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Introduction

In this paper, we study a variation of the vertex cover problem where the subgraph induced by any feasible solution must be connected. Formally, a vertex cover of a simple graph G = (V, E) is a subset of vertices S ⊆ V which covers all edges, i.e. which satisfies: ∀e = {x, y} ∈ E, x ∈ S or y ∈ S. The vertex cover problem (MinVC in short) consists in finding a vertex cover of minimum size. MinVC is known to be APX-complete in cubic graphs [START_REF] Alimonti | Some APX-completeness results for cubic graphs[END_REF] and NP-hard in planar graphs, [START_REF] Garey | Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph[END_REF]. MinVC is 2-approximable in general graphs, [START_REF] Ausiello | Complexity and Approximation (Combinatorial Optimization Problems and Their Approximability Properties)[END_REF] and admits a polynomial approximation scheme in planar graphs, [START_REF] Bar-Yehuda | On approximating a vertex cover for planar graphs[END_REF]. On the other hand, MinVC is polynomial for several classes of graphs such as bipartite graphs, chordal graphs, graphs with bounded treewidth, etc. [18,[START_REF] Brandstadt | Graph classes : a survey[END_REF].

The connected vertex cover problem, denoted by MinCVC, is the variation of the vertex cover problem where, given a connected graph G = (V, E), we seek a vertex cover S * of minimum size such that the subgraph induced by S * is connected. This problem has been introduced by Garey and Johnson [START_REF] Garey | The rectilinear steiner tree problem is NP complete[END_REF], where it is proved to be NP-hard in planar graphs of maximum degree 4. As indicated in [START_REF] Moser | Exact algorithms for generalizations of vertex cover[END_REF], this problem has some applications in the domain of wireless network design. In such a model, the vertices of the network are connected by transmission links. We want to place a minimum number of relay stations on vertices such that any pair of relay stations are connected (by a path which uses only relay stations) and every transmission link is incident to a relay station. This is exactly the connected vertex cover problem.

Previous related works

The main complexity and approximability results known on this problem are the following: in [START_REF] Ueno | On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three[END_REF], it is shown that MinCVC is polynomially solvable when the maximum degree of the input graph is at most 3. However, it is NP-hard in planar bipartite graphs of maximum degree 4, [START_REF] Fernau | Vertex and edge covers with clustering properties: Complexity and algorithms[END_REF], as well as in 3-connected graphs, [START_REF] Wanatabe | Vertex covers and connected vertex covers in 3-connected graphs[END_REF]. Concerning the positive and negative results of the approximability of this problem, MinCVC is 2-approximable in general graphs, [START_REF] Savage | Depth-first search and the vertex cover problem[END_REF][START_REF] Arkin | Approximating the tree and tour covers of a graph[END_REF] but it is NP-hard to approximate within ratio 10 √ 5 -21, [START_REF] Fernau | Vertex and edge covers with clustering properties: Complexity and algorithms[END_REF]. Finally, recently the fixed-parameter tractability of MinCVC with respect to the vertex cover size or to the treewidth of the input graph has been studied in [START_REF] Fernau | Vertex and edge covers with clustering properties: Complexity and algorithms[END_REF][START_REF] Guo | Parameterized complexity of generalized vertex cover problems[END_REF][START_REF] Mölle | Enumerate and expand: Improved algorithms for connected vertex cover and tree cover[END_REF][START_REF] Mölle | Enumerate and expand: New runtime bounds for vertex cover variants[END_REF][START_REF] Moser | Exact algorithms for generalizations of vertex cover[END_REF]. More precisely, in [START_REF] Fernau | Vertex and edge covers with clustering properties: Complexity and algorithms[END_REF] a parameterized algorithm for MinCVC with complexity O * (2.9316 k ) is presented improving the previous algorithm with complexity O * (6 k ) given in [START_REF] Guo | Parameterized complexity of generalized vertex cover problems[END_REF] where k is the size of an optimal connected vertex cover. Independently, the authors of [START_REF] Mölle | Enumerate and expand: Improved algorithms for connected vertex cover and tree cover[END_REF][START_REF] Mölle | Enumerate and expand: New runtime bounds for vertex cover variants[END_REF] have also obtained FPT algorithms for MinCVC and they obtain in [START_REF] Mölle | Enumerate and expand: New runtime bounds for vertex cover variants[END_REF] an algorithm with complexity O * (2.7606 k ). In [START_REF] Moser | Exact algorithms for generalizations of vertex cover[END_REF], the author gives a parameterized algorithm for MinCVC with complexity O * (2 t • t 3t+2 n) where t is the treewidth of the graph and n the number of vertices.

MinCVC is related to the unweighted version of tree cover. The tree cover problem has been introduced in [START_REF] Arkin | Approximating the tree and tour covers of a graph[END_REF] and consists, given a connected graph G = (V, E) with nonnegative weights w on the edges, in finding a tree T = (S, E ′ ) of G with S ⊆ V and E ′ ⊆ E which spans all edges of G and such that w(T ) = e∈E ′ w(e) is minimum. In [START_REF] Arkin | Approximating the tree and tour covers of a graph[END_REF], the authors prove that the tree cover problem is approximable within factor 3.55 (this ratio has been improved to 3 in [START_REF] Könemann | Improved approximations for tour and tree covers[END_REF]) and the unweighted version is 2-approximable. Recently, (weighted) tree cover has been shown to be approximable within a factor of 3 in [START_REF] Könemann | Improved approximations for tour and tree covers[END_REF], and a 2-approximation algorithm is proposed in [START_REF] Fujito | How to trim an mst: A 2-approximation algorithm minimum cost tree cover[END_REF]. Clearly, the unweighted version of tree cover is (asymptotically) equivalent to the connected version since S is a connected vertex cover of G iff there exists a tree cover T ′ = (S, E ′ ) for some subset E ′ of edges. Since in this latter case, the weight of T ′ is |S| -1, the result follows.

Our contribution

In this article, we mainly deal with complexity and approximability issues for MinCVC in particular classes of graphs. More precisely, we first present some structural properties on connected vertex covers (Section 2). Using these properties, we show that MinCVC is polynomial in chordal graphs (Section 3). Then, in Section 4, we prove that MinCVC is APX-complete in bipartite graphs of maximum degree 4, even if each vertex of one block of the bipartition has a degree at most 3. On the other hand, if each vertex of this block of the bipartition has a degree at most 2 and the vertices of the other part have an arbitrary degree, then MinCVC is polynomial. Section 5 deals with the approximability of MinCVC. We first show that MinCVC is 5/3-approximable in any class of graphs where MinVC is polynomial (in particular in bipartite graphs, or more generally in perfect graphs). Then, we present a polynomial approximation scheme for MinVC in planar graphs. Section 6 concerns two natural generalization of the connected vertex cover problem in hypergraphs. We mainly prove that the first generalization, called the weak connected vertex cover problem, is polynomial in hypergraphs of maximum degree 3, and is H(∆ -1) -1/2-approximable. Finally, we prove that the other generalization, called the strong connected vertex cover problem, is APX-hard, even in 2-regular hypergraphs.

Notation. All graphs considered are undirected, simple and without loops. Unless oth-erwise stated, n and m will denote the number of vertices and edges, respectively, of the graph

G = (V, E) considered. N G (v) denotes the neighborhood of v in G, ie., N G (v) = {u ∈ V : {u, v} ∈ E} and d G (v) its degree that is d G (v) = |N G (v)|. Finally, G[S] denotes the subgraph of G induced by S.

Structural properties

We present in this subsection some properties on vertex covers or connected vertex covers. These properties will be useful in the rest of the article to devise polynomial algorithms that solve MinCVC either optimally (chordal graphs) or approximately (bipartite graphs,...).

