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Abstract

Parity games are combinatorial representations of closeicBnu-terms. By
adding to them draw positions, they have been organized bgldand one of the
authors[B[=44] into a-calculus[2] whose standard interpretation is over thesla
of all complete lattices. As done by Berwanger et .17, 8]tfe propositional
modalg-calculus, it is possible to classify parity games into Is\a a hierarchy
according to the number of fixed-point variables. We ask taethis hierarchy
collapses w.r.t. the standard interpretation. We answ&tiestion negatively by
providing, for each: > 1, a parity game?,, with these properties: it unravels to
a p-term built up withr fixed-point variables, it is semantically equivalent to no
game with strictly less than — 2 fixed-point variables.

1 Introduction

Recent work by Berwanger et alll [&, #,[, 8] proves that theesgive power of the
modal p-calculus L8] increases with the number of fixed point valéa. By intro-
ducing thevariable hierarchyand showing that it does not collapse, they manage to
separate thg-calculus from dynamic game logisi20]. Their work, solviagong-
standing open problem, may also be appreciated for the resareh patHslisclosed
to the theory of fixed-pointd[ZJL1]. The variable hierarchgy be defined for every
p-calculus and for iteration theories as well, since one fpeiht operator is enough
to define it. Thus, the question whether the variable hiésafor az-calculus is strict
is at least as fundamental as considering its alternataptkchierarchy. In this paper
we answer the question for tigamesi-calculus over complete lattices

Parity games are combinatorial representations of clossitiye Boolean:-terms.
By adding to them draw positions (or free variables), A. Adand L. Santocanal @[3,
24] have structured parity games ih@ gameg-calculus In other words, the authors
defined substitution, least and greatest fixed-point opesaas usual fog-calculi [&].
By Tarski’s theoremiLd5] positive Boolearterms have a natural interpretation in an
arbitrary complete lattice. Such interpretation trarstera standard interpretation of
this p-calculus over the class of all complete lattiéeShe calculus, together with its
canonical preorder, may also be understood as a concratgpdies of the theory of

1\We already pursued one of these path@in [4]. We deal hereaitbblem of a more logical nature.
2The interpretation in the class of distributive latticeskemthe calculus trivial, since evepyterm is
equivalent to a term with no application of fixed-point oera.



binary infs and sups, and of least and greatest fixed poimtanraplete lattices, what
we called freeu-lattices in [Z8].

Let us recall the background of the gamesalculus. The interaction between two
players in a game is a standard model of the possible interscbetween a system
and its potentially adverse environment. Researchers ffiffierent communities are
still working on this model despite its introduction datezck at least fifteen years
[ [0, 529] or morefi915]. It was proposed [[1[17] to develofmeory of communi-
cation grounded on similar game theoretic ideas and, mergon algebraic concepts
such as “free lattice'fill4] and “free bicomplete categoléd]. A first work pursued
this idea using tools of categorical logic13]. The propasas further developed in
[Z3] where cycles were added to lattice terms to enrich thdehwith possibly infi-
nite behaviors. As a result, lattice terms were replaceddsjtipe Booleary-terms
and their combinatorial representation, parity games. [@tter, one of the subtlest
tool from the logics of programs, was introduced into the @etics of computation.
Given two parity gamesé:, H the witness that the relatiaid < H holds in every com-
plete lattice interpretation is a winning strategy for agerébed player, Mediator, in a
game(G, H). A game( may also be considered as modelling a synchronous com-
munication channel available to two users. Then, a winniregegy for Mediator in
(G, H) witnesses the existence of an asynchronous protocol atparnie user ofs to
communicate with the other user éhensuring absence of deadlocks.

Apart from its primary goal, that of describing completditas, a major interest
of this u-calculus stems from its neat proof-theory, a peculiariithim the theory of
fixed-point logics. The idea that winning strategies for hMgar in the game G, 1)
are sort of circular proofs was formalized [f[22]. More imstingly, proof theoretic
ideas and tools —the cut elimination proceduregsgtpansion, in their game theoretic
disguise — have proved quite powerful to solve deep probbeiesg from fixed-point
theory. These are the alternation-depth hierarchy prolf'=fhand the status of the
ambiguous classel[[3]. [{i24] the authors were able togbrtexport these ideas
to the modalu-calculus. We show here that similar tools success in astdaby the
strictness of the variable hierarchy.

While dealing with the variable hierarchy problem for therges ;:-calculus, we
shall refer to two digraph complexity measures, émtanglemenand thefeedback
The feedback of a vertex of a tree with back edges is the number of ancestors of
that are the target of a back edge whose source is a descafdanthe feedback of
a tree with back edges is the maximum feedback of its vertitles entanglement of a
digraph(?, denotedt (), may be defined as followst is the minimum feedback of its
finite unravellings into a tree with back edgehese measures are tied to the logic as
follows. A p-term may be represented as a tree with back-edges, thesfdedbwhich
corresponds to the minimum number of fixed point variablesied in theu-term, up
to a-conversion. Also, one may consider terms of a vectgriaalculus, i.e. systems of
equations, and these roughly speaking are graphs. Thehsteponstructs a canonical
solution of a system of equations by meangdérms amounts to the construction of a
finite unravelling of the graph. In view of these considemasi, asking whether a parity
game( is semantically equivalent to a-term with at mostr-variables amounts to



asking whethe€; belongs to the levef,, defined as follows:
L,={Ge€G |G~ HforsomeH € Gst.E(H) <n} 1)

Hereg is the collection of parity games with draw positions andenotes the semantic
equivalence over complete lattices. In this paper we askivein¢éhe variable hierarchy,
made up of the levels,,, collapses: is there a constant- 0, such that for alk > £,
we havel; = £,? We answer this question negatively, there is no such aansta
We shall construct, for each > 1, a parity game’/,, with two properties: (i)},
unravels to a tree with back edges of feedbackhowing that~,, belongs tal,,, (ii)

G, is semantically equivalent to no gamedn _s. Thus, we prove that the inclusions
Ln—3 C Ly, n > 3, are strict.

The gameg+,, mimic then-cliques of [ 3] that are shapes for hareformulae
built up with » fixed point variables. This is only the starting point and;aory on, we
strengthen the notion @fynchronizing gantefrom [Z1] to the context of the variable
hierarchy. By playing with the-expansion —i.e. the copycat strategy — and the cut-
elimination — i.e. composition of strategies — we prove that syntactical structure
of a gameH, which is semantically equivalent tostrongly synchronizingiamed,
resembles that off: every move (edge) i’ can be simulated by a non empty finite
sequence of moves (a path) &f, if two paths simulating distinct edges do intersect,
then the edges do intersect as well. We formalize such gituatithin the notion of
*-weak simulationThe main result is that if there isxaweak simulation of+ by H,
then&(G) — 2 < £(H). The latter statement holds in the general context of diggap
not just for the gameg-calculus, and might be of general use.

