrates why the property does not hold for RPM in a non bipartite graph. The solution π * described by rigid lines is unique optimal solution for RPM. Its worst value is 6, its max regret is 2, and in its worst scenario s * (π *), each edge of π * belongs to a perfect matching of minimum weight.

Upper bounded number of interval intersections

As previously mentioned, RST and RSP are fixed parameter tractable (FPT) when the parameter is the number of non degenerate intervals (with a brute force algorithm). Minimum spanning trees have special properties that leads to another easy cost structure: when all intervals are disjoint (I e ∩ I f = ∅ for any edges e and f), any minimum spanning tree under any scenario is an optimum solution for RST [START_REF] Aron | On the complexity of the robust spanning tree problem with interval data[END_REF]. Indeed, Kruskal algorithm leads then to the same tree, independently of the scenario. This tree is optimal, and its regret is 0. Note that, on the other hand, if all intervals are [0, 1], then RST is NP-hard [START_REF] Aron | On the complexity of the robust spanning tree problem with interval data[END_REF][START_REF] Averbakh | Interval data minmax regret network optimization problems[END_REF]. Here, we show that considering as parameter the number of intervals that intersect at least one other interval, then RST is FPT. Although using brute force, the optimality of the algorithm is not obvious.

Proposition 3 RST can be solved in time O(2 k m log(m)),
where k is the number of intervals that intersect at least one other interval.

Proof.

Let I = (G, I E) be an instance of RST where G = (V, E) and I e = [l e , u e] for any e ∈ E. We define J = {I e 1 : ∃e 2 = e 1 , I e 1 ∩ I e 2 = ∅}, and set k = |J|. Let J ′ ⊆ J. We want to compute best (in terms of regret) spanning tree π such that π ∩ E J = E J ′ (where E J denotes the set of edges corresponding to intervals in J). If E J ′ contains a cycle, there is no such tree. If not, we proceed as follows: we remove from E the set E J\J ′ and, considering E J ′ part of the spanning tree, we complete it by applying Kruskal algorithm to the remaining graph (choosing any valuation w(e) ∈ [l e , u e] since the output does not depend on the value of an edge e ∈ J). Let π J ′ be the obtained solution.

Now, let π be a spanning tree such that π ∩ E J = E J ′ . We want to prove that R(π J ′) ≤ R(π). First, note that π J ′ and π agree on E J . Then, under any scenario where w(e) = u e for e ∈ E J ′ and w(e) = l e for e ∈ E J\J ′ , Kruskal algorithm will produce the same optimum solution π * . In particular π * is optimal both in s(π) and s(π J ′). However, π * has not the same value in these two scenarios. Then: R(π

J ′) -R(π) = w s(π J ′) (π J ′) -w s(π J ′) (π *) -w s(π) (π) -w s(π) (π *)
We upper bound this by considering each edge of the graph. If π J ′ and π agree on an edge e (either take it or not), then the difference is 0 for this edge, since this edge has the same value in s(π) and s(π J ′), and since we refer to the same tree π * . Note that this includes all edges in E J . If π J ′ and π disagree on e:

• either e is in π J ′ \ π. If e is not in π * , then in the regret it counts u e for π J ′ (u e for π J ′ and 0 for π *) and 0 for π (0 for π and 0 for π *). If e is in π * , it counts 0 for π J ′ and -l e for π. The loss (in terms of regret) from π J ′ respect to π is at most u e ;

• or e is in π \ π J ′ . If e is not in π * , then it counts 0 for π J ′ and u e for π. If e is in π * , it counts -l e for π J ′ and 0 for π. Then, respect to π, π J ′ "wins" at least l e .

these inequalities for all edges leads to:

R(π J ′) -R(π) ≤ e∈π J ′ \π u e - e∈π\π J ′ l e (6)
Now, recall that π and π J ′ agree on J, and that the intervals not in J do not intersect. Hence, whatever the value of edges not in J, π J ′ will have a better value than π. This is true in particular when the weight of each e ∈ J is fixed to u e if e is in π J ′ and to l e otherwise. This means that

e∈π J ′ \π u e ≤ e∈π\π J ′ l e (7)
Equations (6) and (7) lead to the result that π J ′ is the best tree π such that π ∩ J = J ′ .

To conclude, we only have to consider each possible J ′ ⊆ J, and take the best solution so computed. The global complexity is hence 2 k O(m log m). 2

Note that for RSP, making assumptions on interval intersections does not simplify the problem.

Proposition 4 RSP is NP-hard even if there are no intersection between intervals.

