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Introduction

A major role in quantum physics is played by the nonlinear Schrödinger equation

i ∂ψ ∂t = - 2 2m ∆ x ψ + V (x)ψ -f (x, ψ), (1.1) 
where m and are positive constants, the wave ψ : R + × R N → C, N ≥ 3, V is a potential which is bounded below, and f = f (x, |ψ|)ψ is a nonlinear function, for instance in the classical cubic approximation f = |ψ| 2 ψ. One of the questions to which huge attention has been given during the last twenty years is the existence of stationary states (see (1.2) below) for small values of , which appear due to the geometry of the potential. This paper is devoted to the corresponding question of existence of solutions of some systems of Schrödinger equations. Systems of nonlinear Schrödinger type have been widely used in the applied sciences but mathematical study of standing wave solutions was undertaken only very recently, prompted in particular by the discovery of the importance of these systems as models in nonlinear optics (see for instance [START_REF] Buljan | Polychromatic partially spatially incoherent solitons in a non-instantaneous Kerr nonlinear medium[END_REF], [START_REF] Christodoulides | Equivalence of three approaches describing partially incoherent wave propagation in inertial nonlinear media[END_REF], [START_REF] Lin | Spikes in two-component systems of nonlinear Schrodinger equations with trapping potentials[END_REF]) and in the study of Bose-Einstein condensates (see [START_REF] Lin | Spikes in two-component systems of nonlinear Schrodinger equations with trapping potentials[END_REF], [START_REF] Chang | Segregated nodal domains of twodimensional multispecies Bose-Einstein condensates[END_REF]). As in the large majority of other papers on the subject we consider here systems of two equations.

So we suppose ψ is a vector function, ψ = (ψ 1 , ψ 2 ), and satisfies a system of equations like (1.1), with f = ( f1 , f2 ) and fk = j f kj (x, |ψ 1 |, |ψ 2 |)ψ j . We will be interested in soliton (standing wave) solutions of these systems, that is, solutions in the form ψ j (t, x) = e i(E/ )t u j (x).

(1.2)

Substituting (1.2) into (1.1) and setting b(x) = V (x) -E leads to the system of real elliptic partial differential equations (we write

u = u 1 , v = u 2 ) (S ) -2 ∆u + b(x)u = f 1 (x, u, v) in R N , -2 ∆v + b(x)v = f 2 (x, u, v) in R N .
We suppose this system is in variational form, that is, it is the Euler-Lagrange system of some energy functional. This happens when f 1 , f 2 are the derivatives of some function H(x, u, v). There are two types of such systems, Lagrangian -when f 1 = H u , f 2 = H v (the above mentioned examples are of this type), and Hamiltonian -when

f 1 = H v , f 2 = H u .
The simplest example of a Hamiltonian system is the widely studied Lane-Emden system -when f 1 = v p , f 2 = u q in (S ). Even for this system important open questions subsist (see [START_REF] De Figueiredo | Nonlinear elliptic systems[END_REF]). Hamiltonian systems are very usual in biology, more specifically in models in population dynamics (see [START_REF] Murray | Mathematical Biology[END_REF]) whose stationary states verify systems of type (S ), for instance with

f 1 = v(u 2 + g 1 (v)), f 2 = u(v 2 + g 2 (u)
). An important difficulty in the study of Hamiltonian systems (as opposed to Lagrangian) is the fact that the energy functional is strongly indefinite, that is, its leading part is respectively coercive and anticoercive on infinitely dimensional subspaces of the energy space -we refer to [START_REF] Benci | Critical point theorems for indenite functionals[END_REF] for a general discussion. The present article is devoted to this case. Our goal is to get a general existence result for small in the case of a superlinear and subcritical Hamiltonian system with a well potential.

As in many applications, we consider trapping (or "well"-type) potentials, the standard example being b(x) ∼ |x -x 0 | 2 in a neighbourhood of some x 0 ∈ R N . A particular case of our result will be the existence of soliton waves thanks to a global well structure of b, that is,

0 = inf x∈R N b(x) < lim inf |x|→∞ b(x). (1.3) Notice that inf x∈R N b(x) = 0 can always be achieved through the choice of E in (1.2).
Unfortunately, as of today PDE theory lacks the means to tackle the existence question under hypothesis (1.3) only, even in the scalar case. However, it turns that we can show that (S ) has a solution provided the constant is sufficiently small. Note that in practice , the Planck constant, is a very small quantity, so it makes sense to study problem (S ) at the limit → 0.