We pinpoint next some aspects and open problems arisingtiiempresent work.
By combining the result or-weak simulations with the existence of strongly synchro-
nizing gameg’,, € L,, we have been able to prove that the inclusignss C £,
are strict. Yet we do not know whethér,_, ¢ £, and, at present, it is not clear
that our methods can be improved to establish the striciofebgese inclusions. We
remark by the way that we are exhibited with another diffeeewith the alternation
hierarchy for which its infinity implies that the inclusiohetween consecutive classes
are strict. Also, the reader will notice that the number ekfvariables in the games
G, increases witm. He might ask whether hard games can be constructed using a
fixed number of free variables. Here the question is pogjtimaswered: most of the
reasoning depends on free variables forming an antichahesave can exploit the fact
that a countable number of free variables (i.e. generatarspe simulated within the
free lattice on three generatolS[£4,.6]. Finally, the collection of parallel results on
the modalu-calculus and the gamescalculus — compare for examplel £21 21] — calls
for the problem of relating these results by interpreting-ealculus into the another
one. While translations are a classical topic in logic, werest aware of results in this
direction foru-calculi.

The paper is organized as follows. Seclbn 2 introduces ¢eessary background
on the algebra of parity games, their organization inte-@alculus, their canonical
preorder. In sectioll 3, we firstly recall the definition ofamjlement; then we define

3A synchronizing game has the property that there existsgnstwinning strategy for Mediator in
(G, G), the copycat strategy.



thex-weak simulation between graphs that allows to compare gmanglements. In
sectionilt, we define strongly synchronizing games and wé gtwle theirhardness
w.r.t the variable hierarchy, in particular every equivdlgame to a strongly synchro-
nizing one is related with it by &weak simulation. In sectidll 5, we construct strongly
synchronizing games of arbitrary entanglement. We sum&gigcussion in our main
result, TheorerdE=d 2.

Notation, preliminary definitions and elementary facts.If G is a graph, then a path
in G is a sequence of the form= gog; . . . g5, Such thaty;, ¢;41) € Fgfor0 <i < n.
A path issimpleif g; # g; fori,j € {0,... n } andi # j. The integen is the length
of 7, go is the source ofr, notedi, = = g0, andg,, is the target ofr, noteds; = = g,,.
We denote byl (G) the set of simple non empty (i.e. of length greater thppaths
in G. A pointed digrapHV, E, vy) of rootug, is atreeif for eachv € V there exists a
unique path fromy, tov. A tree with back-edges atuple7 = (V, T, vy, B) such that
(V,T,vy)isatree,and3 C V x V is a second set of edges such thakify) € B then

y is an ancestor af in the tree(V, T, vy). We shall refer to edges i as tree edges
and to edges iB as back edges. We say that V' is a return of/ if there exists
x € V such tha(z, ») € B. Thefeedback of a vertex is the number of returnson
the path fromy, to v such that, for some descendantf v, (x, ) € B. Thefeedback
of a tree with back edgéds the maximum feedback of its vertices. We shall say that a
pointed directed grapfV, F, vy) is a tree with back edges if there is a partition/of
into two disjoint subset¥’, B such thatV, T, vy, B) is a tree with back edges.

If 7 is atree with back edges, then a patffican be factored as = my . . kw7,
where each factor; is a sequence of tree edges followed by a back edger alwts
not contain back edges. Such factorization is uniquelyrdeteed by the occurrences
of back edges im. For: > 0, letr; be the return at the end of the factgr Let also
ro be the source of. Let theb-length of v be the number of back edgesn i.e.
ry = (5171'2'.

Lemma 1.1. If 7 is a simple path of-lengthn, thenr,, is the vertex closest to the root
visited byr. Hence, if a simple path lies in the subtree of its source, then itis a tree
path.

We shall deal with trees with back-edges to which a givenlyrapavels.

Definition 1.2. A coveror unravellingof a (finite) directed grapli/ is a (finite) graph
K together with a surjective graph morphigm K — H such that for each € Vg,
the correspondence sendihdo p(k) restricts to a bijection fronf k € Vi | (v, k) €
Eg }to{heVu|(p(v),h) € Ex }.

The notion of cover of pointed digraphs is obtained from thevjpus by replacing
the surjectivity constraint by the condition thatpreserves the root of the pointed
digraphs.



2 The Gamesu-Calculus

In this section we recall the defintion of parity games withvs and how they can be
structured as a-calculus. We shall skip the most of the details and focug onlthe
syntactical preoder relation betweerp-terms that characterizes the semantical order
relation.

A parity game with drawss a tupleG; = (Pos%, Pos§, Pos% M p) where:

e Pos% PosG, Pos% are finite pairwise disjoint sets of positions (Eva’s pasis,
Adam'’s positions, and draw positions),

e MY, the set of moves, is a subset{&fos% U PosS) x (Pos% U Pos§ U Pos$),
e p“ isamapping fron{ Pos% U PosG) to .

Whenever an initial position is specified, these data defigenae between player Eva
and player Adam. The outcome of a finite play is determinedralicg to the normal
play condition: a player who cannot move loses. It can alsa Beaw, if a position in
Pos§ is reached. The outcome of an infinite play (g, gs+1) € M }i>o is deter-
mined by means of the rank functipfi as follows: it is a win for Eva iff the maximum
of the set{ i € NN | Finfinitely manyk s.t. p(gx) = ¢ } is even. To simplify the nota-
tion, we shall usePosf; , for the setPosf U Pos{ and use similar notations such as
PosgyD, etc. We letM az® = maxpG(PosgyA) if the SetPOsgyA is not empty, and
Maz% = —1 otherwise.

To obtain au-calculus, as defined[Z2], we label draw positions with variables
of a countable sek. If \“ : Pos; — X is such a labelling ang{’ € Pos ,
is a specified initial position, then we refer to the tuglg p&, A“) as a labeled parity
game. We denote bi7, ¢) the game that differs fror&’ only on the starting position,
ie. piG’g) = g, and similarly we writd 7, ¢) to mean that the play has reached position
g. We letz be the game with just one final draw position of zero prioritg dabeled
with variablex. With G we shall denote the collection of all labeled parity gamss; a
no confusion will arise, we will call a labeled parity gamesimply “game”.

