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Abstract

The thermodynamic formalism allows one to access the chaotic properties of equi-
librium and out-of-equilibrium systems, by deriving thosefrom a dynamical parti-
tion function. The definition that has been given for this partition function within
the framework of discrete time Markov chains was not suitable for continuous
time Markov dynamics. Here we propose another interpretation of the definition
that allows us to apply the thermodynamic formalism to continuous time.

We also generalize the formalism –a dynamical Gibbs ensemble construction–
to a whole family of observables and their associated large deviation functions.
This allows us to make the connection between the thermodynamic formalism
and the observable involved in the much-studied fluctuationtheorem.

We illustrate our approach on various physical systems: random walks, ex-
clusion processes, an Ising model and the contact process. In the latter cases, we
identify a signature of the occurrence of dynamical phase transitions. We show
that this signature can already be unraveled using the simplest dynamical ensem-
ble one could define, based on the number of configuration changes a system has
undergone over an asymptotically large time window.

1

http://arxiv.org/abs/cond-mat/0606211v2


1 Introduction

1.1 Motivations and outline

In trying to bridge the microscopics of a dynamical system toits macroscopic
properties, amenable to a statistical physics treatment, the main road is the study
of its chaotic properties. These revolve around such concepts as Lyapunov expo-
nents, Kolmogorov-Sinai entropy, and perhaps more refined still, that of dynami-
cal partition function. The latter was introduced by Ruelle(it is also called Ruelle
pressure), and can be seen [1] as a dynamical analog to the well-known equilib-
rium partition functions of statistical mechanics, exceptthat it involves counting
trajectories in phase space rather than microscopic states. This so-called pressure,
in information theoretic language, is not but the Rényi entropy associated with the
measure over the set of possible trajectories in configuration space [23]. It can
then be connected to the dynamical entropies, like the Kolmogorov-Sinai entropy,
also viewed as the Shannon entropy over the set of trajectories, or the topological
entropy, which measures the growth rate of the number of allowed trajectories.
Back in the seventies, the dynamical partition function also appeared as a conve-
nient tool for characterizing, under prescribed mathematical conditions, NonEqui-
librium Steady-State (NESS) measures, now called Sinai-Ruelle-Bowen (SRB)
measures [2], by means of a variational principle. The general framework behind
is that of temporal large deviations. A vast body of mathematical physics literature
has been devoted to SRB measures and large deviations, with however relatively
few direct spinoffs for theoretical physics, let alone experimental physics. Actu-
ally, though these notions were mathematically well established in various frames
(Hamiltonian dynamical systems, maps, Markov chains...),physically relevant ex-
plicit results for the Kolmogorov-Sinai entropy are scarce, with a few exceptions
for the Lorentz gas and hard-spheres [20, 25, 26]. There are also numerical stud-
ies [27] of simple fluids attempting to relate the Kolmogorov-Sinaientropy to
the equilibrium excess entropy, or to the self-diffusion constant. When it comes
to determining the full topological pressure, existing results are confined to sim-
ple maps [19] or to simple Markov processes in discrete time such as the Lattice
Lorentz Gas [21]. However, recent years have witnessed the revival of largedevi-
ations, both at the experimental and theoretical level. On the theoretical side, they
appeared as the natural language in which the fluctuation theorem of Gallavotti
and Cohen [3] was expressed. The latter can be seen as a symmetry propertyof
the large deviation function of the entropy current resulting from driving a sys-
tem into a NESS. Variations around that fluctuation relation, such as the earlier
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Evans-Searles [4], or the Jarzynski nonequilibrium work relation [5], also rely on
the concept of large deviations. The experimental motivation lies in the belief that
global –i.e. space averaged– quantities, rather than local probes, are abetter way
to approach and above all compare between themselves systems out of equilib-
rium. However, since the peculiarities of a NESS also resultfrom its microscopic
dynamics, it was suggested to measure time averaged (over a large time interval)
quantities, and to build up the corresponding distributionfunctions. More recent
experiments on electric circuits have been used to probe thehypotheses underly-
ing the mathematics of those relations (for a nonexhaustivelist of experimental
references, see [6]).

While the above deals with actual dynamical systems, there also exist Markov
dynamics counterparts to many of the results mentioned above, as far as fluctu-
ation theorems are concerned (see [7] or [8] for the fluctuation relation, and see
[9] for the nonequilibrium work relation). The motivations for addressing systems
with Markov dynamics (with continuous time) are to be found both in the greater
ease in performing numerical simulations (as cleverly proposed in [10]) and in the
analytical insight that can be gained through exact [11, 12, 13, 14, 15] or approx-
imate calculations [16]. To the best of our knowledge, these explicit calculations
have been attempted only for systems with Markov dynamics. Given the successes
of the Markov approach in understanding the various versions of the fluctuation
and work theorems, it seemed natural to turn to the more general dynamical parti-
tion function. As briefly sketched in [17], by contrast with the existing treatment
of Markov chains [18, 19, 20, 21] there had hitherto been no satisfactory attempt
to force the thermodynamic formalism of Ruelle into the framework of systems
endowed with continuous-time Markov dynamics. As this was already noticed by
Gaspard [22], passing from discrete to continuous time raises specific difficulties.

Therefore, our primary purpose in the present paper is to introduce the dynam-
ical partition function and the related topological (or Ruelle) pressure for systems
with Markov dynamics. Note however that our motivation for determining this
dynamical partition function is not rooted in our quest for the Markov analog of
an SRB measure. For finite systems with Markov dynamics this is a dull endeavor
since the stationary measure is known to be the unique solution to the stationary
master equation [24]. Instead, we have in mind gaining physical insight into the
topological pressure. It is often presented as a measure of dynamical complex-
ity, an interpretation which will appear quite clearly in systems with ergodicity
breaking transitions. Beyond, our general goal is to be ableto relate its properties
(convexity, singularities,etc) to those of the system at hand, the latter display-
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ing nontrivial dynamics, and possibly featuring strong interactions. Ideally, we
would like to build up a picture gallery [28] for physically acceptable topological
pressures, but in practice we will have to be more modest and we will focus on a
restricted number of systems that we shall soon describe. Further investigations
aiming at pursuing this goal, most notably for systems with glassy dynamics and
for systems with quenched disorder, will be mentioned in ourconclusion.

It will turn out that the dynamical partition function can beseen as the gen-
erating function of a physical observable. This will allow us to cast our findings
into the more general framework of temporal large deviations. In setting up our
mathematical approach, we will see that the latter observable is connected to –
but very different from– the one considered by Lebowitz and Spohn [8]. They
both are members of a rather general family of observables ofwhich we shall fur-
ther single out yet another one that we now describe. Over a given trajectory in
configuration space, the simplest quantity of all to consider is the number of con-
figuration changes that the system undergoes over a given time interval. While
this is a seemingly trivial observable to consider, we will illustrate on specific ex-
amples that much of the difficulties that pave the way to the full determination of,
say, the topological pressure, can already be read off the study of the statistics of
this event-counting observable. More important, we find that “dynamical phase
transitions”, as defined for example in [23], can already be observed on this simple
observable, and not only on the topological pressure. We propose a new tool to
study how the structure of the trajectory space is affected by the dynamical phase
transition.

We now describe the various systems that we have chosen to illustrate our ap-
proach. We begin with examining the simple lattice random walk case. We con-
tinue with an interacting lattice gas, namely the one dimensional exclusion process
with periodic boundary conditions, for which our analytic results are somewhat
less extensive, but that has in the recent past [11, 12, 8, 29] served as a testbench
for many of the ideas discussed in this introduction. In the case of the symmetric
exclusion process we found that, though there is no first order dynamical phase
transition, the event-counting observable mentioned above shows signs of a sec-
ond order dynamical phase transition. Then we turn to two mean-field models
of interacting degrees of freedom. The first one is the well-known equilibrium
Ising model, with a second order symmetry breaking phase transition to an or-
dered state at low temperatures. We have shown that the thermodynamic phase
transition induces a first order dynamical phase transition, a signature of which
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can already be found on the event-counting observable. Besides, we were able to
give a picture of the structure of the trajectory space through the transition. The
second one is the contact process, for which a supplementarydifficulty arises, as
in the thermodynamic limit two stationary states –an activeand an absorbing one–
exist.

But before embarking into the study of these physical systems, we devote
Sec. II to a reminder of the definitions of Lyapunov exponents, Kolmogorov-Sinai
entropy, and also of the state of the art [18] concerning systems with discrete-time
Markov dynamics. Sec. III contains our construction of the dynamical partition
function for systems with continuous-time Markov dynamics, and connects to the
existing literature. Secs. IV, V and VI are concerned with our physical examples.
Conclusions and a number of future research directions are gathered in Sec. VII.

2 Kolmogorov-Sinai entropy in the theory of dynam-
ical systems

2.1 Dynamical systems

Let Γ(t) be the coordinate of a dynamical system evolving according to dΓ
dt =

F(Γ). Consider now two infinitesimally close initial pointsΓ(0) andΓ(0)+δΓ(0)
and follow the evolution of the differenceδΓ(t) between the two. This will evolve
according todδΓ

dt = ∂F
∂Γ
δΓ. The eigenvalues of the linearized evolution operator

∂F
∂Γ

, once averaged with respect to the stationary measure, makeup the Lyapunov
spectrum{λi} of the dynamical system. There are as many Lyapunov exponents
as phase space dimensions. Each of them characterizes the dynamical instability
of the system along an individual direction. A system with atleast one positive
Lyapunov exponent is termedchaotic. In order to characterize global, rather than
individual, chaoticity, the Kolmogorov-Sinai entropy wasdefined. Given a parti-
tion of phase space, within this coarse grained description, the dynamics becomes
probabilistic, and this allows one to construct a measure over the set of physi-
cally realizable trajectories of the system over some time interval[0, t] (which we
also call histories). We define the Kolmogorov-Sinai (KS) entropy as the Shannon
entropy corresponding to the measure over the set of histories:

hKS = − lim
t→∞

1

t

∑

histories
from 0→t

Prob{history} lnProb{history}
∑

histories
from 0→t

Prob{history} (1)
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where the supremum is taken over all possible partitions andthe average is taken
over the initial configuration. The denominator is equal to1 for a close system.
From its definition, it is clear thathKS measures the dynamical randomness of the
system at hand. It is also connected in a simple way to the Lyapunov spectrum,
by means of Pesin’s theorem, which states that

hKS = −γ +
∑

λi>0

λi (2)

whereγ, defined for an open system, is its escape rate (and is otherwise zero).
Note that the KS entropy is defined for a system in a stationarystate, in or out of
equilibrium. Even if one would like to relatehKS, at least in equilibrium situations,
to the standard Boltzmann entropy, there is no direct connection between both, the
latter being an intrinsically static object while the former is dynamical in essence.
However, Boltzmann’s entropy variations are related tohKS. Finally, we turn to a
definition [1] of the dynamical partition functionZ(s, t)

Z(s, t) =
∑

histories
from 0→t

(
Prob{history}

)1−s
(3)

In practice the so-called thermodynamic limitt very large is understood. We have
also substituted1− s for the canonical notationβ which we keep for denoting an
inverse temperature (the reason for introducings in this way will become obvious
when we shall expressZ as a generating function). There is an alternative for-
mulation for the dynamical partition function, which involves the local stretching
factors (seee.g.[30] for a physical example). The intensive potentialψ+(s) asso-
ciated to this partition function is the topological pressure (or Ruelle pressure),

ψ+(s) = lim
t→∞

1

t
lnZ(s, t) (4)

which can also be interpreted [23], in information theoretic language, as the Rényi
entropy over the set of histories. It is possible to recoverhKS from the topological
pressure,hKS = ψ′

+(0) (or hKS = ψ′
+(0) − γ for an open system, withγ =

−ψ+(0)), along with other quantities such as the topological entropy htop, which
measures the grows rate of the number of possible histories as time is increased,
and is given byhtop = ψ+(1).

