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1 Introduction

A major role in quantum physics is played by the nonlinear Schrödinger
equation

i~
∂ψ

∂t
= − ~2

2m
∆xψ + V (x)ψ − f̄(x, ψ), (1.1)

where m and ~ are positive constants, the wave ψ : R+ × RN → C, N ≥ 3,
V is a potential which is bounded below, and f̄ = f(x, |ψ|)ψ is a nonlinear
function, for instance in the classical cubic approximation f̄ = |ψ|2ψ. One of
the questions to which huge attention has been given during the last twenty
years is the existence of standing waves (see (1.2) below) for small values
of ~, which appear due to the geometry of the potential.

This paper is devoted to the corresponding question of existence of so-
lutions of some systems of Schrödinger equations. Systems of nonlinear
Schrödinger type have been widely used in the applied sciences but mathe-
matical study of standing wave solutions was undertaken only very recently,
prompted in particular by the discovery of the importance of these systems
as models in nonlinear optics (see for instance [3], [7]) and in the study of
Bose-Einstein condensates (see [26]). As in the large majority of other papers
on the subject we consider here systems of two equations.

So we suppose ψ is a vector function, ψ = (ψ1, ψ2), and satisfies a system
of equations like (1.1), with f̄ = (f̄1, f̄2) and f̄k =

∑
j fkj(x, |ψ1|, |ψ2|)ψj.

We will be interested in soliton (standing wave) solutions of these systems,
that is, solutions in the form

ψj(t, x) = eiκ~
−1tuj(x). (1.2)
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Substituting (1.2) into (1.1) and setting b(x) = V (x)−κ leads to the system
of real elliptic partial differential equations (we write u = u1, v = u2)

(S~)

{
−~2∆u + b(x)u = f1(x, u, v) in RN ,
−~2∆v + b(x)v = f2(x, u, v) in RN .

We suppose we are in the physical situation when this system is in variational
form, that is, when it is the Euler-Lagrange system of some energy functional.
This happens when f1, f2 are the derivatives of a given function H(x, u, v).
There are two types of such systems, Lagrangian - when f1 =Hu, f2 =Hv, and
Hamiltonian - when f1 = Hv, f2 = Hu. Hamiltonian systems are considerably
more difficult to study, since the energy functional is then strongly indefinite,
that is, its leading part is respectively coercive and anti-coercive on infinitely
dimensional subspaces of the energy space. The present article is devoted to
this case. It is our goal to get a general existence result for small ~ in the
case of a superlinear and subcritical Hamiltonian system.

As in many applications, we consider trapping (or ”well”-type) potentials,
the standard example being b(x) ∼ |x − x0|2 in a neighbourhood of some
x0 ∈ RN . A particular case of our result will be the existence of standing
waves thanks to a global well structure of b, that is,

0 = inf
x∈RN

b(x) < lim inf
|x|→∞

b(x). (1.3)

Notice that infx∈RN b(x) = 0 is not a restriction, since we can always achieve
this through the choice of κ in (1.2).

Unfortunately, as of today PDE theory lacks the means to tackle the exis-
tence question under hypothesis (1.3) only, even in the scalar case. However,
it turns that we can show that (S~) has a solution provided the constant ~

is sufficiently small. Note that in practice ~, the Planck constant, is a very
small quantity, so it makes sense to study problem (S~) at the limit ~ → 0.

Here are the precise statements. We assume H(x, u, v) is differentiable
and strictly convex in (u, v) ∈ R2 for all x ∈ RN , H(x, 0, 0) = 0 and

(H1) there exist constants p, q, αk, βk > 1, such that

1

p + 1
+

1

q + 1
>

N − 2

N
,

αk

p + 1
+

βk

q + 1
= 1, (1.4)

and for some c0, d0 > 0, Ck ≥ 0, Dk ≥ 0 we have for x ∈ RN ,(u, v) ∈ R2

c0|u|q ≤ |Hu(x, u, v)| ≤ C0|u|q +
m∑

k=1

Ck|u|αk−1|v|βk ,

d0|v|p ≤ |Hv(x, u, v)| ≤ D0|v|p +
m∑

k=1

Dk|u|αk |v|βk−1.
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(H2) There exists α > 2 such that for all x ∈ RN and (u, v) ∈ R2 \ {(0, 0)}

uHu(x, u, v) + vHv(x, u, v) ≥ αH(x, u, v) > 0.

A typical example of a function satisfying these hypotheses is H(x, u, v) =
a0(x)|u|p+1 +

∑n

1 ai(x)|u|αi|v|βi + an+1(x)|v|q+1, under (1.4).

We suppose that the continuous potential b(x) satisfies b ≥ 0 in RN and

(b1) there exists x0 ∈ RN (say x0 = 0) such that b(x0) = 0;

(b2) there exists A > 0 such that the level set GA = {x ∈ RN : b(x) < A}
has finite Lebesgue measure.