As ap-calculus, formal composition and fixed-point operatiorsy/rhe defined on
G; moreoverG has meet and join operations.When defining these operatirogames
we shall always assume that the sets of positions of digiaroes are pairwise disjoint.
Meets and Joins.For any finite set, /\; is the game defined by lettingosz = 0,
Posa ={po}, Posp =1, M ={ (po,i) | 1 €1 } (Wherepy & I), p(po) = 0. The
game\/; is defined similarly, exchangingosz andPos 4.
Composition Operation. Given two games~ and H and a mapping’ : P5 —
PH 4 p.the gamek’ = G o, H is defined as follows:

K _ G H
o Posy = Posg U Posy,
K _ G H
o Posy = Pos] U Posy,

K _ H
o Pospy = Posp,

4Observe that there are no possible moves from a positiétvirts .



o MK = (MGO (PosgyA X PosgyA)) U MH
U {(p, o)) | (p,p') € MG N (Pos 4 x Posf) }.

¢ p% is such that its restrictions to the positiongdaind [/ are respectively equal
to p“ andp™.

Sum Operation. Given a finite collection of parity games;, i € /, their sumH =
> _ier Gi is defined in the obvious way:

. Pg:UiEIPZGl,forZE{E,A,D},

o« MP = UieIMG’,
e pf is such that its restriction to the positions of ed¢his equal tof .

Fixed-Point Operations. If ¢ is a game, a system a# is a tupleS = (£, A, M)
where:

e F andA are pairwise disjoint subsets s,
e M C(FUA) X POSg,A,D-

Given a systend andd € { u, v }, we define the parity gantg; .G
. PostS'G = Posg UkL,

. Posff'G = Posﬁ UA,

Posfjs'G = Posg — (FUA),
o M#sG = MG UM,

p?5: is the extension of“ to £ U A such that:

—if @ = pu, thenp®s- takes onE U A the constant valué/az® if this
number is odd oM az® + 1 if Maz® is even,

—if & = v, thenp?s ' takes onE U A the constant valud/az® if this
number is even oif az® + 1 if Max is odd.

Semantics ofG. The algebraic nature of parity games is better understoatkbging
their semantics. To this goal, let us define fhiedecessor gamé-—, for G a game
such thatM az“ # —1, i.e. there is at least one position Rvs§ ,. Let Top® =

{9 € PosG 4 | p9(9) = Maz}, thenG'~ is defined as follows:
. Posg_ = Posg — Top®©, Posﬁ_ = Posﬁ —Top“, Posg_ = Posg UTop?,
o MY =M% — (Top® x Pos% , p),

 p isthe restriction op to Posg ,.



Given a complete latticé, the interpretation of a parity gante in L is a monotone

mapping of the formG| : L5 — L84, HereLX is theX-fold product lattice of

L with itself so that, forr € X, pr, : LX — L will denote the projection onto the
z-coordinate. The interpretation of a parity game is defimetlictively. IngA =0,

thenLP5a = [P = 1, the complete lattices with just one element, and theresisjne
possible definition of the mapping-||. Otherwise, ifMaz is odd, then|G| is the

parameterized least fixed-point of the monotone mappifg.+ x L5 —s LP¥.a
defined by the system of equations:

VA zy | (9.9') € M€ },ifge PosgﬂTopG,
zg=14 N{zgllg,g)e M}, ifge PosinTop®,
prg ° ||G_||(XTopG 3 XPOS%) 5 OtherWIse

If Maz® is even, therjG| is the parameterized greatest fixed-point of this mapping.

The preorder on G. In order to describe a preorder on the clgssve shall define a
new game (&, I7) for a pair of games&; and 7/ in G. This is not a pointed parity game
with draws as defined in the previous section; to emphasizddbt, the two players
will be named Mediator and Opponents instead of Eva and Adam.

Definition 2.1. The gamég (7, H) is defined as follows:

« The set of Mediator's positionsi80s§ x Posf; , U Pos§ , x Posy U L(M),
and the set of Opponents’ positionss x Posy 4, , U Posh 4 p X
Posfl U L(0O), where L(M), L(O) C Pos% x Posi are the losing posi-
tions for Mediator and Opponents respectively. They arenddfias follows. If
(9,h) € Pos$ x Post, then: if \“(g) = M (h), then the positior{g, h)
belongs to Opponents, and there is no move from this positience this is a
winning position for Mediator. 10 (g) # A (h), then the positiottg, /) be-
longs to Mediator and there is no move from this position. [Hiter is a win for
Opponents.

e Moves of((G, H) are either left movety, k) — (¢', h), where(g, g') € M<, or
right moves(g, ) — (g, '), where(h, ') € M*; however the Opponents can
play only with Eva on’Z or with Adam on H .

¢ A finite play is a loss for the player who can not move. An ingrplay~ is a
win for Mediator if and only if its left projectiom () is a win for Adam, or its
right projectionrz () is a win for Eva.

Definition 2.2. If ¢ and H belong toG, then we declare that < H if and only if
Mediator has a winning strategy in the gafdé, /) starting from positiorip<, p).

The following is the reason to consider such a syntactitiozia

Theorem 2.3 (SeeliZ3]).The relation< is sound and complete with respect to the
interpretation in any complete lattice, i.€; < H if and only if |G| < | H| holds in
every complete lattice.



In the sequel, we shall writ6 ~ H to mean thaty < H andH < (. For other
properties of the relatiort, see for example Propositi@rb of [F]. One can prove that
(G < G, by exibing thecopycatstrategy in the gamé~, ): from a position(y, g),
it is Opponents’ turn to move either on the left or on the rigbard. When they stop
moving, Mediator will have the ability to copy all the movesyed by the Opponents
so far from the other board until the play reaches the positi, ¢’). There it was
also proved that ify < i andH < K thenG < K, by describing a gam&~, I, K)
with the following properties(1) given two winning strategie® on (G, H), and S
on (H, K) there is a winning strateg®||S on (G, H, K), that is the composition of
the strategies? and S, (2) given a winning strateg§” on (G, H, K), there exists a
winning strategy/i g on (G, K).

The game(G, H, K) is the fundamental tool that will allow us to deduce the de-
sired structural properties of gamé&swhich are equivalent to a specified gathigby
considering the gam@>, H, (&), sectiorll. The gam@-, I7, i) is obtained by gluing
the gameg(, H) and(H, K') on the central board as follows.