Here are the precise statements. We assume H(x, u, v) is differentiable and strictly convex in (u, v) ∈ R 2 for all x ∈ R N , H(x, 0, 0) = 0 and (H1) there exist constants p, q, α k , β k > 1, such that

1 p + 1 + 1 q + 1 > N -2 N , α k p + 1 + β k q + 1 = 1, (1.4) 
and for some c 0 ,

d 0 > 0, C k ≥ 0, D k ≥ 0 we have for x ∈ R N ,(u, v) ∈ R 2 c 0 |u| q ≤ |H u (x, u, v)| ≤ C 0 |u| q + m k=1 C k |u| α k -1 |v| β k , d 0 |v| p ≤ |H v (x, u, v)| ≤ D 0 |v| p + m k=1 D k |u| α k |v| β k -1 .
(H2) There exists α > 2 such that for all x ∈ R N and (u,

v) ∈ R 2 \ {(0, 0)} uH u (x, u, v) + vH v (x, u, v) ≥ αH(x, u, v) > 0.
A typical example of a function satisfying these hypotheses is

H(x, u, v) = a 0 (x)|u| p+1 + n 1 a i (x)|u| α i |v| β i + a n+1 (x)|v| q+1 , under (1.4). We suppose that the continuous potential b(x) satisfies b ≥ 0 in R N and (b1) there exists x 0 ∈ R N (say x 0 = 0) such that b(x 0 ) = 0; (b2) there exists A > 0 such that the level set G A = {x ∈ R N : b(x) < A}
has finite Lebesgue measure.

Note that the conditions (b1)-(b2) include (1.3) as a particular case. We shall also suppose that b(x) is bounded. This condition is made for simplicity, since it is irrelevant to the goal of our paper, which is to use the well geometry of the potential. Actually it is even easier to consider potentials which are large at infinity (then there is no restriction on ), since the energy space embeds compactly into Lebesgue spaces, see for instance Theorem 4 in [START_REF] Sirakov | On the existence of solutions of Hamiltonian elliptic systems in R N[END_REF]. Note also that (H1) means the problem is superlinear and subcritical, in other words, the couple (p, q) is under the critical hyperbola (given by the inequality (1.4)). In particular, one of the nonlinearities in (S ) can have growth larger than the exponent (N + 2)/(N -2), provided the growth of the other is smaller enough to compensate (note that when p = q (1.4) reduces to p < (N + 2)/(N -2)). In this case the functional associated to (S ) is not defined for u, v ∈ H 1 (R N ). It is nowadays well-known that (1.4) is the right notion of subcriticality for a Hamiltonian system with power-growth nonlinearity, see [START_REF] Ph | Positive solutions of semilinear elliptic systems[END_REF], [START_REF] Hulshof | Non-spreading wave packets for the cubic Schrodinger equation with a bounded potential[END_REF], [START_REF] Serrin | Existence of positive entire solutions of elliptic Hamiltonian systems[END_REF], [START_REF] Serrin | Non-existence of positive solutions of Lane-Emden systems[END_REF].

The following theorem contains our main result. We now quote previous works related to this result. There is a huge literature for the scalar case -we refer to [START_REF] Ambrosetti | Semiclassical states of nonlinear Schrodinger equations[END_REF], [START_REF] Byeon | Standing waves with a critical frequency for nonlinear Schrodinger equations[END_REF], [START_REF] Dancer | Interior and boundary peak solutions for a mixed boundary value problem[END_REF], [START_REF] Felmer | Semiclassical states for nonlinear Schrodinger equations[END_REF], [START_REF] Floer | Non-spreading wave packets for the cubic Schrodinger equation with a bounded potential[END_REF], [START_REF] Gui | Existence of multibump solutions for nonlinear Schrodinger equations via variational method[END_REF], [START_REF] Jeanjean | Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities[END_REF], [START_REF] Li | On a singularly perturbed elliptic equation[END_REF], [START_REF] Ni | Locating the peaks of least energy solutions to a semilinear Neumann problem[END_REF], [START_REF] Oh | On positive multi-bump bound states of nonlinear Schrodinger equations under multiple well potentials[END_REF], [START_REF] Rabinowitz | On a class of nonlinear Schrodinger equation[END_REF], [START_REF] Sirakov | Standing wave solutions of the nonlinear Schrodinger equation in R N[END_REF], [START_REF] Wei | Multiple boundary spike solutions for a wide class of singular perturbation problems[END_REF] and to the references in these papers. Some types of Lagrangian systems with well potentials were studied in [START_REF] Alves | Existence and concentration of positive solutions for a class of gradient systems[END_REF], [START_REF] Lin | Spikes in two-component systems of nonlinear Schrodinger equations with trapping potentials[END_REF], [START_REF] Pomponio | Coupled nonlinear Schrodinger systems with potentials[END_REF]. Existence results (for any ) for radially invariant Hamiltonian systems in R N were established in [START_REF] De Figuieredo | Decay, symmetry and existence of positive solutions of semilinear elliptic systems[END_REF] and [START_REF] Sirakov | On the existence of solutions of Hamiltonian elliptic systems in R N[END_REF]. A result similar to Theorem 1 can be found in [START_REF] Ramos | On the concentration of solutions of singularly perturbed Hamiltonian systems in R N[END_REF] (see also [START_REF] Ramos | Solutions with multiple spike patterns for an elliptic system[END_REF]) in the particular case when H = F (u) + G(v), that is, the right-hand side of the system is independent of x and has no cross-terms in u, v. This restrictive hypothesis is due to the method used in these papers, which extends to systems the arguments in [START_REF] Felmer | Semiclassical states for nonlinear Schrodinger equations[END_REF]. Finally, in the recent paper [START_REF] Ding | Semiclassical states of Hamiltonian system of Schrodinger equations with subcritical and critical nonlinearities[END_REF] a fairly general result was proved on system (S ), but under the hypothesis that both p, q are smaller than (or in some cases equal to) the scalar exponent (N + 2)/(N -2). The method in [START_REF] Ding | Semiclassical states of Hamiltonian system of Schrodinger equations with subcritical and critical nonlinearities[END_REF] is based on an application of a linking theorem to the energy functional associated to (S ).