2.2 Markov chains

Given the definitions above, there is a natural way, as explained by Gaspard [18,
31], to extend the definitions of the dynamical partition function and of the KS
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entropy to discrete time Markov processes. Consider a Markov process governed
by the discrete-time master equation for the probabilityP (C, t) to be in stateC
aftern steps:

P (C, t+ τ)− P (C, t) =
∑

C′ 6=C

[
w(C′ → C)P (C′, t)− w(C → C′)P (C, t)

]
(5)

whereτ is the time step (andt = nτ is the elapsed time). We have denoted by
w(C → C′) the transition probability from configurationC to another configura-
tion C′. The probability of a historyC0 → . . . → Cn taking place between0 and
t = nτ reads

P (C0 → . . .→ Cn) = P (C0, 0)w(C0 → C1) . . . w(Cn−1 → Cn) (6)

Note that successive configurationsCk, Ck+1 can be equal in the previous relation.
The corresponding probability of remaining in the same configurationC during a
time step is

w(C → C) = 1−
∑

C′ 6=C

w(C → C′) (7)

By definition of the KS entropy we may directly write that

hKS = − lim
n→∞

1

nτ

∑

C0,..Cn

P (C0 → . . .→ Cn) lnP (C0 → . . .→ Cn) (8)

It is easy to see [22] that the above expression reduces to

hKS = −1

τ

∑

C,C′

Pst(C) w(C → C′) lnw(C → C′)

= −1

τ
〈
∑

C′

w(C → C′) lnw(C → C′)〉st (9)

where we have introduced the stationary measurePst(C). Several explicit calcula-
tions of this quantity can be found in Dorfman [19] or in Gaspard [18].

2.3 Taking the continuous-time limit

We now wish to take the continuous-time limit of (9). We scale the transition
probabilities between different configurations with the time stepτ :

w(C → C′) = τ W (C → C′) (10)
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in such a way that the master equation (5) yields its continuous time analog when
the limit τ → 0 is taken, namely

∂tP (C, t) =
∑

C′ 6=C

[
W (C′ → C)P (C′, t)−W (C → C′)P (C, t)

]
(11)

As done in [22, 32], the KS entropy defined in (9) can be expressed in terms of
the transition ratesW :

hKS = −
∑

C,C′

Pst(C)W (C → C′) ln (τW (C → C′)) (12)

It is now clear that the limitτ → 0 in (12) does not exist, since the latter exhibits
a ln τ divergence asτ → 0. Given that the transition ratesW are dimensionful
quantities, and given that apparently the only available time scale isτ , we cannot
expect to get rid ofτ without further thoughts. This means that even if we were
tempted to retain in (12) only the finite contribution asτ → 0 as the meaningful
KS entropy, we would need to find an appropriate time scale to render this piece
well-defined (the argument of the logarithm must be dimensionless).

The one-dimensional lattice random walk perhaps constitutes the simplest ex-
ample of a Markov chain: letp (resp. q, r) denote the probability of hopping to
the right (resp. to the left, not hopping), then we have that

hKS = −1

τ
[p ln p+ q ln q + r ln r] (13)

It appears clearly that in the continuous-time limit,p andq become infinitesimally
small, which produces an indefinitehKS. Since we have in mind describing as
closely as possible dynamical systems, which evolve in continuous time, the goal
we set ourselves is to find a consistent approach, intrinsically viable for Markov
systems in continuous time.

3 Systems with continuous-time Markov dynamics

3.1 Histories and dynamical partition function

We now consider a system with Markov dynamics, with transition rateW (C →
C′) from configurationC to configurationC′, in which the probabilityP (C, t) to
be in stateC evolves according to the following master equation,

∂tP = WP (14)
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where the evolution operator has the matrix elements

W(C, C′) = W (C′ → C)− r(C)δC,C′ (15)

and
r(C) =

∑

C′ 6=C

W (C → C′) (16)

is the rate of escape from configurationC. In order to overcome the difficul-
ties encountered in the previous section, an alternative isto consider histories
C0 → . . . → CK in configuration space, in the spirit of the study by van Beijeren,
Dorfman and collaborators [30, 33] of the Lorentz gas and the Sinai billiard. To
give (1) or (3) a consistent meaning for continuous time dynamics, we firstinter-
pret Prob[history] as the probability in the enumerable set of histories in config-
uration space. A history in configuration space is a sequenceC0 → . . . → CK
of successive configurations. An important difference between discrete and con-
tinuous time dynamics is that in the latter, the system staysin each stateC for a
random time lapse drawn from an exponential distribution ofparameterr(C) as
defined in (16), which is interpreted as the rate of escape from configurationC to
any other configuration. Then the system hops to its next stateC′ with probability
W (C→C′)
r(C)

. Given the initial stateC0, the probability of the historyC0 → . . . → CK
is the product of each jump probability

Prob{history} =

K−1∏

n=0

W (Cn → Cn+1)

r(Cn)
(17)

whereK is the number of changes in configuration space.

We argue that in the same way as (1) and (3) are averaged over the initial
configuration when dealing with deterministic dynamical systems, we similarly
have to average over all possible stochastic time sequencest0, . . . , tK at which
configuration changes occur (K is a fluctuating number). We know from general
properties of Markovian system [24] that the duration∆t = tn+1 − tn between
configurationsCn andCn+1 is distributed according to the probability density

π(Cn,∆t) = r(Cn)e−∆t r(Cn) (18)

Accordingly, if we take into account every possible historyC0 → . . . → CK

9



0

C0

t1

C1

t2

C2

. . . tK

CK

t

CK

waiting probability:
e−(t−tK)r(CK)

Figure 1: One particular realization in time of a historyC0 → . . . → CK of
successive configurations. Betweentk andtk+1, the system stays in configuration
Ck.

betweent0 andt, the dynamical partition function writes

Z(s, t|C0, t0) =
+∞∑

K=0

∑

C1,...,CK

∫ t

t0

dt1 π(C0, t1 − t0) . . .

∫ t

tK−1

dtK π(CK−1, tK − tK−1)

e−(t−tK )r(CK )

[
K∏

n=1

W (Cn−1 → Cn)
r(Cn−1)

]1−s

(19)

where the last exponential factor e−(t−tK )r(CK ) is the probability not to leave state
CK in the remaining interval betweentK andt. We have assumed (Fig.1) with-
out loss of generality that the system starts from a fixed initial configurationC0
(we restrict our study for simplicity to systems which can take a finite number of
energy states).

3.2 Kolmogorov-Sinai entropy

In the same spirit as for the dynamical partition function, we interpret the defini-
tion (1) for the Kolmogorov-Sinai entropy as

hKS = − lim
t→∞

1

t

+∞∑

K=0

∑

C1,...,CK

∫ t

t0

dt1 π(C0, t1 − t0) . . .

∫ t

tK−1

dtK π(CK−1, tK − tK−1)

e−(t−tK )r(CK) [Prob{history}] ln [Prob{history}]
(20)

where we assume that the definition does not depend on the initial configuration
C0. For simplicity, we consider only close systems (except otherwise stated). Then
we do recover the usual relation betweenhKS andZ(s, t), i.e.

hKS = lim
t→∞

1

t

∂ lnZ(s, t)

∂s

∣
∣
∣
∣
s=0

(21)
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An a posteriori justification of (19) and (20) is that it yields a finite result, which
does not depend on any external time scale nor on a particularchoice of time units.
In fact there is a natural –yet fluctuating– time-scale1/r(C) for each stateC which
is occupied. Furthermore, as detailed below (see Sec.3.7), the KS entropy which
results from (19) is intimately related to the entropy flow [8] of continuous time
Markov processes, exactly in the same way as was noted by Gaspard for discrete
time stochastic dynamics [22].

We should emphasize that the definitions that we put forward in our approach
differ from those classically employed within the dynamical systems framework.
The original Kolmogorov-Sinai entropy corresponding to the measure over histo-
ries in time and in configuration space is infinite [18], as the information needed to
describe the continuously distributed time intervals between configuration changes
is itself infinite [34]. As such, this point of view cannot be used to compare dif-
ferent Markov processes in continuous time. As explained above (Sec.3.1), we
instead preferred to focus on the information contained solely in the sequence of
configurations, handling separately the averaging over time intervals. We exem-
plify below in several examples that, in doing so, the original spirit and physical
content of the Ruelle thermodynamic formalism is preserved.

3.3 Expressions in terms of an observable

It is possible to express both the dynamical partition function and the Kolmogorov-
Sinai entropy in terms of a history dependent observableQ+ defined as

Q+ =
K−1∑

n=0

ln
W (Cn → Cn+1)

r(Cn)
(22)

We see that in the configuration space,

Prob{history} = eQ+ (23)

Hence, from (19), Z(s, t) can be identified as the generating function ofQ+:

Z(s, t) = 〈e−sQ+〉 (24)

where〈·〉 stands for an average in both configuration and time sequences spaces.
Further using the result (24) we also remark that

hKS = − lim
t→∞

1

t
〈Q+〉 (25)
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3.4 Topological pressure

The moment generating function of the physical observableQ+ defined in (22) is
preciselyZ(s, t). The functionψ+(s) defined by

ψ+(s) = lim
t→∞

1

t
lnZ(s, t) (26)

is called the topological – or Ruelle – pressure in analogy with (4). This is also
the generating function for the cumulants ofQ+:

lim
t→∞

〈Qn
+〉c
t

= (−1)n
dnψ+

dsn

∣
∣
∣
∣
s=0

(27)

The dynamical partition function is expected to grow exponentially with time as
etψ+(s), and the growth rateψ+(s) is the topological pressure. One immediately
recognizes that the KS entropy can be obtained fromψ+ through

hKS =
dψ+

ds

∣
∣
∣
∣
s=0

(28)

In order not only to mathematically justify the existence ofψ+(s), but also to
relate it directly to the rates of the Markov process, we write an evolution equation
for the probabilityP (C, Q+, t) that the system is in stateC at timet with the value
Q+:

∂tP (C, Q+, t) =
∑

C′ 6=C

[

W (C′ → C)P
(

C′, Q+ − ln
W (C′ → C)

r(C′)
, t

)

−W (C → C′)P (C, Q+, t)

] (29)

Noticing that the average〈Q+〉 over the configuration and time sequences is the
same as

∑

C,Q+
Q+P (C, Q+, t), we have

∂t 〈Q+〉 =
∑

C,C′ 6=C

P (C, t)W (C → C′) ln
W (C → C′)

r(C) (30)

Taking the long time limit, we find thathKS can be expressed as the mean value in
the stationary state

hKS = −
〈
∑

C′

W (C → C′) ln
W (C → C′)

r(C)

〉

st

(31)
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of (the opposite of) an instantaneous observable

J+(C) =
∑

C′

W (C → C′) ln
W (C → C′)

r(C) (32)

Compared with the definition (9) for discrete time, the division byr allows to get
rid of the time scale inside the logarithm.

The master equation (29) also enables to have an insight onψ+(s). We can first
point out that the Laplace transform of the joint probability distribution function
P (C, Q+, t)

P̂ (C, s, t) =
∑

Q+

e−sQ+P (C, Q+, t) (33)

obeys the master-equation-like evolution equation

∂tP̂ (C, s, t) =
∑

C′ 6=C

[

W (C′ → C)1−sr(C′)sP̂ (C′, s, t)

−W (C → C′)P̂ (C, s, t)
] (34)

which can be written as
∂tP̂ = W+P̂ (35)

where the evolution operator has the following matrix elements

W+(C, C′) = W (C′ → C)1−sr(C′)s − r(C)δC,C′. (36)

Then, as
Z(s, t) =

∑

C,Q+

e−sQ+P (C, Q+, t) =
∑

C

P̂ (C, s, t) (37)

we conclude that the topological pressureψ+(s) is well defined by (26) and ap-
pears as the largest eigenvalue of the operatorW+.

