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Purpose − To develop a sub-domain perturbation technique to effi-
ciently calculate strong skin and proximity effects in conductors 
within frequency and time domain finite element (FE) analyses. 
Design/methodology/approach − A reference eddy current FE 
problem is first solved by considering perfect conductors. This is 
done via appropriate boundary conditions on the conductors. Next 
the solution of the reference problem gives the source for eddy cur-
rent FE perturbation sub-problems in each conductor then consid-
ered with a finite conductivity. Each of these problems requires an 
appropriate volume mesh of the associated conductor and its sur-
rounding region. 
Findings − The skin and proximity effects in both active and passive 
conductors can be accurately determined in a wide frequency range, 
allowing for precise losses calculations in inductors as well as in ex-
ternal conducting pieces. 
Originality/value − The developed method allows to accurately de-
termine the current density distributions and ensuing losses in con-
ductors of any shape, not only in the frequency domain but also in 
the time domain. Therefore it extends the domain of validity and ap-
plicability of impedance-type boundary condition techniques. It also 
offers an original way to uncouple FE regions; what allows the solu-
tion process to be lightened, as well as efficient parameterized 
analyses on the signal form and the conductor characteristics. 
Keywords − Impedance boundary condition, Perturbation tech-
nique, Sub-domain finite element method, Skin and proximity ef-
fects 
Paper type − Research paper 

I. INTRODUCTION 

A precise consideration of the skin and proximity effects in 
conductors is usually important for the sources themselves as 
well as for their surrounding area. On the one hand, an accu-
rate calculation of the ensuing Joule losses in the conductors 
themselves is possible. On the other hand, this allows to accu-
rately locate the current density distributions with respect to 
the influenced regions. 

The skin and proximity effects are particularly significant 
for high frequency excitations in highly conducting materials. 
When such eddy current problems are solved with the classi-
cal finite element (FE) method, the ensuing small skin depth 
asks for a fine mesh through the conductor thickness. 

Impedance-type boundary conditions (BCs) (Krähenbühl 
and Muller, 1993) defined on the conductor boundaries are an 
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alternative to avoid meshing their interior. Such conditions 
are nevertheless generally based on analytical solutions of 
ideal problems and are therefore only valid in practice far 
from any geometrical discontinuities, e.g., edges and corners. 
They are also generally limited to frequency domain and lin-
ear analyses. 

In this contribution, a method is developed to overcome the 
limitations of impedance-type BCs, allowing conductors of 
any shape to be considered not only in the frequency domain 
but also in the time domain. The magnetic vector potential FE 
magnetodynamic formulation is used. 

A reference eddy current FE problem is first solved by 
considering perfect conductors. This can be done via appro-
priate conditions on the conductor boundaries, which can 
serve as well for expressing the circuit relations of the con-
ductors linking their voltages and currents. Next the solution 
of the reference problem gives the source for eddy current FE 
perturbation sub-problems in each conductor considered, at 
this point, with a finite conductivity. Each of these problems 
requires an appropriate volume mesh of the associated con-
ductor and its surrounding region. 

The developed technique will be validated on an applica-
tion example and its domain of validity will be determined. 
Its main advantages versus the impedance-type boundary 
technique will be pointed out. 

II. FROM PERFECT TO NON-PERFECT CONDUCTORS 
– THE STRONG EDDY CURRENT FORMULATIONS 

A. The eddy current problem 

Maxwell equations are to be solved in a bounded domain 
Ω, with boundary ∂Ω (possibly at infinity), of the 2-D or 3-D 
Euclidean space. The eddy current conducting part of Ω is 
denoted Ωc and the non-conducting one ΩcC, with 
Ω = Ωc ∪ ΩcC. Massive conductors belong to Ωc. 

The equations and relations governing the magnetody-
namic (eddy current) problem in Ω are 

 curl h = j ,  curl e = – ∂t b ,  div b = 0 , (1a-b-c) 

 b = μ h ,   j = σ e , (2a-b) 

where h is the magnetic field, b is the magnetic flux density, e 
is the electric field, j is the electric current density (including 
source and eddy currents), μ is the magnetic permeability and 
σ is the electric conductivity. In the following, the subscripts 



 
 
u and p will refer to reference and perturbed quantities, re-
spectively. 

B. The reference problem: some conductors are first consid-
ered as perfect 

Instead of directly solving the eddy current problem with 
the actual conductivity of some conductors, a so-called refer-
ence problem is first defined in Ω by considering some con-
ductors Ωc, i (i is the conductor index) as being perfect, i.e. of 
infinite conductivity. This results in a zero skin depth and 
thus in surface currents. The interior of the conductor regions 
Ωc, i can thus be extracted from the studied domain Ω in (1) 
and treated via a BC fixing a zero normal magnetic flux den-
sity on their boundaries ∂Ωc, i, 

 
,

0
c i

u ∂Ω⋅ =n b . (3) 

C. The perturbation problem: the conductors retrieve their 
actual conductivity 

The consideration of the actual conductivity of the con-
cerned conductors, these defining the perturbing region 
Ωc, i ⊂ Ωc, will further lead to field perturbations. The per-
turbed eddy current problem focuses thus on Ωc, i and its 
neighborhood, their union Ωp being adequately defined and 
meshed will serve as the studied domain. 