Theorem 1 If f 1 = H v , f 2 = H u ,
The starting point for our work is [START_REF] Sirakov | Standing wave solutions of the nonlinear Schrodinger equation in R N[END_REF], where the scalar version of Theorem 1 was proved. The method in [START_REF] Sirakov | Standing wave solutions of the nonlinear Schrodinger equation in R N[END_REF] extends readily to Lagrangian systems, since then the energy functional has the same geometry as the scalar one, but the situation appears to be considerably more involved for Hamiltonian systems. We have used a dual variational structure, relying on the Legendre-Fenchel transformation, which allows us to transform the problem into a new one, to which the Mountain Pass Theorem (without the Palais-Smale condition) applies. However, then one of the key observations -that the generalized mountain pass value tends to zero as → 0 -turns out to be rather delicate to prove, and the method of proof in [START_REF] Sirakov | Standing wave solutions of the nonlinear Schrodinger equation in R N[END_REF] fails. We have found a way to deal with this problem by Fourier analysis, a tool that is seldom encountered in this branch of the calculus of variations. Our method will hopefully be useful in other situations as well.

So the main interest of Theorem 1 is twofold -first, it extends and joins together previous existence results of this type, giving an optimal range for the growth of the nonlinearities involved ; and second, its proof is based on a new idea, namely the use of Fourier transforms in the study of the behaviour of generalized critical values.

We finally remark that in the scalar case it has recently been established that standing wave solutions of (1.1) can be shown to exist for nonlinearities which grow supercritically -see [START_REF] Byeon | Standing waves with a critical frequency for nonlinear Schrodinger equations, II[END_REF], [START_REF] Ding | Solutions of perturbed Schrodinger equations with critical nonlinearity[END_REF], [START_REF] Ding | Semi-classical states for nonlinear Schrodinger equations with sign-changing potentials[END_REF]. In the light of these results, we expect that our hypotheses on the growth of f 1 , f 2 at infinity can be relaxed, at least for some type of nonlinearities.

The paper is organized as follows. The next section is preliminary -we describe the variational setting we use. The main frame of the proof of Theorem 1 is to be found in Section 3. Finally, the core result -the fact that the mountain pass values (and hence the norms and the energy) of the solutions we find tend to zero as → 0 -is proved in Section 4.

The dual variational formulation

We start by recalling some facts which permit us to set up the variational framework for solving system (S ).

Lemma 2.1 Let V be bounded and nonnegative function satisfying (b1) and (b2). Then, for every g ∈ L s (R N ), 1 < s < ∞, and > 0, the problem

-∆u + V ( x)u = g in R N
possesses a unique solution u ∈ W 2,s (R N ). In addition, there exits a constant K > 0 (which may depend of ) such that

u W 2,s (R N ) ≤ K g L s (R N ) Proof: Denote V (x) = V ( x). For s ∈ (1, ∞), consider the operator R s : W 2,s (R N ) → L s (R) defined by R s u = (-∆ + V I)u for u ∈ W 2,s (R N ).
It follows for instance from Theorem 1 of [START_REF] Rabier | Fredholm and properness properties of quasilinear elliptic operators on R N[END_REF] that

(i) Ker (R s -λI) = Ker (R 2 -λI), for every s ∈ (1, ∞). (ii) L s (R N ) = Ker (R s -λI) ⊕ Im (R s -λI). Since V ∈ L ∞ (R N ), it is known (see for example Lemma 3.10 in [40]) that the spectrum σ(R 2 ) ⊂ [Λ, ∞) and Λ ∈ σ(R 2 ), where Λ = inf (|∇u| 2 + V (x)u 2 ) | u ∈ H 1 (R N ), u 2 = 1 . It follows from Lemma 1 in [38] that Λ > 0. Therefore 0 ∈ σ(R 2 ). Consequently Ker (R s ) = Ker (R 2 ) = {0} and L s (R N ) = Ker (R s ) + Im(R s ) = Im(R s ). Thus, R s : W 2,s (R N ) ⊂ L s (R N ) → L s (R N ) is a isomorphism. Note that R s is continuous thanks to the immersion W 2,s (R N ) ⊂ L s (R N ). So, there exists a positive constant C such that for all u ∈ L s (R N ) R -1 s u W 2,s (R N ) ≤ C u L s (R N ) .
Given p, q > 1 such that

