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1 Introduction

A major role in quantum physics is played by the nonlinear Schrödinger
equation

i~
∂ψ

∂t
= − ~

2

2m
∆xψ + V (x)ψ − f̄(x, ψ), (1.1)

where m and ~ are positive constants, the wave ψ : R+ × RN → C, N ≥ 3,
V is a potential which is bounded below, and f̄ = f(x, |ψ|)ψ is a nonlinear
function, for instance in the classical cubic approximation f̄ = |ψ|2ψ. One of
the questions to which huge attention has been given during the last twenty
years is the existence of stationary states (see (1.2) below) for small values
of ~, which appear due to the geometry of the potential.

This paper is devoted to the corresponding question of existence of so-
lutions of some systems of Schrödinger equations. Systems of nonlinear
Schrödinger type have been widely used in the applied sciences but mathe-
matical study of standing wave solutions was undertaken only very recently,
prompted in particular by the discovery of the importance of these systems
as models in nonlinear optics (see for instance [4], [9], [26]) and in the study
of Bose-Einstein condensates (see [26], [39]). As in the large majority of other
papers on the subject we consider here systems of two equations.

So we suppose ψ is a vector function, ψ = (ψ1, ψ2), and satisfies a system
of equations like (1.1), with f̄ = (f̄1, f̄2) and f̄k =

∑
j fkj(x, |ψ1|, |ψ2|)ψj. We

will be interested in soliton (standing wave) solutions of these systems, that
is, solutions in the form

ψj(t, x) = ei(E/~)tuj(x). (1.2)

1Corresponding author, e-mail : sirakov@ehess.fr ; S.H.M. Soares : monari@icmc.usp.br
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Substituting (1.2) into (1.1) and setting b(x) = V (x)−E leads to the system
of real elliptic partial differential equations (we write u = u1, v = u2)

(S~)

{ −~2∆u + b(x)u = f1(x, u, v) in RN ,
−~2∆v + b(x)v = f2(x, u, v) in RN .

We suppose this system is in variational form, that is, it is the Euler-Lagrange
system of some energy functional. This happens when f1, f2 are the deriva-
tives of some function H(x, u, v). There are two types of such systems, La-
grangian - when f1 = Hu, f2 = Hv (the above mentioned examples are of
this type), and Hamiltonian - when f1 = Hv, f2 = Hu. The simplest ex-
ample of a Hamiltonian system is the widely studied Lane-Emden system
- when f1 = vp, f2 = uq in (S~). Even for this system important open
questions subsist (see [15]). Hamiltonian systems are very usual in biology,
more specifically in models in population dynamics (see [27]) whose station-
ary states verify systems of type (S~), for instance with f1 = v(u2 + g1(v)),
f2 = u(v2 + g2(u)). An important difficulty in the study of Hamiltonian
systems (as opposed to Lagrangian) is the fact that the energy functional is
strongly indefinite, that is, its leading part is respectively coercive and anti-
coercive on infinitely dimensional subspaces of the energy space - we refer to
[3] for a general discussion. The present article is devoted to this case. Our
goal is to get a general existence result for small ~ in the case of a superlinear
and subcritical Hamiltonian system with a well potential.

As in many applications, we consider trapping (or ”well”-type) potentials,
the standard example being b(x) ∼ |x − x0|2 in a neighbourhood of some
x0 ∈ RN . A particular case of our result will be the existence of soliton
waves thanks to a global well structure of b, that is,

0 = inf
x∈RN

b(x) < lim inf
|x|→∞

b(x). (1.3)

Notice that infx∈RN b(x) = 0 can always be achieved through the choice of E
in (1.2).

Unfortunately, as of today PDE theory lacks the means to tackle the exis-
tence question under hypothesis (1.3) only, even in the scalar case. However,
it turns that we can show that (S~) has a solution provided the constant ~
is sufficiently small. Note that in practice ~, the Planck constant, is a very
small quantity, so it makes sense to study problem (S~) at the limit ~→ 0.

Here are the precise statements. We assume H(x, u, v) is differentiable
and strictly convex in (u, v) ∈ R2 for all x ∈ RN , H(x, 0, 0) = 0 and

(H1) there exist constants p, q, αk, βk > 1, such that

1

p + 1
+

1

q + 1
>

N − 2

N
,

αk

p + 1
+

βk

q + 1
= 1, (1.4)
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and for some c0, d0 > 0, Ck ≥ 0, Dk ≥ 0 we have for x ∈ RN ,(u, v) ∈ R2

c0|u|q ≤ |Hu(x, u, v)| ≤ C0|u|q +
m∑

k=1

Ck|u|αk−1|v|βk ,

d0|v|p ≤ |Hv(x, u, v)| ≤ D0|v|p +
m∑

k=1

Dk|u|αk |v|βk−1.

(H2) There exists α > 2 such that for all x ∈ RN and (u, v) ∈ R2 \ {(0, 0)}

uHu(x, u, v) + vHv(x, u, v) ≥ αH(x, u, v) > 0.