Definition 2.4. Positions of the gamé’, H, K) are triples(g, h, k) € Pos§ p p x
POSE,E,D X POSnyyD such that

¢ the set of Mediator’s positions is

Posﬁ X POSE,E,D X PosgyD U PosiD X POSE,E,D X Posg U L(M),
and the set of Opponents’ positionsis
Pos$ x PosgyEyD X PosgyAyD U PosgyAyD X PosgyEyD x Posk U L£(0),

whereL(M), £L(0) C Posf x Pos!{ , , x Posj5 are positions of Mediator
and Opponents, respectively, defined as follows. Whengveér, k) € PosG x
Pos!{  , x Posp;, thenith € Posj ,, then the positiorig, h, k) belongs to
Mediator, otherwise, i.eh € PosH, then the final positiof, &, k) belongs to
Opponents if and only iR (g) = A (h) = AK (k).

e Moves of(G, H, K} are either left move§y, h, k) — (¢, h, k) where(g,¢’) €
M€ or central movegg, h, k) — (g,h' k), where(h,h') € M*, or right
moves(g, h, k) — (g, h, k'), where(k, k') € M*; however the Opponents can
play only with Eva onZ or with Adam onk'.

e As usual, a finite play is a loss for the player who cannot méweinfinite play
~ is a win for Mediators if and only ifrg (%) is a win for Adam on(7, or 7k ()
is a win for Eva onk’.



3 Entanglement andx-Weak Simulations

Let us recall the main tool which measures the combinatessénce of the variable
hierarchy level on directed graphs. This is #r@anglementf a digraphZ and might
already be defined ake minimum feedback of the finite unravelingg;ointo a tree
with back edges The entanglement aff may also be characterized by means of a
special Robber and Cops gai@, k), k = 0, .. ., |V|. This game, defined ifl[6], is
played by Thief against Cops, a teaof k cops, as follows.

Definition 3.1. The entanglement gang&(, k) of a digraph(7 is defined by:

e Its positions are of the forrtw, C, P), wherev € Vi, C' C Vi and|C] < &,
P € {Cops, Thief}.

o Initially Thief chooses);, € V and moves tdug, #, Cops).
e Cops can move frorfw, C, C'ops) to (v, C', Thie f) whereC” can be

— (' : Cops skip,
— CU{wv}: Copsaddanew Cop on the current position,
— (C\{#})u{wv}: Copsmove aplaced Cop to the current position.

e Thief can move fronfv, C, Thief) to (v, C, Cops) if (v,v') € Eg andv’ ¢ C.
Every finite play is a win for Cops, and every infinite play is g or Thief.

The following will constitute our working definition of emglement: £(¢), the
entanglement of/, is the minimunk € {0, ..., |Vs| } such that Cops have a winning
strategy in£(G, k). The following proposition provides a useful variant of amgle-
ment games.

Proposition 3.2. Letf(G, k) be the game played as the ga&ig-, k) apart that Cops
is allowed to retire a number of cops placed on the graph. Thatops moves are of
the form

e (g,C,Cops) — (g,C', Thief) (generalized skip move),
e (9,0, Cops) = (9,C"U{g}, Thief) (generalized replace move),

where in both case§” C C. Then Cops has a winning strategyd(G, k) if and only
if he has a winning strategy (G, k).

*-Weak Simulations. We define next a relation between graphs, calegeak sim-
ulation, to be used to compare their entanglements. Intuitivebrethis ax-weak sim-
ulation of a graphG by H if every edge of is simulated by a non empty finite path
of H. Moreover, two edges;, e» of G not sharing a common endpoint, are simu-
lated by pathsry, w5 that do not intersect. These simulations arise when corisgle
games which are semantically equivalent to strongly syordlzimg games, as defined
in Sectiorllt.

5We shall use the singular to emphasize that Cops constitena




Definition 3.3. A weak simulatiotffR, ) of G by H is a binary relatiorR C Vg x Vi
that comes with a partial function: Vi; x Vg x Vg — It (H), such that:

e Ris surjective, i.e. for every € V¢ there exists: € Vi such thay Rh,
e Risfunctional, i.e. ify; Rh fori = 1,2, theng; = g1,

e if gRh andg — ¢', theng(g, ¢’, h) is defined and’ = d1¢(g, ¢’, #) is such that
g RI.

Now we want to study conditions under which existence of aknsmulation of
G by H implies that€ () is some lower bound of (/). To this goal, we abuse of
notation and writeh € <(g,¢’, ho) if <(g,9’, ho) = hoh1 ...k, and, for some €
{0,...,n},we haveh = h;. If G = (Vg, E¢) is a directed graph then its undirected
versionS(G) = (Vg, Es(w)) is the undirected graph such thigt, ¢’} € Egq iff
(9,9') € FEgor(g',g9) € Eg. Thus we say that! hasgirth at leastk if the shortest
cycle inS(G) has length at leagt, G does not contain loops, artd, ¢’') € E¢ implies
(9", 9) & Ec.

Definition 3.4. We say that a weak simulatid®, ) of G by H is ax-weak simulation
~ o~

(or that it has the-property) if G has girth at least, and if(¢, ¢'), (§, §') are distinct
edges ofz andh € (9,9, ho), (4,9, ho), then|{ g,4',3,3" }| = 3.

We explain next this property. GiveiR, <), consider
C(h)={(9,9") € Ec | Thost.hes(g, g ho)}.

Lemma 3.5. Let (R, s) be ax-weak simulation ofs by I. If C'(h) is not empty, then
there exists an elementh) € Vi such that for eaclig, ¢’') € C'(k) eitherc(h) = ¢
or c(h) = ¢'. If moreover|C'(h)| > 2, then this element is unique.

That is,C'(h) considered as an undirected graph, is a star. Sifiegis unique
whenever|C'(h)| > 2, thene(h) is a partial function which is defined for all with
|C'(h)] > 2. This allows to define a partial functigh: Vg — Vi, which is defined
for everyh for which C'(k) # 0, as follows:

e(h), |C(h)] > 2,
f)y=3g,  ifC(h)

( (9,¢') } andh has no predecessor i, 2
q, if C'(h)

{
{(g,¢’) } andh has a predecessor .
)1

Let us remark that it € <(g,¢’, ho), thenf(k) € {g,¢'}. If gRh andh has no pre-
decessor, theli(h) = ¢. Also, if &’ is the target of (g, ¢', ho) andg’ has a successor,
thenf(h') = g¢'.

Lemma 3.6. If (R, <) is ax-weak simulation of7 by # andp : K — H is an
unravelling of#, then there exists &weak simulatiof R, <) of G by K.

Let us now recall that i/ is a tree with back edges, rooted/at, of feedback
k, then Cops has aanonical winning strategyn the game€ (7, k) from position
(hg, C, Cops). Every time a return is visited, a cop is dropped on such ametii a
cop has to be replaced in order to occupy such a return, tleecoth which is closest
to the root is chosen.
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Remark3.7. Let us remark that, by using the canonical strategy, (i)yepath chosen
by Thief in I is a tree path, (i) if the positionifi( 7, k) is of the form(h, C, Thie f),
andh’ # h is in the subtree ok, then the unique tree path frolnto ~2’ does contain
no cops, apart possibly for the vertexFinally, a vertexh € Vi determines a position
(h,Crm(h), Thief) inthe game (H, k) that has been reached from the initial position
(ho,®, Cops) and where Cops have been playing according to the canoniasgy.
Cy(h) is determined as the set of returnsf A on the tree path from, to ~ such
that the tree path fromto i contains at most returns.