1 p + 1 + 1 q + 1 > N -2 N
, we define the operators

R : L p+1 p (R N ) → W 2, p+1 p (R N ), S : L q+1 q (R N ) → W 2, q+1 q (R N ), by R = S = (-∆ + b I) -1 ,
where b (x) = b( x). It follows from Lemma 2.1 that the operators R and S are well defined and continuous. Since 1/(q + 1) > p/(p + 1) -2/N holds, we have the continuous Sobolev embeddings

i 1 : W 2, p+1 p (R N ) → L q+1 (R N ), i 2 : W 2, q+1 q (R N ) → L p+1 (R N ), consequently R . = i 1 • R , S .
= i 2 • S are linear continuous operators. So we can define the linear operator

T : L q+1 q (R N ) × L p+1 p (R N ) → L q+1 (R N ) × L p+1 (R N ), T := 0 R S 0 , that is, for all f, φ ∈ L q+1 q (R N ), g, ϕ ∈ L p+1 p (R N ), T w, η = φR g + ϕS f, ∀ η = (φ, ϕ), ∀ w = (f, g). Let X = L q+1 q (R N ) × L p+1 p (R N
) be the Banach space endowed with the norm

w = f 2 q+1 q + g 2 p+1 p
; w = (f, g) ∈ X, from now on • s and hdx will denote the L s -norm in R N and R N h(x)dx, respectively. The dual functional Ψ : X → IR is defined by

Ψ (w) = H * (x, w) dx - 1 2 T w, w dx, w ∈ X,
where

H * is the Legendre-Fenchel transform of H, that is, for all x ∈ R and w = (w 1 , w 2 ) ∈ R 2 , H * (x, w) = sup t∈R 2 {w 1 t 1 + w 2 t 2 -H(x, t)}. Lemma 2.2
The functional Ψ is well defined and C 1 on X * . Its Fréchet derivative is given by

(Ψ ) (w)η = H * w (x, w)η dx - T w, η dx, ∀ η ∈ X. If w = (f, g) is a critical point of Ψ , then (u, v) = T h w is a solution of the system (obtained by (S ) through the change x → x) -∆u + b(hx)u = H v (hx, u, v) in R N , -∆v + b(hx)v = H u (hx, u, v) in R N .
(S )

Proof: The proof of this lemma is known, for instance we can employ the arguments given in [START_REF] Ph | On a semilinear elliptic system[END_REF] (see Lemma 4.3 there, and also [START_REF] Hulshof | Differential systems with strongly indefinite variational structure[END_REF]). Let us sketch it for completeness. The derivative of the second term in Ψ is simple to get, by the relation

η, T w dx = w, T η dx, ∀ η, w ∈ X.
Consider the functional

H(z) = H(x, z) dx, H : X * = L q+1 (R N ) × L p+1 (R N ) → R,
where z = (u, v). From the hypotheses on H it follows that H is well-defined on X * and is a C 1 -functional. The Legendre-Fenchel transform of H is given by

H * (w) = H * (x, w) dx, H * : X → R.
Since H is strictly convex the gradient H z : R 2 → R 2 is a homeomorphism. Thus, H is a bijection from X * to X, which is continuous and bounded. Furthermore, H * is Gâteaux differentiable, (H * ) (w) = (H ) -1 (w) for every w ∈ X (this is a characterization of the Legendre-Fenchel transform), and

(H * ) (w)η = H * w (x, w)η dx, ∀ η, w ∈ X.
Thus, (H * ) : X → X * is continuous and bounded, which implies that H * is Fréchet differentiable. Now, if w is a critical point of Ψ , it follows that z = (u, v) = T h w is a solution of (S ). In fact, we have

(H * ) (w) -T h w = 0 in X * , that is (H ) -1 (w) -z = 0 in X * .
As a result,

T -1 h z -(H )(z) = 0 in W 2, p+1 p × W 2, q+1 q , because T -1 h is an isomorphism between W 2, p+1 p × W 2, q+1 q and L p+1 p × L q+1 q . Thus, (u, v) = z = T h w is a solution of system (S ).
We say that w = (f, g) is the dual solution associated to (u, v). By making the change of variable x → -1 x in R N , system (S ) becomes

-2 ∆u + b(x)u = H v (x, u, v) in R N , -2 ∆v + b(x)v = H u (x, u, v) in R N . (S )
3 Proof of Theorem 1

We start with the following simple fact.

Lemma 3.1 The functional Ψ has a "mountain pass geometry" on the space X, in the sense that there exist ρ, α > 0 and w ∈ X such that Ψ | ∂B ρ ≥ α, Ψ (w) < 0 and w > ρ.