A typical example of a function satisfying these hypotheses is H(x, u, v) =
a0(x)|u|p+1 +

∑n
1 ai(x)|u|αi|v|βi + an+1(x)|v|q+1, under (1.4).

We suppose that the continuous potential b(x) satisfies b ≥ 0 in RN and

(b1) there exists x0 ∈ RN (say x0 = 0) such that b(x0) = 0;

(b2) there exists A > 0 such that the level set GA = {x ∈ RN : b(x) < A}
has finite Lebesgue measure.

Note that the conditions (b1)-(b2) include (1.3) as a particular case. We shall
also suppose that b(x) is bounded. This condition is made for simplicity, since
it is irrelevant to the goal of our paper, which is to use the well geometry of
the potential. Actually it is even easier to consider potentials which are large
at infinity (then there is no restriction on ~), since the energy space embeds
compactly into Lebesgue spaces, see for instance Theorem 4 in [37].

Note also that (H1) means the problem is superlinear and subcritical,
in other words, the couple (p, q) is under the critical hyperbola (given by
the inequality (1.4)). In particular, one of the nonlinearities in (S~) can have
growth larger than the exponent (N +2)/(N−2), provided the growth of the
other is smaller enough to compensate (note that when p = q (1.4) reduces
to p < (N + 2)/(N − 2)). In this case the functional associated to (S~) is
not defined for u, v ∈ H1(RN). It is nowadays well-known that (1.4) is the
right notion of subcriticality for a Hamiltonian system with power-growth
nonlinearity, see [7], [21], [35], [36].

The following theorem contains our main result.

Theorem 1 If f1 = Hv, f2 = Hu, and (H1)-(H2), (b1)-(b2) are satisfied
then (S~) has a nontrivial solution for small ~.
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We now quote previous works related to this result. There is a huge
literature for the scalar case – we refer to [2], [5], [10], [14], [17], [19], [20],
[23], [28], [29], [32], [38], [41] and to the references in these papers. Some
types of Lagrangian systems with well potentials were studied in [1], [26],
[30]. Existence results (for any ~) for radially invariant Hamiltonian systems
in RN were established in [16] and [37]. A result similar to Theorem 1 can
be found in [33] (see also [34]) in the particular case when H = F (u)+G(v),
that is, the right-hand side of the system is independent of x and has no
cross-terms in u, v. This restrictive hypothesis is due to the method used
in these papers, which extends to systems the arguments in [14]. Finally, in
the recent paper [11] a fairly general result was proved on system (S~), but
under the hypothesis that both p, q are smaller than (or in some cases equal
to) the scalar exponent (N + 2)/(N − 2). The method in [11] is based on an
application of a linking theorem to the energy functional associated to (S~).

The starting point for our work is [38], where the scalar version of The-
orem 1 was proved. The method in [38] extends readily to Lagrangian sys-
tems, since then the energy functional has the same geometry as the scalar
one, but the situation appears to be considerably more involved for Hamil-
tonian systems. We have used a dual variational structure, relying on the
Legendre–Fenchel transformation, which allows us to transform the problem
into a new one, to which the Mountain Pass Theorem (without the Palais-
Smale condition) applies. However, then one of the key observations – that
the generalized mountain pass value tends to zero as ~ → 0 – turns out to
be rather delicate to prove, and the method of proof in [38] fails. We have
found a way to deal with this problem by Fourier analysis, a tool that is
seldom encountered in this branch of the calculus of variations. Our method
will hopefully be useful in other situations as well.

So the main interest of Theorem 1 is twofold – first, it extends and joins
together previous existence results of this type, giving an optimal range for
the growth of the nonlinearities involved ; and second, its proof is based on a
new idea, namely the use of Fourier transforms in the study of the behaviour
of generalized critical values.

We finally remark that in the scalar case it has recently been established
that standing wave solutions of (1.1) can be shown to exist for nonlinearities
which grow supercritically - see [6], [12], [13]. In the light of these results, we
expect that our hypotheses on the growth of f1, f2 at infinity can be relaxed,
at least for some type of nonlinearities.

The paper is organized as follows. The next section is preliminary - we
describe the variational setting we use. The main frame of the proof of
Theorem 1 is to be found in Section 3. Finally, the core result – the fact
that the mountain pass values (and hence the norms and the energy) of the
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solutions we find tend to zero as ~→ 0 – is proved in Section 4.

2 The dual variational formulation

We start by recalling some facts which permit us to set up the variational
framework for solving system (S~).

Lemma 2.1 Let V be bounded and nonnegative function satisfying (b1) and
(b2). Then, for every g ∈ Ls(RN), 1 < s < ∞, and ~ > 0, the problem

−∆u + V (~x)u = g in RN

possesses a unique solution u ∈ W 2,s(RN). In addition, there exits a constant
K > 0 (which may depend of ~) such that

‖u‖W 2,s(RN ) ≤ K‖g‖Ls(RN )

Proof: Denote V~(x) = V (~x). For s ∈ (1,∞), consider the operator Rs :
W 2,s(RN) → Ls(R) defined by

Rsu = (−∆ + V~I)u for u ∈ W 2,s(RN).