Vertex cover and graph contraction

For a subset A ⊆ V of a graph G = (V, E), the contraction of G with respect to A is the simple graph G A = (V ′ , E ′ ) where we replace A in V by a new vertex v A (so, V ′ = (V \A)∪{v A }) and {x, y} ∈ E ′ iff either x, y / ∈ A and {x, y} ∈ E or x = v A , y = v A and there exists v ∈ A such that {v, y} ∈ E. The connected contraction of G following V ′ ⊆ V is the graph G c
V ′ corresponding to the iterated contractions of G with respect to the connected components of V ′ (note that contraction is associative and commutative). Formally, G c V ′ is constructed in the following way: let A 1 , • • • , A q be the connected components of the subgraph induced by V ′ . Then, we inductively apply the contraction with respect to

A i for i = 1, • • • , q. Thus, G c V ′ = G A 1 •••••Aq . Finally, let N ew(G c V ′ ) = {v A 1 , • • • , v Aq } be the new vertices of G c
V ′ (those resulting from the contraction). The following Lemma concerns contraction properties that will, in particular, be the basis of the approximation algorithm presented in Subsection 5.1.

Lemma 1. Let G = (V, E) be a connected graph and let S ⊆ V be a vertex cover of G. Let G 0 = (V 0 , E 0 ) = G c
S be the connected contraction of G following S where A 1 , • • • , A q are the connected components of the subgraph induced by S. The following assertions hold:

(i) G 0 is connected and bipartite.

(ii) If S = S * is an optimal vertex cover of G, then N ew(G 0 ) is an optimal vertex cover of G 0 .

(iii) If S = S * is an optimal vertex cover of G and v ∈ V \ S * with d G c S * (v) ≥ 2, then N ew(G 0 ) is an optimal vertex cover of G 0 = G c S * ∪{v} .
Proof. For (i), G 0 is connected since the contraction preserves the connectivity. Let N ew(G 0 ) be the new vertices resulting from the connected contraction of G following S. By construction of the connected contraction, N ew(G 0 ) is an independent set of G 0 . Now, the remaining vertices of G 0 also forms an independent set since S is a vertex cover of G. For (ii), since the contraction is associative, we only prove the result when

|A 1 | = r ≥ 2 and |A 2 | = • • • = |A q | = 1. By construction, N ew(G 0 ) is obviously a vertex cover of G 0 ; thus opt(G 0 ) ≤ opt(G) -r + 1. Conversely, Let S * 0 be an optimal vertex cover of G 0 . If v A 1 / ∈ S * 0 , then the neighborhood N G 0 (v A 1 ) of v A 1 in G 0 verifies N G 0 (v A 1 ) ⊆ S * 0 . So, N G (A 1 ) \ A 1 ⊆ S * 0 , and if v ∈ A 1 , then S ′ = S * 0 ∪ (A 1 \ {v}) is a vertex cover of G, hence opt(G) ≤ opt(G 0 ) + r -1. Otherwise, v A 1 ∈ S * 0 , and S ′ = (S * 0 \ {v A 1 }) ∪ A 1 is a vertex cover of G. Thus, opt(G) ≤ opt(G 0 ) + r -1.
We conclude that opt(G) = opt(G 0 ) + r -1 and the result follows. For (iii), using (ii) and the associativity of the contraction, we only prove the result when S * is also an independent set of G (in other words, we first apply the connected contraction following S * ); then, the connected components of the subgraph induced by

S * ∪ {v} satisfy |A 1 | = r ≥ 3 and |A 2 | = • • • = |A q | = 1.
Using the same argument as previously, on the one hand, we get opt(G 0 ) ≤ opt(G)-(r -1)+1 where G 0 = G c S * ∪{v} since N ew(G 0 ) is a vertex cover of G 0 ; on the other hand, if v A 1 ∈ S * 0 (where S * 0 is an optimal vertex cover of G 0 ) then

S * 0 ∪ {v} is a vertex cover of G, hence opt(G) ≤ opt(G 0 ) + 1 ≤ opt(G 0 ) + (r -2). If v A 1 ∈ S * 0 , (S * 0 \ {v A 1 }) ∪ (A 1 \ {v}) is a vertex cover of G and then opt(G) ≤ opt(G 0 ) + r -2.
The proof is now complete.

Connected vertex covers and biconnectivity

Now, we deal with connected vertex covers. It is easy to see that if the removal of a vertex v disconnects the input graph (v is called a cut-vertex, or an articulation point), then v has to be in any connected vertex covers. In this section we show that, informally, solving MinCVC in a graph is equivalent to solve it on the biconnected components of the graph, under the constraint of including all cut vertices.

Formally, a connected graph G = (V, E) with |V | ≥ 3 is biconnected if for any two vertices x, y there exists a simple cycle in G containing both x and y. A biconnected component (also called block)

G i = (V i , E i ) is a maximal connected subgraph of G that is biconnected. For a connected graph G = (V, E), V c denotes the set of cut-vertices of G and V i,c its restriction to V i . Lemma 2. Let G = (V, E) be a connected graph. S ⊆ V is a connected vertex cover of G iff for each biconnected component G i = (V i , E i ), i = 1, • • • , p, S i = S ∩ V i is a connected vertex cover of G i containing V i,c .
Proof. Let S ⊆ V be a connected vertex cover of a connected graph G. Obviously, V c ⊆ S since on the one hand, each biconnected component contains at least one edge, and on the other hand, the only vertices linking two distinct biconnected components are the cut-vertices. Moreover, trivially the restriction of S to V i (ie., S i ) is a vertex cover of G i containing V c,i . Finally, if S i is not connected in G i , then there is two connected components S i,1 and S i,2 in the subgraph of G i induced by S i . By construction, there is a path µ which connects a vertex of S i,1 to a vertex of S i,2 and which only contains vertices of S (since S is connected). Thus, all vertices of µ (except its endpoints) are outside G i . In this case, the subgraph G i + µ would be biconnected, contradiction since G i is assumed to be maximal.

Conversely, let S i be a connected vertex cover of

G i = (V i , E i ) containing V c,i for i = 1, • • • , p. Let us prove that S = ∪ p i=1 S i is a connected vertex cover of G. Obviously, S is a vertex cover of G since E 1 , • • • , E p is a partition of E. Moreover, since S = ∪ p i=1 S i contains V c , the solution is connected.
Lemma 2 allows us to characterize the optimal connected vertex covers of G.

Corollary 3. Let G = (V, E) be a connected graph. S * ⊆ V is an optimal connected vertex cover of G iff for each biconnected component

G i = (V i , E i ), i = 1, • • • , p, S * i = S * ∩ V i is an optimal connected vertex cover of G i among the connected vertex covers of G i containing V i,c .
Proof. Let S * ⊆ V be an optimal connected vertex cover of G. If for some i 0 ∈ {1, • • • , p}, S * ∩ V i 0 is not an optimal connected vertex cover of G i 0 among the connected vertex covers of G i 0 containing V i 0 ,c , then we deduce that there exists a vertex cover S * i 0 of G i 0 with V i 0 ,c ⊆ S * i 0 and |S * i 0 | < |S * ∩ V i 0 | (since from Lemma 2, we know that V i 0 ,c is included in S * ∩V i 0 ). In this case, using one more time Lemma 2, we obtain that S = (∪

j =i 0 S * ∩ V j )∪S * i 0 is also a connected vertex cover of G with |S| < |S * |, contradiction.
Conversely, let S * i be an optimal connected vertex cover of

G i = (V i , E i ) among the connected vertex covers of G i containing V i,c for any i = 1, • • • , p. if S = ∪ p
i=1 S * i is not an optimal connected vertex cover of G, then there exists another connected vertex cover S * of G with |S * | < |S|. Thus, we deduce that there exists at least one index

i 0 ∈ {1, • • • , p}, such that |S * ∩ V i 0 | < |S * i |. However, using Lemma 2, we know that S * ∩ V i 0 is a connected vertex cover of G i 0 containing V i 0 ,c , contradiction.
For instance, using Corollary 3, we deduce that for the class of trees or split graphs MinCVC is polynomial. More generally, we will see in Section 3 that this result holds in chordal graphs. If we denote by MinPrextCVC (by analogy with the well known PreExtension Coloring problem) the variation of MinCVC where given G = (V, E) and V 0 ⊆ V , we seek a connected vertex cover S of G containing V 0 and of minimal size, we obtain the following result: Lemma 4. Let G be a class of connected graphs defined by a hereditary property. Solving MinCVC in G polynomially reduces to solve MinPrextCVC in the biconnected graphs of G. Moreover, if G is closed by pendent addition (ie., is closed under addition of a new vertex v and a new edge {u, v} where u ∈ V ), then they are polynomially equivalent.