Proof: It is easy to see that (H1) and (H2) imply that there exist positive constants c 1 -c 4 such that

c 1 |f | q+1 + c 2 |g| p+1 ≤ H(x, w) ≤ c 3 |f | q+1 + c 4 |g| p+1 , w = (f, g).
From properties of Legendre-Fenchel transformations, we have

d 1 |f | q+1 q + d 2 |g| p+1 q ≤ H * (x, w) ≤ d 3 |f | q+1 q + d 4 |g| p+1 p , ( 3.5) 
for some positive constants d 1 -d 4 .

By using the Hölder inequality and the boundedness of R and S , for all w = (f, g) ∈ X we easily get

w, T w ≤ C( f q+1 q g p+1 p + g p+1 p f q+1 q ) ≤ C( g 2 p+1 p + f 2 q+1 q ) = C w 2 X , (3.6) 
Then, from (3.5) and (3.6) we get

Ψ (w) ≥ C( f q+1 q q+1 q + g p+1 p p+1 p ) -C( f 2 q+1 q + g 2 p+1 p
).

Thus, since (p + 1)/p < 2 and (q + 1)/q < 2, for each > 0 there exist constants ρ, α > 0 such that Ψ | ∂Bρ ≥ α. Now, we claim we can find w ∈ X such that Ψ (w) < 0 and w > ρ. In fact, there exists w + = (f + , g + ) ∈ X such that T h w + , w + > 0 (indeed, it is sufficient to take f + = g + ∈ C ∞ c (R N )). By using (3.5) we obtain, for all t > 0,

Ψ (tw + ) ≤ Ct q+1 q |f | q+1 q + Ct p+1 p |g| p+1 p - t 2 2 T h w + , w + ,
for some positive constant C. Since p+1 p , q+1 q < 2, the claim follows for t > 0 sufficiently large.

Set Γ . = {γ ∈ C([0, 1], X) : γ(0) = 0, Ψ (γ(1)) < 0} and c = inf γ∈Γ max t∈[0,1] Ψ (γ(t)).
Standard critical point theory implies that for each > 0 we can find a sequence

{w n } ∞ n=1 ⊂ X such that Ψ (w n ) → c and (Ψ ) (w n ) → 0 as n → ∞. ( 3.7) 
Our goal will be to show that for sufficiently small values of each of these sequences possesses an accumulation point, which is nontrivial solution of (S ). Lemma 3.2 For > 0 fixed, the sequence w n = (f n , g n ) is bounded in X.

Proof: From properties of the Legendre-Fenchel transform and (H2) we have

H * (x, w n ) ≥ (1 - 1 α )H * f (x, w n )f n + (1 - 1 α )H * g (x, w n )g n . (3.8) Now H * (x, w n ) = 1 2 T h w n , w n + Ψ (w n ) = Ψ (w n ) - 1 2 (Ψ ) (w n ), w n + 1 2 H * w (x, w n )w n .
Setting λ = α 2(α-1) < 1, from (3.7) and (3.8) we obtain

(1 -λ) H * (x, w n ) ≤ c + o n (1) w n X , ( 3.9) 
where o n (1) is a quantity which tends to zero as n → ∞. By combining (3.5) and (3.9) we get for some k, K > 0

k w n γ X ≤ f n q+1 q L q+1 q + g n p+1 p L p+1 p ≤ Kc + o n (1) w n X , (3.10) 
with γ = min{1 + 1/p, 1 + 1/q} > 1. This trivially implies that {w n } is bounded in X, for > 0 fixed.

With the help of Lemma 3.2 for each > 0 we can extract a subsequence of {w n } which converges weakly in X to a function w = (f , g ). We affirm that w is a critical point of Ψ . First, for each > 0 the sequence z n = T h w n is clearly bounded in X * , since T is bounded. Another way of writing (3.7) is

T -1 h z n -(H )(z n ) = o n (1) (see the proof of Lemma 2.
2). Since up to a subsequence we have z n z in W 2, p+1 p × W 2, q+1 q we see that the limit function z is a weak solution of (S ). This implies that T h z ∈ X and w = T h z is a critical point of Ψ .

It remains to show that w is not identically zero. We claim that for small this is the case. The proof of this claim will be carried out through several steps. First, let u n and v n be the functions given by

u n = R g n ∈ W 2, p+1 p (R N ) and v n = S f n ∈ W 2, q+1 q (R N ), (3.11) 
that is,

-∆u n + b( x)u n = g n and -∆v n + b( x)v n = f n , x ∈ R N . (3.12)
Next, we note that (1.4) permits to us to choose s, t such that 0 < s, t < 2, s + t = 2 and

t < N 2 , 2 -t < N 2 , N (p -1)
2(p + 1) < t < 4(q + 1) -N (q -1) 2(q + 1) .

(3.13)

Then p + 1 < 2N N -2t and q + 1 < 2N N -2s , which implies

W 2, p+1 p → H s → L q+1 and W 2, q+1 q → H t → L p+1 ,
where H s , H t are the usual fractional Sobolev spaces over R N .