Note that the conditions (b1)-(b2) include (1.3) as a particular case. We shall
also suppose that b(x) is bounded. This condition is made for simplicity, since
it is irrelevant to the goal of our paper, which is to use the well geometry of
the potential. Actually it is even easier to consider potentials which are large
at infinity (then there is no restriction on ~), since the energy space embeds
compactly into Lebesgue spaces, see for instance Theorem 4 in [24].

Note also that (H1) means the problem is superlinear and subcritical, in
other words, the couple (p, q) is under the critical hyperbola (given by (1.4)).
In particular, one of the nonlinearities in (S~) can have growth larger than the
exponent (N +2)/(N−2), provided the growth of the other is smaller enough
to compensate (note that when p = q (1.4) reduces to p < (N +2)/(N − 2)).
In this case the functional associated to (S~) is not defined for u, v ∈ H1(RN).
It is nowadays well-known that (1.4) is the right notion of criticality for a
Hamiltonian system with power-growth nonlinearity, see [5], [13], [22], [23].

The following theorem contains our main result.

Theorem 1.1 If f1 = Hv, f2 = Hu, and (H1)-(H2), (b1)-(b2) are satisfied
then (S~) has a nontrivial solution for small ~.

We now quote previous works related to this result. For the scalar case
we refer to [11], [9], [2], [25], [4], and to the references in these papers. Some
types of Lagrangian systems with well potentials were studied in [1], [17],
[18]. Existence results for radially invariant Hamiltonian systems in RN were
established in [10] and [24]. A result similar to Theorem 1.1 can be found in
[20] (see also [21]) in the particular case when H = F (u) + G(v), that is, the
right-hand side of the system is independent of x and has no cross-terms in
u, v. This restrictive hypothesis is due to the method used in these papers,
which in particular makes use of the choice infRN b > 0, as opposed to (b1).
In this case it is possible to use an approach similar to the one in [9]. Finally,
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in the recent paper [8] a fairly general result was proved on system (S~), but
under the hypothesis that both p, q are smaller than (or in some cases equal
to) the scalar exponent (N + 2)/(N − 2). Using a different approach, here
we extend the existence result from [8] to the whole subcritical range for a
system, under the hypothesis that the nonlinearity H be convex. Of course
the model and most often used Hamiltonians (see above) are convex.

Our work is inspired by [25], where the particular case of Theorem 1.1
when we have one scalar equation was proved. The method in [25] extends
readily to Lagrangian systems, since then the functional has the same struc-
ture as the scalar one, but the situation turns out to be considerably more
involved for Hamiltonian systems. We have used a dual variational struc-
ture, relying on the Legendre–Fenchel transformation, which allows us to
transform the problem into a new one, to which the Mountain Pass Theorem
applies. However, then one of the key points - that the generalized mountain
pass value tends to zero as ~ → 0 - turns out to be rather delicate to prove.
We have found a way to deal with this problem which uses Fourier analysis,
a tool that is seldom encountered in this branch of the calculus of variations.
Our method will hopefully be useful in other situations as well.

In the next section we describe the variational setting. The proof of
Theorem 1.1 is to be found in sections 3. The fact that the mountain pass
value (and hence the norms and the energy of the solutions we find) tends
to zero as ~ → 0 is proved in Section 4.

2 The dual variational formulation

This section has a preliminary character. We recall here some facts which
permit to us to set up the variational framework for solving system (S~).

Lemma 2.1 Let V be bounded and nonnegative function satisfying (b1) and
(b2). Then, for every g ∈ Ls(RN), 1 < s < ∞, and ~ > 0, the problem

−∆u + V (~x)u = g in RN

possesses a unique solution u ∈ W 2,s(RN). In addition, there exits a constant
K > 0 (which may depend of ~) such that

‖u‖W 2,s(RN ) ≤ K‖g‖Ls(RN )

Proof: Denote V~(x) = V (~x). For s ∈ (1,∞), consider the operator Rs :
W 2,s(RN) → Ls(R) defined by

Rsu = (−∆ + V~I)u for u ∈ W 2,s(RN).

It follows for instance from Theorem 1 of [19] that
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(i) Ker (Rs − λI) = Ker (R2 − λI), for every s ∈ (1,∞).

(ii) Ls(RN) = Ker (Rs − λI) ⊕ Im (Rs − λI).

Since V~ ∈ L∞(RN), it is known (see for example Lemma 3.10 in [27]) that
the spectrum set σ(R2) ⊂ [Λ,∞) and Λ~ ∈ σ(R2), where

Λ~ = inf

{∫
(|∇u|2 + V~(x)u2) | u ∈ H1(RN),

∫
u2 = 1

}
.

It follows from Lemma 1 in [25] that Λ~ > 0. Therefore 0 ∈ ρ(R2).
Consequently Ker (Rs) = Ker (R2) = {0} and

Ls(RN) = Ker (Rs) + Im(Rs) = Im(Rs).