Proof. Let G = (V, E) ∈ G be a biconnected graph and V 0 ⊆ V , an instance of Min-PrextCVC. By adding a new pendent edge for each vertex v ∈ V 0 (i.e., a new vertex v ′ / ∈ V and an edge {v, v ′ }), we obtain a new graph G ′ such that any connected vertex cover S ′ of G ′ contains V 0 . Since G is assumed to be closed by pendent addition, then

G ′ ∈ G and MinCVC is NP-hard in G if MinPrextCVC is NP-hard in the subclass of biconnected graphs of G.
Conversely, given a graph G ∈ G, we can compute the biconnected components G i and the cut-vertices V c of G in O(n + m) time, see [START_REF] Schrijver | Combinatorial Optimization -Polyhedra and Efficiency[END_REF] for instance. Since the graph property is hereditary, we deduce G i ∈ G. Using Corollary 3, we deduce that if we had a polynomial algorithm which solves MinPrextCVC in the subclass of biconnected graphs of G, then we could solve MinCVC in G in polynomial time.

Chordal graphs

The class of chordal graphs is a very well known class of graphs which arises in many practical situations. A graph G is chordal if any cycle of G of size at least 4 has a chord (i.e., an edge linking two non-consecutive vertices of the cycle). There are many characterizations of chordal graphs, see for instance [START_REF] Brandstadt | Graph classes : a survey[END_REF]. It is well known that the vertex cover problem is polynomial in this class, [18].

In this section, we devise a polynomial time algorithm to compute an optimal connected vertex cover in chordal graphs. To achieve this, we need the following lemma.

Lemma 5. Let G = (V, E) be a connected chordal graph and let S be a vertex cover of G.

The following properties hold:

(i) The connected contraction G 0 = (V 0 , E 0 ) = G c S of G following S is a tree. (ii) If G is biconnected, then S is a connected vertex cover of G.
Proof. Let S be a vertex cover of G. For (i): from Lemma 1, we know that G 0 = (V 0 , E 0 ) = G c S is bipartite and connected. Assume that G 0 is not a tree, and let Γ be a cycle of G 0 with a minimal size. By construction, Γ is chordless, has a size at least 4 and alternates vertices of N ew(G 0 ) and vertices of V \ S. From Γ, we can build a cycle Γ ′ of G using the following rule: if {x, v A i } ∈ Γ and {v A i , y} ∈ Γ where x, y / ∈ S and v A i ∈ N ew(G 0 ) (where we recall that A i is some connected component of G[S]), then we replace these two edges by a shortest path µ x,y from x to y in G among the paths from x to y in G which only use vertices of A i (such a path exists since A i is connected and is linked to x and y); by repeating this operation, we obtain a cycle

Γ ′ of G with |Γ ′ | ≥ |Γ| ≥ 4. Let us prove that Γ ′ is chordless which will lead to a contradiction since G is assumed to be chordal. Let v 1 , v 2 be two non consecutive vertices of Γ ′ . If v 1 / ∈ S and v 2 / ∈ S, then {v 1 , v 2 } / ∈ E since otherwise Γ would have a chord in G 0 .
So, we can assume that v 1 ∈ (µ x,y \ {x, y}) and v 2 ∈ µ x,y (since there is no edge linking two vertices of disjoint paths µ x,y and µ x ′ ,y ′ ); in this case, using edge {v 1 , v 2 }, we could obtain a path which uses strictly less edges than µ x,y .

For (ii): Suppose that S is not connected. Then, from (i) we deduce that G 0 is not a star and thus, there are two edges {v A i , x} and {x, v A j } in G 0 where A i and A j are two connected components of S. We deduce that x would be a cut-vertex of G, contradiction since G is assumed to be biconnected.

In particular, using (ii) of Lemma 5, we deduce that any optimal vertex cover S * of a biconnected chordal graph G is also an optimal connected vertex cover. Now, we give a simple linear algorithm for computing an optimal connected vertex cover of a chordal graph. Theorem 6. MinCVC is polynomial in chordal graphs. Moreover, an optimal solution can be found in linear time.

Proof. Following Lemma 4, solving MinCVC in a chordal graph G = (V, E) can be done by solving MinPrextCVC in each of the biconnected components G i = (V i , E i ) of G. Since G i is both biconnected and chordal, by Lemma 5, MinPrextCVC is the same problem as MinPrextVC (in G i ). But, by adding a pendent edge to vertices required to be taken in the vertex cover, we can easily reduce MinPrextVC to MinVC (note that the graph remains chordal). Since computing the biconnected components and solving MinVC in a chordal graph can be done in linear time (see [START_REF] Brandstadt | Graph classes : a survey[END_REF]), the result follows.

Bipartite graphs

A bipartite graph G = (V, E) is a graph where the vertex set is partitioned into two independent sets L and R. Using the result of [START_REF] Fernau | Vertex and edge covers with clustering properties: Complexity and algorithms[END_REF], we already know that MinCVC is NP-hard in planar bipartite graphs of maximum 4. Using Lemma 4, we can strengthen this result: Proof. Using the NP-hardness of MinCVC in bipartite planar graphs of maximum degree 4, given in [START_REF] Fernau | Vertex and edge covers with clustering properties: Complexity and algorithms[END_REF], we only prove that MinPrextCVC in the subclass of biconnected bipartite graphs of maximum degree 4 can be polynomially reduced to MinCVC in the subclass of biconnected bipartite graphs of maximum degree 4. Note that the simple reduction given in Lemma 4 does not preserve the biconnectivity.

Let G = (V, E) be a planar biconnected bipartite graph of maximum degree 4 and let V 0 an instance of MinPrextCVC. We replace each vertex u ∈ V 0 by the gadget

H(u) depicted in Figure 1. Actually, if the neighborhood of u is N = {v 1 , • • • , v p } with 2 ≤ p ≤ 4
(since G is biconnected of maximum degree 4), then we link u 1 to some vertices of v 1 , • • • , v p and u 2 to the remaining vertices in such a way that on the one hand u 1 and u 2 have at least one neighbor in N and at most 2 neighbors in N , and on the other hand, the new graph remains planar. Let G ′ be the new graph. It is easy to see that G ′ is planar, bipartite, biconnected and of maximum degree 4.

Let S * containing V 0 be an optimal connected vertex cover of G. Then, by deleting V 0 and by adding the vertices drawn in black for each gadget H(u) (see Figure 1), we obtain a connected vertex cover of G ′ . Thus,

opt(G ′ ) ≤ opt(G) + 3|V 0 | (1) 
Conversely, let S ′ be a connected vertex cover of G ′ . It is easy to see that S ′ takes at least 4 vertices for each gadget H(u). Thus, wlog., we can assume that S ′ only takes the black vertices for each gadget H(u). By deleting these black vertices and by adding V 0 , we obtain a solution S of G satisfying

|S| = |S ′ | -3|V 0 | (2) 
Using inequality (1) and equality (2), the expected result follows. Now, one can show that MinCVC has no PTAS in bipartite graphs of maximum degree 4. Proof. We give a reduction from the vertex cover problem in cubic graphs. In [START_REF] Chlebík | Complexity of approximating bounded variants of optimization problems[END_REF] it is proved that, given a connected cubic graph • We start from G and each edge e k = {v i , v j } is replaced by the gadget H(e k ) described in Figure 2. Let H ′ be this graph.