Proof.

We simply modify the instances given in [START_REF] Kasperski | The robust shortest path problem in seriesparallel multidigraphs with interval data[END_REF] showing that the problem is N P in series-parallel graphs. We have a set of n + 1 nodes v 1 , . . . , v n+1 . There an edge from v 1 to v n+1 , and two edges e 1

i and e i and e 2 i , we set

2 i from v i to v i+1 , i = 1, • • • , n Then a path from v 1 to v n+1 is either the edge (v 1 , v n+1) or contains exactly one edge from v i to v i+1 , i = 1, • • • , n.
• the interval of (v i , v 1 i) to [4iM + l 1 i , 4iM + u 1 i],
• the one of (v 1 i , v i+1) to [(4i + 3)M ; (4i + 3)M],

• the one of (v i , v 2 i) to [(4i + 1)M + l 2 i , (4i + 1)M + u 2 i],

• the one of (

v 2 i , v i+1) to [(4i + 2)M ; (4i + 2)M].
Moreover, we replace the interval [l, u] of the edge (v 1 , v n+1) by [l+K, u+ K], where K = n i=1 (8i + 3) = 3n + 4n(n + 1)M . Of course, there are no more intersection between intervals. Moreover, we have added a constant value (namely K) to any path from v 1 to v n . Since regrets are not modified by this transformation, the hardness follows. 2

Upper bounded reduction complexity

We now consider a particular class of directed acyclic graphs (DAGs), namely series-parallel graphs. This class can be defined using the following kinds of reductions in a DAG: (1) a series reduction at v is possible when e 1 = (u, v) is the unique edge into v and e 2 = (v, w) is the unique edge out of v: then e 1 and e 2 are replaced by e = (u, w); (2) a parallel reduction at u, w replaces two edges e 1 , e 2 joining u to w by a single edge e = (u, w). Two nodes s and t are distinguished as the source and the sink (st-DAG). A graph is said to be edge series-parallel (ESP) if it can be reduced to a single edge (s, t) by using such reductions. Kasperski and Zielinski have recently shown that is NP-hard in ESP graphs, but admits a pseudopolynomial algorithm in this case [START_REF] Kasperski | The robust shortest path problem in seriesparallel multidigraphs with interval data[END_REF]. this section, we extend this result to graphs close to be ESP. For the convenience of the reader, we first describe the basic principles of the pseudopolynomial algorithm for ESP graphs. It operates by applying a sequence of series and parallel reductions from the input graph G = (V, E) to a single edge (s, t). This sequence is given by an algorithm in O(m) to recognize ESP graphs [18], where m = |E|. In a reduced graph, a subset E i ⊆ E is associated with every edge e i . These subsets are defined recursively: the set {e} is associated with every e ∈ E; let e 1 , e 2 denote the edges involved in a reduction, then the set E 1 ∪E 2 is associated with the new edge. For every edge e i , the subgraph of induced by E i is denoted G e i . Let u π and R(π) denote respectively the worst value and the max regret of a path π in an induced subgraph G e . The principle of the algorithm is, for each reduction yielding a new edge e = (v, w), to keep only a minimal subset P e of non-dominated paths from v to w, where π dominates σ if u π ≤ u σ and R(π) ≤ R(σ). Indeed, those paths are potential subpaths of a minmax regret path from s to t in G. Initially, P e = {e} for every edge e. Then, for any new edge e obtained by a reduction involving e 1 and e 2 , set P e is computed from P e 1 ∪ P e 2 in a parallel reduction, and from P e 1 × P e 2 paths) in a series reduction. When the sequence of reductions concludes, there is only a single edge (s, t), and path π * = arg min π∈P (s,t) R(π) is a minmax regret path from s to t in G. Noticing that |P e | is upper bounded by L max , where L max is the value of the longest path from s t in G over all scenarios, the authors, thanks to a recursive computation of u and R (avoiding shortest path computations from scratch when computing R(π) for π ∈ P e 1 ∪ P e 2 or P e 1 × P e 2), establish that the running time is O(mL 2 max), and therefore pseudopolynomial.