Lemma 3.3 There exists a constant β > 0 (independent of ) such that for each > 0 we can find R = R( ) > 0, for which

u n q+1 H s (R N ) ≤ βc (q+1)p p+1 + β u n q+1 H s (B R ) + o n (1), v n p+1 H t (R N ) ≤ βc (p+1)q q+1 + β v n p+1 H t (B R ) + o n (1)
.

Proof: We shall need some functional analysis. For s ∈ (0, 1) let H s b( x) be the space of the functions u such that b

1 2 ( x)u ∈ L 2 (R N ) and |u(x) -u(y)| |x -y| s+ N 2 ∈ L 2 (R N × R N ).
One can also define H s b( x) by interpolation between the spaces

L 2 b( x) = {u : b( x)u 2 < ∞} and H 1 b( x) = {u ∈ L 2 b( x) : |∇u| 2 < ∞}. Since b ∈ L ∞ (R N ), the inclusion H s ⊂ H s b( x) holds. On the other hand it is standard to check that H s b( x) (R N ) is embedded into H s (B R
), for any s > 0 and any ball B R . Once more through Lemma 1 in [START_REF] Sirakov | Standing wave solutions of the nonlinear Schrodinger equation in R N[END_REF] (see also the argument used in the proof of this lemma) we can prove that

H s (R N ) = H s b( x) (R N ) under hypotheses (b1) and (b2). Define L = -∆ + b( x) : H 2 ⊂ L 2 → L 2 (L is a positive operator) and A s := ( √ L) s , so that A s : H s b( x) → L 2 is a isomorphism between H s b( x)
and L 2 . This is standard functional analysis, for details and references see [START_REF] De Figuieredo | Decay, symmetry and existence of positive solutions of semilinear elliptic systems[END_REF], pages 224-226, where the case b ≡ 1 was considered. We observe that

u H s b( x) = A s u L 2 .
Then the weak formulation of the first equation in (3.12) is

A s u n A t ϕ = g n ϕ, ∀ ϕ ∈ H t .
(3.14)

Putting ϕ = A -t A s u n into (3.14), we obtain

u 2 H s b( x) = |A s u n | 2 = g n A -t A s u n .
So there exists a positive constant independent of such that for all R > 0

u n 2 H s b( x) (R N ) ≤ g n L p+1 p A -t A s u n L p+1 ≤ C g n L p+1 p u n H s = C g n L p+1 p u n H s (B R ) + u n H s (R N \B R ) . (3.15)
On the other hand, hypotheses (b1) and (b2) imply that we can find c > 0 such that for any > 0 there exists R = R( ) for which

w H s b( x) (R N ) ≥ c w H s (R N \B R ) , ∀ w ∈ H s b( x) (R N ) = H s (R N ). Since x 2 ≤ a + bx, x ≥ 0 implies x ≤ C(b + √ a) we get from (3.15) u n H s (R N \B R ) ≤ C g n L p+1 p (R N ) + C u n H s (B R ) , (3.16) 
for some positive constant C independent of . Similarly,

v n H t (R N \B R ) ≤ C f n L q+1 q (R N ) + C v n H t (B R ) . ( 3.17) 
Recall we already proved (Lemma 3.2 and (3.10)) that there exists a positive constant C independent of for which

g n L p+1 p ≤ Cc p p+1 + o n (1) and f n L q+1 q ≤ Cc q q+1 + o n (1). (3.18)
By combining these with (3.16) and (3.17) we get Lemma 3.3.

The final and basic ingredient of the proof of Theorem 1 is the following

Lemma 3.4 We have lim →0 c = 0. (3.19) 
The proof of this lemma will be given in the next section. We shall now proceed to the proof of Theorem 1.

Proof of Theorem 1. Since H * (w) is a convex function on R 2 we have ∇H * (w), w ≥ H * (w) for all w ∈ R 2 . Hence

c = lim n→∞ Ψ (w n ) -(Ψ ) (w n ), w n ≤ 1 2 lim n→∞ T w n , w n = 1 2 lim n→∞ f n R g n + g n S f n ≤ lim sup n→∞ f n L q+1 q R g n L q+1 + g n L p+1 p S f n L p+1 .
By the Hölder inequality for each ε > 0 there exists

C = C(ε) > 0 such that c ≤ ε lim sup n→∞ ( f n q+1 q L q+1 q + g n p+1 p L p+1 p ) + C lim sup n→∞ ( R g n q+1 L q+1 + S f n p+1 L p+1 ),
so by using (3.18) and by choosing ε sufficiently small we get by the Sobolev embedding and the boundedness of R , S that

c ≤ C lim sup n→∞ R g n q+1 L q+1 + S f n p+1 L p+1 ≤ C lim sup n→∞ u n q+1 H s (R N ) + C lim sup n→∞ v n p+1 H t (R N ) .
Therefore, by the previous lemma,

c ≤ β c (q+1)p p+1 + c (p+1)q q+1 + C lim sup n→∞ u n q+1 H s (B R ) + C lim sup n→∞ v n p+1 H t (B R ) .
Note the embeddings W 2, p+1 p → H s , W 2, q+1 q → H t are compact on bounded domains, so {u n }, {v n } converge strongly on B R as n → ∞. Hence for the limit functions u , v we get

u q+1 H s (B R ) + v p+1 H t (B R ) ≥ 1 -C -1 β c pq-1 p+1 + c pq-1 q+1
.