G = (V, E) of n vertices, it is NP-hard to v j v i v j ve k ue k v i e k Figure 2: Local replacement of edge e k = {v i , v j } using gadget H(e k ). v"n v ′ 1 u ′ 1 v ′ 2 u ′ 2 v" 1 u" 1 v" 2 u" 2 v ′ n-1 u ′ n-1 v" n-1 u" n-1 u ′ n u"n v ′ n
• We add the graph H ′′ depicted in Figure 3.

• Finally, we connect the graph H ′ to the graph H ′′ . For each i = 1, • • • , n, we link v i to v ′ i by using a gadget isomorphic to H(e k ) (we denote by w i the vertex of degree 3 in the gadget, ie the vertex v e k in Figure 2).

Clearly H is of maximum degree 4 and bipartite. Finally, we can easily observe that any vertex of this graph has degree at most 4 for one part of the bipartition and at most 3 for the other part.

Let S * be an optimal vertex cover of G with value opt(G). Clearly, S * ∪ {v

e k : k = 1, • • • , m} ∪ {v ′ i , v" i , w i : i = 1, • • • , n} is a connected vertex cover of H.
Conversely, let S * be an optimal connected vertex cover of H with value opt(H). Wlog, we can assume that

S * contains {v e k : k = 1, • • • , m} ∪ {v ′ i , v" i , w i : i = 1, • • • , n} since these vertices are cut vertices of H. Thus, S = S * \ ({v e k : k = 1, • • • , m} ∪ {v ′ i , v" i , w i : i = 1, • • • , n}
) is a vertex cover of G. Indeed, if an edge e k = {v i , v j } is not covered by S, then the vertex v e k will not be connected to the other vertices of S * , which is impossible. Thus, we deduce:

opt(H) = opt(G) + m + 3n (3) 
Using the NP-hard gap of [START_REF] Chlebík | Complexity of approximating bounded variants of optimization problems[END_REF], the fact that G is cubic and equality (3), we deduce that it is NP-hard to decide whether opt(H) ≤ 5.0103305n or opt(H) ≥ 5.0154986n.

In Theorem 8, we proved in particular that MinCVC is NP-hard when all the vertices of one part of the bipartition have a degree at most 3. It turns out that if all the vertices of one part of this bipartition have a degree at most 2, the problem becomes easy. This property will be very useful to devise our approximation algorithm in Subsection 5.1.

Lemma 9. MinCVC is polynomial in bipartite graphs G = (L, R; E) such that ∀r ∈ R, d G (r) ≤ 2. Moreover, if L 2 = {l ∈ L : d G (l) ≥ 2}, then opt(G) = |L| + |L 2 | -1.
Proof. Let G = (L, R; E) be a bipartite graph such that ∀r ∈ R, d G (r) ≤ 2 and assume that |L| ≥ 3 and

G is connected. Let L 1 = L \ L 2 and let R 1 = N G (L 1 ) be the neighbors of L 1 . Let G ′ = (L \ L 1 , R \ R 1 ; E ′ ) be the bipartite subgraph of G induced by (L \ L 1 ) ∪ (R \ R 1 ) and let G L 2 = (L 2 , E L 2 ) where e r = {l, l ′ } ∈ E L 2 iff ∃r ∈ R \ R 1 with {l, r} ∈ E ′ and {r, l ′ } ∈ E ′ . Finally, let T be a spanning tree of G L 2 .
We claim that

S T = L 2 ∪ R 1 ∪ {r ∈ R \ R 1 : e r ∈ T } is an optimal connected vertex cover of G.
Let S * be an optimal connected vertex cover of G and let

L ′ 2 = N G (R 1 ) ∩ L 2 be the neighbors of R 1 in G not in L 1 .
Clearly R 1 ⊆ S * , since |L| ≥ 3 and each vertex of L 1 has degree 1. Moreover, since each vertex of R has a maximum degree 2, then L ′ 2 ⊆ S * . Now, let us prove that we can assume that L 2 ⊆ * . Assume the reverse and let l 0 ∈ L 2 \ S * . Using the previous remark, we know that l 0 ∈ L 2 \ L ′ 2 . Let r 1 , • • • , r q be the neighbors of l 0 in G. By construction, q ≥ 2 and r i ∈ S * since S * is a vertex cover. Moreover, ∀i = 1, • • • , q, d G (r i ) = 2 since S * must induce a connected subgraph and if l i is the other neighbor of r i , then l i ∈ S * . Let us prove that S * \ {r 1 } ∪ {l 0 } is a connected vertex cover of G. First, S * \ {r 1 } is a connected vertex cover in the subgraph (L, R; E \ {l 0 , r 1 }) since S * \ {r 1 } is connected (r 1 is a leaf of the subgraph induced by S * ) and r 1 only covers edges {l 0 , r 1 }, {r 1 , l 1 }, but the edge {r 1 , l 1 } is also covered by l 1 ∈ S * . Then, by adding l 0 , we now cover the missing edge {l 0 , r 1 } and since q ≥ 2, l 0 is linked to r 2 in S * \ {r 1 } ∪ {l 0 }. By repeating this operation, we obtain another optimal solution with L 2 ⊆ S * . Thus, in S * , we need to connect together the vertices of L 2 by using some vertices of R. Since the vertices of R 1 cannot link together vertices of L 2 (we recall that the degree of each vertex of R is at most 2), the vertices of

S * \ L 2 \ R 1 correspond to a set of edges E * L 2 in G L 2 such that the subgraph (L 2 , E * L 2 ) of G L 2 is connected. Hence |E * L 2 | ≥ |T | or equivalently |S * \ L 2 \ R 1 | ≥ |S T \ L 2 \ R 1 |. In conclusion, S T an optimal connected vertex cover of G with value opt(G) = |L 2 | + |T | + |R 1 | = 2|L 2 | -1 + |R 1 | since T is a spanning tree of L 2 . Now, observe that |R 1 | = |L 1 |
since otherwise G would not be connected, and the proof is complete.

Approximation results

MinCVC is trivially APX-complete in k-connected graphs for any k ≥ 2 since starting from graph = (V, E), instance of MinVC, we can add a clique K k of size k and link each vertex of G to each vertex of K k . This new graph G ′ is obviously and S is a vertex cover of G iff S union the vertices of K k (we can always assumed that S = V ) is a connected vertex cover of G ′ . Thus, using the negative result of [START_REF] Khot | Vertex cover might be hard to approximate to within 2ε[END_REF] it is quite improbable that one can improve the approximation ratio of 2 for MinCVC, even k-connected graphs. Thus, in this subsection we deal with the approximability of MinCVC in particular classes of graphs.

In Subsection 5.1, we devise a 5/3-approximation algorithm for any class of graphs where the classical vertex cover problem is polynomial. In Subsection 5.2, we show that MinCVC admits a PTAS in planar graphs.