We now extend this result to graphs close to be ESP. We first need measure how far a graph is from being ESP. For that purpose, the notion of reduction complexity has been introduced [START_REF] Bein | Optimal reduction of two-terminal directed acyclic graphs[END_REF]. It uses a third kind of reduction, called node reduction. Such a reduction can be performed at a node v when v has in-degree or out-degree 1: suppose v has out-degree 1, let e 1 = (u 1 , v), . . . , e δ = (u δ , v) be the edges into v and e δ+1 = (v, w) be the edge out of v, then {e 1 , . . . , e δ+1 } is replaced by {e ′ 1 , . . . , e ′ δ }, where e ′ i = (u i , w) (the case where v has in-degree 1 is symmetric). Note that every st-DAG can be reduced to a single edge (s, t) by iterating the three types of reductions. The reduction complexity of a graph G is defined as the minimum number of node reductions sufficient -along with series and parallel reductions-to reduce G to (s, t). There exists an O(n 2.5) algorithm to compute an optimal reduction sequence [START_REF] Bein | Optimal reduction of two-terminal directed acyclic graphs[END_REF] (i.e., involving a minimum number of node reductions), and hence to determine reduction complexity. Thanks to this, the result of Kasperski and Zielinski [START_REF] Kasperski | The robust shortest path problem in seriesparallel multidigraphs with interval data[END_REF] can be extended:

Proposition 5 RSP can be solved in time O(2 k m 2 L 2 max) in st-DAGs of reduction complexity k.
Proof. Let R denote the set of nodes involved in a node reduction. The idea is to compute, for of the 2 k subsets M ⊆ R, a robust shortest path paths including all nodes of M (Mandatory) and none of F = R \ M (Forbidden). We proceed as follows. Series and parallel reductions are handled as above up to the following: when computing P e , we restrict ourselves to paths including all nodes of M ∩G e , and excluding all nodes of F . A node reduction involving a node of in-degree or out-degree δ > 1 is performed as δ series reductions. Let P M (s,t) denote the (possibly empty) set of paths obtained when the sequence of reductions concludes. A minmax regret path is arg min{R(π) : π ∈ ∪ M ⊆R P M (s,t) }. Note that, due to node reductions, the value of R(π) in induced subgraphs must be computed from scratch. This reduces to find a shortest path in the worst case scenario, which requires time O(m) in DAGs. Hence, the overall complexity follows. 2

Upper bounded treewidth and max degree

The treewidth of a graph can be seen as a measure of how far it is from being a tree (the treewidth of a tree is 1). It is well-known that the treewidth of an (undirected) ESP graph is at most 2. A natural extension of the previous result is therefore to investigate complexity of RSP in graphs of bounded treewidth (more precisely, in graphs whose corresponding undirected simple graph has a bounded treewidth). Clearly, RSP is polynomially solvable in a graph the treewidth of which is k = 1 (G is a tree), or the max degree of which is ∆ ≤ 2 (G is a set of cycles and/or chains). However, it is NPhard when k = 2 and ∆ = 3 (since there is a polynomial reduction from the partition problem involving an ESP graph -without multiedges-of max degree 3 [START_REF] Kasperski | The robust shortest path problem in seriesparallel multidigraphs with interval data[END_REF]). We show here its pseudopolynomiality for bounded k and ∆.

Proposition 6 RSP can be solved in time O((n+m)2 ∆(k+1) ((n-1)u max) k+1) in graphs of treewidth k and max degree ∆, where u max = max

(i,j)∈A u ij .
composition of width k of G ′ , the idea is to consider the labeled tree (T, L ′) where L ′ (t) is the set of edges of G incident to some node in L(t). Indeed, one can show that (T, L ′) is then a tree decomposition of the line graph [START_REF] Atserias | On digraph coloring problems and treewidth duality[END_REF]. We now show that (T, L ∪ L ′) is a tree decomposition of IG (where we identify a vertex or an edge of G with the corresponding variable in the ILP). Proof of (ii). By using a method related to non-serial dynamic programming [START_REF] Bertele | Nonserial Dynamic Programming[END_REF], we now show how to solve an ILP in the following general form:

(P)    min n j=1 c j x j n j=1 a ij x j R i b i where R i ∈ {≤, =, ≥} ∀i ≤ m x j ∈ D j
For this purpose, let us introduce the notion of subprogram of an ILP. For each node t of T , P (t) denotes the subprogram of P restricted to the variables whose indices belong to D(t) = t ′ L(t ′) for t ′ = t or t ′ a descendant of t:

(P (t))    min j∈D(t) c j x j n j=1 a ij x j R i b i ∀i : [∀j, (a ij = 0 ⇒ j ∈ D(t))] x j ∈ D j , j ∈ D(t)
For t ∈ T and A : L(t) → Π j∈L(t) D j assignment of values to variables of L(t), let R t (A) denote the min value of a feasible solution x of P (t) under the constraint x j = A(j) ∀j ∈ L(t). One sets R t (A) = +∞ if no feasible solution of P (t) is compatible with A. dynamic programming algorithm consists of traversing the nice tree decomposition in a bottom up manner, and computing recursively the tables R t for each t ∈ T , where table R t has an entry R t (A) for each possible assignment A: let t be a leaf node, say L(t) = {j}, then R t (A) = c j A(j); let t be a join node with two children t ′ and t ′′ , then R

t (A) = R t ′ (A) + R t ′′ (A) -j∈L(t) c j A(j); let t an introduce node, say L(t) = L(t ′)∪{j}, then R t (A) = +∞ if A violates a constraint of P (t), other- wise R t (A) = R t ′ (A t ′)+c j A(j) where A t ′ the assignment A restricted to the variables in L(t ′); let t be a forget node, say L(t) = L(t ′) -{j}, then R t (A) = min d j ∈D j {R t ′ (A ′) : A ′ (k) = A(k) ∀k = j and A ′ (j) = d j }.
The optimum is min A R r (A) at the root node r of the nice tree decomposition.

Proof of (iii). We have |I| = n + m since there are n x i 's and m y ij 's in the ILP formulation of RSP. There are therefore O(n + m) nodes in the nice tree decomposition. Noticing that a table R t can be computed in time O(2 ∆(k+1) ((n -1)u max) k+1) since there are at most ∆(k + 1) boolean variables and k + 1 integer variables in L(t), the result follows.

2

This approach based on properties of the interaction graph of an ILP formulation is quite general, and can be also fruitfully applied to RBPM. As in Section 2, for any instance of RBPM, we assume that there exists a perfect matching.

Proposition 7 RBPM can be solved in time O((n+ m)2 ∆(k+1) ((n+1)u max) k+1) in graphs of treewidth k and max degree ∆, where u max = max E) denote an undirected bipartite graph, where V 1 and V 2 partition the set of vertices into two independent sets. Solving RBPM in G amounts to solve the following ILP [START_REF] Kasperski | Minimizing maximal regret in the linear assignment problems with interval costs[END_REF]:

[i,j]∈E u ij . Proof. Let G = (V 1 ∪ V 2 ,
min [i,j]∈E u ij y ij -   j∈V 2 x j - i∈V 1 x i   (12) s
.t. x j ≤ x i l ij + (u ij -l ij)y ij ∀[i, j] ∈ E, (13)
j∈V 2 y ij = 1 ∀i ∈ V 1 , (14)
i∈V 1

y ij = 1 ∀j ∈ V 2 , (15)
y ij ∈ {0, 1} ∀[i, j] ∈ E, (16)
x i ∈ Z ∀i ∈ V 1 , x j ∈ Z ∀j ∈ V 2 . (17)
Variables x i 's and x j 's (resp. constraints (13)) represent potentials assigned to vertices of G constraints) in the dual version of the weighted perfect matching problem in bipartite graphs. More precisely, given a perfect matching characterized by a vector y of booleans, constraints [START_REF] Kasperski | Minimizing maximal regret in the linear assignment problems with interval costs[END_REF] correspond to the dual version of the problem weighted according to the worst case scenario for y. Hence, j∈V 2 x j -i∈V 1 x i takes the value of the best perfect matching in scenario s(y). Actually, variables x i 's and x j 's are real variables in the formulation of Kasperski and Zielinski [START_REF] Kasperski | Minimizing maximal regret in the linear assignment problems with interval costs[END_REF], which leads to a mixed integer model. However, there always exists integer potentials x i 's and x j 's that are optimal in the dual problem. Indeed, for instance, the primal dual algorithm of Ford and Fulkerson [START_REF] Gondran | Graphs and algorithms[END_REF] builds an optimal dual solution, the potentials of which are integers within {-nu max , . . . , u max } by construction. Therefore the solution obtained by solving the above ILP remains optimal. The proof of Proposition 7 is then identical to the one of Proposition 6, constraints (13) (resp. (14) and (15)) playing the role of constraints (9) (resp. [START_REF] Gondran | Graphs and algorithms[END_REF]), G the role of G ′ , and (n + 1)u max the role of (n -1)u max . 2

Concluding remarks

Several results given in this paper deserve to our opinion further research.

For instance, we conjecture that RSP, as well as other problems, can be pseudopolynomially solved in graphs with bounded treewidth (without any degree restriction). Alternatively, devising a general method for solving in polynomial time any problem with bounded minmax regret could be very appealing, but the existence of such a method seems quite hypothetical to us.