Thus, Rs : W 2,s(RN) ⊂ Ls(RN) → Ls(RN) is a isomorphism. Note that Rs

is continuous thanks to the immersion W 2,s(RN) ⊂ Ls(RN). So, there exists
a positive constant C such that for all u ∈ Ls(RN)

‖R−1
s u‖W 2,s(RN ) ≤ C‖u‖Ls(RN ). ¤

Given p, q > 1 such that
1

p + 1
+

1

q + 1
>

N − 2

N
, we define the operators

R̃~ : L
p+1

p (RN) → W 2, p+1
p (RN), S̃~ : L

q+1
q (RN) → W 2, q+1

q (RN),

by
R~ = S~ = (−∆ + b~I)−1,

where b~(x) = b(~x). It follows from Lemma 2.1 that the operators R~ and
S~ are well defined and continuous. Since 1/(q +1) > p/(p+1)− 2/N holds,
we have the continuous Sobolev embeddings

i1 : W 2, p+1
p (RN) → Lq+1(RN), i2 : W 2, q+1

q (RN) → Lp+1(RN),

consequently R~

.
= i1 ◦ R̃~, S~

.
= i2 ◦ S̃~ are linear continuous operators.

So we can define the linear operator

T~ : L
q+1

q (RN)×L
p+1

p (RN) → Lq+1(RN)×Lp+1(RN), T~ :=

(
0 R~

S~ 0

)
,

that is, for all f, φ ∈ L
q+1

q (RN), g, ϕ ∈ L
p+1

p (RN),

〈T~w, η〉 = φR~g + ϕS~f, ∀ η = (φ, ϕ), ∀w = (f, g).
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Let X = L
q+1

q (RN)×L
p+1

p (RN) be the Banach space endowed with the norm

‖w‖ =
√

‖f‖2
q+1

q

+ ‖g‖2
p+1

p

; w = (f, g) ∈ X,

from now on ‖·‖s and
∫

hdx will denote the Ls−norm in RN and
∫

RN h(x)dx,
respectively.

The dual functional Ψ~ : X → IR is defined by

Ψ~(w) =

∫
H∗(x,w) dx − 1

2

∫
〈T~w, w〉 dx, w ∈ X,

where H∗ is the Legendre-Fenchel transform of H, that is, for all x ∈ R and
w = (w1, w2) ∈ R2,

H∗(x,w) = sup
t∈R2

{w1t1 + w2t2 − H(x, t)}.

Lemma 2.2 The functional Ψ~ is well defined and C1 on X∗. Its Fréchet
derivative is given by

(Ψ~)′(w)η =

∫
H∗

w(x,w)η dx −
∫

〈T~w, η〉 dx, ∀ η ∈ X.

If w = (f, g) is a critical point of Ψ~, then (u, v) = Thw is a solution of
the system (obtained by (S~) through the change x → ~x)

{
−∆u + b(hx)u = Hv(hx, u, v) in RN ,
−∆v + b(hx)v = Hu(hx, u, v) in RN .

(S ′
~
)

Proof: The proof of this lemma is known, for instance we can employ the
arguments given in [6] (see Lemma 4.3 there, and also [14]). Let us sketch it
for completeness.

The derivative of the second term in Ψ~ is simple to get, by the relation
∫

〈η, T~w〉dx =

∫
〈w, T~η〉 dx, ∀ η, w ∈ X.

Consider the functional

H(z) =

∫
H(x, z) dx, H : X∗ = Lq+1(RN) × Lp+1(RN) → R,

where z = (u, v). From the hypotheses on H it follows that H is well-defined
on X∗ and is a C1-functional. The Legendre-Fenchel transform of H is given
by

H∗(w) =

∫
H∗(x,w) dx, H∗ : X → R.
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Since H is strictly convex the gradient Hz : R2 → R2 is a homeomorphism.
Thus, H′ is a bijection from X∗ to X, which is continuous and bounded.
Furthermore, H∗ is Gâteaux differentiable, (H∗)′(w) = (H′)−1(w) for every
w ∈ X (this is a characterization of the Legendre-Fenchel transform), and

(H∗)′(w)η =

∫
H∗

w(x,w)η dx, ∀ η, w ∈ X.

Thus, (H∗)′ : X → X∗ is continuous and bounded, which implies that H∗

is Fréchet differentiable. Now, if w is a critical point of Ψ~, it follows that
z = (u, v) = Thw is a solution of (S ′

~
). In fact, we have

(H∗)′(w) − Thw = 0 in X∗,

that is
(H′)−1(w) − z = 0 in X∗.

As a result,

T−1
h z − (H′)(z) = 0 in W 2, p+1

p × W 2, q+1
q ,

because T−1
h is an isomorphism between W 2, p+1

p × W 2, q+1
q and L

p+1
p × L

q+1
q .