When MinVC is polynomial

Let G be a class of connected graphs where MinVC is polynomial (for instance, the connected bipartite graphs). The underlying idea of the algorithm is simple: we first compute an optimal vertex cover, and then try to connect it by adding vertices (either using high degree vertices or Lemma 9). The analysis leading to the ratio 5/3 is based on Lemma 1 which deals with graph contraction. Now, let us formally describe the algorithm. Recall that given a vertex set

V ′ , G c V ′
denotes the connected contraction of V following V ′ , and N ew(G c V ′ ) denotes the set of new vertices (one for each connected component of G[V ′ ]). we show that algo CV C outputs a connected vertex cover of G in polynomial time. First of given an optimal vertex cover S * of a graph (assumed here to be computable in polynomial time), we can always transform it in such a way that ∀v ∈ N ew(G c S * ), d G c S * (v) ≥ 2. Indeed, if a vertex of G c S * corresponding to a connected component of S * has only one neighbor in G c S * , then we can take this neighbor in S * and remove one vertex on this connected component (and the number of such 'leaf' connected components decreases, as soon as G c S * has at least 3 vertices). Now, using (ii) of Lemma 1, we know that N ew(G c S * ) is an optimal vertex cover of G c S * . Then, from N ew(G c S * ), we can find such a solution within polynomial time.

algo CV C input: A graph G = (V, E) of G with at least 3 vertices. 1 Find an optimal vertex cover S * of G such that in G c S * , ∀v ∈ N ew(G c S * ), d G c S * (v) ≥ 2; 2 Set G 1 = G c S * , N 1 = N ew(G c S * ), S =
Moreover, using (i) of Lemma 1 with S * we deduce that the graph i is bipartite, for each possible value of i. Assume that G i = (N i ; R i , E i ) for iteration i where N i is the left set corresponding to the contracted vertices and R i is the right set corresponding to the remaining vertices and let p be the last iteration. Clearly, if |N p | = 1, the the output solution S is connected. Otherwise, the algorithm uses step 4; we know that G p is bipartite and by construction ∀r ∈ R p , d Gp (r) ≤ 2. Thus, we can apply Lemma 9 on G p . Moreover, a simple proof also gives that ∀l ∈ N p , d Gp (l) ≥ 2. Indeed, otherwise there exists l ∈ N p such that l has a unique neighbor r 0 ∈ R p . Let {x 1 , • • • , x j } ⊆ N p-1 with j ≥ 3 and r 1 be the vertices contracted in G p-1 in order to obtain G p . We conclude that the neighborhood of {x 1 , • • • , x j } is {r 0 , r 1 } in G p-1 which is impossible since on the one hand, N p-1 is an optimal vertex cover of G p-1 (using (iii) of Lemma 1), and on the other hand, by flipping {x 1 , • • • , x j } with {r 0 , r 1 }, we obtain another vertex cover of G p-1 with smaller size than N p-1 ! Finally, using Lemma 9, an optimal connected vertex cover of G p consists of taking N p and |N p | -1 of R p . In conclusion, S is a connected vertex cover of G. We now prove that this algorithm improves the ratio 2.

Theorem 10. Let G be a class of connected graphs where MinVC is polynomial. Then, algo CV C is a 5/3-approximation for MinCVC in G.

Proof. Let G = (V, E) ∈ G. Let S be the approximate solution produced by algo CV on G. Using the previous notations and Lemma 9, the solution S has a value apx(G) satisfying:

apx(G) = |S * | + p -1 + |N p | -1 ( 4 
)
where p is the number of iterations of step 3. Obviously, we

opt(G) ≥ |S * | (5) 
Now let us prove that for any i = 1,

• • • , p -1, we also have opt(G i ) ≥ opt(G i+1 ) + 1. Let S *
i be an optimal connected vertex cover of G i . Let r i ∈ R i be the vertex added to S during iteration i and let N G i (r i be the neighbors of r i in G i . The graph G i+1 is obtained from the contraction of G i with respect to the subset

S i = {r i } ∪ N G i (r i ). Thus, if v S i denotes the new vertex resulting from the contraction of S i , then (S * i \ S i ) ∪ {v S i } is a connected vertex cover of G i+1 . Moreover, |S * i ∩ S i | ≥ 2 since either r i ∈ S *
i and at least one of these neighbors must belong to

S * i (S * i is connected and i < p) or N G i (r i ) ⊆ S * i since S * i is a vertex cover. Thus opt(G i+1 ) ≤ |S * i \ S i | + 1 = opt(G i ) -|S * i ∩ S i | + 1 ≤ opt(G i ) -1.
Summing up these inequalities for i = 1 to p -1, and using that opt(G) ≥ opt(G 1 ), we obtain:

opt(G) ≥ opt(G p ) + p -1 (6) 
thanks to Lemma 9, we know that opt(G p ) = 2|N p | -1. Together with equation ( 6), we get:

opt(G) ≥ 2|N p | -1 + p -1 (7) 
Finally, since each vertex chosen in step 3 has degree at least 3, we get

|N i+1 | ≤ |N i | -2. This immediately leads to |N 1 | ≥ |N p | + 2(p -1). Since |S * | ≥ |N 1 |, we get: |S * | ≥ |N p | + 2(p -1) (8) 
Combination of equations ( 5), ( 7) and ( 8) with coefficients 4, 1 and 1 (respectively) gives:

5opt(G) ≥ 3|S * | + 3|N p | -1 + 3(p -1) (9) 
equation ( 4) allows to conclude.

Planar graphs

Voire si ref [START_REF] Demaine | Bidimensionality: new connections between fpt algorithms and ptass[END_REF][START_REF] Dawar | Approximation schemes for definable optimisation problems[END_REF] donne un PTAS generique pour CVC Given a planar embedding of a planar graph G = (V, E), the level of a vertex is defined as follows (see for instance [START_REF] Baker | Approximation algorithms for NP-complete problems on planar graphs[END_REF]): the vertices on the exterior face are at level 1. Given vertices at level i, let f be an interior face of the subgraph induced by vertices at level i. If G f denotes the subgraph induced by vertices included in f , then the vertices on the exterior face of G f are at level i 1. The set of vertices at level i is called the layer L i . This is illustrated on Figure 4. The dashed ellipse represents an interior face on level i -1. Depicted vertices are at level i. There are 3 interior faces (constituted respectively by the u i 's, by {v 1 , v 2 , t} and {t, w 1 , w 2 }). Baker gave in [START_REF] Baker | Approximation algorithms for NP-complete problems on planar graphs[END_REF] a polynomial time approximation scheme for several problems including vertex cover in planar graphs. The underlying idea is to consider k-outerplanar subgraphs of G constituted by consecutive layers. The polynomiality of vertex cover in graphs (for a fixed k) allows to achieve a (k + 1)/k approximation ratio.

u 1 u 3 u 2 u 4 v 1 v 2 t w 1 w 2 x 3 x 4 x 5 x 1 x 2 G f 1 G f 2 G f 3
We adapt this technique in order to achieve an approximation scheme for MinCVC (MinCVC is NP-hard in planar graphs, see [START_REF] Garey | The rectilinear steiner tree problem is NP complete[END_REF]). First of all, note that k-outerplanar graphs have treewidth bounded above by 3k - [START_REF] Bodlaender | A partial k-arboretum of graphs with bounded treewidth[END_REF]. Since MinCVC is polynomially solvable for graphs with bounded treewidth, [START_REF] Moser | Exact algorithms for generalizations of vertex cover[END_REF], MinCVC is polynomial for k-outerplanar graphs.

Theorem 11. MinCVC admits an approximation scheme in planar graphs.

Proof. Given an embedding of a planar (connected) graph G, we define, as previously, the layers L 1 , • • • , L q of G. For each layer L i , we define F i as the set of vertices of L i that are in an interior face of L i . For instance, in Figure 4, all vertices but the x i 's are in F i .

Following the principle of the approximation scheme for vertex cover, we define an algorithm for any integer k > 0. Let

V i = F i ∪ L i+1 ∪ L i+2 ∪ . . . ∪ L i+k ,
and G i be the graph induced by V i . Note that i is not necessarily connected since for example there can be several disjoint faces in F i (there are two connected components in Figure 4).