It follows for instance from Theorem 1 of [31] that

(i) Ker (Rs − λI) = Ker (R2 − λI), for every s ∈ (1,∞).

(ii) Ls(RN) = Ker (Rs − λI)⊕ Im (Rs − λI).

Since V~ ∈ L∞(RN), it is known (see for example Lemma 3.10 in [40]) that
the spectrum σ(R2) ⊂ [Λ,∞) and Λ~ ∈ σ(R2), where

Λ~ = inf

{∫
(|∇u|2 + V~(x)u2) | u ∈ H1(RN),

∫
u2 = 1

}
.

It follows from Lemma 1 in [38] that Λ~ > 0. Therefore 0 6∈ σ(R2).
Consequently Ker (Rs) = Ker (R2) = {0} and

Ls(RN) = Ker (Rs) + Im(Rs) = Im(Rs).

Thus, Rs : W 2,s(RN) ⊂ Ls(RN) → Ls(RN) is a isomorphism. Note that Rs

is continuous thanks to the immersion W 2,s(RN) ⊂ Ls(RN). So, there exists
a positive constant C such that for all u ∈ Ls(RN)

‖R−1
s u‖W 2,s(RN ) ≤ C‖u‖Ls(RN ). ¤
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Given p, q > 1 such that
1

p + 1
+

1

q + 1
>

N − 2

N
, we define the operators

R̃~ : L
p+1

p (RN) → W 2, p+1
p (RN), S̃~ : L

q+1
q (RN) → W 2, q+1

q (RN),

by
R̃~ = S̃~ = (−∆ + b~I)−1,

where b~(x) = b(~x). It follows from Lemma 2.1 that the operators R̃~ and

S̃~ are well defined and continuous. Since 1/(q +1) > p/(p+1)− 2/N holds,
we have the continuous Sobolev embeddings

i1 : W 2, p+1
p (RN) → Lq+1(RN), i2 : W 2, q+1

q (RN) → Lp+1(RN),

consequently R~
.
= i1 ◦ R̃~, S~

.
= i2 ◦ S̃~ are linear continuous operators.

So we can define the linear operator

T~ : L
q+1

q (RN)×L
p+1

p (RN) → Lq+1(RN)×Lp+1(RN), T~ :=

(
0 R~
S~ 0

)
,

that is, for all f, φ ∈ L
q+1

q (RN), g, ϕ ∈ L
p+1

p (RN),

〈T~w, η〉 = φR~g + ϕS~f, ∀ η = (φ, ϕ), ∀w = (f, g).

Let X = L
q+1

q (RN)×L
p+1

p (RN) be the Banach space endowed with the norm

‖w‖ =
√
‖f‖2

q+1
q

+ ‖g‖2
p+1

p

; w = (f, g) ∈ X,

from now on ‖·‖s and
∫

hdx will denote the Ls−norm in RN and
∫
RN h(x)dx,

respectively.
The dual functional Ψ~ : X → IR is defined by

Ψ~(w) =

∫
H∗(x,w) dx− 1

2

∫
〈T~w, w〉 dx, w ∈ X,

where H∗ is the Legendre-Fenchel transform of H, that is, for all x ∈ R and
w = (w1, w2) ∈ R2,

H∗(x,w) = sup
t∈R2

{w1t1 + w2t2 −H(x, t)}.

Lemma 2.2 The functional Ψ~ is well defined and C1 on X∗. Its Fréchet
derivative is given by

(Ψ~)′(w)η =

∫
H∗

w(x,w)η dx−
∫
〈T~w, η〉 dx, ∀ η ∈ X.

6



If w = (f, g) is a critical point of Ψ~, then (u, v) = Thw is a solution of
the system (obtained by (S~) through the change x → ~x)

{ −∆u + b(hx)u = Hv(hx, u, v) in RN ,
−∆v + b(hx)v = Hu(hx, u, v) in RN .

(S ′~)

Proof: The proof of this lemma is known, for instance we can employ the
arguments given in [8] (see Lemma 4.3 there, and also [22]). Let us sketch it
for completeness.

The derivative of the second term in Ψ~ is simple to get, by the relation

∫
〈η, T~w〉dx =

∫
〈w, T~η〉 dx, ∀ η, w ∈ X.

Consider the functional

H(z) =

∫
H(x, z) dx, H : X∗ = Lq+1(RN)× Lp+1(RN) → R,

where z = (u, v). From the hypotheses on H it follows that H is well-defined
on X∗ and is a C1-functional. The Legendre-Fenchel transform of H is given
by

H∗(w) =

∫
H∗(x,w) dx, H∗ : X → R.

Since H is strictly convex the gradient Hz : R2 → R2 is a homeomorphism.
Thus, H′ is a bijection from X∗ to X, which is continuous and bounded.
Furthermore, H∗ is Gâteaux differentiable, (H∗)′(w) = (H′)−1(w) for every
w ∈ X (this is a characterization of the Legendre-Fenchel transform), and

(H∗)′(w)η =

∫
H∗

w(x,w)η dx, ∀ η, w ∈ X.