The following Theorem establishes the desired connectéiwédenx-weak simu-
lations and entanglement.

Theorem 3.8. If (R, <) is ax-weak simulation ofs by H, then& (G) < E(H) + 2.

Proof. Letk = £(H ). We shall define first a strategy for Cops in the gﬁf@, k+2).
In a second time, we shall prove that this strategywsraningstrategy for Cops.

Let us consider Thief’s first move ii(G, k& + 2). This move pickg € G leading
to the position(g, #, C'ops) of f(G, k + 2). Cops answers by occupying the current
position, i.e. he moves t@y, { ¢ }, Thief). After this move, Cops also chooses a tree
with back edges of feedbackto which 7 unravel,x : T(H) — H, such that the
rooth, of 7 (H) satisfiesyRw(ho). We can also suppose thaf is not a return, thus it
has no predecessor. According to Lenlia 3.6 we can lifsthveak simulatior( R, )
to ax-weak simulation( R, <) of G by 7(H). In other words, we can suppose from
now on that itselfis a tree with back edges of feedbdciooted ath, and, moreover,
thatg Rho.

_ From this point on, Cops uses a memory to choose how to plagindhe game
E(G, k+2). To each Thief's positioty, C, Thief) in £(G, k+2) we associate a data
structure (the memory) consisting of a triglé(g, C', Thief) = (p, ¢, h), wheree, h €
Vg andp € Vg U { L} (we assume that ¢ V). Moreovere is an ancestor of in
the tree and, whenever# L, p is an ancestor af as well.

Intuitively, we are matching the play 8, & + 2) with a play in€(H, k), started
at the rooth, and played by Cops according to the canonical strategy. Flhsishe
vertex of I currently occupied by Thief in the gang® H, k).° Instead of recalling
all the play (that is, the history of all the positions playssifar), we need to record
the last position played ii( H, k): this isp, which is undefined when the play begins.
Cops on(7 are positioned on the images of Copsirby the functionf defined inR).
Moreover, Cops eagerly occupies the last two verticesedsinGG. Thief's moves on
G are going to be simulated by sequences of Thief’s move# pasing thex-weak
simulation(R, s). In order to make this possible, a simulation of the fast#, g, 1)
must be halted before its targetthe current position is such halt-point. This implies
that the simulation off — ¢’ by (R, <) and the sequence of moves ih matching
Thief’s move onG are sligthly out of phase. To cope with that, Cops must gugss i
advance what might happen in the rest of the simulation aisdghwhy he puts cops
on the current and previous positiongin We also need to record the target of the
previous simulation into the memory.

6More precisely we are associating to the positign C's, Thicf) of £(G,k + 2) the position
(¢,Cqg,Thief)in E(H,k), whereCg is determined a6’y = Ci(c) as in Remarl=7.
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The previous considerations are formalized by requirirgfthlowing conditions
to hold. To make sense of them, let us say thdtp }) = f(p) if p € Vi and that
Ff({p}) =0if p= L. Inthe last two conditions we require that: L.

o Co=f(Cr(e)Uf({p Uiy}, (COPS)
e f(e) =g, andf(h') € f({p}) U{g}, whenever

L' lies on the tree path fromto £ (TAIL)
e f(p) =g, f(p)Rhforsomeh € Vi, c €<(f(p),g,h),

andh is the target of (f(p), g, h) (HEAD)
¢ on the tree path fromtoc,

cisthe only vertex s.tf(c) = g. (HALT)

Sincehq has no predecessors, theRh, implies f(hg) = g. Thus, at the begin-
ning, the memory is set tol, kg, £y) and conditiondEECIRS) anEZAIL) hold.

Consider now a Thief's move of the forfy, Cq, Thief) — (¢',Cq, Cops),
whereg’ ¢ Cgq. If ¢’ has no successor, then Cops simply skips, thus reaching-a win
ning position. Let us assume th@thas a successor, and writ@, g’, h) = hhy ... hy,

n > 1; observe thaf(h,) = ¢'. If forsomei = 1,...,n h; is not in the subtree of
¢, then the strategy halts, Cops abandons the game and |@atbeswise, all the path
m =c...hhy ... h, liesinthe subtree of. By eliminating cycles fromr, we obtain
a simple pathr, of sourcec and target:,,, which entirely lies in the subtree of By
LemmalDlL ¢ is the tree path fromto h,,. An explicit description ofr is as follows:
we can writer as the compose, x o1, where the target of, and source of; is the
vertex ofs(g, ¢’, h) which is closest to the rodt;; moreoversy is a prefix of the tree
path frome to i, ando; is a postfix of the path(g, ¢’, h).

We cute as follows: we let’ be the first vertex on this path such tifgt’') = ¢'.
Thief's moveg — ¢’ onG is therefore simulated by Thief's moves franto ¢’ on H.
This is possible since every vertex lies in the subtreeafid thus it has not yet been
explored. Cops consequently occupies the returns on tttis feus modifyingC'y to
Cy =Cr(d) = (Cx\ X)wY, whereY is a set of at most vertexes containing the
last returns visited on the path frommo ¢’. N

After the simulation on7, Cops moves tdq’, Cr., Thief) in (G, k + 2), where
CL = f(Cy)U{yg,¢ }. Letus verify that this is an allowed move according to the
rules of the game. We remark th&fY') C f({p}) U {g,¢' } and therefore

Co=FfCr\X)Uf(Y)U{g,¢"}
=(f(Ca\X)U(FM)\{gdHu{gh Uiy}
=AU{Jg'},

whereA = f(Cir \ X) U(F(Y)\ {¢'}) U{g} C F(Cr) U f({p}) U{g} = Ca.
After the simulation Cops also updates the memo/fte/’, Cr., Thief) = (¢, ¢, hy).
Since f(¢) = g, then conditionEECHAS) clearly holds. Alsic) = ¢ — ¢', gRh
and h,, is the target of(f(c),¢’,h). We have also that' € o; and hence’ €
s(f(e),d', h), since otherwise’ € oy andf(c’) € { f(p), g }, contradictingf(c’) = ¢’
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and the condition on the girth @¥. Thus conditionEEEZD) holds as well. Also,
condition [EZ&) holds, since by constructiehis the first vertex on the tree path from
¢ to h such thatf(¢’) = ¢’. Let us verify that conditiorlZ&l) holds: by construction
f(¢") = ¢/, and the path from’ to £, is a postfix of<(g, ¢’, k), and hencef(h') €
{g,¢' } if b’ lies on this tree path.