Let S * be an optimum connected vertex cover on G with value opt(G), and

S * i = S * ∩ V i . Then of course S *
i is a vertex cover of G i . However, even restricted to a connected component of G i , it is not necessarily connected. Indeed, S * is connected but the path(s) connecting two vertices of S * in a connected component of G i may use vertices out of this connected component. To overcome this problem, notice that only vertices in F i or in F i+k connect V i to V \ V i . Hence, S * i ∪ F i ∪ F i+k can be partitioned into a set of connected vertex covers on each of the connected components of G i (since F i and F i+k are made of cycles). Now, take an optimum connected vertex cover on each of these connected components, and define S i as the union of these optimum solutions. Then, we have :

|S * i ∪ F i ∪ F i+k | ≥ |S i | (10) 
Now, let p ∈ {1, . . . , k}. Let V 0 = L 1 ∪ L 2 ∪ . . ∪ L p , G 0 be the subgraph of G induced by V 0 , S * 0 = S * ∩ V 0 , and S 0 be an optimum vertex cover on G 0 . With similar arguments as previously, we have:

|S * 0 ∪ F p | ≥ |S 0 | (11) 
We build a solution S p on the whole graph G as follows. S p is the union of S 0 and of all S 's for i = p mod k. Of course, S p is a vertex cover of G, since any edge of G appears in at least one G i (or G 0 ). Moreover, it is connected since:

• S 0 is connected, and each S i is made of connected vertex covers on the connected components of G i ;

• each of these connected vertex covers in S i is connected to S i-k (or to S 0 if i = p): this is due to the fact that F i belongs to V i and to V i-k (or V 0 ). Hence, a level i interior face f is common to S i-k (or S 0 ) and to the connected vertex cover of S i we are dealing with. Both partial solutions cover all the edges of this face f . Since f is a cycle, the two solutions are necessarily connected. In other words, each connected component of S i is connected to S i-k (or S 0 ) and, by recurrence, to S 0 . Consequently, the whole solution S p is connected.

Summing up equation [START_REF] Chlebík | Complexity of approximating bounded variants of optimization problems[END_REF] for each i = p mod k and equation [START_REF] Dawar | Approximation schemes for definable optimisation problems[END_REF], we get:

|S * 0 ∪ F p | + i=p mod k |S * i ∪ F i ∪ F i+k | ≥ |S 0 | + i=p mod k |S i | (12) 
By definition of S p , we have

|S p | ≤ |S 0 | + i=p mod k |S i |.
On the other hand, since only vertices in F i (i = p mod k) appear in two different V i 's (i = 0 or i = p mod k), we get that

|S * 0 ∪ F p | + i=p mod k |S * i ∪ F i ∪ F i+k | ≤ |S * | + 2 i=p mod k |F i |.
This leads to:

opt(G) + 2 i=p mod k |F i | ≥ |S p | (13) 
If we consider the best solution S value apx(G) among the S p 's (p ∈ {1, . . . , k}), we get :

opt(G) + 2 k q i=1 |F i | ≥ apx(G) (14) 
To conclude, we observe that the following property holds:

12. S * takes at least one fourth of the vertices of each F i .

To see this property of S * ∩ F i , consider F i and the set E i of edges of G that belong to one and only one interior face of F i (for example, in Figure 4, if there were edges {u 2 , u 4 } and {u 3 , v 1 }, they would not be in E i ). Let n i be the number of vertices in F i , and m i the number of edges in E i . This graph is a collection of edge-disjoint (but not vertex-disjoint, as one can see in Figure 4) interior faces (cycles). Of course, S * ∩ F i is a vertex cover of this graph. Since this graph is a collection of interior faces (cycles), on each of these faces f S * ∩ F i cannot reject more than |f |/2 vertices. In all,

|S * ∩ F i | ≥ n i - f ∈F i |f | 2
But since faces are edge-disjoint, f ∈F i |f | = m i . On the other hand, if N f denotes the number of interior faces in F i , since each face contains at least 3 vertices, m i = f ∈F i |f | ≥ 3N f . Since the graph is planar, using Euler formula we get 1 +

m i = n i + N f ≤ n i + m i /3. Hence, m i ≤ 3n i /2. Finally, |S * ∩ F i | ≥ n i -m i /2 ≥ n i /4.
Based on this property, we get:

opt(G) 1 + 8 k ≥ apx(G) (15) 
Taking k sufficiently large leads to a 1 + ε approximation. The polynomiality of this algorithm follows from the fact that each subgraph we deal with is (at most) k + 1-outerplanar, hence for a fixed k we can find an optimum solution in polynomial time.

Connected vertex cover in hypergraphs

Here, we extend the notions of vertex cover and connected vertex cover to hypergraphs. Whereas the generalization of the vertex cover problem to hypergraphs is quite natural, it turns out that the generalization of the connected vertex cover problem is a task much harder due to the notion of connected hypergraphs. Actually, we will give two generalizations: the weak connected vertex cover problem and the strong connected vertex cover problem.

Before establishing a definition of these two problems, we recall some definitions on hypergraphs. A simple hypergraph H is a pair (V, E) where

V = {v 1 , • • • , v n } is the vertex set and E = {e 1 , • • • , e m } ⊆ 2 V is the hyperedge set. Given a hypergraph H = (V, E), d H (v), N H (v)
and s H (e) denote respectively the degree, the neighborhood of a vertex v ∈ V and the size of an hyperedge e ∈ E, that is d H (v) = |{e ∈ E : v ∈ e}|, N H (v) = {u ∈ V \ {v} : ∃e ∈ E containing vertices u, v} and s H (e) = |{v : v ∈ e}|. ∆(H) and s(H) denote respectively the maximum degree of a vertex and the maximum size of a hyperedge in H. The following definition are introduced in [START_REF] Brandstadt | Graph classes : a survey[END_REF]:

H ′ = (V ′ , E ′ ) is a partial hypergraph of H = (V, E) if E ′ ⊆ E and V ′ is the union of the hyperedges in E ′ . The restriction of a hypergraph H = (V, E) to V ′ ⊆ V is the partial hypergraph H ′ = (V ′ , E ′ ) (that is satisfying E ′ = {e ∈ E : e ∩ V ′ = e}). The subhypergraph of H = (V, E) induced by V ′ is the hypergraph H ′ = (V ′ , E ′ ) where E ′ = {e ∩ V ′ : e ∈ E}.
A hypergraph is simple if no hyperedge is a subset of any other hyperedge. A hypergraph is r-uniform if each hyperedge has a size r and r-regular if each vertex has a degree r.

A path of length k from v 1 to v k in a hypergraph H = (V, E) is a sequence (v 1 , e 1 , v 2 , • • • , e k , v k+1 ) with k ≥ 1 such that e 1 , • • • , e k and v 1 , • • • , v k+1
are sets of distinct hyperedges and vertices respectively, and ∀i = 2, • • • , k -1, v i ∈ e i-1 ∩ e i and v 1 ∈ e 1 , v k+1 ∈ e k . A hypergraph H is connected if between every pair (v i , v j ) of disjoint vertices, there is path from v i to v j .