Thus, (H∗)′ : X → X∗ is continuous and bounded, which implies that H∗

is Fréchet differentiable. Now, if w is a critical point of Ψ~, it follows that
z = (u, v) = Thw is a solution of (S ′~). In fact, we have

(H∗)′(w)− Thw = 0 in X∗,

that is
(H′)−1(w)− z = 0 in X∗.

As a result,

T−1
h z − (H′)(z) = 0 in W 2, p+1

p ×W 2, q+1
q ,
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because T−1
h is an isomorphism between W 2, p+1

p ×W 2, q+1
q and L

p+1
p × L

q+1
q .

Thus, (u, v) = z = Thw is a solution of system (S ′~). ¤
We say that w = (f, g) is the dual solution associated to (u, v). By

making the change of variable x 7→ ~−1x in RN , system (S ′~) becomes

{ −~2∆u + b(x)u = Hv(x, u, v) in RN ,
−~2∆v + b(x)v = Hu(x, u, v) in RN .

(S~)

3 Proof of Theorem 1

We start with the following simple fact.

Lemma 3.1 The functional Ψ~ has a “mountain pass geometry” on the
space X, in the sense that there exist ρ, α > 0 and w ∈ X such that
Ψ~|∂Bρ ≥ α, Ψ~(w) < 0 and ‖w‖ > ρ.

Proof: It is easy to see that (H1) and (H2) imply that there exist positive
constants c1 − c4 such that

c1|f |q+1 + c2|g|p+1 ≤ H(x, w) ≤ c3|f |q+1 + c4|g|p+1, w = (f, g).

From properties of Legendre-Fenchel transformations, we have

d1|f |
q+1

q + d2|g|
p+1

q ≤ H∗(x,w) ≤ d3|f |
q+1

q + d4|g|
p+1

p , (3.5)

for some positive constants d1 − d4.
By using the Hölder inequality and the boundedness of R~ and S~, for all

w = (f, g) ∈ X we easily get

∫
〈w, T~w〉 ≤ C(‖f‖ q+1

q
‖g‖ p+1

p
+ ‖g‖ p+1

p
‖f‖ q+1

q
)

≤ C(‖g‖2
p+1

p

+ ‖f‖2
q+1

q

) = C‖w‖2
X , (3.6)

Then, from (3.5) and (3.6) we get

Ψ~(w) ≥ C(‖f‖
q+1

q
q+1

q

+ ‖g‖
p+1

p
p+1

p

)− C(‖f‖2
q+1

q

+ ‖g‖2
p+1

p

).

Thus, since (p + 1)/p < 2 and (q + 1)/q < 2, for each ~ > 0 there exist
constants ρ, α > 0 such that Ψ~|∂Bρ ≥ α.

Now, we claim we can find w ∈ X such that Ψ~(w) < 0 and ‖w‖ > ρ. In
fact, there exists w+ = (f+, g+) ∈ X such that

∫ 〈Thw
+, w+〉 > 0 (indeed, it

8



is sufficient to take f+ = g+ ∈ C∞
c (RN)). By using (3.5) we obtain, for all

t > 0,

Ψ~(tw+) ≤ Ct
q+1

q

∫
|f | q+1

q + Ct
p+1

p

∫
|g| p+1

p − t2

2

∫
〈Thw

+, w+〉,

for some positive constant C. Since p+1
p

, q+1
q

< 2, the claim follows for t > 0
sufficiently large. ¤

Set
Γ~

.
= {γ ∈ C([0, 1], X) : γ(0) = 0, Ψ~(γ(1)) < 0}

and
c~ = inf

γ∈Γ~
max
t∈[0,1]

Ψ~(γ(t)).

Standard critical point theory implies that for each ~ > 0 we can find a
sequence {w~n}∞n=1 ⊂ X such that

Ψ~(w~n) → c~ and (Ψ~)′(w~n) → 0 as n →∞. (3.7)

Our goal will be to show that for sufficiently small values of ~ each of
these sequences possesses an accumulation point, which is nontrivial solution
of (S~).

Lemma 3.2 For ~ > 0 fixed, the sequence w~n = (f~n , g~n) is bounded in X.

Proof: From properties of the Legendre-Fenchel transform and (H2) we have

H∗(x,w~n) ≥ (1− 1

α
)H∗

f (x,w~n)f~n + (1− 1

α
)H∗

g (x,w~n)g~n. (3.8)

Now
∫

H∗(x,w~n) =
1

2

∫
〈Thw

~
n, w~n〉+ Ψ~(w~n)

= Ψ~(w~n)− 1

2
〈(Ψ~)′(w~n), w~n〉+

1

2

∫
H∗

w(x,w~n)w~n.