Likewise, in the context of deterministic dynamical systemtheory, the topo-
logical pressureψ+(s) appears as the maximum eigenvalue of the Perron-Frobenius
operator [18, section 4.5]. The operator (36) is the stochastic counterpart to the
Perron-Frobenius operator.
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3.5 Ruelle Zeta function

The Ruelle Zeta functionZ(s, z), as reviewed by Gaspard [18], is defined as the
Laplace transform of the dynamical partition functionZ(s, t) with respect to time

Z(s, z) =

∫ ∞

0

dt e−ztZ(s, t) (38)

The Ruelle Zeta function is analytic in the complex variablez except on some
poles. The topological pressureψ+(s) is the pole which is the closest to0, and
there are systems for whichψ+ is easier to access using that property. From the
explicit definition (19) of Z(s, t) we remark that the temporal integrals are just
interwoven convolutions which factorize after Laplace transform to yield

Z(s, z) =

+∞∑

K=0

∑

C1,...,CK

1

z + r(CK)

K∏

n=1

rs(Cn−1)W
1−s(Cn−1 → Cn)

z + r(Cn−1)
(39)

3.6 Topological pressure in special cases

3.6.1 Constant rate of escaper

From last section we remark that one situation is especiallysimple when deter-
mining the topological pressureψ+(s): if the jump ratesW (C → C′) are uniform
in configuration space (we shall assume for definiteness thatW (C → C′) takes
only two values,0 orW ), the local rate of escape from the configurations visited
by the systemr(C) = r becomes independent ofC and the topological pressure is
Poissonian

ψ+(s) = r
[( r

W

)s

− 1
]

(40)

This result can be seen by directly finding the largest eigenvalue of the Perron-
Frobenius operator (36) or by the following line of reasoning. In the defini-
tion (19) for the dynamical partition functionZ(s, t), the probability of config-
urational histories Prob[hist] = eQ+ depends on the historyC0 → . . . → CK only
through the numberK of configuration changes: eQ+ =

(
W
r

)K
. Thus, eQ+ de-

couples from the average over time sequencest0, . . . , tK . One can thus compute
separately the probability of this time sequence which is a convolution of expo-
nential laws of common parameterr, which all combine to yield a Poisson law:
∫ t

t0

dt1 r e−r (t1−t0) . . .
∫ t

tK−1

dtK r e−r (tK−tK−1) e−r (t−tK ) = e−rt
rK tK

K!
(41)
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ThenZ(s, t) takes the simple form (independently of the initial configuration):

Z(s, t) =
+∞∑

K=0

( r

W

)K

︸ ︷︷ ︸

number of
histories

e−rt
rK tK

K!
︸ ︷︷ ︸

probability
of K jumps

[(
W

r

)1−s
]K

︸ ︷︷ ︸

Prob[hist]1−s

= et r [(
r
W )

s
−1] (42)

It could also have been possible to obtain this result by determining the Ruelle
Zeta function (39)

Z(s, z) =
1

z + r

+∞∑

K=0

(
W ( r

W
)1+s

z + r

)K

=
1

z − r (( r
W
)s − 1)

=
1

z − ψ+(s)
(43)

The computation was greatly simplified because all jumps of the history are
identical and independent.

3.6.2 Random walk with reflecting boundary conditions

To see what happens when jumps are not identical, we can consider a particle
jumping on a chain of three sites with reflecting boundary conditions. All jumps
occur a the same rate1 except for one, whose rate isw. The corresponding Markov
matrix and the Perron-Frobenius operator read

W =





−1 1 0
w −w − 1 1
0 1 −1



 , W+ =





−1 (w + 1)s 0
w1−s −w − 1 1
0 (w + 1)s −1



 (44)

The topological pressure follows

ψ+(s) =
1

2

{

−2 − w + w− s
2

√

ws+2 + 4(1 + w)s(ws + w)
}

(45)

and it does not correspond toQ+ being Poissonian.

3.7 Large deviation formalism, time-reversed KS entropy, and
entropy flow

As explained in Gaspard [18, section 4.2], a variety of dynamical ensembles can
be constructed following a similar procedure as the one we followed with the
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variableQ+. In fact, any time integrated observableA(t) constructed with an
arbitrary functionα according to

A(t) =
K−1∑

n=0

α(Cn, Cn+1) (46)

with K the number of configuration changes undergone by the processover the
time interval[0, t], can be exploited in the same vein. Admittedly, a limited num-
ber of choices will be physically relevant.

Due to the specific form ofA, a master equation can be written forP (C, A, t),
and the Laplace transform̂PA(C, s, t) =

∑

A e−sAP (C, A, t) will then evolve ac-
cording to∂tP̂A = WAP̂A, where

WA(C, C′) =W (C′ → C)e−sα(C′,C) − r(C)δC,C′ (47)

The largest eigenvalueψA(s) of WA, with eigenvectorP̃A(C, s), is the generat-
ing function of the cumulants ofA, ψA(s) = limt→∞

1
t
ln〈e−sA〉. This is a con-

vex function ofs. One can also access the first moment ofA in the long time
limit, limt→∞〈A〉/t = 〈JA(C)〉st, with the related currentJA(C) =

∑

C′ W (C →
C′)α(C, C′), relying on the sole knowledge of the stationary state distribution.
Besides, given that there exists a master equation governing the evolution of
P (C, A, t), its positivity is conserved, which means that alsoP̂A(C, s, t) ≥ 0 at
all times, and consequently

lim
t→∞

e−ψA(s)tP̂A(C, s, t) = P̃A(C, s) (48)

is also positive. This allows, after appropriate normalization, to interpret the
eigenvectorP̃A as a probability distribution. Direct numerical access toψA(s)
but also toP̃A(C, s), as recently proposed in [10], can be achieved by constructing
an auxiliary Markov process (based onWA) whose stationary distribution is pre-
cisely the normalized̃PA. Much physical insight can be gained from̃PA, as we
shall see throughout the study of the Ising model and the contact process.

An interestingA variable that we will spend quite some time on is the one ob-
tained by setting in (46) α = 1: this isK(t), the number of configuration changes
that have occurred over[0, t]. This is certainly the simplest one to consider, which
does not make its properties any trivial at all (at first sightone would be tempted
to seeK as Poisson distributed, which is wrong in most cases). It will further
be shown to be intimately connected toQ+. We postpone our discussion to the

16



treatment of our physical examples.

Another prominent variable is theaction functionalintroduced by Lebowitz
and Spohn [8], endowed with the meaning of an integrated entropy flow, defined
by

QS =
K−1∑

n=0

ln
W (Cn → Cn+1)

W (Cn+1 → Cn)
(49)

This is the observable whose cumulant generating functionψS(s) = limt→∞
1
t
ln〈e−sQS〉

verifies the symmetry propertyψS(s) = ψS(1 − s), which is one of the possible
formulations of the well-known fluctuation theorem [35, 36, 3, 18, 7, 8, 37]. In
boundary or field driven systems [8, 13, 38, 39, 40, 14], for instance, this entropy
flow is simply proportional to the particle current flowing through the system, the
proportionality constant being the force driving the system out of equilibrium (a
chemical potential or a temperature gradient, an applied field, etc.). It is charac-
terized by a nontrivial large deviation function only for nonequilibrium systems
(more precisely those breaking detailed balance but for whichW (C → C′) 6= 0
only if W (C′ → C) 6= 0). In general, this entropy flow is a linear combination
of the various currents (charge, particles, energy, momentum) forced by an ex-
ternal drive, weighted with the conjugate forces (or affinities). The interpretation
of QS as an integrated entropy flow follows from the remark [8, 32, 37] that the
time-dependent entropyS(t) = −

∑

C P (C, t) lnP (C, t) evolves according to

dS
dt

= σirr + σf (50)

whereσirr is defined by

σirr =
1

2

∑

C,C′

[W (C → C′)P (C, t)−W (C′ → C)P (C′, t)] ln
P (C, t)W (C → C′)

P (C′, t)W (C′ → C)
(51)

and verifiesσirr ≥ 0, with equality iff the system reaches equilibrium (with de-
tailed balancePeq(C′)W (C′ → C) = Peq(C)W (C → C′)). The second termσf

is the entropy flow: it arises from the external forces that drive the system into a
nonequilibrium steady-state, for whichσf = −σirr ≤ 0 and

σf = −〈JS(C)〉st = − lim
t→∞

〈QS〉
t

(52)

whereJS(C) =
∑

C′ W (C → C′) ln W (C→C′)
W (C′→C)

.
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It is of course desirable to make contact between entropy andthe entropy
variation ratesσirr or σf and the dynamical entropies. In order to achieve that
goal, we dwell into the presentation of Gaspard [22] (carried out for discrete time
evolution) by introducing an additional observableQ− describing time-reversed
trajectories,

Q−(t) =
K−1∑

n=0

ln
W (Cn+1 → Cn)

r(Cn+1)
+ ln

r(CK)
r(C0)

(53)

The additional pieceln r(CK)
r(C0)

appearing in (53) stands for aesthetic reasons: it is
non-extensive in time and could have been dropped without any physical conse-
quence. There exists a corresponding cumulant generating functionψ−(s) and
related time-reverse KS entropyhRKS:

hRKS =
dψ−

ds

∣
∣
∣
∣
s=0

= − lim
t→∞

〈Q−〉
t

= −〈J−(C)〉st (54)

with J−(C) =
∑

C′ W (C → C′) ln W (C′→C)
r(C)

. By construction one immediately
notices that

(i) QS = Q+ −Q−, (ii) JS = J+ − J− (55)

and, in the steady state,
(iii) σf = hKS − hRKS (56)

Equality (iii) in (56) also appears in the dynamical system literature:hKS (resp.
−hRKS) is the sum of the positive (resp. negative) Lyapunov exponents and there-
fore σf is indeed the phase-space contraction rate (the sum of all Lyapunov ex-
ponents). We have of course no such a microscopic interpretation within the
Markovian framework. Note that equalities (i) and (ii) in (55) hold for fluctuating
variables.

3.8 Analyticity breaking of the large deviation functions

In general, for smalls, ψA(s) comes as the eigenvalue of a perturbation of the
(unique) stationary state. The uniqueness implies in particular that this function
is analytic in the vicinity of0. However, it can happen that fors larger than some
threshold valuesc, it has to be obtained from the perturbation of a state which is
not the stationary state anymore (we notice that sinceWA(s) is not a stochastic
matrix anymore fors 6= 0, the Perron-Frobenius theorem does not apply and the
maximal eigenvalue ofWA(s) can cross another eigenvalue while varyings). In
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that case, we may have to examine the whole spectrum to determine ψA(s) for
s > sc.

Then,ψA(s) need not be analytic on the whole real line. Such “dynamical
phase transitions” have already abundantly been studied inthe case ofψ+(s) [23].
But such “dynamical phase transition” can also be observed for other observables.
An example in the case ofψK(s) is given in Sec.6.

In some cases the situation is even worse: it happens that systems present
two stationary states in the thermodynamic limit, anabsorbingstate and a non-
trivial one (when the number of degrees of freedom becomes infinite, the Perron-
Frobenius theorem does not apply either). In that case, the change of perturbed
state can occur precisely ats = 0, andψA(s) may not be analytic ats = 0. An
example of such a situation is studied in Sec.7.

3.9 State-dependent dynamical entropieshKS[P ], hRKS[P ]

The Kolmogorov-Sinai entropy is intended to represent the dynamical random-
ness of a system when following its evolution in phase space.When a system
evolves in time starting from an initial stateP which is not the stationary solu-
tion to the master equation, we expect the dynamical randomness to evolve in
time, or in other words, to depend on the state of the system. Expression (31)
strongly suggests to introduce thestate-dependentdynamical entropieshKS[P ],
hRKS[P ] through

hKS[P ] = −〈
∑

C′

W (C → C′) ln
W (C → C′)

r(C) 〉P (57)

= −
∑

C,C′

P (C)W (C → C′) ln
W (C → C′)

r(C) (58)

and similarly

hRKS[P ] = −
∑

C,C′

P (C)W (C → C′) ln
W (C′ → C)

r(C) (59)

We study the example of an infinite range Ising spin system in Sec.6.3
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4 Physical example 1: Random walks

This simple example provides an interesting illustration of the difference between
discrete and continuous time dynamics (Sec.4.1). When the particle moves on
a lattice with open boundaries, it also constitutes an example of a system with
escape (Sec.4.2).