Thus, (u, v) = z = Thw is a solution of system (S ′
~
). ¤

We say that w = (f, g) is the dual solution associated to (u, v). By
making the change of variable x 7→ ~−1x in RN , system (S ′

~
) becomes

{
−~2∆u + b(x)u = Hv(x, u, v) in RN ,
−~2∆v + b(x)v = Hu(x, u, v) in RN .

(S~)

3 Proof of Theorem 1.1

We start with the following simple fact.

Lemma 3.1 The functional Ψ~ has a “mountain pass geometry” on the
space X, in the sense that there exist ρ, α > 0 and w ∈ X such that
Ψ~|∂Bρ

≥ α, Ψ~(w) < 0 and ‖w‖ > ρ.

Proof: It is easy to see that (H1) and (H2) imply that there exist positive
constants c1 − c4 such that

c1|f |q+1 + c2|g|p+1 ≤ H(x, w) ≤ c3|f |q+1 + c4|g|p+1, w = (f, g).

From properties of Legendre-Fenchel transformations, we have

d1|f |
q+1

q + d2|g|
p+1

q ≤ H∗(x,w) ≤ d3|f |
q+1

q + d4|g|
p+1

p , (3.5)
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for some positive constants d1 − d4.
By using the Hölder inequality and the boundedness of R~ and S~, for all

w = (f, g) ∈ X we easily get

∫
〈w, T~w〉 ≤ C(‖f‖ q+1

q
‖g‖ p+1

p
+ ‖g‖ p+1

p
‖f‖ q+1

q
)

≤ C(‖g‖2
p+1

p

+ ‖f‖2
q+1

q

) = C‖w‖2
X , (3.6)

Then, from (3.5) and (3.6) we get

Ψ~(w) ≥ C(‖f‖
q+1

q

q+1
q

+ ‖g‖
p+1

p

p+1
p

) − C(‖f‖2
q+1

q

+ ‖g‖2
p+1

p

).

Thus, since (p + 1)/p < 2 and (q + 1)/q < 2, for each ~ > 0 there exist
constants ρ, α > 0 such that Ψ~|∂Bρ

≥ α.
Now, we claim we can find w ∈ X such that Ψ~(w) < 0 and ‖w‖ > ρ. In

fact, there exists w+ = (f+, g+) ∈ X such that
∫
〈Thw

+, w+〉 > 0 (indeed, it
is sufficient to take f+ = g+ ∈ C∞

c (RN)). By using (3.5) we obtain, for all
t > 0,

Ψ~(tw+) ≤ Ct
q+1

q

∫
|f |

q+1
q + Ct

p+1
p

∫
|g|

p+1
p − t2

2

∫
〈Thw

+, w+〉,

for some positive constant C. Since p+1
p

, q+1
q

< 2, the claim follows for t > 0
sufficiently large. ¤

Set
Γ~

.
= {γ ∈ C([0, 1], X) : γ(0) = 0, Ψ~(γ(1)) < 0}

and
c~ = inf

γ∈Γ~

max
t∈[0,1]

Ψ~(γ(t)).

Standard critical point theory implies that for each ~ > 0 we can find a
sequence {w~

n}∞n=1 ⊂ X such that

Ψ~(w~

n) → c~ and (Ψ~)′(w~

n) → 0 as n → ∞. (3.7)

Our goal will be to show that for sufficiently small values of ~ each of
these sequences possesses an accumulation point, which is nontrivial solution
of (S~).

Lemma 3.2 For ~ > 0 fixed, the sequence w~

n = (f~

n , g~

n) is bounded in X.
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Proof: From properties of the Legendre-Fenchel transform and (H2) we have

H∗(x,w~

n) ≥ (1 − 1

α
)H∗

f (x,w~

n)f~

n + (1 − 1

α
)H∗

g (x,w~

n)g~

n. (3.8)

Now
∫

H∗(x,w~

n) =
1

2

∫
〈Thw

~

n, w~

n〉 + Ψ~(w~

n)

= Ψ~(w~

n) − 1

2
〈(Ψ~)′(w~

n), w~

n〉 +
1

2

∫
H∗

w(x,w~

n)w~

n.

Setting λ = α
2(α−1)

< 1, from (3.7) and (3.8) we obtain

(1 − λ)

∫
H∗(x,w~

n) ≤ c~ + on(1)‖w~

n‖X , (3.9)

where on(1) is a quantity which tends to zero as n → ∞. By combining (3.5)
and (3.9) we get for some k, K > 0

k‖w~

n‖γ
X ≤ ‖f~

n‖
q+1

q

L
q+1

q

+ ‖g~

n‖
p+1

p

L
p+1

p

≤ Kc~ + on(1)‖w~

n‖X , (3.10)

with γ = min{1 + 1/p, 1 + 1/q} > 1. This trivially implies that {w~

n} is
bounded in X. ¤

With the help of Lemma 3.2 for each ~ > 0 we can extract a subsequence
of {w~

n} which converges weakly in X to a function w~ = (f~, g~). We affirm
that w is a critical point of Ψ~. First, the sequence zn = Thw

~

n is clearly
bounded in X∗, since T~ is bounded. Another way of writing (3.7) is

T−1
h zn − (H′)(zn) = on(1)

(see the proof of Lemma 2.2). Since up to a subsequence we have zn ⇀ z in

W 2, p+1
p × W 2, q+1

q we see that the limit function z is a weak solution of (S~).
This implies that Thz ∈ X and w = Thz is a critical point of Ψ~.