Let us now prove that the strategy is winning. If Cops nevanalons, then an infi-
nite play in€(G, k + 2) would give rise to an infinite play i (4, k), a contradiction.
Thus, let us prove that Cops will never abandon. To this gaaheed to argue that
when Thief plays the move — ¢’ on G, then the simulatior(yg, ¢’, k) = hhy ... hy
lies in the subtree of. If this is not the case, letbe the first index such that is not
in the subtree of. Thereforeh; is a return and, by the assumptions @nand the on
canonical strategyy; € Cr(c). Sinceh; € <(g,9', k), f(hi) € {g,4'}. Observe,
however that we cannot hayéh; ) = ¢', otherwisey’ € f(Cr(¢)) C Ce. We deduce
thatf(hl) =g andthaty € f(CH) C Cg.

SinceCs # L, then(g, Cg, Thicf) is not the initial position of the play, so that,
if M(g,Cq,Thief) = (p,c,h), thenp # L. Let us now consider the last two
moves of the play before reaching positign Cq, Thief). These are of the form
(f(p),Cq, Thicf) — (g9,Cq,Cops) — (g,Ca, Thief), and have been played ac-
cording to this strategy. Singe¢ C, it follows that the Cop om; has been dropped
on H during the previous round of the strategy, simulating theent{p) — ¢ on G
by the tree path from to ¢. This is however in contradiction with conditioEE=Z T),
stating that: is the only vertex: on the tree path from to ¢ such thatf(h) =¢. O

4 Strongly Synchronizing Games

In this section we definstrongly synchronizingames, a generalization of synchroniz-
ing games introduced ilki21]. We shall show that, for evemngd/ equivalent to a
strongly synchronizing gam@, there is ax~-weak simulation of7 by H .’

Let us say that/ € G isbipartiteif M C Pos$ x PosiD U Pos§ x PosgyD.

Definition 4.1. A game is strongly synchronizingff its is bipartite, it has girth
strictly greater thart and, for every pair of positiong, &, the following conditions
hold:

1. if (G,g) ~ (G, k) theng = k.

2. if (G,g) < (G,k)and(G, k) £ (G, g), thenk € Pos& and(k,g) € M, or
g € Pos§ and(g, k) € M©.

A consequence of the previous definition is ttreg only winning strategy for Me-
diator in the gamé&@, ) is the copycat strategyThus strongly synchronizing games
are synchronizing as defined {3[21]. We list next some ugafoberties of strongly
synchronizing games.

Lemma 4.2. Let (& be a strongly synchronizing and l6t, ¢'), (§,3') € M be dis-
tinct.

7In the sequel, we shall not distinguish between a game anddtsrlying graph.
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1. If (G, g) ~ @ theng € Pos% andA(g) = .

2. If g, € Pos& and, for some gam& andh € Pos'!, we have

(G,g') < (H,h) < (G,g) and
(G,§') < (H,h) < (G.9),

theng =gorg' =g’ and[{g,9',5, 9} = 3.
3. Ifg € Pos andg € Pos§ and, for some? andh € Pos!, we have

(G,g') < (H,h) < (G,g)and
(G,9) < (H,h) <(G,7),

theng = g’ org' = g,and|{g,9',3,3"}| = 3.
We are ready to state the main result of this section.

Proposition 4.3. Let GG be a strongly synchronizing game, and lete G be such that
G < H < @, then there is a-weak simulation of+ by H.

Proof. Let.S, S’ be two winning strategies for Mediator {6/, /) and{H, (), respec-
tively. Let T = S||S’ be the composal strategy {6, H, (). Define

gRhiff (g, hk,g)is aposition ofl’
andyg, h belong to the same player

We consider first? and prove that it is functional and surjective. gifRh,i = 1,2
then (g1, h, g1) and(g2, h, g2) are positions of”", hence(G, ¢1) < (H, h) < (G, g1)
and (G, g2) < (H,h) < (G, g2), consequentlyG, g1) ~ (G, g2) impliesgy = g2,
by definitionEZ. For surjectivity, we can assume that (d}ha positions of(7 are
reachable from the initial positiop(’, (b) p¢ andpZ! belong to the same player (by
possibly adding toff a new initial position leading to the old one). Sin€ey is
the copycat strategy, given€ Pos& , ,, from the initial position(pS, pff, p&) of
(G, H, G, the Opponents have the ability to reach a position of thafar k2, ). The
explicit construction of the functionwill show that. can be chosen to belong to the
same player ag.

We construct now the functionso that(R, <) is a weak simulation. I§ R~ and
(9,9') € MY, then we construet = h, ..., k' such thay’ Rh'. Sinced is bipartite,
thenh # h’ andx is nonempty. We let(g, ¢’, h) be a reduction ofr to a nonempty
simple path.

We assumédy, h) € (Pos%, Post), the case(g, h) € (PosG, Postl) is dual.
From position(g, h, ¢) it is Opponent’s turn to move on the left, they choose a move
(9,9') € MS. Since(: is bipartite, we have eithef € Pos§ org’ € Pos§.

Case (i). If ¢’ € Pos% then the strategy’ suggests playing a finite path d#,
(¢’ h,g) =% (¢',h*,g), possibly of zero length, and then it will suggest to play on
the external right board. An infinite path played only &hcannot arise, sincg' is
a winning strategy and such an infinite path is not a win for Mtmt. Sincel\y is
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the copycat strategyi| suggests the only mouvg’, »*,¢) — (¢', h*,¢’). From this
positionT suggests playing a path dii leading to a final draw positioh; € Posi

as follows(g’, h*, ¢') —* (¢', h¢,9'), such that®(g') = A (h;), thereforey’ Rh;.
Case (ii). If ¢ € Pos§ then from position(¢’, h, ¢) it is Mediator’s turn to move.
We claim that7" will suggest playing a nonempty finite path’, i, g) —* (¢', 1/, 9)

on the central board/, whereh’ € Pos'l, and then suggests the mog, ', g) —
(¢',h'.g'). Leth € Postl ; |, be such that the positiofy’, b, g) has been reached
from (¢, h, g), through a (possibly empty) sequence of central moves, dyinpd with

T'. ThenT cannot suggest a move on the left bo&yt A, g) — (9", h, g), sincel g

is the copycat strategy. Also, if € Posl, T cannot suggest a move on the right
board(g’, h,g) — (¢',h,§). The reason is that = S||5’, and the positiorih, g)

of (H, ) does not allow a Mediator’s move on the right board. Thus asece of
central moves ot/ is suggested by’ and, as mentioned above, this sequence cannot
be infinite. We claim that its endpoint € Posf. We already argued that ¢ Posk,

let us argue thak’ ¢ Posi. If this were the case, then strategysuggests the only
move (¢', k', g9) — (¢, hn,9’), hence(G,¢') ~ (H,1'). By LemmalZR.1, we get
g’ € Pos$, contradicting’ € Pos§.