The perturbation generated by the change of conductivity 
of the conducting region Ωc, i alters the distribution of the 
eddy current density and magnetic field. The fields in these 
conductors are not surface fields anymore but penetrate them. 

Problems with volume fields are first considered and will 
be further particularized for the actual reference solution with 
surface fields in the next section. Particularizing (1) and (2) 
for both the reference and perturbed quantities, and subtract-
ing the reference equations from the perturbed ones, a pertur-
bation problem (defined as the difference between perturbed 
and reference problems) is obtained in Ωp (initially in Ω) 
(Badics et al., 1997; Sabariego and Dular, 2005). Figs. 1 to 4 
help in illustrating the involved problems. Keeping the equa-
tions in terms of the perturbations h = hp – hu and e = ep – eu, 
one gets in Ωp 

 curl h = j ,  curl e = – ∂t b , (4a-b) 

 j = σp e + js ,   b = μp h + bs , (5a-b) 

 0
p∂Ω× =n h  or 0

p∂Ω× =n e , (6a-b) 

where the so-defined volume sources js and bs are obtained 
from the reference solution as 

 js = (σp – σu) eu  in Ωc, p , (7) 

 bs = (μp – μu) hu  in Ωc, p . (8) 

The perturbation problem (4)-(8) is rigorously defined in 
the whole studied domain Ω, taking account of the geometri-
cal and material details of the reference problem. The condi-
tions (6a) or (6b) neglect the perturbation at a certain distance 
from Ωc, i, which is actually only correct at infinity (for Ωp 
extended to the whole space). For convenience, an approxi-
mation neglecting some of these initial details will be made. 
The so-modified studied domain Ωp can be a portion or not of 
Ω, with or without inclusion of initial materials, these being 
possibly simplified. At the discrete level, the meshes of both 
reference and perturbed problems can then be significantly 
simplified, each problem asking for mesh refinement of dif-
ferent regions. 

D. Sources of the perturbation problem 

The sources js (7) and bs (8) act as sources reduced to Ωc, i. 
This is a consequence of the use of the perturbations h and e 
as unknowns instead of the perturbed fields hp and ep di-
rectly. Another implication is the homogeneous nature of the 
boundary conditions (6a) or (6b). 

The perturbed problem, with the unknown fields hp and ep, 
would require non-homogeneous conditions such as 

   
pp

p u ∂Ω∂Ω
× = ×n h n h  or 

pp
p u ∂Ω∂Ω

× = ×n e n e . (9a-b) 

The reference fields would thus serve as surface sources, to 
be projected on the mesh boundary ∂Ωp of the perturbation 
problem. However, such BCs can only be applied if the do-
main Ωp is bounded. Indeed a boundary at infinity would 
support a zero source, with consequently no information at all 
for the perturbed problem. The reference field hu could alter-
natively be used as a volume source field in the whole Ωp, but 
with the disadvantage of necessitating its evaluation and pro-
jection on the whole domain. These drawbacks justify the use 
of the sources js (7) and bs (8), the reduced support of which 
noticeably limits the evaluation and projection operations. 

The source bs (8), determined from the known field hu, is 
itself also zero in Ωc, i. The source current density js (7) is to 
be obtained from the reference electric field eu, with σu → ∞ 
and σp finite in Ωc, i. The quantities involved in (7) are, on the 
one hand, σu eu to be considered at the limit as a surface cur-
rent density ju on ∂Ωc, i, and, on the other hand, σp eu actually 
being null in Ωc, i and ∂Ωc, i because eu is zero and σp is finite 
there. Consequently, the source current density js associated 
with ju has a surface nature as well 

 s u= −j j  on ∂Ωc, i . (10) 

The problem (4)-(8) particularized to such a surface source 
can remain on its form on condition that it is written in 
Ωp \ ∂Ωc, i with additional relations for BCs on both sides of 
∂Ωc, i (∂Ωc, i is extracted from the studied domain). This will 
be considered when writing its weak formulation. 