It remains to show that w~ is not identically zero. We claim that for
small ~ this is the case. The proof of this claim will be carried out through
several steps. First, let u~

n and v~

n be the functions given by

u~

n = R~g
~

n ∈ W 2, p+1
p (RN) and v~

n = S~f
~

n ∈ W 2, q+1
q (RN), (3.11)

that is,

−∆u~

n + b(~x)u~

n = g~

n and −∆v~

n + b(~x)v~

n = f~

n , x ∈ RN . (3.12)
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Next, we note that (1.4) permits to us to choose s, t such that 0 < s, t < 2,
s + t = 2 and

t <
N

2
, 2 − t <

N

2
,

N(p − 1)

2(p + 1)
< t <

4(q + 1) − N(q − 1)

2(q + 1)
. (3.13)

Then p + 1 < 2N
N−2t

and q + 1 < 2N
N−2s

, which implies

W 2, p+1
p →֒ Hs →֒ Lq+1 and W 2, q+1

q →֒ H t →֒ Lp+1,

where Hs, H t are the usual fractional Sobolev spaces over RN .

Lemma 3.3 There exists a constant β > 0 (independent of ~) such that for
each ~ > 0 we can find R = R(~) > 0, for which

‖u~

n‖q+1
Hs(RN )

≤ βc
(q+1)p

p+1

~
+ β‖u~

n‖q+1
Hs(BR) + on(1),

‖v~

n‖p+1
Ht(RN )

≤ βc
(p+1)q

q+1

~
+ β‖v~

n‖p+1
Ht(BR) + on(1).

Proof: We shall need some functional analysis. For s ∈ (0, 1) let Hs
b(~x) be

the space of the functions u such that

b
1
2 (~x)u ∈ L2(RN) and

|u(x) − u(y)|
|x − y|s+N

2

∈ L2(RN × RN).

One can also define Hs
b(~x) by interpolation between the spaces

L2
b(~x) = {u :

∫
b(~x)u2 < ∞} and H1

b(~x) = {u ∈ L2
b(~x) :

∫
|∇u|2 < ∞}.

Since b ∈ L∞(RN), the inclusion Hs ⊂ Hs
b(~x) holds. On the other hand it is

standard to check that Hs
b(~x)(R

N) is embedded into Hs(BR), for any s > 0

and any ball BR. Once more through Lemma 1 in [25] (see also the argument
used in the proof of this lemma) we can prove that Hs(RN) = Hs

b(~x)(R
N)

under hypotheses (b1) and (b2).
Define L = −∆ + b(~x) : H2 ⊂ L2 → L2 (L is a positive operator) and

As := (
√

L)s, so that As : Hs
b(~x) → L2 is a isomorphism between Hs

b(~x)

and L2. This is standard functional analysis, for details and references see
[10], pages 224-226, where the case b ≡ 1 was considered. We observe that
‖u‖Hs

b(~x)
= ‖Asu‖L2 . Then the weak formulation of the first equation in

(3.12) is ∫
Asu~

nA
tϕ =

∫
g~

nϕ, ∀ϕ ∈ H t. (3.14)

10



Putting ϕ = A−tAsu~

n into (3.14), we obtain

‖u‖2
Hs

b(~x)
=

∫
|Asu~

n|2 =

∫
g~

nA
−tAsu~

n.

So there exits a positive constant not dependent on ~ such that for all R > 0

‖u~

n‖2
Hs

b(~x)
(RN ) ≤ ‖g~

n‖
L

p+1
p
‖A−tAsu~

n‖Lp+1

≤ C‖g~

n‖
L

p+1
p
‖u~

n‖Hs

= C‖g~

n‖
L

p+1
p

[
‖u~

n‖Hs(BR) + ‖u~

n‖Hs(RN\BR)

]
. (3.15)

On the other hand, hypotheses (b1) and (b2) imply that we can find c > 0
such that for any ~ > 0 there exists R = R(~) for which

‖w‖Hs
b(~x)

(RN ) ≥ c‖w‖Hs(RN\BR), ∀w ∈ Hs
b(~x)(R

N) = Hs(RN).

This inequality (particularly easy to check under (1.3)) follows from Lemma 3
in [25] where the case s = 1 was studied, and from an interpolation argument.