Setting λ = α
2(α−1)

< 1, from (3.7) and (3.8) we obtain

(1− λ)

∫
H∗(x,w~n) ≤ c~ + on(1)‖w~n‖X , (3.9)

where on(1) is a quantity which tends to zero as n →∞. By combining (3.5)
and (3.9) we get for some k, K > 0

k‖w~n‖γ
X ≤ ‖f~n‖

q+1
q

L
q+1

q
+ ‖g~n‖

p+1
p

L
p+1

p
≤ Kc~ + on(1)‖w~n‖X , (3.10)

9



with γ = min{1 + 1/p, 1 + 1/q} > 1. This trivially implies that {w~n} is
bounded in X, for ~ > 0 fixed. ¤

With the help of Lemma 3.2 for each ~ > 0 we can extract a subsequence
of {w~n} which converges weakly in X to a function w~ = (f~, g~). We affirm
that w is a critical point of Ψ~. First, for each ~ > 0 the sequence zn = Thw

~
n

is clearly bounded in X∗, since T~ is bounded. Another way of writing (3.7)
is

T−1
h zn − (H′)(zn) = on(1)

(see the proof of Lemma 2.2). Since up to a subsequence we have zn ⇀ z in

W 2, p+1
p ×W 2, q+1

q we see that the limit function z is a weak solution of (S~).
This implies that Thz ∈ X and w = Thz is a critical point of Ψ~.

It remains to show that w~ is not identically zero. We claim that for
small ~ this is the case. The proof of this claim will be carried out through
several steps. First, let u~n and v~n be the functions given by

u~n = R~g
~
n ∈ W 2, p+1

p (RN) and v~n = S~f
~
n ∈ W 2, q+1

q (RN), (3.11)

that is,

−∆u~n + b(~x)u~n = g~n and −∆v~n + b(~x)v~n = f~n , x ∈ RN . (3.12)

Next, we note that (1.4) permits to us to choose s, t such that 0 < s, t < 2,
s + t = 2 and

t <
N

2
, 2− t <

N

2
,

N(p− 1)

2(p + 1)
< t <

4(q + 1)−N(q − 1)

2(q + 1)
. (3.13)

Then p + 1 < 2N
N−2t

and q + 1 < 2N
N−2s

, which implies

W 2, p+1
p ↪→ Hs ↪→ Lq+1 and W 2, q+1

q ↪→ H t ↪→ Lp+1,

where Hs, H t are the usual fractional Sobolev spaces over RN .

Lemma 3.3 There exists a constant β > 0 (independent of ~) such that for
each ~ > 0 we can find R = R(~) > 0, for which

‖u~n‖q+1
Hs(RN )

≤ βc
(q+1)p

p+1

~ + β‖u~n‖q+1
Hs(BR) + on(1),

‖v~n‖p+1
Ht(RN )

≤ βc
(p+1)q

q+1

~ + β‖v~n‖p+1
Ht(BR) + on(1).
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Proof: We shall need some functional analysis. For s ∈ (0, 1) let Hs
b(~x) be

the space of the functions u such that

b
1
2 (~x)u ∈ L2(RN) and

|u(x)− u(y)|
|x− y|s+N

2

∈ L2(RN × RN).

One can also define Hs
b(~x) by interpolation between the spaces

L2
b(~x) = {u :

∫
b(~x)u2 < ∞} and H1

b(~x) = {u ∈ L2
b(~x) :

∫
|∇u|2 < ∞}.

Since b ∈ L∞(RN), the inclusion Hs ⊂ Hs
b(~x) holds. On the other hand it is

standard to check that Hs
b(~x)(RN) is embedded into Hs(BR), for any s > 0

and any ball BR. Once more through Lemma 1 in [38] (see also the argument
used in the proof of this lemma) we can prove that Hs(RN) = Hs

b(~x)(RN)

under hypotheses (b1) and (b2).
Define L = −∆ + b(~x) : H2 ⊂ L2 → L2 (L is a positive operator) and

As := (
√

L)s, so that As : Hs
b(~x) → L2 is a isomorphism between Hs

b(~x)

and L2. This is standard functional analysis, for details and references see
[16], pages 224-226, where the case b ≡ 1 was considered. We observe that
‖u‖Hs

b(~x)
= ‖Asu‖L2 . Then the weak formulation of the first equation in

(3.12) is ∫
Asu~nA

tϕ =

∫
g~nϕ, ∀ϕ ∈ H t. (3.14)

Putting ϕ = A−tAsu~n into (3.14), we obtain

‖u‖2
Hs

b(~x)
=

∫
|Asu~n|2 =

∫
g~nA

−tAsu~n.

So there exists a positive constant independent of ~ such that for all R > 0

‖u~n‖2
Hs

b(~x)
(RN ) ≤ ‖g~n‖

L
p+1

p
‖A−tAsu~n‖Lp+1

≤ C‖g~n‖
L

p+1
p
‖u~n‖Hs

= C‖g~n‖
L

p+1
p

[‖u~n‖Hs(BR) + ‖u~n‖Hs(RN\BR)

]
. (3.15)

On the other hand, hypotheses (b1) and (b2) imply that we can find c > 0
such that for any ~ > 0 there exists R = R(~) for which

‖w‖Hs
b(~x)

(RN ) ≥ c‖w‖Hs(RN\BR), ∀w ∈ Hs
b(~x)(RN) = Hs(RN).