Besides, the problematic we dealt with can also be investigated in the scenario model. In that model, each edge e is valued by (s e 1 , • • • , s e b). For example, the robust shortest path and spanning tree problems can be trivially solved under the minmax criterion when the set of valuations is comonotone, i.e. s e i ≤ s e j ⇒ s f i ≤ s f j for any i, j and e, f . Indeed, the value of every solution is maximized under the same scenario. Then, one can measure the distance from comonotony as the minimum number of the removal of which leads to a comonotone instance. Interestingly enough, it can be shown that, even if the distance from comonotony is 1, and even if there are 2 scenarios, the robust shortest path and minimum spanning tree problems are NP-hard.

Figure 1 :

 1 Figure 1: An example for RPM in a non bipartite graph.

 For this purpose, one can consider the following partitions of I and U : I = X ∪ Y , where X = {x j : j ∈ V } and Y = {y ij : (i, j) ∈ A}, andU = U X ∪U Y ∪U XY , where U X = {[x i , x j] : (i, j) ∈ A}, U Y = {[y jk , y ij] : (i, j) ∈ A, (j, k) ∈ A} and U XY = {[x i , y ij], [x j , y ij] : (i, j) ∈ A}. Condition (a) holds since ∪ t∈T L(t) = X and ∪ t∈T L ′ (t) = Y .Conditions (b) and (c) hold for edges of U X and for vertices in X since (T, L) is a tree decomposition of G ′ . They also hold for edges of U Y and for vertices in Y since (T, L ′) is a tree decomposition of the line graph. Besides, condition (b) holds for edges of U XY by construction of L ′ . Hence, (T, L ∪ L ′) is a tree decomposition of IG. Furthermore, the treewidth of IG is upper bounded by max t∈T L(t) + max t∈T L ′ (t) -1 = k + ∆(k + 1).

Proof.

Let G = (V, A) denote a directed graph with a source node s and a sink node t, and let G ′ = (V, E) denote the simple undirected graph obtained from G by removing orientation of edges and by simplifying multiedges. Solving RSP in G amounts to solve the following integer linear program (ILP) [START_REF] Karasan | The robust shortest path problem with interval data[END_REF]:

The interaction graph of an ILP includes a vertex for each variable of the program and an edge between two vertices if both corresponding variables appear in the same constraint. We now show that the program is solvable in pseudopolynomial time by applying a dynamic programming technique on a tree decomposition of the interaction graph IG = (I, U), i.e. a labeled tree (T, L) such that (a) every node t of T is labeled by a non-empty subset L(t) of V s.t. ∪ t∈T L(t) = V , (b) for every edge {i, j} ∈ U there is a node t of T whose label L(t) contains both i and j, (c) for every vertex i ∈ I the nodes of T whose labels include i form a connected subtree of T . The width of a tree decomposition is max t∈T |L(t)| -1. The treewidth of IG is the smallest for which IG has a tree decomposition of width k. If the treewidth of a graph is bounded by a constant k, then a tree decomposition of treewidth at most k can be constructed in linear time (in the number of nodes) [START_REF] Bodlaender | A linear-time algorithm for finding treedecompositions of small treewidth[END_REF]. This tree decomposition can itself be converted in linear time in a nice tree decomposition of the same width, i.e. a rooted tree decomposition such that each node has at most two children, with four types of nodes t: leaf nodes with |L(t)| = 1, join nodes with two children t ′ , t ′′ s.t. L(t) = L(t ′) = L(t ′′), introduce nodes with one child t ′ s.t. L(t ′) = L(t) ∪ {v} for some v ∈ V , forget nodes with one child t ′ s.t. L(t) = L(t ′) -{v} for some v ∈ V . The proof of pseudopolynomiality of the approach is in three steps: (i) we show that if the max degree of G and the treewidth of G ′ are bounded by some constant, then the treewidth of IG is bounded by some constant; (ii) we show how to solve by dynamic programming an ILP whose IG a bounded treewidth; (iii) we show that the previous approach is pseudopolynomial since variables x j are upper bounded by (n -1)u max , where u max = max (i,j)∈A u ij . Proof of (i). Assume that G ′ has treewidth k and G max degree ∆. Note that IG restricted to constraints [START_REF] Gondran | Graphs and algorithms[END_REF] is the line graph of G, i.e., the graph where each vertex represents an edge of G and any two vertices are adjacent iff their corresponding edges are incident. It can be shown that the treewidth of the line graph is at most ∆(k + 1) -1 [START_REF] Atserias | On digraph coloring problems and treewidth duality[END_REF]. Assuming (T, L) is a tree de-