Since x2 ≤ a + bx, x ≥ 0 implies x ≤ C(b +
√

a) we get from (3.15)

‖u~

n‖Hs(RN\BR) ≤ C‖g~

n‖
L

p+1
p (RN )

+ C‖u~

n‖Hs(BR), (3.16)

for some positive constant C not dependent on ~. Similarly,

‖v~

n‖Ht(RN\BR) ≤ C‖f~

n‖
L

q+1
q (RN )

+ C‖v~

n‖Ht(BR). (3.17)

Recall we already proved (Lemma 3.2 and (3.10)) that there exists a positive
constant C not dependent on ~ for which

‖g~

n‖
L

p+1
p

≤ Cc
p

p+1

~
+ on(1) and ‖f~

n‖
L

q+1
q

≤ Cc
q

q+1

~
+ on(1). (3.18)

By combining these with (3.16) and (3.17) we get the lemma. ¤

The final and basic ingredient of the proof of Theorem 1.1 is contained
in the following lemma.

Lemma 3.4 We have
lim
~→0

c~ = 0. (3.19)

The proof of this lemma will be given in the next section. We shall now
proceed to the proof of Theorem 1.1.

11



Proof of Theorem 1.1. Since H∗(w) is a convex function on R2 we have
〈∇H∗(w), w〉 ≥ H∗(w) for all w ∈ R2. Hence

c~ = lim
n→∞

[
Ψ~(w~

n) − 〈(Ψ~)′(w~

n), w~

n〉
]

≤ 1

2
lim

n→∞

∫
〈Tw~

n, w~

n〉 =
1

2
lim

n→∞

∫
f~

nR~g
~

n + g~

nS~f
~

n

≤ lim sup
n→∞

(
‖f~

n‖
L

q+1
q
‖R~g

~

n‖Lq+1 + ‖g~

n‖
L

p+1
p
‖S~f

~

n‖Lp+1

)
.

By the Hölder inequality for each ε > 0 there exists C = C(ε) > 0 such that

c~ ≤ ε lim sup
n→∞

(‖f~

n‖
q+1

q

L
q+1

q

+ ‖g~

n‖
p+1

p

L
p+1

p

) + C lim sup
n→∞

(‖R~g
~

n‖q+1
Lq+1 + ‖S~f

~

n‖p+1
Lp+1),

so by using (3.18) and by choosing ε sufficiently small we get by the Sobolev
embedding and the boundedness of R~, S~ that

c~ ≤ C lim sup
n→∞

(
‖R~g

~

n‖q+1
Lq+1 + ‖S~f

~

n‖p+1
Lp+1

)

≤ C lim sup
n→∞

‖u~

n‖q+1
Hs(RN )

+ C lim sup
n→∞

‖v~

n‖p+1
Ht(RN )

.

Therefore, by the previous lemma,

c~ ≤ β

(
c

(q+1)p
p+1

~
+ c

(p+1)q
q+1

~

)
+ C lim sup

n→∞
‖u~

n‖q+1
Hs(BR) + C lim sup

n→∞
‖v~

n‖p+1
Ht(BR).

Note the embeddings W 2, p+1
p →֒ Hs, W 2, q+1

q →֒ H t are compact on bounded
domains, so {u~

n}, {v~

n} converge strongly on BR as n → ∞. Hence for the
limit functions u~, v~ we get

‖u~‖q+1
Hs(BR) + ‖v~‖p+1

Ht(BR) ≥
[
1 − C−1β

(
c

pq−1
p+1

~
+ c

pq−1
q+1

~

)]
,

and the last quantity is strictly positive for small ~ (since c~ → 0), which
means that the limit functions are not identically zero. Note that of course
(f~, g~) = (0, 0) if and only if (u~, v~) = (0, 0). ¤

4 Proof of Lemma 3.4.

We start by observing that

c~ ≤ inf
w∈X\{0}

sup
t≥0

Ψ~(tw) = inf
w∈E

max
t≥0

Ψ~(tw),
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where we have set E = {w ∈ X |
∫
〈Tw, w〉 > 0}. An explicit computation

(see Appendix I) shows that for any w ∈ E we have

max
t≥0

Ψ~(tw) ≤ const.

( ‖w‖2

∫
〈T~w, w〉

)γ

, (4.20)

where

γ = max

{
p+1

p

2 − p+1
p

,

q+1
q

2 − q+1
q

}
.

So to prove Lemma 3.4 it will be enough to establish the following claim.

inf
w∈E

‖w‖2

∫
〈T~w, w〉 → 0, as ~ → 0. (4.21)

In order to verify this, we observe that

inf
w∈E

‖w‖2

∫
〈T~w,w〉 = inf

w∈E : ‖w‖=1

1∫
〈T~w, w〉 .

Thus, (4.21) is equivalent to the following result.