However the last quantity is strictly positive for small (since c → 0), which means that the limit functions are not identically zero. Note that of course (f , g ) = (0, 0) if and only if (u , v ) = (0, 0).

4 Proof of Lemma 3.4.

We start by observing that c ≤ inf To facilitate the task of the reader, we first describe the idea behind the proof of (4.22). The point is that if p, q are under the critical hyperbola and s, t are chosen as in (3.13), then it is possible to find (explicitly) a function

g ∈ L p+1 p (R N ) such that if u satisfies -∆u(x) = g(x), x ∈ R N ,
then u does not belong to the fractional Sobolev space H s (R N ), and respectively a function f ∈ L q+1 q (R N ) such that the solution of -∆v = f is not in H t . We recall that a function w is in H s (R N ) if and only if w ∈ L 2 (R N ) and its Fourier transform w(ξ) is such that |ξ| s w(ξ) ∈ L 2 (R N ). Then, assuming (4.22) does not hold we show we can perturb and cut off the functions f , g, to construct a sequence w = (f h , g h ) such that w = 1 and we can control the corresponding R h g h , S f in a way which yields a contradiction for small . Proof of Lemma 4.1. Let us suppose (4.22) does not hold, that is, there exists C 0 > 0 such that T w, w dx ≤ C 0 , for each w ∈ E with w = 1.

We start by giving some results from the theory of Fourier transforms, which we shall use. The next theorem is a standard fact from the theory of Fourier transforms of distributions.

Theorem 2 Suppose the function u 0 has slow growth, that is, there exists m ∈ N such that

R N |u 0 (x)|dx (1 + |x|) m < ∞. (4.23)
Then the Fourier transform u exists and belongs to the class of tempered distributions S . In

addition if φ ∈ C ∞ c (R N ) is such that φ ≡ 1 in B 1 , φ ≡ 0 in R N \ B 2 and we set φ n (x) = φ(x/n) then φ n u → u in S .
We shall use the Fourier transform of the function

w 0 (x) = 1 1 + |x| 2 ,
and its powers. It is a well-known fact from Fourier analysis that for any α > 0 we have

w α 0 (ξ) = C(N, α)|ξ| α-N 2 K N 2 -α (|ξ|), (4.24) 
(this is for instance formula (3.11) in [START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF]) ; here K ν (z) is the modified Bessel function of the second kind, given by

K ν (z) = Γ(ν + 1 2 ) √ π |z| ν ∞ 0 cos(t) (t 2 + z 2 ) ν+ 1 2 dt = Γ(ν + 1 2 ) √ π|z| ν ∞ 0 cos(sz) (1 + s 2 ) ν+ 1 2 ds. Standard analysis shows that K ν (z) > 0, K ν (z) ∈ C ∞ (R \ {0}), K decays exponentially as |z| → ∞, and, most importantly, K ν (z) ∼ const.|z| -ν as z → 0. Hence w α 0 (ξ) ∼ C(N, α)|ξ| 2α-N as |ξ| → 0. ( 4.25) 
We now fix p > p and q > q such that p , q are still under the critical hyperbola,

1 p + 1 + 1 q + 1 > 1 - 2 N . We set α = N p 2(p + 1) , β = N q 2(q + 1)
, so that in particular

w α 0 ∈ L p+1 p (R N ), w β 0 ∈ L q+1 q (R N ).
Let u 0 , v 0 be the solutions of

-∆u 0 = k 1 w α 0 , -∆v 0 = k 2 w β 0 in R N , ( 4.26) 
where

k 1 = k 1 (p, q, N ) := w α 0 -1 p+1 p , k 2 = k 2 (p, q, N ) := w β 0 -1 q+1 q
. By standard PDE theory u 0 and v 0 are functions which belong to some Lebesgue spaces over R N (see for instance Theorem 10.2 (i) in [25]), which in particular implies that they have slow growth, as in (4.23) (by the Hölder inequality). Hence Theorem 2 applies, and, by taking the Fourier transform on both sides of the equations in (4.26) we get

u 0 (ξ) = k 1 |ξ| -2 w α 0 (ξ), v 0 (ξ) = k 2 |ξ| -2 w β 0 (ξ). ( 4 

.27)

Note that u 0 , v 0 are positive.