4.1 Single random walk on a lattice

4.1.1 Discrete time random walk

We consider a particle moving on an infinited-dimensional square lattice. It hops
with probabilityDτ from one site to its2d neighbors at each time step of duration
τ of its evolution. The probability of not moving at each time step is1 − 2dDτ .
The stationary state is uniform. The probability of a history of n = t/τ steps
withm particle jumps is equal to(Dτ)m(1−2dDτ)n−m. The dynamical partition
function writes

Z(s, nτ) =
n∑

m=0

(
n

m

)

(2d)m
[
(Dτ)m(1− 2dDτ)n−m

]1−s
(60)

=
[
2d(Dτ)1−s + (1− 2dDτ)1−s

]n
(61)

The topological pressure is

ψ+(s) =
1

τ
ln
[
2d(Dτ)1−s + (1− 2dDτ)1−s

]
(62)

and the KS entropy

hKS = −2dD lnDτ − 1

τ
(1− 2dDτ) ln(1− 2dDτ) (63)

When the time stepτ is adjusted so that the particle moves at each time step
(2dDτ = 1), we simply find

ψ+(s) = 2dDs ln 2d and hKS = ψ′
+(0) = 2dD ln 2d (64)

When sending the time stepτ to zero, we have

ψ+(s) = −2dD(1− s) + 2dD1−sτ−s +O(τ) (65)

and
hKS = 2dD(1− lnDτ) +O(τ) (66)

As seen in the general case, the limitτ = 0 is not well defined.
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4.1.2 Continuous time random walk

We consider the continuous time version of the random walk considered in the
previous section: the particle now jumps with rateW (C → C′) = D to one of
its neighboring sites. The topological pressure can be obtained directly from the
expressions (40)-(42) for a constant rate of escape

Z(s, t) = et 2dD [(2d)s−1]; ψ+(s) = 2dD ((2d)s − 1) (67)

and

hKS = ψ′
+(0) = 2dD ln 2d (68)

htop = ψ+(1) = 2dD (2d− 1) (69)

We remark from (64) that even if the KS entropy is the same as in the discrete time
random walk with time stepτ = 1/(2dD), the two topological pressures differ.
The fact that both KS entropies have the same expression is a simple consequence
of the relations (9) and (31) and from the observation that in the continuous time
RW, the rates of escaper(C) do not depend on the position of the particle. Then,
the discrete and continuous time dynamics are simply related by choosing the
discrete time stepτ to be equal to the inverse of the configuration-independent
rate of escaper(C) = r.

On the contrary, we can interpret relation (31) by saying that in the continuous
time approach, the relevant time stepτ differs upon each jump and is equal to the
inverse of the configuration-dependent rate of escaper(C).

In any case, one should keep in mind that, though (66) and (68) give the same
expressions, they were obtained for different definitions of hKS.

It can also be noted that, if one defines a Lyapunov exponent for the random
walk through an equivalent one-dimensional map, as described in [41, 19, 17], we
recover Pesin’s theorem (2).

4.2 Random walk with open boundaries: an example of system
with escape

Consider now ad-dimensional lattice, infinite ind − 1 directions and finite of
width ℓ in the remaining direction, embedded with absorbing boundaries. The
Perron-Frobenius operatorW+ splits in a direct sum ofd one-dimensional opera-
tors corresponding to thed independent directions of the lattice

W+ = W
(ℓ)
+ ⊕W

(∞)
+ ⊕ . . .⊕W

(∞)
+ (70)
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with

W
(ℓ)
+ =










−2D D(2d)s (0)
D(2d)s −2D D(2d)s

. . . . . . . . .
D(2d)s −2D D(2d)s

(0) D(2d)s −2D










︸ ︷︷ ︸

ℓ elements

(71)

andW(∞)
+ is the infinite version ofW(ℓ)

+ . The topological pressureψ+(s) is the
maximum eigenvalue ofW+. We find

ψ+(s) = 2D

[

(2d)s
(

cos
π

ℓ+ 1
− 1

)

+ d
(
(2d)s − 1

)
]

(72)

from which we get the escape rate

γ = −ψ+(0) = 2D

(

1− cos
π

ℓ+ 1

)

(73)

expanding for largeℓ to

γ = D
π2

ℓ2
(74)

Gaspard and Nicolis [42] have shown that such relation holds in the discrete time
approach. Our continuous-time approach preserves the link(74) between trans-
port properties and escape rate in open systems.

4.3 Many particle random walk: different points of view for
hKS

We now considerN independent random walkers on a lattice ofL sites with peri-
odic boundary conditions. Each one still hops with rateD, so thatr(C) = 2dND.
Then, with the same calculation as in Sec.4.1.2, we find

ψ+(s) = 2dND [(2dN)s − 1] (75)

The topological pressure, and the KS entropyhKS = ψ′
+(0) = 2dND ln(2dN),

are not extensive inN anymore. It could have been tempting, as the particles are
independent, to rather writeZN(s, t) = (Z1(s, t))

N , and then the topological pres-
sure2dDN [(2d)s − 1] would have been extensive. The difference comes from the
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fact that in the first case, the order in which particles jump has been considered as
part of the configurational trajectory, and not in the last case. The first approach
seems the correct one, as it can be generalized to interacting particles. Besides,
as we shall see in the next section, the non-extensivity ofhKS was already present
in discrete time with sequential update and is thus not specific to the continuous
time limit.

5 Physical example 2: Exclusion processes

We now consider interacting particles, more precisely, a simple exclusion pro-
cess, i.e. a gas ofN mutually excluding particles diffusing on a one-dimensional
periodic lattice ofL sites. We denote a generic configuration of the system by
n = (n1, . . . , nL), with ni = 1 when sitei is occupied by a particle orni = 0
otherwise.

5.1 Totally Asymmetric Simple Exclusion Process (TASEP)

We first consider the Totally Asymmetric Simple Exclusion Process (TASEP)
where particles can only jump to the site on their right. Though the full calcu-
lation of the topological pressure is quite intricate,hKS is much simpler to obtain
via its expressions (9) or (31). We calculate it now for various types of dynamics.

5.1.1 TASEP: parallel updating

At each time stepτ = 1, each particle may go forward with probabilityp if the
site in front is empty.

Let nc be the number of clusters in a configurationC. There are
(
nc

k

)
config-

urationsC′ which are obtained fromC by movingk particles. The corresponding
transition probability isw(C → C′) = pk(1− p)(nc−k). Then

hKS = −〈nc〉st [p ln p+ (1− p) ln(1− p)] ≃ −Lρ(1−ρ) [p ln p+ (1− p) ln(1− p)]
(76)

for large systems.

5.1.2 TASEP: random sequential updating

At each time stepτ = 1/L, one bond(i, i + 1) is chosen randomly. Ifni(1 −
ni+1) = 1, the particle jumps forward with probabilityp.
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If a configurationC′ can be obtained fromC by moving exactly1 particle,
the corresponding transition probabilityw(C → C′) = p

L
. There arenc such

configurationsC′. The probability to stay in the same configuration isw(C →
C) = 1− nc

p
L

. To leading order inL we find

hKS = pρ(1− ρ)L lnL+ 0(L) (77)

ThushKS is non extensive though the dynamics is still discrete in time (and thus
thoughhKS is still defined using (9)).

5.1.3 TASEP: continuous time dynamics

For the continuous time dynamics, the transition rate between configurationn and
n

′ = (. . . , 1− ni, 1− ni+1, . . .) isW (n → n
′) = Dni(1− ni+1).

In order to find a finite value forhKS, we are now using the definition (31). We
note that, at fixed number of particlesN =

∑

i ni, the stationary state is uniform
and each configuration has probabilityPst(n) = 1/

(
L
N

)
. Besides,W lnW is equal

toW lnD. Thus the KS entropy can be written

hKS =
〈
r(n) ln

r(n)

D

〉

st
(78)

where the instantaneous rate of escaper(n) = D
∑

i ni(1− ni+1). As the steady
state is perfectly random, we see [43] that all k-point correlation functionsCk
have simple expressions:

C1 ≡ 〈n1〉st =
N

L
(79)

C2 ≡ 〈n1n2〉st =
N(N − 1)

L(L− 1)
(80)

CM ≡ 〈n1n2 · · ·nM〉st =
N(N − 1) · · · (N −M + 1)

L(L− 1) · · · (L−M + 1)
(81)

In the thermodynamic limitN → ∞, L → ∞ with N/L = ρ, we get〈r(n)〉st
L

→
Dρ(1− ρ). For finite systems, the mean value of the instantaneous rateof escape
r(n) is, taking finite size corrections into account,

〈r(n)〉st = DL

(
N

L
− N(N − 1)

L(L− 1)

)

(82)
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Thenr(n) can be split into two parts, its mean value, of orderL, and a fluctuating
part defined as

r(n) = 〈r(n)〉st(1+ξ/
√
L) from which we get ξ =

√
L
r(n)− 〈r(n)〉st

〈r(n)〉st
(83)

By definition, to all orders inL, we have〈ξ〉st = 0. Moreover,

〈ξ2〉st = L
〈r(n)2〉st − 〈r(n)〉2st

〈r(n)〉2st
(84)

Once the expression for〈r(n)2〉st = 4L
[

C1 −C2 + (L− 3)
(
C2 − 2C3 +C4

)]

is

obtained, we get the exact expression

〈ξ2〉st =
L(N − 1)(L−N − 1)

N(L−N)(L− 2)
(85)

which expands in powers ofL as〈ξ2〉st = 1 +O(1/L). This allows us to expand
hKS = 〈r(n) ln r(n)

D
〉st through

hKS = 〈r(n)〉st ln〈
r(n)

D
〉st +

1

2
〈r(n)〉st

〈ξ2〉st
L

+O(1/L) (86)

Denotingσ = Dρ(1− ρ) and collecting all terms, we find

hKS = Lσ ln(Lσ) + σ ln(Lσ) +
3

2
σ +

σ

L
lnL+O(1/L) (87)

We could also have developedr around its thermodynamic limit〈r(n)〉st/L →
Dρ(1− ρ). Then〈ξ〉st 6= 0 but 〈ξ2〉st = 1 +O(1/L).

For the TASEP model, the number of configuration changesK is equal to the
total distance covered by all the particles within a certaintime interval. The large
deviation function associated to this quantity has alreadybeen calculated both for
in the large system size limit and for finite systems in [11, 12].

5.2 Symmetric Exclusion Process (SEP)

We now consider the Symmetric Exclusion Process (SEP) whereeach particle
hops with equal probability per unit timeD to its right or left – if the target sites
are empty.
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In this case we have calculated not only the KS entropy but also the large
deviation function associated with the observableK(t). Though this is a sim-
pler observable thanQ+, the complexity of the calculations is already present. It
gives a cruder physical picture of the level of activity undergone by the system’s
dynamics thanQ+.

5.2.1 The Kolmogorov-Sinai entropy

The same expression (87) as for TASEP holds, but now withσ = 2Dρ(1 − ρ).
For the SEP, the compressibility and the strength of the equilibrium current fluc-
tuations, as defined by Bodineau and Derrida [13], are closely intertwined1 [16].
Thus one may speculate whether for another equilibrium model of interacting par-
ticles, and beyond, for a realistic interacting gas,hKS can be expressed solely in
terms of the thermodynamic compressibility. This issue, which is reminiscent of
earlier discussions [27] certainly deserves further investigation.

5.2.2 Number of hops

Let K(t) be the number of hops performed by the Markov process on[0, t] and
letP (K, t) be the probability distribution function ofK(t). We also introduce the
moment generating function̂PK(s, t) defined by

P̂K(s, t) = 〈e−sK〉 (88)

and the related cumulant generating function

ψK(s) = lim
t→∞

ln P̂K(s, t)

t
(89)

which turns out to be the largest eigenvalue of the operatorWK(s) defined by (see
(47)).

WK(s; C, C′) = e−sW (C′ → C)− r(C)δC,C′ (90)

There are a number of ways to obtainψK(s) in the regimes of interests→ 0±

ands → ±∞. The results are summarized here, while technical details will be
published elsewhere. All these results are valid in the limit of large systems.

1The coefficientsD(ρ) andσ(ρ) appearing in [13] verify σ(ρ)/D(ρ) = 2ρ2kBTχ(ρ), where
χ is the thermodynamic isothermal compressibility andT is the equilibrium temperature. For the
SEP one hasD(ρ) = D andσ(ρ) = 2Dρ(1− ρ).
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• In the limit s→ −∞

lim
L→∞

ψK(s)/(DL) = 2e−s
sin πρ

π
− 2ρ(1− ρ)− 2

sin2(πρ)

π2
+O(es) (91)

This result relies on a mapping to weakly interacting fermions, by means of a
Jordan-Wigner transformation.
• In the limit s→ 0−,

lim
L→∞

ψK(s)/(DL) = −2ρ(1− ρ)s+
27/2

3π
[ρ(1− ρ)]3/2|s|3/2 +O(s2) (92)

The method that was used in this case – relying on a Bethe ansatz – could not be
applied to thes→ 0+ case.

It is not so surprising to find a non-analytic behavior forψK , as the symmet-
ric exclusion process has already revealed non-analytic behavior for the particle
current distribution function [8, 44].

As the first derivative ofψK(s) is still continuous ins = 0, one could speak
of a dynamical phase transition of order higher than one.
• In the limit s→ +∞

lim
L→∞

ψK(z)/D = −2 + z2 +O(z3) (93)

Thisz → 0 behavior is quite distinct from that found by Derrida and Lebowitz [11]
studying the TASEP, who foundψK(z) = −1 + zN (for N < L/2). This is due
to the strong irreversibility of the TASEP that prohibits backward jumps to take
place (ifN < L/2,N jumps, instead of2 for the SEP, are necessary to return to a
single cluster configuration).