This inequality (particularly easy to check under (1.3)) follows from Lemma 3
in [38] where the case s = 1 was studied, and from an interpolation argument.
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Since x2 ≤ a + bx, x ≥ 0 implies x ≤ C(b +
√

a) we get from (3.15)

‖u~n‖Hs(RN\BR) ≤ C‖g~n‖
L

p+1
p (RN )

+ C‖u~n‖Hs(BR), (3.16)

for some positive constant C independent of ~. Similarly,

‖v~n‖Ht(RN\BR) ≤ C‖f~n‖
L

q+1
q (RN )

+ C‖v~n‖Ht(BR). (3.17)

Recall we already proved (Lemma 3.2 and (3.10)) that there exists a positive
constant C independent of ~ for which

‖g~n‖
L

p+1
p
≤ Cc

p
p+1

~ + on(1) and ‖f~n‖
L

q+1
q
≤ Cc

q
q+1

~ + on(1). (3.18)

By combining these with (3.16) and (3.17) we get Lemma 3.3. ¤
The final and basic ingredient of the proof of Theorem 1 is the following

Lemma 3.4 We have
lim
~→0

c~ = 0. (3.19)

The proof of this lemma will be given in the next section. We shall now
proceed to the proof of Theorem 1.

Proof of Theorem 1. Since H∗(w) is a convex function on R2 we have
〈∇H∗(w), w〉 ≥ H∗(w) for all w ∈ R2. Hence

c~ = lim
n→∞

[
Ψ~(w~n)− 〈(Ψ~)′(w~n), w~n〉

]

≤ 1

2
lim

n→∞

∫
〈Tw~n, w~n〉 =

1

2
lim

n→∞

∫
f~nR~g

~
n + g~nS~f

~
n

≤ lim sup
n→∞

(
‖f~n‖

L
q+1

q
‖R~g~n‖Lq+1 + ‖g~n‖

L
p+1

p
‖S~f~n‖Lp+1

)
.

By the Hölder inequality for each ε > 0 there exists C = C(ε) > 0 such that

c~ ≤ ε lim sup
n→∞

(‖f~n‖
q+1

q

L
q+1

q
+ ‖g~n‖

p+1
p

L
p+1

p
) + C lim sup

n→∞
(‖R~g~n‖q+1

Lq+1 + ‖S~f~n‖p+1
Lp+1),

so by using (3.18) and by choosing ε sufficiently small we get by the Sobolev
embedding and the boundedness of R~, S~ that

c~ ≤ C lim sup
n→∞

(‖R~g~n‖q+1
Lq+1 + ‖S~f~n‖p+1

Lp+1

)

≤ C lim sup
n→∞

‖u~n‖q+1
Hs(RN )

+ C lim sup
n→∞

‖v~n‖p+1
Ht(RN )

.

12



Therefore, by the previous lemma,

c~ ≤ β

(
c

(q+1)p
p+1

~ + c
(p+1)q

q+1

~

)
+ C lim sup

n→∞
‖u~n‖q+1

Hs(BR) + C lim sup
n→∞

‖v~n‖p+1
Ht(BR).

Note the embeddings W 2, p+1
p ↪→ Hs, W 2, q+1

q ↪→ H t are compact on bounded
domains, so {u~n}, {v~n} converge strongly on BR as n → ∞. Hence for the
limit functions u~, v~ we get

‖u~‖q+1
Hs(BR) + ‖v~‖p+1

Ht(BR) ≥
[
1− C−1β

(
c

pq−1
p+1

~ + c
pq−1
q+1

~

)]
.

However the last quantity is strictly positive for small ~ (since c~ → 0), which
means that the limit functions are not identically zero. Note that of course
(f~, g~) = (0, 0) if and only if (u~, v~) = (0, 0). ¤

4 Proof of Lemma 3.4.

We start by observing that

c~ ≤ inf
w∈X\{0}

sup
t≥0

Ψ~(tw) = inf
w∈E

max
t≥0

Ψ~(tw),

where we have set E = {w ∈ X | ∫ 〈Tw, w〉 > 0}. An explicit computation
(see Appendix I) shows that for any w ∈ E we have

max
t≥0

Ψ~(tw) ≤ const.

( ‖w‖2

∫ 〈T~w, w〉
)γ

, (4.20)

where

γ = max

{
p+1

p

2− p+1
p

,

q+1
q

2− q+1
q

}
.

So to prove Lemma 3.4 it will be enough to establish the following claim:

inf
w∈E

‖w‖2

∫ 〈T~w, w〉 → 0, as ~→ 0. (4.21)

In order to verify this, we observe that

inf
w∈E

‖w‖2

∫ 〈T~w,w〉 = inf
w∈E : ‖w‖=1

1∫ 〈T~w, w〉 .