This proves thatR, <) is a weak simulation. We prove next thi@, <) has the
*-property, thus assume that € <(g,9’, ho),s(4,4’, ho). Let us suppose first that
g,d € Pos. By looking at the construction of these paths, we obseraettie two
sequences of moves

(gahOag) — (glahOag) _>* (glah*ag) _>* (glahnag) — (g/ahnag/)a

(G, ho, §) — (F,ho, ) =" (7,0, 3) =" (§' s hom, §) — (§', b, 7))

may be played in the gan{é+, H, (&), according to the winning stratedy = 5||.5".
We have therefore thaty, ¢') < (H,h*) < (G,g) and(G, §') < (H,h*) < (G, §).8
Consequently{ g,¢',3,3' }| = 3, by LemmalZR.2. Iy € Pos% andg € Pos§,
a similar argument shows that the positidns ~*, ¢) and(g, »*, §’) may be reached
with 7" and hence G, ¢') < (H,h*) < (G,g) and (G, g) < (H,h*) < (G,§).

Lemma EZ®.3 implies then{g,¢,3,4'}| = 3. Finally, the cases(g,g)
€ {(Pos§, Pos§), (Pos§, Pos%) } are handled by duality. This completes the proof
of PropositiorlZRB. O

8Similar inequalites may be derived everif € PosE . In this case the moves in the central board may
be interleaved with the move on the right board.
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Figure 1: The gamé/s

5 Construction of Strongly Synchronizing Games

In this section we complete the hierarchy theorem by constry, forn > 1, strongly
synchronizing game&;,, such that(G,) = n. This games mimic the-cliques
already used inlf]7] to prove that the variable hierarchy f@ modalyu-calculus is
infinite. The game~, appears in Figure 1.
The general definition of the ganig, is as follows. Lefn] denote the set0, ..., n—

1}andletl, = {(¢,j,k) € [n] x [n] x [6] | K = 0 impliesj = 0 }. We define

Posi" = {vi;rl| (4,4, k)€, andkmod2 =10},

Posg" = {vijrl| (4,4, k)€, andkmod2 =1},

POSE" = {wiyjyk | (i,j, k’) el,}.
Let X = {z;;% | {7 > 0,k € [n]} be a countable set of variables, the labelling of
draw positionsA®» : Pos&" — X, sendsw; ;  t0 z; ; 5. The movesM % either
lie on some cycle:

Vi0,0 = Vi1, Vijk = Vijk+1, k=14

Vi35 7 V5,00,
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or lead to draw positionsy; ; x — w; ; 5. Finally, the priority functionp®~ assigns a
constant odd priority to all positions. We state next themfiacts about the gamés, :

Proposition 5.1. The gamesy,, are strongly synchronizing an€i{G,,) = n.

The proof of the statement is omitted for lack of space. Wenare ready to state
the main achievement of this paper.

Theorem 5.2. For n > 3, the inclusions’,,_s C £,, are strict. Therefore the variable
hierarchy for the gameg-calculus is infinite.

By the previous Proposition the gamig, € £,,. Also, sinceG,, is strongly syn-
chronizing, if H ~ G,,, then there exists &weak simulation of~,, by H. It follows
by Theoren2WB that — 2 < £(H). Therefore,, & L,,_s.
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6 Appendix: complete proofs

6.1 On tree with back edges

Lemma 6.1 (i.e. LemmdEI).If = is a simple path ob-lengthn, thenr,, is the vertex
closest to the root visited by.

Proof. Itis enough to observe that, for eagh; is the highest vertex visited by;. To
this goal, ifm; = d; x b;, whered; is a tree path and; is a back-edge, then eithey
belongs tad; or it is an ancestor of the source &f The first case is excluded by
being simple. O

6.2 A variant of the entanglement game

Proposition 6.2 (i.e. Propositiorl2R).Let f(G, k) be the game played as the game
E(G, k) except that Cops is allowed to retire a number of cops placethe graph.
That is, Cops moves are of the form

e (9,C,Cops) — (g,C', Thief) (generalized skip move),
e (9,0, Cops) = (9,C"U{g}, Thief) (generalized replace move),

where in both case§” C C'. Then Cops has a winning strategyd(G, k) if and only
of he has a winning strategy #{G, k).

Proof. Since every Cops’ move in the gandéG, k) is a Cops’ move in the game
£(G, k), and since there is no new kind of moves for Thief in the gditt, k), then
a Cops’ winning strategy i (G, k) can be used to let Cops win ﬁ'(G, k).

On the other direction, a winning strategy for Cops?(rd}, k) can be mapped to a
winning strategy for Cops ifi((, k) as follows.

Each positior{g, C, P) of £(G, k) is matched by a positiofy, C~, P) of £(G, k)
such that”~ C . A Thief's move(y,C,Thief) — (g',C,Cops) in E(G, k) can
certainly be simulated by the movg, C~, Thief) — (¢',C~,Cops) in g(G,k),
note that Thief has the ability to perform such a move becairsee ifg’ € C'~ then
alreadyy’ € C.

Assume that the positiofy, Cy, Cops) of £(G, k) is matched by the position
(g,Cfy , Cops) of g(G, k). From(g, Cy , Cops), Cops’ winning strategy may suggest
two kinds of moves.

It may suggest a generalized sKip Cy, Cops) — (g,C1, Cops) with C| C
Cy . Ifthis is the case, the Cops just skips on from the relatesition (¢, Cy, Cops).

It may suggest a generalized replace mgney , Cops) — (g, C7U{ g }, Thief).
If |Co| < k, then the such a move becomes an add mgyé€'y, Cops) — (g, Co U
{¢}, Thief). OtherwisgdCy| = kand|CT | < k—sincey ¢ CT and|CT U{g}| <k
— and consequently we can piecke Cy \ C7, this is possible sincé \ C; is not
empty, becaus€’] C C; C Cy and|C[ | < |Cy|. Observe also that # g, since
this would mean that Thief has been trapped. Therefore thefioCy, Cops) —
(g,Cy U {yg}, Thief) is simulated by the replace move, Cy, Cops) — (g,Cu \
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{x}U{g}, Thief). Moreover the invariant; U{g} C Co\ {z } U{g }is main-
tained. 0

6.3 On thex property of weak simulations

Lemma 6.3 (i.e. Lemmd3b).Let (R, <) be ax-weak simulation ofs by H. If C'(h)
is not empty, then there exists an elemghd € Vi such that for eaclig, ¢') € C(h)
eitherc(h) = g orc(h) = ¢’. If moreover|C'(k)| > 2, then this element is unique.