The dual hypergraph of an hypergraph H = (V, E) is the hypergraph H * = (V E , E * ) such that the vertices of V E = {v e : e ∈ E} correspond to the hyperedges of E and the hyperedge set is

E * = {E v , v ∈ V } where E v = {v e : v ∈ e}.
The generalization of MinVC and MinCVC in graphs to hypergraphs can be defined as follows. Given a hypergraph H = (V, E), a vertex cover of H is a subset of vertices S ⊆ V such that for any hyperedge e ∈ E, we have S ∩ e = ∅; the vertex cover problem in hypergraphs is the problem of determining a vertex cover S * of H minimizing |S * |. It is well known that this problem is equivalent to the set cover problem (in short MinSC) by considering the dual hypergraphs, (see for instance [START_REF] Chlebík | Approximation hardness of dominating set problems[END_REF]). Thus, the vertex cover problem in hypergraphs is not approximable within performance ratio (1ε) ln m for all ε > 0 unless NP⊂DTIME(m loglogm ). Moreover, it is not ln(∆)c ln(ln(∆))-approximable (for some constant c), for any constant ∆, in hypergraphs of degree ∆, [START_REF] Trevisan | Non-approximability results for optimization problems on bounded degree instances[END_REF]. Recently, new inapproximation results have been given. In [START_REF] Dinur | A new multilayered PCP and the hardness of hypergraph vertex cover[END_REF], the authors prove that the vertex cover problem in k-uniform hypergraphs is not (k -1ε)-approximable unless P=NP any k ≥ and ε > 0. At the same time, based on the so-called unique games conjecture, it is shown that (kε) is a lower bound of the approximation of vertex cover in k-uniform hypergraphs for any k ≥ 2 and ε > 0, [START_REF] Khot | Vertex cover might be hard to approximate to within 2ε[END_REF].

We consider two versions of the connected vertex cover problem in hypergraphs, namely a weak and strong one. Given a connected hypergraph H = (V, E), the weak (resp., strong) connected vertex cover problem, denoted by MinWCVC (resp., MinSCVC) consists in finding a minimum size vertex cover S * of H such that the subhypergraph induced by S * (resp., the restriction of H to S * ) is connected. Obviously, when we restrict these problems to graphs, we again find the connected vertex cover problem.

The weak connected vertex cover problem

The weak connected vertex cover problem is as hard as the vertex cover problem in hypergraphs since starting from any hypergraph H = (V, E) and by adding a new hyperedge e containing the entire vertex set (ie., e = V ), any connected vertex cover of the new hypergraph is a vertex set of the initial hypergraph. Thus, we deduce that on the one hand MinWCVC is NP-hard in connected hypergraphs of maximum degree 4 and is not c ln m approximable, for some constant c, unless P=NP, [START_REF] Chlebík | Approximation hardness of dominating set problems[END_REF]. Moreover, using another simple reduction, the negative approximation results established in [START_REF] Dinur | A new multilayered PCP and the hardness of hypergraph vertex cover[END_REF][START_REF] Khot | Vertex cover might be hard to approximate to within 2ε[END_REF] also hold for MinWCVC. Actually, starting with a k-uniform hypergraph H = (V, E) where

V = {v 1 , • • • , v n } and E = {e 1 , • • • , e m },
we first add a new vertex v 0 connected to each vertex v i by edges e ′ i for any i = 1, • • • , n. Then, we replace each edge e ′ i by a hyperedge by introducing k -2 new vertices. Obviously, this new hypergraph H ′ is connected and k-uniform, and it is easy to see that S is a vertex cover of H iff S ∪ {v 0 } is a weak connected vertex cover of H ′ . In conclusion, for k-uniform hypergraphs, MinWCVC is not (kε) (or (k -1ε)) -approximable under the same hypothesis as those given in [START_REF] Dinur | A new multilayered PCP and the hardness of hypergraph vertex cover[END_REF][START_REF] Khot | Vertex cover might be hard to approximate to within 2ε[END_REF]. We now present a simple approximation algorithm which shows that the previous bound is sharp.

For a connected hypergraph H = (V, E) and a hyperedge e ∈ E, we set N H (e) = ∪ v∈e N H (v); remark that e ⊆ N H (e) (assuming wlog. that there is no edge of size 1). The following greedy algorithm is a generalization of the classical 2-approximation algorithm for the vertex cover problem.

Proof. Let H = (V, E) be a connected hypergraph with maximum degree ∆, instance of MinWCVC. We build the multigraph G = (V E , E) where the vertex set is given by V E = {v e : e ∈ E}; the edge set is E = ∪ v∈V T v where T v is an arbitrary spanning tree on the subset of vertices {v e ∈ V E : v ∈ e}. Finally, the color set is {c v : v ∈ V } and if e ∈ T v , then the edge e is colored with color c v , that is L(e) = c v . It is easy to observe that color c v appears exactly d H (v) -1 times. In conclusion I = (G, L) is an instance of MinLST with color frequency r = ∆ -1.

We claim that S ⊆ V is a weak connected vertex cover of H iff the subgraph

G ′ = (V E , E ′ ) where E ′ = ∪ v∈S T v is connected. Assume that G ′ = (V E , ∪ v∈S T v ) is a connected subgraph of G = (V E , ∪ v∈V T v )
. Let e ∈ E; since G ′ spans all the vertices of V E , there exists v ∈ S such that v e ∈ T v (formally, v e is adjacent to e ′ with e ′ ∈ T v ). Thus, v covers the hyperedge e in H and more generally S is a vertex cover of H. Let us prove that the subhypergraph induced by S is a connected hypergraph. Let s, t ∈ S; since G ′ is connected, there is a shortest path µ in G ′ linking a vertex of T s to a vertex of T t Assume that this path µ uses edges colored with colors

c v 1 , • • • , c vp . By construction, {v 1 , • • • , v p } ⊆ S
and since µ a shortest path, we can assume, wlog., that the colors met in µ are c v 1 , • • • , c vp in this order. Let v e j for j = 1, • • • , p-1 be the vertex adjacent to colors c v j and c v j+1 in µ. By construction, {v j , v j+1 } ⊆ e j in hypergraph H. Moreover, for the same reasons, there is also two hyperedges e 0 and e p such that {s, v 1 } ⊆ e 0 and {v p , t} ⊆ e p . In conclusion, (s, e 0 , v 1 , e 1 , v 2 , • • • , e p , t) is a path from s to t in H ′ and H ′ is connected.

Conversely, let S ⊆ V be a weak vertex cover of H. Obviously, ∪ v∈S T v spans all the vertices of V E since S is a vertex cover of H. Besides, it turns out that any path (v 1 , e 1 , v 2 , • • • , e p-1 , v p ) from v 1 to v p in the restriction H ′ of H to S can be transformed into a path going through edges from ∪ i=1 T v i . In conclusion, G ′ = (V E , ∪ v∈S T v ) is a connected subgraph. Now, since the number of colors used by G ′ = (V E , E ′ ) where E ′ = ∪ v∈S T v is exactly |S|, the result follows. In particular, any ρ-approximation for MinLST can be polynomially converted into a ρ-approximation for MinWCVC. If ρ depends on parameter r, the final performance ratio is valid in hypergraphs of degree ∆.

In [START_REF] Brüggemann | Local search for the minimum label spanning tree problem with bounded color classes[END_REF], it is proved that the restriction of MinLST the instances I = (G, L) where each color appears at most twice (ie, r ≤ 2) is polynomial, even if is a multigraph. Thus, using Theorem 14, we strengthen the result of [START_REF] Ueno | On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three[END_REF], establishing that the connected vertex cover problem is polynomial in simple graphs with maximum degree 3.

Corollary 15. MinWCVC is polynomial in hypergraphs with maximum degree 3.

On the other hand, using the (H(r) -1/2)-approximation for MinLST where H(r) = r i=1 1 i is the r-th harmonic number given in [START_REF] Hassin | Approximation algorithms and hardness results for labeled connectivity problems[END_REF], we deduce: Corollary 16. MinWCVC is (H(∆ -1) -1/2)-approximable in hypergraphs of maximum degree ∆.

Note that this result is very close to the lower bound of ln(∆)c ln(ln(∆)) already mentioned ( [START_REF] Trevisan | Non-approximability results for optimization problems on bounded degree instances[END_REF]).

