Keywords: integer quadratic knapsack problem, separable objective function, direct expansion, binary expansion, piecewise interpolation

linear interpolation can not be applied to transform (QMKP) into an equivalent 0-1 piecewise linear problem.

Rewriting integer variables into zero-one variables: some guidelines for the integer quadratic multi-knapsack problem

Abstract: This paper is concerned with the integer quadratic multidimensional knapsack problem (QMKP) where the objective function is separable. Our objective is to determine which expansion technique of the integer variables is the most appropriate to solve (QMKP) to optimality using the upper bound method proposed by [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF]. To the best of our knowledge the upper bound method previously mentioned is the most effective method in the literature concerning (QMKP). This bound is computed by transforming the initial quadratic problem into a 0-1 equivalent piecewise linear formulation and then by establishing the surrogate problem associated. The linearization method consists in using a direct expansion initially suggested by [START_REF] Glover | Improved linear programming formulations of nonlinear integer problems[END_REF] of the integer variables and in applying a piecewise interpolation to the separable objective function. As the direct expansion results in an increase of the size of the problem, other expansions techniques may be utilized to reduce the number of 0-1 variables so as to make easier the solution to the linearized problem. We will compare theoretically the use in the upper bound process of the direct expansion (I) employed in [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF] with two other basic expansions, namely: (II) a direct expansion with additional constraints and (III) a binary expansion. We show that expansion (II) provides a bound which value is equal to the one computed by [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF]. Conversely, we provide the proof of the non applicability of expansion (III) in the upper bound method. More specifically, we will show that if (III) is used to rewrite the integer variables into 0-1 variables then a

Introduction

This paper deals with the integer quadratic multi-knapsack problem (QMKP) where the objective function is separable. Problems of this structure arise in numerous industrial and economic situations, for instance in production planning [START_REF] Stecke | Nonlinear integer production planning problems[END_REF], reliability allocation [START_REF] Nakagawa | Optimal reliability allocation by branch and bound techniques[END_REF] and finance [START_REF] Faaland | An integer programming algorithm for portfolio selection[END_REF]. These include the main application of (QMKP) which is in the portfolio management area where the investments are independent, see [START_REF] Djerdjour | A surrogate-based algorithm for the general quadratic multidimensional knapsack[END_REF] and [START_REF] Faaland | An integer programming algorithm for portfolio selection[END_REF]. Nevertheless, solving (QMKP) efficiently will constitute a starting point to solve the more general and realistic portfolio management problem where the investments are dependent, i.e. the objective function is non separable.

The integer quadratic multi-knapsack problem (QMKP) where the objective function is separable consists in maximizing a concave separable quadratic integer function subject to m linear capacity constraints. It may be stated mathematically as follows:
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where the coefficients c j , d j , a ij , b i are nonnegative. The bounds u j of variables x j are pure integers, with ( )
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The problem (QMKP) which is a NP-hard problem [START_REF] Chaillou | Best network flow bounds for the quadratic knapsack problem[END_REF] is a generalization of both the integer quadratic knapsack problem [START_REF] Bretthauer | The nonlinear knapsack problem -algorithms and applications[END_REF] and the 0-1 quadratic knapsack problem where the objective function is subject to only one constraint [START_REF] Billionnet | A new upper bound for the 0-1 quadratic knapsack problem[END_REF].

Since, (QMKP) is NP-hard, one should not expect to find a polynomial time algorithm for solving it exactly. Hence, we are usually interested in developing branch-andbound algorithms. A key step in designing an effective exact solution method for such a maximization problem is to establish a tight upper bound on the optimal value. Basically, the available upper bound procedures for (QMKP) may be classified as attempting either to solve efficiently the LP-relaxation of (QMKP) (see [START_REF] Bretthauer | The nonlinear knapsack problem -algorithms and applications[END_REF] and [START_REF] Körner | Integer quadratic programming[END_REF]) or to find a good upper bound, of better quality than the LP-relaxation of (QMKP), transforming (QMKP) into a 0-1 linear problem easier to solve (see [START_REF] Djerdjour | A surrogate-based algorithm for the general quadratic multidimensional knapsack[END_REF] and [START_REF] Mathur | A branch and search algorithm for a class of nonlinear knapsack problems[END_REF]). To the best of our knowledge, the upper bound method we have proposed in a previous work [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF] is better than the existing methods (Djerdjour, Mathur and Salkin algorithm [START_REF] Djerdjour | A surrogate-based algorithm for the general quadratic multidimensional knapsack[END_REF], a 0-1 linearization method, a classical LP-relaxation of (QMKP)) from both a qualitative and a computational standpoint. We have first used a direct expansion of the integer variables, originally suggested by Glover [START_REF] Glover | Improved linear programming formulations of nonlinear integer problems[END_REF], and apply a piecewise interpolation to the objective function: an equivalent 0-1 linear problem is thus obtained. The second step of the algorithm consists in establishing and solving the surrogate relaxation problem associated to the equivalent linearized formulation.