 
 

III. WEAK MAGNETIC VECTOR POTENTIAL EDDY 
CURRENT FORMULATIONS 

A. b-conform weak magnetodynamic formulation 

The eddy current problem is defined in Ω with the mag-
netic vector potential formulation (Dular et al., 2000), ex-
pressing the electric field e in Ωc via a magnetic vector poten-
tial a together with the gradient of an electric scalar potential 
v, and the magnetic flux density b in Ω as the curl of a. The 
resulting a-v magnetodynamic formulation is obtained from 
the weak form of the Ampere equation (1a), i.e. (Dular et al., 
2000), 

   1( curl ,curl ') ( , ') ( grad , ')
c ct vμ σ σ−

Ω Ω Ω+ ∂ +a a a a a   

 , ' 0
hs Γ+< × > =n h a , 1' ( )F∀ ∈ Ωa , (11) 

where F1(Ω) is a gauged curl-conform function space defined 
on Ω and containing the basis functions for a as well as for 
the test function a' (at the discrete level, this space is defined 
by edge finite elements); ( · , · )Ω and < · , · >Γ respectively de-
note a volume integral in Ω and a surface integral on Γ of the 
product of their vector field arguments. The surface integral 
term in (11) accounts for the natural boundary or interface 
conditions. It will be shown to be of key importance in our 
further developments. 

B. Reference problem with perfect conductors 

The zero normal magnetic flux density BC on the bounda-
ries ∂Ωc, i of the so-considered perfect conductors leads to an 
essential condition on the primary unknown au that can be 
expressed via the definition of a surface scalar potential uu (in 
general single valued, if no net magnetic flux flows in Ωc, i) 
(Dular et al., 2005), i.e., 

     
, , ,

curl 0 grad
c i c i c i

u u uu∂Ω ∂Ω ∂Ω⋅ = ⇔ × = ×n a n a n . (12) 

In a 2D model, with perpendicular currents, condition (12) 
amounts to define a floating (constant) value for the perpen-
dicular component of au for each conductor. 

The reference formulation is of the form (11) with all the 
quantities with the subscript u, i.e. 

1( curl , curl ')u uμ −
Ωa a   

, ,\ \( , ') ( grad , ')
c c i c c iu t u u uvσ σΩ Ω Ω Ω+ ∂ +a a a  

, ,, ' , ' 0,
c i hu s u∂Ω Γ+< × > +< × > =n h a n h a 1' ( ).uF∀ ∈ Ωa  (13) 

The conductors considered as perfect are separated from 
the other classical conductors (Ωc \ Ωc, i) and are only in-
volved through their boundaries ∂Ωc, i in (13) with the condi-
tion (12). 

The surface integral term on ∂Ωc, i is non-zero only for the 
function grad ui' (from (12) for conductor i), the value of 
which is then the total current I i flowing through ∂Ωc, i (this 
can be demonstrated from the general procedure developed in 
Dular et al. (2000)). It is zero for all the other local test func-
tions (at the discrete level, for any edge not belonging to 

∂Ωc, i). This way, the circuit relation can be expressed for 
each conductor Ωc, i and the coupling with electrical circuits 
is possible. The other surface integral on Γh is used for classi-
cal natural BCs. 

C. Perturbation eddy current problem 

The skin and proximity effects in each conductor Ωc, i have 
now to be corrected for their real conducting nature. This is 
done via the weak formulation of the perturbation problem 
(4)-(8), i.e. 

   1( curl ,curl ')
ppμ

−
Ωa a   

   
, ,\ \( , ') ( grad , ')

c c i c c ip t p vσ σΩ Ω Ω Ω+ ∂ +a a a  

   
, ,

( , ') ( grad , ')
c i c ip t p vσ σΩ Ω+ ∂ +a a a  

   
,

, ' 0,
c iu ∂Ω+< × > =n h a 1' ( ).F∀ ∈ Ωa  (14) 

Note that the perturbation eddy current density in Ωc \ Ωc, i 
(in which σp = σu) can be neglected, in which case the second 
and third terms in (14) can be omitted. 

The surface integral term related to ∂Ωc, i in the perturba-
tion formulation (14) is actually known from the reference so-
lution. The surface ∂Ωc, i is now considered as a part of the 
studied domain with contributions on both sides, i.e. in Ωc, i 
and Ωp \ Ωc, i. This surface term is determined as follows. 

The quantity u×n h in (14), directly linked to the tangential 
reference magnetic field, acts as the surface current density ju 
involved in (10). It is not known in a strong sense on ∂Ωc, i, 
but rather in a weak sense via the surface term in (13); this is 
a consequence of the b-conform formulation used. This same 
surface term is also implied in (14) and will thus be expressed 
via the reference solution fixed in (13), i.e. 

     
,

, '
c iu ∂Ω< × > =n h a 1( curl ,curl ')u uμ −

Ω− a a , (15) 

in case no part of Ωc \ Ωc, i is in contact with Ωc, i (otherwise 
the second and third terms of (13) have to be considered as 
well). This way, the surface source current density js to be 
used in the perturbation weak formulation is then calculated 
from a volume integral coming from the reference problem. 
Its consideration via a volume integral, limited at the discrete 
level to one single layer of FEs touching the boundary, is the 
natural way to average it as a weak quantity. 