6 Physical example 3: Infinite range Ising model

We now turn to our next example, namely a system ofN Ising spins (N ≫ 1)
σi = ±1 interacting with infinite range forces and equilibrated at the inverse
temperatureβ. The Hamiltonian of this infinite range Ising model reads

H(σ = {σi}) = − 1

2N

∑

i,j

σiσj = −M
2

2N
(94)

whereM =
∑

i σi is the magnetization. The equilibrium probabilityPeq(σ) of
a spin configurationσ = {σi} is given by the Boltzmann-Gibbs factorP (σ) ∝
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exp[−βH(σ)]. In order to describe its time dependent and chaotic properties we
endow the system with a continuous time Glauber-like dynamics in which each
spinσi flips with a rate

W (σi → −σi) = e−βσi
M
N (95)

This is precisely the evolution rule considered by Ruijgrokand Tjon [45] who first
studied the dynamics of this system. The rate of escape from aconfiguration with
magnetizationM depends only onM and is equal to

r(M) = N cosh
βM

N
−M sinh

βM

N
(96)

The master equation can be cast in the form of an evolution equation for the
state vector|Ψ〉 =∑

σ
P (σ, t)|σ〉,

d|Ψ〉
dt

= W|Ψ〉 (97)

where

W =
∑

j

[
σxj − 1

]
e−βσ

z
j
Mz

N (98)

= (Mx −N) cosh
βMz

N
+ (Mz + iMy) sinh

βMz

N
(99)

Here, the evolution operatorW is expressed in terms of spinN operatorsMα,
α = x, y, z (

∑

αM
α2 = N(N + 2)), with Mα =

∑

j σ
α
j (tensor products are

implied for the Pauli matricesσαj acting on sitej). Note that this expression is
obtained under the assumption that the probabilityP (σ, t) depends only on the
magnetization, which is the case in particular for the stationary state.

An alternative way to describe the system would be to follow another Markov
variable than the full configurationσ, such as the global magnetizationM . That
M is a Markov variable is of course an artifact of our mean-fieldmodel. One
is now interested in the evolution equation for the magnetization state vector
|Ψ(M)〉 =

∑

M P (M, t)|M〉. It should be noted that (99) gives the evolution
operator for the state vector|Ψ(M)〉 (with theMα taken as operators acting on
magnetization states), only if the states|M〉 are defined by

|M〉 =
∑

σ

(
N

N+M
2

)−1

δ

[

M −
∑

i

σi

]

|σ〉. (100)
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For the somewhat more intuitive definition

|M〉 =
∑

σ

δ

[

M −
∑

i

σi

]

|σ〉, (101)

the evolution operator would rather be

W =
Mx − iMy

2

N +Mz

N −Mz + 2
e−β

Mz

N

+
Mx + iMy

2

N −Mz

N +Mz + 2
e+β

Mz

N − r(Mz) (102)

as the escape rate from a given state|M〉 is still r(M). In the following, we
shall always refer to the description by the full spin-state|Ψ〉, except when stated
otherwise.

We now turn to the topological pressure.

6.1 Topological pressure – paramagnetic state

The topological pressure is the largest eigenvalue of the operatorW+ whose ex-
pression reads

W+ =Mx cosh
(1− s)βMz

N
r(Mz)s + iMy sinh

β(1− s)Mz

N
r(Mz)s − r(Mz).

(103)
In the high temperature phase, it suffices to resort to the same Holstein-Primakoff
representation of the spin operator as that used in [45],

Mx = N − 2a†a, My = −i
√
N(a† − a), Mz =

√
N(a† + a) (104)

in order to writeW+ as a free boson operator whose ground-state energy yields
the following topological pressure

ψ+(s) = N(N s−1)+N s(1−(1−s)β)−N s/2
√

N s(1 + sβ(2− β))− β(2− β)
(105)

It is also possible to compute the large deviation function associated with the
observable

QM =
K−1∑

n=0

ln
W (Mn →Mn+1)

r(Mn)
(106)
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and we find

ψM (s) = lim
t→∞

1

t
ln〈e−sQM 〉

=(2s − 1)N + 2s(1− s)(1− β)

− 2s/2
√

2s(1− s(1− β)2)− β(2− β)

(107)

We remark that in (105) (resp. (107)), to leading order, the distribution ofQ+

(resp. QM ) is a Poisson law of parameterlnN (resp. ln 2), which reflects the
completely randomized nature of the paramagnetic state. These results are valid
in the high temperatureβ < 1 phase. We now address the ordered state.

6.2 Topological pressure – ferromagnetic state

It appears that below the critical temperature, the topological pressure shows much
more complex features. The most notable of them is that theQ+ observable ceases
to be Poisson distributed even to leading order in the systemsize. This is at vari-
ance with what has been observed for the paramagnetic state.In order to gain
some insight into the difference between the high and low temperature behaviors,
we decompose the fluctuating magnetizationM(t) into

M(t) = Nm+ ξ(t)
√
N (108)

This defines the noise strengthξ(t), which we expect to remain of order unity.
The fluctuating escape rate from a configuration with magnetizationM given by
(96) is, forN large, given by

r(M) = N
√
1−m2 − ξ

m√
1−m2

√
N +

1

2
ξ2β

(

β − 2

1−m2

)

+O(1/
√
N)

(109)
where the mean-field equation of statetanh(βm) = m was used. From (109) we
see thatr(M) shows onlyO(1) fluctuations atβ < 1 (m = 0), rather than the
generically expectedO(

√
N) fluctuations. Fluctuations in the high temperature

regime are thus much lower than in the ordered state. This will lead to more
tedious mathematics in the ordered phase.

Before tackling these, an interesting way to pinpoint the different nature of the
high and low temperature phases is to inspect first a simpler quantity, namely the
numberK(t) of magnetization changes that have occurred over a time interval
[0, t]. It should be noticed that the value ofK is the same, whether we describe
the system by its full configurationσ or only by its global magnetizationM .
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As explained in Sec.3.7, the large deviation function forK,ψK(s) = limt→∞
1
t
ln〈e−sK〉

is the largest eigenvalue ofWK , which has matrix elements

WK(M ∓ 2,M) = z
N ±M

2N
e∓βM/N − r(M)δM,M∓2, z = e−s (110)

We find, again using (104), above the critical temperature, that

ψK(z) = (z − 1)N + z(1 − β)−
√

z(z − β(2− β)) (111)

Note that at the critical point,ψK(z) = N(z − 1) −
√

z(z − 1). The singularity
has moved froms = − ln β(2 − β) to s = 0 (z = e−s). Below the critical
temperature, expressingWK in terms ofa anda† as defined in (104) does not
yield a free boson operator. We first quote our results and then sketch the route
that has led to them. Retaining the leading terms inN , we find thatψK has the
following implicit expression:

ψK(z) =N

[

z
√

1−m2
K − cosh βmK +mK sinh βmK

]

+ z
1 − (1−m2

K)β
√

1−m2
K

+
√

φK(z)

(112)

where

φK(z) =
z2

1−m2
K

[
3− 6(1−m2

K)β + 4(1−m2
K)

2β2
]

+βz
√

1−m2
K

[
(2− β) coshβmK + βmK sinh βmK

][
1− 2(1−m2

K)β
]

(113)

andmK(β, z) is the solution of

mKβ cosh βmK + (1− β) sinh βmK =
mK

√

1−m2
K

z (114)

such thatψK(z) is the largest. Whenz = 1, equation (114) is of course solved by
the solutionm(0)

K (β) of the mean-field equation

m
(0)
K = tanh(βm

(0)
K ) (115)
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From that remark, it is possible to expandψK arounds = 0 in powers ofs by
searching solutions of (114) in the formmK = m

(0)
K + m

(1)
K s + . . .. Defining

c0(β) = coshm
(0)
K (β), we find

1

N t
〈K〉 = 1

c0
+
β

N

c20(2− 3β) + β2

2c0(c20 − β)2
+O(1/N2) (116)

1

N t
〈K2〉c =

1

c0
+ c0

c20 − 1

(c20 − β)2
+O(1/N) (117)

1

N t
〈K3〉c =

1

c0
+ 3c0

c20 − 1

(c20 − β)5
[
c60 − (1 + β)c40 − β(1− 3β)c20 − β3

]
+O(1/N)

(118)

An interesting spinoff of thiss → 0 expansion is that it shows that in the low
temperature phase (c0 > 1), the number of stepsK is not distributed according to
a Poisson distribution, even to leading orderN (if it were so, only the1/c0 term
in the right hand sides of (116,117,118) would be present in the above cumulants).

The way the parametermK(β, s) came out from the formalism is the follow-
ing. In the high temperature phase, the Holstein-Primakoffrepresentation (104)
– with no rotation – allows directly to writeW+ as a free boson operator. In the
low temperature phase, it is necessary to rotate the spin operatorsMx,My,Mz

by an angleθ around they axis, in order thatWK becomes a free boson operator,
with sin θ = mK(β, s) (after a suitable additionalθ-dependent rotation around the
z axis).

It is intriguing that by expressing the escape rater(M = NmK) = N(cosh(βmK)−
mK sinh β)mK as a function ofp throughmK(p) =

√

1− p2, one can see, by ex-
ploiting (114), that to leading order1

N
ψK(z) = maxp{zp − 1

N
r(p)} (a property

holding in theβ < 1 phase as well).
The physical meaning of thismK(β, s) is interesting in itself: in order to arrive

at an expression for the evolution operator involving free bosons, one must be de-
scribing its low lying excitations, which requires knowingits ground-state eigen-
function (the statẽPK(M, s) appearing in (48) that has the eigenvalueψK(s)). In
the high temperature phase, the average magnetization restricted to histories with
a prescribed value ofK is zero, because forcing a given value ofK does not force
the system into the broken phase. However, in the broken phase, the nonzero
magnetization is itself a weighted average of average magnetizations correspond-
ing to various values ofK, and there is no reason for each value ofK to contribute
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equally tom(0)
K (β). Instead we have that

mK(s, β) = lim
N→∞

1

N

∑

M

MP̃K(M, s) 6= m
(0)
K (β). (119)

After all, it is reasonable that histories withK far from its typical value are char-
acterized by different magnetizations. In other words, theground state is highly
nontrivial, as opposed to the high-temperature phase. In order to further illustrate
our point, we have plotteds 7→ mK(s, β = 1.4) in Fig. (2). There it can be seen
thatmK(s, β) jumps from a nonzero value ats > 0 to zero ats < 0. On the
one hand, ats > 0 one is probing the regime in whichK/t is typically smaller
than its average value〈r(M)〉, which we expect to be more frozen than typical
configurations, that is, more ordered: this accounts formK(s, β) growing withs.
On the other hand, ats < 0, one is selecting histories that have a typicalK/t
larger than average, so that the corresponding states should be less ordered. There
is in fact a dynamical first order phase transition ass varies from0+ to 0−, where
mK(β, s) jumps from a nonzero value to 0, which corresponds to a paramagnetic
state. The jump discontinuity ofmK(β, s) yields a discontinuity in the deriva-

mK(s, β)

s

Figure 2: Plot of the rotation parametermK(s, β) as a function ofs at β = 1.4.
The jump discontinuity ats = 0, in finite sizeN , is smoothened into a continuous
but steep drop centered around a critical valuesc = O(N−1) < 0.

tive of ψK (which itself, being convex, must be continuous) as shown inFig. (3),
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which reads

d
ds

[

lim
N→∞

ψK(s)

N

]∣
∣
∣
∣
0+

− d
ds

[

lim
N→∞

ψK(s)

N

]∣
∣
∣
∣
0−

=

√

1−m
(0)
K

2
(120)

wherem(0)
K = mK(β, 0) is the solution tom(0)

K = tanh βm
(0)
K . For finiteN , both

derivatives are equal to
√

1−m
(0)
K

2
.
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1
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Figure 3: Plot ofz 7→ limN→∞ ψK(z)/N at β = 1.4, with z = e−s. The first
derivative is discontinuous atz = 1.