Lemma 4.1 We have

sup
w∈E : ‖w‖=1

∫
〈T~w,w〉 dx → +∞ as ~ → 0. (4.22)

To facilitate the task of the reader, we first describe the idea behind the
proof of (4.22). The point is that if p, q are under the critical hyperbola and
s, t are chosen as in (3.13), then it is possible to find (explicitly) a function

g ∈ L
p+1

p (RN) such that if u satisfies

−∆u(x) = g(x), x ∈ RN ,

then u does not belong to the fractional Sobolev space Hs(RN), and respec-

tively a function f ∈ L
q+1

q (RN) such that the solution of −∆v = f is not in
H t. We recall that a function w is in Hs(RN) if and only if w ∈ L2(RN) and
its Fourier transform ŵ(ξ) is such that |ξ|sŵ(ξ) ∈ L2(RN). Then, assuming
(4.22) does not hold we show we can perturb and cut off the functions f ,
g, to construct a sequence w~ = (fh, gh) such that ‖w~‖ = 1 and we can
control the corresponding Rhgh, S~f~ in a way which yields a contradiction
for small ~.
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Proof of Lemma 4.1. Let us suppose (4.22) does not hold, that is, there exists
C0 > 0 such that

∫
〈T~w, w〉 dx ≤ C0, for each w ∈ E with ‖w‖ = 1.

We start by giving some results from the theory of Fourier transforms, which
we shall use. The first theorem is a standard fact from the theory of Fourier
transforms of distributions.

Theorem 4.2 Suppose the function u0 has slow growth, that is, for some
m ∈ N ∫

RN

|u0(x)|dx

(1 + |x|)m
< ∞. (4.23)

Then the Fourier transform û exists and belongs to the class of tempered
distributions S ′. In addition if φ ∈ C∞

c (RN) is such that φ ≡ 1 in B1, φ ≡ 0

in RN \ B2 and we set φn(x) = φ(x/n) then φ̂nu → û in S ′.

We shall use the Fourier transform of the function

w0(x) =
1

1 + |x|2 ,

and its powers. It is a well-known fact from Fourier analysis that for any
α > 0 we have

ŵα
0 (ξ) = C(N,α)|ξ|α−N

2 KN
2
−α(|ξ|), (4.24)

(this is for instance formula (3.11) in [15]) ; here Kν(z) is the modified Bessel
function of the second kind, given by

Kν(z) =
Γ(ν + 1

2
)√

π
|z|ν

∫ ∞

0

cos(t)

(t2 + z2)ν+ 1
2

dt =
Γ(ν + 1

2
)√

π|z|ν
∫ ∞

0

cos(sz)

(1 + s2)ν+ 1
2

ds.

Standard analysis shows that Kν(z) > 0, Kν(z) ∈ C∞(R\{0}), K decays
exponentially as |z| → ∞, and, most importantly, Kν(z) ∼ const.|z|−ν as
z → 0. Hence

ŵα
0 (ξ) ∼ C(N, α)|ξ|2α−N as |ξ| → 0. (4.25)

We now fix p′ > p and q′ > q such that p′, q′ are still under the critical

hyperbola,
1

p′ + 1
+

1

q′ + 1
> 1 − 2

N
. We set

α =
Np′

2(p′ + 1)
, β =

Nq′

2(q′ + 1)
,
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so that in particular

wα
0 ∈ L

p+1
p (RN), wβ

0 ∈ L
q+1

q (RN).

Let u0, v0 be the solutions of

−∆u0 = k1w
α
0 , −∆v0 = k2w

β
0 in RN , (4.26)

where k1 = k1(p, q, N) := ‖wα
0 ‖−1

p+1
p

, k2 = k2(p, q,N) := ‖wβ
0‖−1

q+1
q

. By stan-

dard PDE theory u0 and v0 are functions which belong to some Lebesgue
spaces over RN (see for instance Theorem 10.2 (i) in [16]), which in particu-
lar implies that they have slow growth, as in (4.23) (by the Hölder inequality).
Hence Theorem 4.2 applies, and, by taking the Fourier transform on both
sides of the equations in (4.26) we get

û0(ξ) = k1|ξ|−2ŵα
0 (ξ), v̂0(ξ) = k2|ξ|−2ŵβ

0 (ξ). (4.27)

Note that û0, v̂0 are positive.

Lemma 4.3 We have
∫

RN

|ξ|2û0(ξ)v̂0(ξ) dξ = ∞.

Proof. By (4.24) and (4.27) we have

|ξ|2û0(ξ)v̂0(ξ) ∼ C(N, α, β)|ξ|2(α+β−1−N) as |ξ| → 0.