At the discrete level, the source quantity js initially given in 
the mesh of the reference problem has to be expressed in the 
mesh of the perturbation problem. This can be done through a 
projection method (Geuzaine et al., 1999) with target quantity 
js defined in adequate function spaces. From (4a) and (5a), 
the projected js should have the same conformity as curl h. 

The source quantity js can then be used in (14), the solution 
of which gives the eddy current density in Ωc, i and the ensu-
ing field perturbations in and outside Ωc, i. 

IV. APPLICATION 

A core-inductor system is considered as a test problem 
(Fig. 1). The three copper stranded inductor portions (con-
ductivity σCu = 5.9 107 Ω–1m–1) have a square section (width 



 
 
12.5 mm) and are connected in series. The core is made of 
aluminium (conductivity σAl = 2.7 107 Ω–1m–1). A 2D model 
with a vertical symmetry axis is considered.  

For a direct comparison with the technique using imped-
ance-type BCs, a frequency domain analysis is done. How-
ever, the sub-domain perturbation technique can be directly 
applied to time domain analyses without any change. The 
working frequency is 5 kHz (skin depth δAl in aluminium of 
1.37 mm). The core has a half-width of 12.5 mm (9.1 δAl) and 
a length of 50 mm (36.5 δAl). 

The results focus on the aluminium core. Holes in the core 
are considered in order to point out the effect of several cor-
ners. These holes are non-uniformly distributed to allow for 
different lengths of plane portions between them (small 
lengths should penalize the impedance BC technique).  

The different meshes used, the magnetic flux lines and the 
magnetic flux density distributions (zoomed or not) are 
shown respectively in Figs. 1 to 4 for the different calcula-
tions performed, i.e. the conventional FE approach (used as a 
reference), the reference problem and the perturbation prob-
lem. Figs. 5 to 7 concern the eddy current and Joule power 
density distributions in the core. 

It can be seen that the perturbation method determines the 
perturbation fields with a very good accuracy, as well for the 
magnetic flux density as for the eddy current density. In par-
ticular, the correction of the magnetic flux density in the vi-
cinity of the corners (Figs. 3 and 4, right) leads to its actual 
distribution in the core (along the skin depth) and to the re-
duction of the over-evaluated reference value in the exterior 
region (Fig. 4, see the opposite direction of the magnetic flux 
density ). 

Fig. 7 highlights the relative error on the current density 
(from Fig. 6) and the associated Joule power density made by 
the impedance BC technique versus the sub-domain FE ap-
proach (the results of which have been checked to be very 
similar to those given by the conventional FE approach). The 
error significantly increases in the vicinity of the conductor 
corners: it exceeds 50% for the Joule power density and 30% 
for the current density in the smallest plane portions. This af-
fects the total losses accuracy when the size of the conductor 
portions decreases. The error with the impedance BC tech-
nique is shown to be significant up to a distance of about 
3 δAl from each corner, whereas a good accuracy is only ob-
tained beyond this distance. 

V. CONCLUSIONS 

The developed sub-domain perturbation method offers a 
way to uncouple FE regions in eddy current frequency and 
time domain analyses with high frequency excitations, allow-
ing the solution process to be lightened. The skin and prox-
imity effects in both active and passive conductors can be ac-
curately determined in a wide frequency range, allowing pre-
cise losses calculations in inductors as well as in external 
conducting pieces, in particular in inductively heated pieces. 

Once calculated, the source reference solution can be used 
in each sub-problem not only for a single high frequency sig-
nal but for several signals. This allows efficient parameter-
ized analyses on the signal form and the electric and magnetic 
characteristics of the conductors in a wide range, i.e. on all 

the parameters affecting the skin depth. Nonlinear analyses, 
e.g. with temperature dependent conductivities, could then 
clearly benefit from this. 

   
Fig. 1. Meshes for the conventional FE approach (left), the reference problem 
(middle) and the perturbation problem (right). 

   
Fig. 2. Magnetic flux lines for the conventional FE solution (left), the refer-
ence solution (middle) and the perturbation solution (right). 

   
Fig. 3. Magnetic flux density for the conventional FE solution (left), the ref-
erence solution (middle) and the perturbation solution (right). 



 
 

   
Fig. 4. Magnetic flux density (zoom in the upper corner of the core) for the 
classical FE solution (left), the reference solution (middle) and the perturba-
tion solution (right). 

               
Fig. 5. Eddy current density distribution for the perturbation solution (left: 
phase 180°, right: modulus). 
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Fig. 6. Eddy current density along the core surface for the conventional FE 
solution, the perturbation technique and the impedance BC technique. 
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Fig. 7. Relative error on the current density and the associated Joule power 
density along the core surface made by the impedance BC technique versus 
the sub-domain FE approach. 
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