Thus, (4.21) is equivalent to the following result.
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Lemma 4.1 We have

sup
w∈E : ‖w‖=1

∫
〈T~w,w〉 dx → +∞ as ~→ 0. (4.22)

To facilitate the task of the reader, we first describe the idea behind the
proof of (4.22). The point is that if p, q are under the critical hyperbola and
s, t are chosen as in (3.13), then it is possible to find (explicitly) a function

g ∈ L
p+1

p (RN) such that if u satisfies

−∆u(x) = g(x), x ∈ RN ,

then u does not belong to the fractional Sobolev space Hs(RN), and respec-

tively a function f ∈ L
q+1

q (RN) such that the solution of −∆v = f is not in
H t. We recall that a function w is in Hs(RN) if and only if w ∈ L2(RN) and
its Fourier transform ŵ(ξ) is such that |ξ|sŵ(ξ) ∈ L2(RN). Then, assuming
(4.22) does not hold we show we can perturb and cut off the functions f ,
g, to construct a sequence w~ = (fh, gh) such that ‖w~‖ = 1 and we can
control the corresponding Rhgh, S~f~ in a way which yields a contradiction
for small ~.

Proof of Lemma 4.1. Let us suppose (4.22) does not hold, that is, there exists
C0 > 0 such that

∫
〈T~w, w〉 dx ≤ C0, for each w ∈ E with ‖w‖ = 1.

We start by giving some results from the theory of Fourier transforms, which
we shall use. The next theorem is a standard fact from the theory of Fourier
transforms of distributions.

Theorem 2 Suppose the function u0 has slow growth, that is, there exists
m ∈ N such that ∫

RN

|u0(x)|dx

(1 + |x|)m
< ∞. (4.23)

Then the Fourier transform û exists and belongs to the class of tempered
distributions S ′. In addition if φ ∈ C∞

c (RN) is such that φ ≡ 1 in B1, φ ≡ 0

in RN \B2 and we set φn(x) = φ(x/n) then φ̂nu → û in S ′.
We shall use the Fourier transform of the function

w0(x) =
1

1 + |x|2 ,
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and its powers. It is a well-known fact from Fourier analysis that for any
α > 0 we have

ŵα
0 (ξ) = C(N,α)|ξ|α−N

2 KN
2
−α(|ξ|), (4.24)

(this is for instance formula (3.11) in [24]) ; here Kν(z) is the modified Bessel
function of the second kind, given by

Kν(z) =
Γ(ν + 1

2
)√

π
|z|ν

∫ ∞

0

cos(t)

(t2 + z2)ν+ 1
2

dt =
Γ(ν + 1

2
)√

π|z|ν
∫ ∞

0

cos(sz)

(1 + s2)ν+ 1
2

ds.

Standard analysis shows that Kν(z) > 0, Kν(z) ∈ C∞(R\{0}), K decays
exponentially as |z| → ∞, and, most importantly, Kν(z) ∼ const.|z|−ν as
z → 0. Hence

ŵα
0 (ξ) ∼ C(N, α)|ξ|2α−N as |ξ| → 0. (4.25)

We now fix p′ > p and q′ > q such that p′, q′ are still under the critical

hyperbola,
1

p′ + 1
+

1

q′ + 1
> 1− 2

N
. We set

α =
Np′

2(p′ + 1)
, β =

Nq′

2(q′ + 1)
,

so that in particular

wα
0 ∈ L

p+1
p (RN), wβ

0 ∈ L
q+1

q (RN).

Let u0, v0 be the solutions of

−∆u0 = k1w
α
0 , −∆v0 = k2w

β
0 in RN , (4.26)

where k1 = k1(p, q, N) := ‖wα
0 ‖−1

p+1
p

, k2 = k2(p, q,N) := ‖wβ
0‖−1

q+1
q

. By stan-

dard PDE theory u0 and v0 are functions which belong to some Lebesgue
spaces over RN (see for instance Theorem 10.2 (i) in [25]), which in particu-
lar implies that they have slow growth, as in (4.23) (by the Hölder inequality).
Hence Theorem 2 applies, and, by taking the Fourier transform on both sides
of the equations in (4.26) we get

û0(ξ) = k1|ξ|−2ŵα
0 (ξ), v̂0(ξ) = k2|ξ|−2ŵβ

0 (ξ). (4.27)

Note that û0, v̂0 are positive.

Lemma 4.2 We have
∫

RN

|ξ|2û0(ξ)v̂0(ξ) dξ = ∞.
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Proof. By (4.24) and (4.27) we have

|ξ|2û0(ξ)v̂0(ξ) ∼ C(N, α, β)|ξ|2(α+β−1−N) as |ξ| → 0.

However, by the choice of α and β that we made

α + β − 1−N =
N

2

(
p′

p′ + 1
+

q′

q′ + 1

)
− 1−N

=
N

2

(
2− 1

p′ + 1
− 1

q′ + 1

)
− 1−N

<
N

2

(
1 +

2

N

)
− 1−N = −N

2
,

and the lemma follows. ¤
We set un = φnu0 ∈ C∞

c (RN), vn = φnv0 ∈ C∞
c (RN), where φn is a

function as in Theorem 2, and

g̃n,~ := −∆un + b(~x)un,

f̃n,~ := −∆vn + b(~x)vn.

Since un, vn have compact support and b(0) = 0 for each fixed n we have

g̃n,~ → −∆un in L
p+1

p , f̃n,~ → −∆vn in L
q+1

q as ~→ 0.