Returning now to the topological pressure, we parallel the reasoning carried
out previously forK in terms ofQ+: we write the corresponding operatorW+

and perform a rotation of the magnetization operatorsMα (the angleθ involved
is such thatsin θ = m+(β, s)) in order that it can be expressed in terms of free
bosons, and we find that below the critical temperature

ψ+(s) = Nψ(N)(s) + ψ(0)(s) (121)

where the orderN1 and orderN0 coefficients are given by

ψ
(N)
+ (s) = p2−sqs − q

2
(122)

ψ
(0)
+ (s) = qs (1− s)

(
1− p2β

)
p−(1+s) −

√

∆0 +

(
q

p

)s

∆1 +

(
q

p

)2s

∆2

(123)
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where we used the notation

p =
√

1−m2
+ (124)

q = 2
(
cosh βm+ −m+ sinh βm+

)
(125)

q = 2
(
sinh βm+ −m+ cosh βm+

)
(126)

∆0 = −
[
βm+ cosh βm+ + (1− β) sinh βm+

]2
(127)

∆1 = −pβ
[
(2− β) cosh βm+ +m+β sinh βm+

]
(128)

∆2 =
2

p2
− 1 +

4s

p2q2
[
1
2
m+qq − p2(1− p2β)2

]
(129)

and the rotation parameterm+(s, β) is the solution of

p1+s
[
βm+ cosh βm+ + (1− β) sinh βm+

]
= qs−1

[
m+q + sq(1− p2β)

]

(130)

such thatψ+(s) is the largest. Again the quantitym+(s, β) has the meaning of an
average magnetization biased, fors 6= 0, over histories that are more (resp. less)
random than the typical history fors > 0 (resp.s < 0). For that reason we expect
m+(s, β) to be a decreasing function ofs, as is confirmed by plottingm+(s, β)
obtained from (130) as a function ofs for β > 1, see Fig. (4). Trajectories split
into two classes, ordered and disordered ones. This splitting is not present in the
unbroken phase (β < 1), for whichm+(β < 1, s) = 0 ∀s.

6.3 Kolmogorov Sinai entropy and chaoticity

Here we focus on the KS entropy related to the processM(t) – and defined as
before from theQM observable –, which is luckily extensive. In the stationary
state,hKS (in magnetization space) depends onβ throughc = cosh

[
β m(β)

]

wherem(β) is the solution of the mean field equation

lim
N→∞

1

N
hKS =







ln 2 if β < 1

1

c
ln 2 if β > 1

(131)

To follow howhKS depends onβ in the high temperature phase (β < 1) one has
to expand up to order0. We find

hKS −N ln 2 = −1 + (ln 2− 1)β(2− β)

2(1− β)
(132)
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s

m+(s, β)

Figure 4: Plot ofs 7→ m+(s, β) atβ = 1.4 in the limit of large systems.
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Figure 5: Kolmogorov-Sinai entropyhKS in the stationary state, as a function of
β. In the ordered phase (β > 1), the variations ofhKS are of orderN , while in the
disordered phase, they are of order1 (inset).
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Results are shown in Fig. (5). In a stateP of average magnetizationm, hKS[P ]
only depends, to leading order inN , onm.

1

N
hKS[P ] = eβm

1−m

2
ln

[

1 +
1 +m

1−m
e−2β m

]

+ e−βm
1 +m

2
ln

[

1 +
1−m

1 +m
e2β m

]

(133)
In a similar way

1

N
hRKS[P ] = eβm

1−m

2
ln

[

1 +
1−m

1 +m
e2β m

]

+ e−βm
1 +m

2
ln

[

1 +
1 +m

1−m
e−2β m

]

(134)
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Figure 6: Kolmogorov-Sinai entropyhKS[P ] in a stateP of mean magnetization
m at fixedβ = 1.2.

6.4 On the extensivity of the KS entropy

Though thehKS associated with the observableQM and calculated in the previous
section was luckily extensive, in general thehKS defined by (20) is not extensive
in the number of degrees of freedom. Indeed, the dominant order forhKS = ψ′

+(0)
obtained from (105) readshKS ∼ N lnN . By contrast, in a dynamical system, the
Lyapunov spectrum, and the KS entropy, are extensive in the number of degrees
of freedom. The nonextensivity of thehKS calculated in this paper was already
briefly commented upon in Sec.4.3. As this was pointed out in Sec.5.1.2, it is not
specific to continuous time. Still, we wish here to suggest some possible cures. In
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Figure 7: Direct and time-reversed Kolmogorov-Sinai entropies in a state of mean
magnetizationm, in the disordered phase (β = 0.8). Notice that, as expected,
hKS ≤ hRKS. These two dynamical entropies are equal only at equilibrium magne-
tizationmeq = 0.
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Figure 8: Direct and time-reversed Kolmogorov-Sinai entropies in a state of mean
magnetizationm, in the disordered phase (β = 2). Notice that, as expected,
hKS ≤ hRKS. These two dynamical entropies are equal only at equilibrium magne-
tizationmeq ≃ ±0.956 or atm = 0, which is unstable.
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order to obtain an extensive topological pressure, we may scale the probability of
a step fromC → C′ with the number of available degrees of freedom. In the case
of our Ising system, we introduce the observable

H =
K−1∑

n=0

ln
NW (Cn → Cn+1)

r(Cn)
(135)

Note that the associated large deviation functionψH(s) = limt→∞
1
t
ln〈e−sH〉, in

spite of remaining convex, willa priori no longer be a monotonously increasing
function ofs, which is a defining property of a Rényi entropy. Skipping technical
details, we have found that in the high temperature phase

ψH(s) = 1− β(1− s)−
√

(1− s)(1− β)2 + s, ψH(s)
β=1
= s−

√
s (136)

which has a trivial thermodynamic limitψH/N → 0 asN → ∞. On the other
hand, forβ > 1, we obtain

ψH(s)

N
= (r(Nm)/N)− p(r(Nm)/N)s, p =

√
1−m2 (137)

and withm solution to

m(r(Nm)/N)s −mpβ cosh βm− p(1− β) sinh βm = 0 (138)

Combining these results into a single plot, Fig. (9), shows that some features
present inψ+ (such asψ+(s > 0) = 0) are unaffected inψH(s): both are
monotonous (only to leading order inN for ψH(s)), and non-analytic ins = 0. We
do not have further argument in favor of usingψH/N as abona fidetopological
pressure but that it is simple and that it seems to be sharing similar properties as
the originalψ+, at least for the model at hand (yet it can be shown thatψ′

H(0) ≤ 0,
i.e. opposite sign tohKS).

6.5 One dimensional Ising model

We consider an Ising chain ofN spins in contact with a thermal bath at inverse
temperatureβ. The energy writes

H = −
∑

i

σiσi+1 (139)
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Figure 9: Plot ofs 7→ limN→∞ ψH(s)/N atβ = 1.4.

We endow the system with periodic boundary conditions and Glauber dynamics
with spin flip rate

Wi(σ) = 1− 1

2
γ σi(σi−1 + σi+1) where γ = tanh 2β (140)

The Kolmogorov-Sinai entropy is

hKS =

〈
∑

i

Wi(σ) ln
Wi(σ)

r(σ)

〉

(141)

In the limitN → ∞

hKS =
N lnN

cosh 2β
+N

[
2βγ tanh2 β −(1+γ2) ln cosh 2β

]
+2 sinh2 β+O(lnN/N)

(142)
which is computed using that the correlations read〈σiσi+r〉 = tanhr β. It is, as
expected, an increasing function of temperature.
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7 Physical example 4: Contact Process

7.1 Motivations

We now turn our attention to the infinite-range contact process: each vertexi of
a fully connected graph ofN vertices is either empty (ni = 0) or occupied by a
particle (ni = 1). The system is endowed with a Markov dynamics with rates

{

W
(
ni = 1 → ni = 0

)
= 1

W
(
ni = 0 → ni = 1

)
= λn/N

(143)

wheren =
∑

i ni is the total number of occupied sites. This model has recently
resurfaced in the literature: Dickman and Vidigal [46] studied in detail one of
its defining properties, namely that it exhibits a nonequilibrium phase transition
from an active to an absorbing state as the branching rateλ is decreased below
a critical valueλc = 1, with, in finite size, a single stable state, the absorbing
one. Therefore, the stationary state distribution in the active state is only quasi-
stationary. The lifetime of the active state, in finite size,was studied by Deroulers
and Monasson [47], who also designed a systematic way to implement finite con-
nectivity effects. Broadly speaking, the contact process phase transition belongs to
the directed percolation universality class, and as such, is the paradigmatic model
of nonequilibrium phase transitions. Our motivation for looking at the contact
process with our own tools is precisely the existence of a phase transition, un-
like any equilibrium one, that is encountered in many guisesin the literature (see
Hinrichsen for a review [48]). Interestingly, absorbing state transitions are now
invoked within the framework of the glass transition [49, 50, 51]. At the moment
we do not wish to address refined critical properties, and we shall be content with
a mean-field version that will enable us to get the global picture of how phase
space trajectories are affected by the presence, in the stationary state phase dia-
gram, of an absorbing state transition.

Much like the global magnetization in the infinite-range Ising model, the total
number of particlesn(t) =

∑

i ni = 0, . . . , N is also a Markov process, with the
following rates {

W (n→ n− 1) = n

W (n→ n+ 1) = (N − n)λn/N
(144)

As a reminder, we first sketch the main properties of the stationary state. For finite
N , there is a single stationary state: this is the absorbing state where all sites are
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empty. The time evolution of the mean number of particles reads

d〈n〉
dt

=

〈

(N − n)
λn

N
− n

〉

(145)

Given the infinite range of the interactions, the mean field hypothesis will be valid
in the thermodynamic limit (n andN going to infinity,n/N → ρ). In the station-
ary state (145) simplifies into

ρ
[
λ(1− ρ)− 1

]
= 0 (146)

We conclude that there exist two regimes according to the value ofλ. Forλ ≤ 1,
the stationary state is the absorbing state, with all sites devoid of particles, and
whenλ > 1, the system reaches almost certainly a quasi-stationary state with
mean density

ρ = 1− 1

λ
, (147)

else it is trapped in the empty state. From here on, we shall assumeλ > 1 and use
ρ as the only control parameter of the model. In order to circumvent the absorbing
state in finite size, it is convenient to add to the original model an additional local
injection process with rateh,

{

W
(
ni = 1 → ni = 0

)
= 1

W
(
ni = 0 → ni = 1

)
= h+ λn/N

(148)

or {

W (n→ n− 1) = n

W (n→ n + 1) = (N − n) [h+ λn/N ]
(149)

The stationary state becomes unique forN → ∞, and the steady-state densityρ
is given by

λρ+ h = ρ/(1− ρ) (150)

For h > 0, explicit results will be expressed in terms ofρ andλ. We now want
to determine the large deviation functions ofK(t), the number of configuration
changes that have occurred over a time interval[0, t], and ofQ+(t), which gives
access to the topological pressure.
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7.2 Special pointλ = 2ρ−1
(1−ρ)2

Our first paragraph deals with a special point in parameter space that, to the best
of our knowledge, has never been commented upon in the existing literature, but
whose mathematical structure is extremely simple. We decompose the total num-
ber of particles into an average and a fluctuating part,

n = Nρ+ ξ
√
N (151)

and we express the fluctuating rate of escape from a configuration withn particles,
in the stationary state. In the absence of particle injection (h = 0), and replacing
λ by its expression (147) in terms of the stationary state densityρ, we arrive at

r(n) = 2ρN + ξ
2− 3ρ

1− ρ

√
N − ξ2

1

1− ρ
(152)

hence the special pointρ = 2/3 (or equivalentlyλ = 3) at which this escape rate
has relative fluctuations of orderO(N−1) that are much weaker than the generi-
cally expectedO(N−1/2). A similar phenomenon occurs forh > 0, using (150),

r(n) = 2ρN + ξ(1− ρ)(λ− Λ)
√
N − λξ2 (153)

where

Λ =
2ρ− 1

(1− ρ)2
(154)

There the special point with low fluctuations is atλ = Λ. Under this constraint
λ = Λ, the interval covered by the stationary state density when the value ofh is
varied is1

2
< ρ < 2

3
. Theλ = Λ behavior ofr(n) bears much resemblance with

that already noted for the high-temperature phase of Ising model in (109), with
the formal correspondenceβ < 1 ↔ λ = Λ andβ > 1 ↔ λ 6= Λ. As will now be
seen, huge calculational simplifications occur atλ = Λ.

The generating function for the cumulants ofK(t), the number of configura-
tion changes that have occurred over a time interval[0, t] is the largest eigenvalue
of the following operator

WK(z) = −n̂+(N−n̂)
[
λn̂

N
+ h

]

+
1

2
z

[

(Mx + iMy)

[
λn̂

N
+ h

]

+ (Mx − iMy)

]

(155)
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wheren̂ = (N +Mz)/2 is the particle number operator andz = e−s. Given that
the detailed properties are being studied for the first time here, we shall provide
the reader with a few more technical details than in the previous section on the
Ising model.