However, by the choice of α and β that we made

α + β − 1 − N =
N

2

(
p′

p′ + 1
+

q′

q′ + 1

)
− 1 − N

=
N

2

(
2 − 1

p′ + 1
− 1

q′ + 1

)
− 1 − N

<
N

2

(
1 +

2

N

)
− 1 − N = −N

2
,

and the lemma follows. ¤

We set un = φnu0 ∈ C∞
c (RN), vn = φnv0 ∈ C∞

c (RN), where φn is a
function as in Theorem 4.2, and

g̃n,~ := −∆un + b(~x)un,

f̃n,~ := −∆vn + b(~x)vn.
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Since un, vn have compact support and b(0) = 0 for each fixed n we have

g̃n,~ → −∆un in L
p+1

p , f̃n,~ → −∆vn in L
q+1

q as ~ → 0.

Clearly

−∆un → −∆u0 in L
p+1

p , −∆vn → −∆v0 in L
p+1

p as n → ∞,

and, recalling that we have taken u0, v0 so that ‖∆u0‖ p+1
p

= ‖∆u0‖ q+1
q

= 1,

we see that we can find n0 such that for each n ≥ n0 there exists ~n for which

2 ≥ ‖g̃n,~‖ p+1
p

≥ 1

2
, 2 ≥ ‖f̃n,~‖ q+1

q
≥ 1

2
, if ~ < ~n.

Now set

gn,~ =
g̃n,~√

2‖g̃n,~‖ p+1
p

, fn,~ =
f̃n,~√

2‖f̃n,~‖ q+1
q

,

and wn,~ = (fn,~, gn,~). So wn,~ ∈ E and ‖wn,~‖X = 1. By the hypothesis we
made ∫

〈T~wn,~, wn,~〉 ≤ C0,

for all n ≥ n0 and all ~ < ~n.
On the other hand, setting k−1

n,~ = 2‖g̃n,~‖
L

p+1
p
‖g̃n,~‖

L
p+1

p
(by the above

kn,~ ∈ (1/8, 2)), we have

∫
〈T~wn,~, wn,~〉 = kn,~

∫
(f̃~,nR~g̃n,~ + g̃n,~S~f̃n,~)

= kn,~

∫
un(−∆vn) + vn(−∆un) + 2b(~x)unvn

≥ kn,~

∫
ûn

̂(−∆vn) + v̂n
̂(−∆un)

= 2kn,~

∫
|ξ|2φ̂nu0(ξ)φ̂nv0(ξ) dξ,

where we used Parseval’s identity and the positivity of b, un, vn. Hence
∫

|ξ|2φ̂nu0(ξ)φ̂nv0 dξ ≤ 4C0,

and Fatou’s lemma gives a contradiction with Lemma 4.3 (note that the

definition of the Fourier transform implies φ̂nu0(ξ) → û0(ξ) for each ξ 6= 0).
This completes the proof of Theorem 1. ¤
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5 Appendix

In this Appendix, we verify the estimate (4.20) used in Lemma 3.4. First,
we note that for w = (f, g)

Ψ~(tw) =
A

α
tα +

B

β
tβ − C

2
t2, (5.28)

where
α = (p + 1)/p, β = (q + 1)/q,

A =

∫
|g|

p+1
p , B =

∫
|f |

q+1
q , C =

∫
〈T~w, w〉.

Denoting the right hand side of (5.28) by h(t), it is easy to check that

max{Ψ~(tw), t ≥ 0} = h(t̄),

for some t̄ > 0 if and only if h′(t̄) = 0, that is

t̄2 =
A

C
t̄α +

B

C
t̄β.

This implies that there exists a positive constant K such that

t̄ ≤ K

[(
A

C

) 1
2−α

+

(
B

C

) 1
2−β

]
.

Then, for some constant K ′ > 0,

h(t̄) = A(
1

α
− 1

2
)t̄α + B(

1

β
− 1

2
)t̄β

≤ K ′

[
A

2
2−α

C
α

2−α

+
AB

α
2−β

C
α

2−β

+
BA

β
2−α

C
β

2−α

+
B

2
2−β

C
β

2−β

]

= K ′

[
A

2
2−α

C
α

2−α

+
A

C
α
2

B
α

2−β

C
αβ

2(2−β)

+
B

C
β
2

A
β

2−α

C
αβ

2(2−α)

+
B

2
2−β

C
β

2−β

]
.

By using the Young inequality, we obtain

A

C
α
2

B
α

2−β

C
αβ

2(2−β)

+
B

C
β
2

A
β

2−α

C
αβ

2(2−α)

≤
(

A

C
α
2

) 2
2−α

+

(
B

α
2−β

C
αβ

2(2−β)

) 2
α

+
(

B

C
β
2

) 2
2−β

+

(
A

β
2−α

C
αβ

2(2−α)

) 2
β

.
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Thus,

h(t̄) ≤ 2K ′




(
A

2
α

C

) α
2−α

+

(
B

2
β

C

) β
2−β


 ≤ 2K ′

[
A

2
α + B

2
β

C

]γ

,

where γ = max
{

α
2−α

, β

2−β

}
.
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