Nevertheless the transformed linear formulation encounters numerous 0-1 variables because of the direct expansion used (denoted by expansion (I) in the following).

Consequently, other expansions techniques may be utilized to reduce the number of 0-1 variables so as to make easier the solution to the linearized problem. Let us consider the three basic expansions for rewriting the integer variables of (QMKP) into 0-1 variables:

• Expansion (I): direct expansion
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The purpose of this note is to evaluate the impact of the use of the above expansion techniques, on the upper bound computation developed in [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF]. More specifically, we will determinate which expansion is the most appropriate to be used in the upper bound method for (QMKP) [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF]. We will compare theoretically the use of the direct expansion (I) with the direct expansion with additional constraints (II) and with the binary expansion (III). We will show that the use of (II) provides a bound which value is equal to the one computed in [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF]. Conversely, we provide the proof of the non applicability of both (III) and a linear interpolation to transform (QMKP) into an equivalent 0-1 piecewise linear problem.

The paper is organized as follows. The next section summarizes the upper bound method developed in [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF] detailing the direct expansion (I) of integer variables and the piecewise interpolation. In Section 3, the direct expansion with additional constraints (II) is applied to (QMKP) so as to compute the upper bound suggested by Quadri et al. [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF]. Section 4 is dedicated to the binary expansion (III). We finally conclude in Section 5.

In the remainder of this paper, we adopt the following notations: letting (P) be an integer or a 0-1 program, we will denote by ( P ) the continuous relaxation problem of (P). We let Z[P] be the optimal value of the problem (P) and Z[ P ] the optimal value of ( P ). Finally ⎡ ⎤

x (resp. ⎣ ⎦ x ) will denote the smallest (resp. highest) integer greater (resp. lower) than or equal to x.

Section 2. Direct expansion of the integer variables

In this section we summarize the upper bound method for (QMKP) proposed by Quadri et al. [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF]. First, an equivalent formulation is obtained by using a direct expansion (I) of the integer variables x j as originally proposed by Glover [START_REF] Glover | Improved linear programming formulations of nonlinear integer problems[END_REF] and by applying a piecewise interpolation to the initial objective function as discussed in [START_REF] Djerdjour | A surrogate-based algorithm for the general quadratic multidimensional knapsack[END_REF].

The direct expansion of the integer variables x j consists in replacing each variables x j by a sum of u j 0-1 variables y jk such that ∑ = = 
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In the second step of the algorithm, a surrogate relaxation is applied to the LPrelaxation of (MKP). The resultant formulation (KP, w) is the surrogate relaxation problem of (MKP) and can be written as:
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As proved by Glover [START_REF] Glover | Improved linear programming formulations of nonlinear integer problems[END_REF], (KP, w) is a relaxation of (MKP). For any value of

0 ≥ w [ ] w KP Z ,
the optimal value of ( ) proposed in [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF].

Section 3. Direct expansion of integer variables with additional constraints

In this section we apply to the integer variables of (QMKP) the direct expansion with additional constraints (II). That is each variable x j is replaced by the following expression ∑ = ( ) Following the upper bound method developed in [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF] we then establish the surrogate problem (KP 2 ,w) associated to (MKP 2 ). The problem (KP 2 ,w) can be written as: Utilizing the optimal solution * ω of the dual of ) ( 2MKP as the surrogate multiplier, the optimal value of the LP-relaxation of (KP 2 , * ω ) provides an upper bound of (QMKP). The following proposition and its corollary show that this upper bound, computed in this section through the use of expansion (II), is equal to the one computed in [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF]. . We denote:
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x stands for the highest integer lower than or equal to the real x. j p is the integer part of j x . Note that
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We define the solution y as follows: . This implies that y is feasible for ( ) w KP, since we have: 
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-For 0 j j = , we have: We thus have proved in this Section that solving (QMKP) with a linearization technique and a surrogate relaxation may be equivalently done with expansion (I) or with expansion (II) of the integer variables. We proved that expansions (I) and (II) are equivalent in the sense that they provide the same upper bound. However, expansion (II) involves n added constraints without improving the quality of the upper bound in comparison with expansion (I).

( ) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 , , ' , 1 , ' , , 1 ' , , 

Section 4. Binary expansion of integer variables

This section is dedicated to the use of a binary expansion (referred as expansion (III))

of this integer variables in the upper bound procedure developed in [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF]. Such expansion consists in rewriting each integer variable x j (j=1,…,n) as: A possible way to get a further decrease of the number of 0-1 variables would be the use of a classical linearization technique as suggested by [START_REF] Foret | Applications de l'algèbre de Boole en recherché opérationnelle[END_REF] [START_REF] Foret | Applications de l'algèbre de Boole en recherché opérationnelle[END_REF]. This linearization scheme would first consist in applying (III) to the integer variables and then using the basic linearization technique for 0-1 variables. Nevertheless, preliminary computational experiments have shown that the bound provided by this technique is of worst quality than the one computed in [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF]. Moreover, this process seems to be more time consuming than [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF].
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 1 Since the objective function f is separable a linear interpolation can then be applied to each objective function term f j . Consequently, (QMKP) is equivalent to the 0-1 piecewise linear program (MKP):

  w KP, constitutes an upper bound for [ ] MKP Z . But the value of the bound [ ] w KP Z ,depends on the choice of the surrogate multiplier employed. It is proved in[START_REF] Nakagawa | Optimal reliability allocation by branch and bound techniques[END_REF] that if w* is chosen as the optimal solution of the dual of ( ) MKP then the optimal value of (KP,w*) is a tight upper bound for (QMKP) and it is obtained in a very competitive CPU time.Nevertheless, the direct expansion used in the above upper bound procedure results in an increase of the size of the linearized problem. Indeed, the number of 0-1 variables is equal to ∑ = well known that fewer variables are included in the program so less running time is consumed. The purpose of the next sections is to try to reduce the equivalent linearized problem size, using other expansion techniques and to evaluate the impact of such techniques on the computation of the upper bound

  ,…,u j and j=1,…,n. Since the integer variables are now replaced by 0-1 variables, we transform the resultant 0-1 quadratic program into a 0-1 linear problem as follows: we replace each objective function termf j (x j ) = c j k -d j k² .The problem (QMKP) is thus equivalent to the following problem (MKP 2 ):

=

  For a given index j, let us consider the following linear problem ( ) j P and its dual problem ( )

  continuous knapsack problem: for a given index j, all the variables jk y , coefficients of these variables in the objective function g(y) are in decreasing order (because of the concavity of function last equality holds for the same reason as in the previous paragraph (the coefficients of variables jk y in the unique knapsack constraint are identical and the coefficients of these variables in the objective function are in decreasing order). This implies that:

  the non applicability of both (III) and a linear interpolation to transform (QMKP) into an equivalent 0-1 piecewise linear problem through the use of only

As previously mentioned, the aim of this study is to compare other expansion techniques in the upper bound process developed in [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF]. Since, the variables are now binary the next step of the algorithm of Quadri et al. [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF] Proof 4.1 Assume that it is possible to replace each function f j (x j ) = c j x j -d j x j ², for all j from 1 to n, by a linear function g j (z j ) using exactly ⎡ ⎤ ) ( log 2 j u 0-1 variables. We denote by (H) this assumption.

If (H) is true then it should exist coefficients g jk such that:

The assumption (H) must be satisfied for all problem data. Let us set u j = 3, c j = 10 and d j = 4.

Consequently,

-if x j = 1 (cf. ( 2) and ( 3)) then g j1 = 6 (i), z j1 = 1 and z j2 = 0.

-if x j = 2 (cf. ( 2) and ( 3)) then g j2 = 4 (ii), z j1 = 0 and z j2 = 1.

-if x j = 3 then (cf. ( 3)) then z j1 = z j2 = 1 which implies (cf. ( 2)) that 3c j -9 d j = g j1 + g j2 = -6 (iii).

The equations system (I), (II) and (III) has clearly no solution. Consequently there is a contradiction with (H). Proposition 4.1 shows the non applicability of a binary expansion of the integer variables for (QMKP) so as to transform the initial problem into a 0-1 linear program.

Consequently, the upper bound method proposed in [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF] can not be applied together with expansion (III).

Section 5. Concluding remarks

In this paper we have theoretically compared the use of three techniques to rewrite integer variables into zero-one variables in an upper bound procedure for (QMKP) developed by Quadri et al. [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF], which provides, to the best of our knowledge a bound closer to the optimum than the existing methods. More specifically, we have compared a direct expansion of the integer variables, originally employed in [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF] with a direct expansion with additional constraints (II) and with a binary expansion (III).

We have proved that (II) provides the same upper bound as the one computed in [START_REF] Quadri | Upper bounds for large scale integer quadratic multidimensional knapsack problems[END_REF] whereas it involves n additional constraints. We therefore do not expect an improvement of the upper bound computational time. Finally, we provide a proof of