The spectrum ofWK can be found perturbatively inN using the Holstein-
Primakoff representation of the magnetization operatorsMα. In general this con-
sists in rewriting theMα’s as a carefully chosen rotation of another setLα of spin
N operators for which we will use the following exact representation in terms of
creation and annihilation operators

Lx = N − 2a†a (156)

iLy = a†
(
N − a†a

) 1
2 −

(
N − a†a

) 1
2 a (157)

Lz = a†
(
N − a†a

) 1
2 +

(
N − a†a

) 1
2 a (158)

The aforementioned rotation has to be chosen such that in theground state,a†a
remains small, so that an expansion can be performed. In the present case (λ = Λ),
we shall assume that it is already the case without any rotation, and we shall
use directlyMα = Lα. We expandWK in powers ofN anticipating that in
the ground statea†a will remain of O(1) asN → ∞. And because, up to a
constant contribution,WK is quadratic in terms ofa anda† (with N-independent
coefficients), this is indeed the case and we find that the largest eigenvalueψK(s)
of WK has the following expression

ψK(z) =







Root of a third degree polynomial ifz < zc

2ρ (z − 1)N − z +
z1/2

1− ρ

√

ρ(1− 2ρ) + z(1− 3ρ(1− ρ)) if z > zc

(159)
provided the parameters verifyλ = 2ρ−1

(1−ρ)2
. Note that forh = 0, that is atλ = 3,

zc = 1 andψK(z ≤ 1) = 0, while ψK(z) = 4
3
(z − 1)N − z +

√

z(3z − 2) if
z > 1. Interestingly, to leading order inN , the distribution ofK is a Poissonian,
as was precisely the case for the Ising model in the high-temperature phase (111).
Forh 6= 0, we find that forz → 0 (that is fors→ ∞)

ψK(z) = ρ
2− 3ρ

(1 − ρ)2
+ z2

2− 3ρ

2(1− 2ρ)
+O(z4) (160)

which describes reduced-activity histories with values ofK much smaller than
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〈K〉.

In much a similar way, restricting our analysis to the Markovprocessn(t) =
∑

i ni(t), the topological pressureψ+(s) is the largest eigenvalue of the following
operator

−W+(s) =n̂+ (N − n̂)
λn̂

N

− 1

2
(Mx + iMy)

(

h+
λn̂

N

)1−s(

n̂+ h+
λn̂

N

)s

− 1

2
(Mx − iMy)

(

n̂+ h+
λn̂

N

)s

(161)

And again expanding theMα’s in powers ofN keepinga and a† of order 1,
leads toW+ being quadratic ina anda†, withN-independent coefficients. Using
the Bogoliubov-like transformation described in AppendixA, it is thus a simple
matter to find the largest eigenvalue ofW+, which reads

ψ+(s) =







2ρ (2s − 1)N + 2s(1− s)

−
√

4s
[
1− 3ρ(1− ρ)

(1− ρ)2
− s

]

+ 2s
ρ(1− 2ρ)

(1− ρ)2
+O(1/N) if s ≥ sc

− hN +O(1/N) if s ≤ sc
(162)

whereh = (2−3ρ)ρ
(1−ρ)2

. The critical valuesc that emerges in (162) is given by

sc = log2
λρ

2
+

1

N

1

2ρ ln 2

(

−2 + log2 λρ+
√

λρ− log2 λρ
)

+ O(1/N2)

(163)
Whens > 0, the expansion of theW+ is valid only whens ≪

√
N . WhenN is

(large and) fixed, the asymptotics ofψ+(s) is

ψ+(s) ∼
√
hN

(
hN2 + 2λρN − λ

N

)s

as s→ ∞ (164)

In Fig. (10) we have plottedψ+(s) as a function ofs. The most remarkable feature
is the presence of dynamical transition at the critical parameters = sc. The
nontrivial convex branch ceases to correspond to the largest eigenvalue ofW+ at
s < sc, and it is simply replaced by a plateau. This picture, which is customary
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Figure 10: Topological pressurelimN→∞
1
N
ψ+(s) on the special line (atρ =

0.57). The dashed line is the continuation of the strictly convexbranch fors < sc.

in equilibrium phase transitions, reflects the existence ofan underlying first order
transition. Ass is decreased froms = 0 (corresponding to typical histories) one is
selecting histories with less and less dynamical disorder.This indicates a phase-
separation like mechanism occurring in the space of histories. We now attack the
generic case for which the values ofh andλ are unrestricted.

7.3 Generating function of the number of events for anyλ

The task remains that of finding the largest eigenvalueψK(s) of WK as given in
(155). When directly expanded inN , the choiceMα = Lα leads to the following
expression for the evolution operatorWK

−WK(z) = H(2)N +
(

H(1)
a a+H

(1)

a†
a†
)√

N + Ĥ(0) +O(
√
N) (165)

whereH(2), H
(1)
a , H

(1)

a†
are c-numbers and̂H(0) is quadratic ina anda†. While

this seems a perfectly legitimate largeN expansion, the presence of nonzeroH
(1)
a

orH(1)

a†
terms in (165) signals that the ground state of−WK does not correspond

to the zero boson state, but rather to anO(N) boson state (on the special param-
eter subspaceΛ = λ these coefficients of the linear terms ina anda† somehow
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miraculously vanish). Indeed, in order to compute that spectrum we need to trans-
late the creation and annihilation operators2 by a constant of magnitude

√
N , but

this mixes the whole expansion (165) of WK(z) in powers ofN . In particular,
unlessH(1)

a = H
(1)

a†
= 0, the truncated expansion (165) is not sufficient to find

the eigenvalues ofWK(z), even to lowest order inN . Given that we wish to de-
scribe−WK ’s low lying excitations, witha†a ∼ O(1), we must now find a way
to expand around the ground-state. By contrast to Ruijgrok and Tjon [45], we
must now perform two successive rotations parametrized byα andm (around the
y and thez axes) of the initial Holstein-Primakoff representation (156-158). The
evolution operatorWK(z) then reads

−WK(z) = n̂+ (N − n̂)
λn̂

N
− 1

2
z

[

α (Mx + iMy)
λn̂

N
+ α−1(Mx − iMy)

]

(166)
with My = Ly,

(
Mx

Mz

)

=

(
p −m
m p

)(
Lx

Lz

)

, p =
√
1−m2 and

{

−1 ≤ m ≤ 1

α ≥ 0

(167)
The parameters of the two rotations,α andm, will now be chosen so thatH(1)

a =

H
(1)

a†
= 0 in the truncated expansion (165) of (166). When these equations in

α andm have more than one solution, we have to choose the solution which
gives the highest value ofψK . ExpandingWK(z) in powers ofN and imposing

H
(1)
a = H

(1)

a†
implies thatα =

√

2 1−ρ
1+m

and yields an expression of the form (165)
with

H(2) =
1

4(1− ρ)

(

4pz
√

1
2
(1 +m)(1 − ρ)− (3− 2ρ−m)(1 +m)

)

(168)

H(1)
a = H

(1)

a†
=

1

2(1− ρ)

(

z(3m− 1)
√

1
2
(1 +m)(1− ρ) + p(1− ρ−m)

)

(169)

From (169) we see that solvingH(1)
a = H

(1)

a†
= 0 in m leads to eitherm = −1

orm is one of the roots of third degree polynomial. Ifm = −1 is not the correct
solution, this root must be inserted back into the expressions ofH(2) andĤ(0) to
getψK(s). With a view to avoiding further technicalities, it is more convenient to

2for instance, through similarity transformations such as eCaa†e−Ca = a† + C.
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use algebraic elimination methods so as to find an equation onH(2) itself, and on
the coefficients ofĤ(0). Skipping details, one finds that whenm 6= −1, H(2) is
one of the roots of the following polynomial

P (X) = c3X
3 + c2X

2 + c1X + c0 (170)

c3 = 16(1− ρ)2

c2 = −27 z4 (−1 + ρ)3 + 12 z2 (−1 + ρ)2 (−4 + 3 ρ)− 8
(
−6 + 12 ρ− 7 ρ2 + ρ3

)

c1 = −12 z4 (−1 + ρ)2 (−4 + 3 ρ)− z2
(
96− 228 ρ+ 184 ρ2 − 53 ρ3 + ρ4

)

+ (−2 + ρ)2
(
12− 12 ρ+ ρ2

)

c0 = (1− z2)
[
4z2(1− ρ)− (2− ρ)2

]2

We first consider the cases ≥ 0. In that range ofs, we see that by definition
we must haveψK(s) ≤ 0. However, the solutionm = −1 of H(1)

a = H
(1)

a†
= 0

yieldsψK(s) = 0, which is the highest possible value ofψK(s). We thus have
ψK(s) = 0 in the wholes ≥ 0 range. We now assumes < 0. And again by
definition we must haveψK(s) ≥ 0. The solutionm = −1 still yieldsψK(s) = 0.
We thus have to check whetherP (X) has any negative solution. The discriminant
of P (X) has the simple form

∆ = − 1

228 33 (1− ρ)5
z2
(
2 + z2 (−1 + ρ)− ρ

)2

{

3
[
24z2(1− ρ) + ρ2 + 12ρ− 12

]2
+ (6− ρ)3 (−2 + 3 ρ)

}3

(171)

As ∆ < 0 in the ranges < 0, P (X) has three real valued roots. Moreover,
from the coefficients of (170) it is easy to see that the roots ofP (X) have a pos-
itive sum and a negative product, which shows thatP (X) has only one negative
root, namely,H(2). From Cardano’s formula, settingq = (9c1c2c3 − 27c0c

2
3 −

2c32)/(54c
3
3) we find3 that in the ranges < 0

ψ
(2)
K (s) = − c2

3 c3
+ e2iπ/3

(

q + i
√
−∆

) 1
3

+ e−2iπ/3
(

q − i
√
−∆

) 1
3

(172)

As a remark, we notice that the two rotations of parametersα andm could
also be understood as the result of suitable similarity transformations of the kind

3The expression ofψK takes real values but can’t be written with algebraic operations involv-
ing only real quantities: this is thecasus irreductibilisof Cardano’s formula.
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eθM
z

(. . .)e−θM
z

performed onWK(z) before expanding inN . In other words,
finding the roots of (170) enabled us to perform an appropriate resummation of
(165) to all orders in order to obtain a series whose truncation tolowest order has
well defined spectrum, which makes the largeN expansion consistent.

In order to be more explicit, we now provide the limiting behavior of ψK(s) =
Nψ

(2)
K (s) + ψ

(0)
K (s) +O(N−1) in two limits of interest, namely fors→ 0−,

ψ
(2)
K (s) = 2ρ(e−s − 1) + (2ρ− 3)2

[s2

ρ
− s3 (−4 + ρ (4 + ρ))

ρ3

s4 (432 + ρ (−1248 + ρ (1188 + ρ (−444 + 79 ρ))))

12 ρ5

]

+O(s5)

and fors→ −∞,

lim
s→−∞

esψ(2)
K (s) = 1 (173)

The remainingO(1) piece inψK is given by

ψ
(0)
K (s) = C +

√
D (174)

whereC is a root from the polynomial

P = z2 (−2 + ρ)2 + 4 z4 (−1 + ρ)− 2X3 (−1 + ρ)2

−X z2 (−1 + ρ) ρ+ 4X2 (−1 + ρ)
(
3 z2 (−1 + ρ) + 2 ρ

)
(175)

andD is a root from the polynomial

P = 256X3 (−1 + ρ)5 + 16X2 (−1 + ρ)3
(
−27 z4 (−1 + ρ)2 + 24 z2 (−1 + ρ) ρ− 4 ρ2

)

− z2
(
(−2 + ρ)2 + 4 z2 (−1 + ρ)

) (
108 z4 (−1 + ρ)2 + 8 ρ3 − 9 z2 (−1 + ρ) (−12 + ρ (12 + ρ))

)
+

8X z2 (−1 + ρ)2
(
−108 z4 (−1 + ρ)2 − 8 ρ3 + 9 z2 (−1 + ρ) (−12 + ρ (12 + ρ))

)

(176)

It is now time to summarize our findings, which we do in the following two plots
Figs. (11) and (12), showing respectively the full plot ofψK(s) as a function of
s and that of the densityρ(s) = (1 + m(s))/2 corresponding to the rotation
parameterm(s) as a function ofs.