Clearly

−∆un → −∆u0 in L
p+1

p , −∆vn → −∆v0 in L
p+1

p as n →∞,

and, recalling that we have taken u0, v0 so that ‖∆u0‖ p+1
p

= ‖∆u0‖ q+1
q

= 1,

we see that we can find n0 such that for each n ≥ n0 there exists ~n for which

2 ≥ ‖g̃n,~‖ p+1
p
≥ 1

2
, 2 ≥ ‖f̃n,~‖ q+1

q
≥ 1

2
, if ~ < ~n.

Now set

gn,~ =
g̃n,~√

2‖g̃n,~‖ p+1
p

, fn,~ =
f̃n,~√

2‖f̃n,~‖ q+1
q

,

and wn,~ = (fn,~, gn,~). So wn,~ ∈ E and ‖wn,~‖X = 1. By the hypothesis we
made ∫

〈T~wn,~, wn,~〉 ≤ C0,

for all n ≥ n0 and all ~ < ~n.
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On the other hand, setting k−1
n,~ = 2‖g̃n,~‖

L
p+1

p
‖g̃n,~‖

L
p+1

p
(by the above

kn,~ ∈ (1/8, 2)), we have

∫
〈T~wn,~, wn,~〉 = kn,~

∫
(f̃~,nR~g̃n,~ + g̃n,~S~f̃n,~)

= kn,~

∫
un(−∆vn) + vn(−∆un) + 2b(~x)unvn

≥ kn,~

∫
ûn
̂(−∆vn) + v̂n

̂(−∆un)

= 2kn,~

∫
|ξ|2φ̂nu0(ξ)φ̂nv0(ξ) dξ,

where we used Parseval’s identity and the positivity of b, un, vn. Hence

∫
|ξ|2φ̂nu0(ξ)φ̂nv0(ξ) dξ ≤ 4C0. (4.28)

Note that the definition of the Fourier transform implies φ̂nu0(ξ) → û0(ξ)
for each ξ 6= 0. Actually (see for instance Theorems 2.16, 5.3, 5.8 in [24])

φ̂nu0 = φ̂n ∗ û0 → û0 in any Lebesgue space to which belongs û0, and simi-
larly for v̂0. Recall we have explicit expressions for û0, v̂0 and know that they
are strictly positive, behave like |ξ| to a negative power as ξ → 0 and decay
exponentially as ξ →∞. It is then simple to check that the negative part of

|ξ|2φ̂nu0(ξ)φ̂nv0(ξ) is bounded by an integrable function independently of n,
so Fatou’s lemma applies to (4.28) and gives a contradiction with Lemma 4.2.
Alternatively, one can prove that Fatou’s lemma applies to (4.2) by notic-
ing that the integrand in this inequality is ∇(φnu0).∇(φnv0) and this scalar
product is positive, since φn, u0 and v0 are positive, radial, and decreasing
functions.

This completes the proof of Theorem 1. ¤

5 Appendix

In this appendix we verify estimate (4.20), which we used in Lemma 3.4.
First, we note that for w = (f, g)

Ψ~(tw) =
A

α
tα +

B

β
tβ − C

2
t2, (5.29)

where
α = (p + 1)/p, β = (q + 1)/q,
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A =

∫
|g| p+1

p , B =

∫
|f | q+1

q , C =

∫
〈T~w, w〉.

Denoting the right hand side of (5.29) by h(t), it is easy to check that

max{Ψ~(tw), t ≥ 0} = h(t̄),

for some t̄ > 0 if and only if h′(t̄) = 0, that is

t̄2 =
A

C
t̄α +

B

C
t̄β.

This implies that there exists a positive constant K such that

t̄ ≤ K

[(
A

C

) 1
2−α

+

(
B

C

) 1
2−β

]
.

Then, for some constant K ′ > 0,

h(t̄) = A(
1

α
− 1

2
)t̄α + B(

1

β
− 1

2
)t̄β

≤ K ′
[

A
2

2−α

C
α

2−α

+
AB

α
2−β

C
α

2−β

+
BA

β
2−α

C
β

2−α

+
B

2
2−β

C
β

2−β

]

= K ′
[

A
2

2−α

C
α

2−α

+
A

C
α
2

B
α

2−β

C
αβ

2(2−β)

+
B

C
β
2

A
β

2−α

C
αβ

2(2−α)

+
B

2
2−β

C
β

2−β

]
.

By using the Young inequality, we obtain

A

C
α
2

B
α

2−β

C
αβ

2(2−β)

+
B

C
β
2

A
β

2−α

C
αβ

2(2−α)

≤
(

A

C
α
2

) 2
2−α

+

(
B

α
2−β

C
αβ

2(2−β)

) 2
α

+
(

B

C
β
2

) 2
2−β

+

(
A

β
2−α

C
αβ

2(2−α)

) 2
β

.

Thus,

h(t̄) ≤ 2K ′




(
A

2
α

C

) α
2−α

+

(
B

2
β

C

) β
2−β


 ≤ 2K ′

[
A

2
α + B

2
β

C

]γ

,

where γ = max
{

α
2−α

, β
2−β

}
.
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