The strong connected vertex cover problem

It turns out that the complexity of the strong connected vertex cover problem is much harder than the one of the weak connected vertex cover problem. Actually, in contrast to Corollary 15, we now prove that MinSCVC has no approximation scheme in 2-regular hypergraphs.

H(v ′ i ) v ′ i v i,1 v i,2 v i,3 v i,4
Theorem 17. MinSCVC is APX-complete in connected 2-regular hypergraphs.

Proof. We give an approximation preserving L-reduction from the vertex cover problem in cubic graphs. restriction has been proved APX-complete in [START_REF] Alimonti | Some APX-completeness results for cubic graphs[END_REF]. Let G ′ = (V ′ , E ′ ) be a cubic graph with V ′ = {v ′ 1 , • • • , v ′ n } and E ′ = {e ′ 1 , • • • , e ′ m }, instance of MinVC. We build the connected 2 regular hypergraph H = (V, E) containing vertices v i,j for i = 1, • • • , n, j = 1, • • • , 4 and u j for j = 1, 2, 3. Moreover, Clearly, H = (V, E) is a connected hypergraph where each vertex has a degree 2. Figure 6 gives a simple illustration of this construction when G ′ is a K 4 .

• Each vertex v ′ i of G ′ with i = 1, • • • , n, is split into d G ′ (v ′ i ) + 1 (=4 since G ′ is cubic) vertices v i,1 , • • • , v i,
If S * is an optimal vertex cover of G ′ with value opt(G ′ ), then by taking {e i : v ′ i ∈ S * } ∪ e 0 , we obtain a strong connected vertex cover of H. Thus, opt(H) ≤ 3opt(G ′ ) + n + 2 [START_REF] Garey | The rectilinear steiner tree problem is NP complete[END_REF] Conversely, let V 0 be a strong connected vertex cover of H with value apx(H). By construction, V 0 contains e 0 (i.e., the vertices of this hyperedges) since it is the only way to connect the edges of the path µ to the rest of the solution. Moreover, for each edge e ′ k = {v i,i 1 , v j,j 1 } where i 1 , j 1 ∈ {1, 2, 3} of H we have e i ⊆ V 0 or e j ⊆ V 0 since on the one hand, V 0 is a vertex cover of H and on the other hand, as previously the only way to connect the hyperedge e 0 to i,i 1 or v j,j 1 consists of taking the whole hyperedge e i or e j . Finally, wlog. we may assume that e i ∩ V 0 = e i or e i ∩ V 0 = {v i,4 }. Thus, {v ′ i e i ∈ V 0 } is a vertex cover of G ′ , with value:

apx(G ′ ) ≤ -n -2 3 ( 17 
)
Using inequalities ( 16) and ( 17), we obtain 3opt(G ′ ) = opt(H)n -2. Thus, on the one hand we have apx(G ′ )opt(G ′ ) ≤ apx(H)opt(H) and on the other hand, opt(H) = 3opt(G ′ ) + n + 2 ≤ (5 + ε)opt(G ′ ) since G ′ is an instance of MinVC and cubic.
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 21 Figure 1: Local replacement of a vertex u ∈ V 0 by gadget H(u).

Theorem 8 .

 8 MinCVC is not 1.001031-approximable in connected bipartite graphs G = (L, R; E) where ∀l ∈ L, d G (l) ≤ 4 and ∀r ∈ R, d G (r) ≤ 3, unless P=NP.
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 3 Figure 3: The graph H ′′ .

S * and i = 1 ; 3 While

 13 |N i | ≥ 2 and there exists v / ∈ N i such that v is linked in G i to at least 3 vertices of N i do 3.1 Set S := S ∪ {v} and i := i + 1; 3.2 Set G i G c S and N i = N ew(G c S ); 4 If |N i | ≥ apply the polynomial algorithm of Lemma 9 on G i (let S ′ be the produced solution) and set S := S ∪ (V ∩ S ′ ); 5 Output S;

Figure 4 :

 4 Figure 4: Level of a planar graph

Figure 5 :

 5 Figure 5: The gadget H(v ′ i ).

Figure 6 :

 6 Figure 6: An example of the construction from a K .

  [START_REF] Baker | Approximation algorithms for NP-complete problems on planar graphs[END_REF] that the edges of G ′ become a matching in the hypergraph Hvertices v i,j for i = 1, • • • , n, j = 1, • • • , 3. Moreover, we add the hyperedge e i = {v i,1 , • • • , v i,4 }. This gadget H(v ′ i ) is described in Figure 5. • add the path µ of length 2 µ = {{u 1 , u 2 }, {u 2 , u 3 }} and the hyperedge e 0 = {v i,4 : i = 1, • • • , n} ∪ {u 1 , u 3 }.

Greedy2HCVC input: A connected hypergraph H = (V, E).

1 Set S = ∅ and Label = {v} where v is a vertex of H;

2 While there exists a hyperedge e ∈ E with e ∩ Label = ∅ do 2.1 S := S ∪ e and Label := Label ∪ N H (e); 2.2 Delete from H all the hyperedges adjacent to e and all the vertices in e. Let H be the resulting hypergraph;

3 Output S;

Let us prove that S is a weak vertex cover of the initial hypergraph H. Otherwise, we have Label = V and let H ′′ = (V \ Label, E ′′ ) be the subhypergraph of H induced by V \ Label. By assumption, H ′′ contains some hyperedges of E; actually, it is easy to prove that each vertex v / ∈ Label is not isolated in H ′′ and each hyperedge of H ′′ is a hyperedge of H with the same size (thus, H ′′ is also the restriction of

This hyperedge e has been deleted by Greedy2HCVC because either e has been added to S or e is adjacent to a hyperedge e ′ / ∈ E ′′ with e ′ ⊂ S. In any case, w would have been added to Label, contradiction. Finally, we can easily prove that at each iteration of Greedy2HCVC, the current set S induces a connected subhypergraph and then, the solution output by this algorithm is a weak connected vertex cover.

The following result is an obvious generalization of the analysis of the classical matching algorithm for MinVC.

Theorem 13. Greedy2HCVC is a s(H)-approximation of MinWCVC.

We now establish some connection between the weak connected vertex cover problem in hypergraphs and the minimum labeled spanning tree in multigraphs. In the minimum labeled spanning tree problem (MinLST in short) in multigraphs, we are given a connected, undirected multigraph G = (V, E) on n vertices. Each edge e in E is colored (or labeled) with the color L(e) ∈ {c 1 , c 2 , . . . , c q } and for E ′ ⊆ E, we denote L(E ′ ) = ∪ e∈E ′ L(e) the set of colors used by E ′ . The goal of the minimum labeled spanning tree problem is to find, given I = (G, L) an instance of MinLST, a spanning tree T in G that uses the minimum number of colors, that is minimizing |L(T )|. Equivalently, if L -1 (C) ⊆ E denotes the set of edges with color c i ∈ C for any set C ⊆ {c 1 , c 2 , . . . , c q }, then another formulation of MinLST asks to find a smallest cardinality subset C ⊆ {c 1 , c 2 , . . . , c q } of the colors, such that the subgraph induced by the edge sets L -1 (C) is connected and touches all vertices in V . The minimum labeled spanning tree problem has been studied in the context of simple graphs for instance in [START_REF] Brüggemann | Local search for the minimum label spanning tree problem with bounded color classes[END_REF], but it is easy to see that all the obtained results also hold in multigraphs, [START_REF] Hassin | Approximation algorithms and hardness results for labeled connectivity problems[END_REF]. The color frequency of I = (G, L) denoted by r, is the maximum number of times that a color appears, that is r = max{|L -1 (c i )| : i = 1, • • • , q}. Theorem 14. A ρ(r)-approximation of MinLST can be polynomially converted into a ρ(r)-approximation of MinWCVC in hypergraph of maximum degree r+1.