Lemma 4.2 We have R N |ξ| 2 u 0 (ξ) v 0 (ξ) dξ = ∞.
Proof. By (4.24) and (4.27) we have

|ξ| 2 u 0 (ξ) v 0 (ξ) ∼ C(N, α, β)|ξ| 2(α+β-1-N ) as |ξ| → 0.
However, by the choice of α and β that we made

α + β -1 -N = N 2 p p + 1 + q q + 1 -1 -N = N 2 2 - 1 p + 1 - 1 q + 1 -1 -N < N 2 1 + 2 N -1 -N = - N 2 ,
and the lemma follows.

We set

u n = φ n u 0 ∈ C ∞ c (R N ), v n = φ n v 0 ∈ C ∞ c (R N )
, where φ n is a function as in Theorem 2, and

g n, := -∆u n + b( x)u n , f n, := -∆v n + b( x)v n .
Since u n , v n have compact support and b(0) = 0 for each fixed n we have

g n, → -∆u n in L p+1 p , f n, → -∆v n in L q+1 q
as → 0.

Clearly

-∆u n → -∆u 0 in L p+1 p , -∆v n → -∆v 0 in L p+1 p as n → ∞,
and, recalling that we have taken u 0 , v 0 so that ∆u 0 p+1 p = ∆u 0 q+1 q = 1, we see that we can find n 0 such that for each n ≥ n 0 there exists n for which

2 ≥ g n, p+1 p ≥ 1 2 , 2 ≥ f n, q+1 q ≥ 1 2 , if < n . Now set g n, = g n, √ 2 g n, p+1 p , f n, = f n, √ 2 f n, q+1 q ,
and w n, = (f n, , g n, ). So w n, ∈ E and w n, X = 1. By the hypothesis we made T w n, , w n, ≤ C 0 , for all n ≥ n 0 and all < n .

On the other hand, setting k -1 n, = 2 g n, L p+1 p g n, L p+1 p (by the above k n, ∈ (1/8, 2)), we have

T w n, , w n, = k n, ( f ,n R g n, + g n, S f n, ) = k n, u n (-∆v n ) + v n (-∆u n ) + 2b( x)u n v n ≥ k n, u n (-∆v n ) + v n (-∆u n ) = 2k n, |ξ| 2 φ n u 0 (ξ) φ n v 0 (ξ) dξ,
where we used Parseval's identity and the positivity of b, u n , v n . Hence

|ξ| 2 φ n u 0 (ξ) φ n v 0 (ξ) dξ ≤ 4C 0 . (4.28)
Note that the definition of the Fourier transform implies φ n u 0 (ξ) → u 0 (ξ) for each ξ = 0. Actually (see for instance Theorems 2.16, 5.3, 5.8 in [START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF]) φ n u 0 = φ n * u 0 → u 0 in any Lebesgue space to which belongs u 0 , and similarly for v 0 . Recall we have explicit expressions for u 0 , v 0 and know that they are strictly positive, behave like |ξ| to a negative power as ξ → 0 and decay exponentially as ξ → ∞. It is then simple to check that the negative part of |ξ| 2 φ n u 0 (ξ) φ n v 0 (ξ) is bounded by an integrable function independently of n, so Fatou's lemma applies to (4.28) and gives a contradiction with Lemma 4.2. Alternatively, one can prove that Fatou's lemma applies to (4.2) by noticing that the integrand in this inequality is ∇(φ n u 0 ).∇(φ n v 0 ) and this scalar product is positive, since φ n , u 0 and v 0 are positive, radial, and decreasing functions. This completes the proof of Theorem 1.

Appendix

In this appendix we verify estimate (4.20), which we used in Lemma 3.4. First, we note that for w = (f, g) Denoting the right hand side of (5.29) by h(t), it is easy to check that max{Ψ (tw), t ≥ 0} = h( t), for some t > 0 if and only if h ( t) = 0, that is

Ψ (tw) = A α t α + B β t β - C 2 t 2 , ( 5 
t2 = A C tα + B C tβ .
This implies that there exists a positive constant K such that

t ≤ K A C 1 2-α + B C 1 2-β .
Then, for some constant K > 0, 

h( t) = A( 1 α - 1 2 ) tα + B( 1 β - 1 2 ) tβ ≤ K A 2 2-α C α 2-α + AB α 2-β C α 2-β + BA β 2-α C β 2-α + B 2 2-β C β 2-β = K A

  and (H1)-(H2), (b1)-(b2) are satisfied then (S ) has a nontrivial solution for small .

.

  set E = {w ∈ X | T w, w > 0}. An explicit computation (see Appendix I) shows that for any w ∈ E we have max t≥0 Ψ (tw) ≤ const.So to prove Lemma 3.4 it will be enough to establish the following claim: Thus, (4.21) is equivalent to the following result.

Lemma 4 . 1

 41 We have sup w∈E : w =1 T w, w dx → +∞ as → 0. (4.22)

  .29) where α = (p + 1)/p, β = (q + 1)/q,

This inequality (particularly easy to check under (1.3)) follows from Lemma 3 in[START_REF] Sirakov | Standing wave solutions of the nonlinear Schrodinger equation in R N[END_REF] where the case s = 1 was studied, and from an interpolation argument.
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