On Fig. (11) we notice thatψK(s) is not analytic at some critical pointsc
which corresponds to the phase-separation like mechanism depicted by the topo-
logical pressureψ+(s) (see Fig.10), but now at the level of the number of events
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Figure 11: Plot oflimN→∞ ψK(s) as a function ofs at λ = 2 andh = 0.3. Note
the presence of a jump in the first derivative ats = sc ≃ 0.16.
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Figure 12: Plot ofρ(s) = 1+m(s)
2

in theN → ∞ limit as a function ofs atλ = 2
andh = 0.3. Note the presence of a jump ats = sc ≃ 0.16.
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K. This result illustrates that this simple quantity – at least for infinite-range sys-
tems – already contains much of the information given byQ+ on the complexity
of histories.

This is fully confirmed by Fig. (12). In analogy to the Ising case (119), ρ(s) =
1+m(s)

2
represents the mean density in the biased stateP̃K(n, s):

ρ(s) =
1

N

∑

n

nP̃K(n, s) (177)

As usual, ats = 0 we recover the density in the steady state. Ats < 0 we probe
the regime in which the mean “activity”K/t of histories is typically larger than
in the steady state. They correspond to explored configurations where the density
is larger than the steady state densityρ. On the other hand, ats > 0 histories
with smallerK/t are favored. Increasings leads to a sudden jump in the typical
density, which corresponds to a dramatic change in the kind of configurations
explored by histories with reduced activityK/t.

7.4 Topological pressure:h = 0

We begin by attacking theh = 0 case for which the phase diagram possesses
two stationary states, the active and the absorbing one. Thetopological pressure
ψ+(s) is the largest eigenvalue of the operatorW+(s) written out in (161). By
techniques similar to those mentioned above, we arrive at

ψ+(s) = Nψ
(N)
+ (s) + ψ

(0)
+ (s) (178)

ψ
(N)
+ (s) =

1 +m

4

(

− r

1− ρ
+

√

2qs

(1 +m)(1− ρ)

)

(179)

ψ
(0)
+ (s) = (1− s)

1 +m

4p

√

2qs(1 +m)

1− ρ
(180)

−

√
√
√
√− p

4(1− ρ)

√

2qs(1 +m)

1− ρ
+
qs

4

1 +m

1− ρ

(
∆0 + s∆1 + s2∆2

)
(181)
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where we used the notations

p =
√
1−m2 (182)

r = 3−m− 2ρ (183)

q =
r2

2(1−m)(1− ρ)
(184)

∆0 =
3

2
+

1

1−m
(185)

∆1 =
2s

r2
(
p2 − 2r(1 +m− ρ)

)
(186)

∆2 = −(1 +m)(1 +m− 2ρ)2

2(1−m)r2
(187)

The rotation parameterm is the solution of

2pr(1−m− ρ) =
√

2(1− ρ)(1 +m)qs (s(1 +m)(1 +m− 2ρ) + (1− 3m)r)
(188)

such thatψ(N)(s) has the largest value. The first cumulants can be determined
without toil,

1

N t
〈Q+〉 = 2ρ ln 2− 1

4N

[
ρ

1− ρ
− 8

1− ρ

ρ
ln 2

]

+O(1/N2) (189)

1

N t
〈Q2

+〉c = ρ(ln 2)2 +
(2− 3ρ)2

ρ
(ln 2)2 +O(1/N) (190)

(191)

Fig. (13) shows the topological pressureψ(s) and the corresponding densityρ(s)
is represented on Fig. (14).

7.5 Topological pressure (ii):h > 0

Finally we turn toh > 0 for which the explicit formulas read

ψ(s) = Nψ(N)(s) + ψ(0)(s) (192)

ψ(N)(s) =
1

4

(
−r + 2p

√
r qs
)

(193)

ψ(0)(s) =
(1− s)u

2p

√

qs

r
−
√

qs
(
∆0 + s∆1 + s2∆2

)
(194)
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Figure 13: Plot of the topological pressurelimN→∞
1
N
ψ+(s) as a function ofs at

λ = 5 andh = 0. Note the presence of a jump in the first derivative atsc = 0.
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as a function ofs atλ = 5 andh = 0 in the large
system limitN → ∞. Note the presence of a jump atsc = 0.
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where we used the notations

p =
√
1−m2 (195)

r = 2
(
2h+ λ(1 +m)

)
(196)

r = 1
2
(1−m)r + 2(1 +m) (197)

q =
r

rp2
(198)

u = 4h+ λ(1 +m)2 (199)

∆0 =
λ2p2

4r
+
h

p2
+
λ

2

p2 +m

1−m
(200)

∆1 = 4 h (1 +m)2 λ
(
−4 + (1−m)2 λ

)
+ 4 h2

(
−8 + (1−m)2 (1 +m) λ

)

(201)

+ (1 +m)3 λ
(
−4 − 2 (1 +m) λ+ (1−m)2 λ2

)
(202)

∆2 = −
(
r − 4(1 +m)

)2
u2

4rp2r2
(203)

andm is the solution of

pr(h+ λm− 1)
√
r = su

(
r − 4(1 +m)

)
+ r

(
4hm− λ(1 +m)(1− 3m)

)

(204)

such thatψ(N)(s) has the highest value.

The values of the first two cumulants read

1

N t
〈Q+〉 = 2ρ ln 2 +

1

4N

[

λ− 1

1− ρ
− 8λρ(1− ρ)2
(
1− λ(1− ρ)

)2 ln 2

]

+O(1/N2)

(205)

1

N t
〈Q2

+〉c = ρ(ln 2)2 + ρ

(
1− 2ρ+ λ(1− ρ)2

1− λ(1− ρ)2

)2

(ln 2)2 +O(1/N) (206)

(207)

The contact process also raises interest [47] in related computationally motivated
problems where similar absorbing-state phase transitionshave been identified. We
believe that not only the KS entropy, but also the pieces of information contained
in P̃+ or P̃K , could shed a new light, with quantitative tools, on dynamical com-
plexity issues.
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8 Outlook

Before concluding, we would like to discuss [52] on a simple example, namely
Brownian motion, the difference between the Markov approach we were dealing
with in this paper, and another possible approach which alsogenerated a lot of
literature in the field of dynamical and chaotic properties of systems.

Let us first adopt the Lorentz gas picture [19] in which a particle is scattered by
randomly placed obstacles. Over large distances, the particle is seen to perform a
diffusive motion. Furthermore, two infinitesimally close-by particles will quickly
follow exponentially diverging routes. This is a chaotic system. A Lorentz gas
is well approximated by a Markov process. The possibility ofchoosing a variety
of infinitesimally close initial conditions, leading to very different trajectories, is
replaced with the drawing of random numbers whose net effectis to account for
the chaotic nature of the Lorentz gas. Within this approach,such local characteri-
zation of chaos like individual Lyapunov exponents cannot be accessed.

An opposite approach to Brownian motion is the modeling in terms of a Langevin
equation, say for the particle velocity, which evolves under the effect of an exter-
nal position independent – yet random – force. Within this picture [53, 54, 55],
the random force is viewed as an external field. Two close-by initial conditions
will be subjected to the same realization of the random force. Within this picture,
a simple Brownian motion is not a chaotic system. What can possibly make it
chaotic lies in space-dependent forces due to interactionsor to an external field.

The difference in the two pictures lies in the observation scale compared with
the intrinsic correlation length of the surrounding medium. In the first approach,
the noise source is very short range correlated in space, butwith long range time
correlations. In the second approach, this is the exact opposite situation. When
computing a Lyapunov exponent, before deciding which picture applies, one must
compare the typical physical scales of the medium giving birth to a chaotic behav-
ior. For times short with respect to the correlation time scale and distances large
with respect to the correlation length, the first approach – the Markov one – ap-
plies.

If this is the case, we have shown that the thermodynamic formalism can suc-
cessfully be applied to Markov dynamics with continuous time, provided that the
proper interpretation is used for the definition of the dynamical partition function.
In particular, a finite KS-entropy can be defined. This opens the door to explicit
expressions for realistic systems.

Besides, we have embedded this formalism into a more generalpicture. In-
deed, the dynamical partition function can be expressed as the generating func-
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tion of an observable. By noticing that other observables could be used as well,
we are able to relate the quantities used in the thermodynamic formalism with
those involved in the much studied Lebowitz-Spohn [8] fluctuation theorem. We
also show on specific examples that the simplest observable one could think of,
namely the numberK of transitions occurring in a given time, is not as trivial as
one could think and contains already some relevant information on the system.
For example, for the infinite range Ising model, the cumulantgenerating function
of K already indicates that a dynamical phase transition occursin the low tem-
perature phase. This is confirmed by the calculation of the more sophisticated
topological pressure.

We found also that one can gain some insight into these dynamical phase
transitions by looking at a new object: the aforementioned cumulant generating
function was obtained as the largest eigenvalue of a certainoperator. If one also
computes the associated eigenvector, one can build a quantity that weights the tra-
jectories depending on the value the observable takes alongthem. In the example
of the infinite range Ising model, this allows to show that thedynamical phase
transition which occurs below the critical temperature gives rise to a splitting of
the trajectories into two families, respectively typical of a disordered and of an
ordered phase.

The general unifying picture behind all this is that of a Gibbs ensemble con-
struction carried out over the space of dynamical trajectories, rather than over
microscopic states.

We have illustrated our approach on several physical examples (an interacting
lattice gas, a system exhibiting an equilibrium second order phase transition and
one with a nonequilibrium phase transition). Our setup has allowed us to pro-
vide an intrinsically dynamical picture to phenomena that are always interpreted
in static terms. This constitutes a powerful tool that longsto be applied to systems
for which no static phenomena has ever been identified, like those possessing
glassy dynamics. It is tempting to speculate that ageing andother dynamical fea-
tures of glasses will be identified with a sharp signature on some appropriately
chosen dynamical potentials like those considered throughout this work. Some of
these ideas can already be found in [56, 57]. But before addressing these challeng-
ing issues, many questions remain to be answered for more conventional systems.
As far as lattice gases are concerned, the general dependence of the KS entropy
on the diffusion constant and the compressibility is one such question. Driving a
lattice gas into a nonequilibrium steady-state (with a bulkor boundary field) leads
to distinct dynamical features. How do these reflect on the dynamical partition
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function? In the vicinity of a second-order transition, thedynamics possesses uni-
versal features, so that the dynamical potentialsψA(s) introduced in this paper
will obey universal scaling laws. Which are these? May be some universal scal-
ing functions as the one found in [12] could emerge. The influence of quenched
disorder, generically known to slow the dynamics down is onemore open research
route.

Acknowledgments:The authors wish to thank T. Delattre for his participation in
the early stage of this work, along with J. Tailleur, J. Kurchan and H. van Beijeren
for their many helpful critical comments.

A Non-hermitian quadratic operators and Bogoliubov-
like transformation

Holstein-Primakoff expansions of our evolution operatorsWA for infinite-range
models often lead to a “Hamiltonian”̂H that is quadratic in creation and annihi-
lation operatorsa anda†

Ĥ = Xa2 + 2Za†a + Y (a†)2 (208)

We are interested in the lowest energy level ofĤ. In order that the latter exists we
shall have to assume that∆2 = Z2 −XY > 0 andY ≤ 0.

Performing the similarity transformationP−1
1 (. . .)P1 with

P1 = e
Z−∆

2Y
a2 (209)

does not altera while it shiftsa† according to

P−1
1 a†P1 = a† − Z −∆

Y
a (210)

Its purpose is to remove thea2 term inĤ:

Ĥ1 = P−1
1 ĤP1 = Y (a†)2 + 2∆a†a +∆− Z (211)

We now introduce the operator

P2 = e−
Y
4∆

(a†)2 (212)
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It commutes witha† and shiftsa according to

P−1
2 aP2 = a− Y

2∆
a† (213)

Acting onĤ1, it yields

Ĥ2 = P−1
2 ĤP2 = 2∆a†a+∆− Z (214)

As the similarity transformations (210) and (213) do not modify the spectrum
of Ĥ(s), we see that the lowest energy level ofĤ(s) is ∆ − Z. WhenH is
Hermitian (X = Y ), the Bogoliubov transformation leads to exactly the same
result. However, whenH is not Hermitian, the Bogoliubov transformation can-
not be implemented: contrary to (210) and (213), it does not transforma anda†

independently, which was required here to obtain (214).
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