A weight two phenomenon for the moduli of rank one local systems on open varieties
Résumé
The twistor space of representations on an open variety maps to a weight two space of local monodromy transformations around a divisor component at infinty. The space of $\sigma$-invariant sections of this slope-two bundle over the twistor line is a real $3$ dimensional space whose parameters correspond to the complex residue of the Higgs field, and the real parabolic weight of a harmonic bundle.
Domaines
Géométrie algébrique [math.AG]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...