Proof. Clearly the condition holds ifC'(2)| < 2, by definitiordZ®. Let us suppose that
C(h)] > 3.

Fix two undirected edgelsc(h), g1 }, { ¢(h), g2 } inthe undirected version @f (k).
Consider a third undirected ed§@,, §- } € C'(h), sothat{g1,d2 U {c(h), g }| =
3, and similarly[{ g1, 92 } U { ¢(h), g2 }| = 3.9 ¢(h) ¢ {31, 92}, then{ g1, 3.} =
{ 91,92 }, thus creating an undirectédcycle and contradicting the condition on the
girth of . (]

Lemma 6.4 (i.e. Lemmd3®).If (R, <) is a~-weak simulation ofs by I/ andp :
K — H is a cover, then there existssaweak simulatiof R, <) of G by K.

Proof. We construct the-weak simulatior( R, <), whereR C Vi x Vi, as follows
gREk <= gRp(k)

We consider first? and we prove it to be surjective and functional. Since foheac
g € Vg there existsh € Vi such thay Rh and sincep is surjective, then there exists
k € Vi such thath = p(k), and hence Rp(k), thusg Rk. ThereforeR is surjective.
If g;Rk,i=1,2, theng; Rp(k). SinceR is functional, thery; = ga. ThereforeR is
functional.
We exhibit¢ as follows. Ifg Rk, andg — ¢, then, we tak&(g, ¢', ko) = ko, . . ., kn,
such thak (g, ¢', p(ko)) = p(ko), ..., p(kn). Note that the patho, . .., k, is unique.
Therefore,(R, <) is a weak simulation.

Finally, whenever(g, ¢'), (3, ¢') are distinct edges off andk; € <(g,9', ko) N
$(9,4', ko), thenp(k;) € s(g,9', p(ko)) N s(g,d, p(ko)). Since(R,s) has thex-

property, we get{ ¢,¢', 4,5’ }| = 3. It follows that( R, <) has thex-property. O

6.4 Properties of strongly synchronizing games

Lemma 6.5. If GG is strongly synchronizing, then the unique winning strategthe
game(, () is the copycat strategy.

Proof. Let us consider a position € Pos&, and let us analyze the positign, ¢)
of (G,G). Let us suppose thdly,¢’) € M and consider the possible Mediator’s
answers to the Opponents’ moe ¢) — (¢, 9).

9Observe that the condition on the cardinality implies thateannot havégs , g2), (g2, 91) € C(h).
Thus, the requirement that has no directed cycles of lengzhis somewhat superfluous.
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Mediator cannot answey’, g) — (¢”, ¢), since then the relatiof7, ¢'’) < (G, g)
implies that eithey” = ¢ (hence having a cycle of lengthin &), or that there is an
undirected edge betwegfi andg, thus creating a lengthcycle.

Similarly Mediator cannot answey’, ¢) — (¢’, §) with ¢’ # §. Again, this would
create a length cycle in the undirected version 6f. O

Lemma 6.6 (i.e. lemmdZR).Let G be a strongly synchronizing and, ¢'), (,7') €
M,
1. If (G, g) ~ 2 theng € Pos% andA(g) = .
2. If g, € Pos& and, for some gam& andh € Pos'!, we have
(G.g") <(H h) < (G g)and(G,§') < (H,h) < (G, 3),

theng =gorg' =g’ and[{g,9, 5,9 } = 3.
3. Ifg € Pos andg € Pos§ and, for somd? andh € Pos!, we have
(G,¢") < (H,h) < (G,g) and(G,§) < (H,h) < (G,7),

theng =g’ org’ =g, and|{g,¢',3,9' }| = 3.

Proof. 1. Let x¢ be the set of free variables 6f. First, we have the following
claim.

Claim6.7: If (G,g) ~ z, thenz € xg.

Proof. Onthe one hand, if ¢ x¢ thenG[z/T] ~ G[z/L]. One the other hand,
Glz/T] ~ z[x/T] ~ TandG[z/L] ~ &[x/L] ~ L, thusL = T. This ends
the proof of the claim. O

If ¢ has a successor, then the winning strateg§(inz, ) will suggest for ex-
ample to play(g, p{,9) = (¢, p%,9) = (¢',pL, '), for some(g,g') € M,
Therefore(G, g) ~ & ~ (G, ¢'), contradicting the fact that' is strongly syn-
chronizing. Thug has no successor, and cleaglye Pos$ and\%(g) = =,
according to the claim.

2. We derive first(G, ¢') < (G,§) and(G,§') < (G, g¢) and observe that each
inequality is strict, because the game is bipartite. Tleeesfrom item 2 of Defi-
nitionEZl we have a diagram of the form

> /

- O
o ——> @

A

o

that is we have an undirected edge bewtgeand §’, and an undirected edge
betweery’ andg.

If ¢ # g andg’ # §’, then the above diagram gives rise to an undirected cycle of
length4, which cannot happen.
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3. As before, we derivéG, 3) < (G,g) and (G, ¢') < (G,§") and moreover
(G,3) < (G,g)and(G, ¢') < (G, §'), sinceg andg belong to opposite players.
Therefore from item 2 of definitidEa.1 we obtain a diagramhef form

g g
g g

If ¢ # ¢ andg’ # g, then the above diagram gives rise to an undirected cycle of
length4, which cannot happen.

>

<

O

6.5 The gamegy, are strongly synchronizing

Itis clear that the gamé',, is bipartite and (G,,) = n, moreover the girth of,, is 6.
To accomplish the proof thét,, is stronlgy synchronizing, we need some intermediary
lemmas.

Lemma 6.8. If (G, w; ;1) < (Gn,g) then eitherg = w; ;, or g € PosG™ and
g = Vijk-

Proof. Case (i). If ¢ = w;s ;: x+, then surely we need to havg j, k) = (¢, j', k').

Let thereforeg = Vi’ k-
Case (ii). If g € Posf” and (i, j, k) # (¢,4', k"), Opponents can choose to move
(Wi j ke, vir jr k) = (wi 5k, wir o ), the latter being a lost position for Mediator.
Case (iii). Ifg e Posf" and (4,7, k) = (¢,7, k"), Opponents can choose to
move(wiyjyk, viyjyk) — (wiyjyk, vilyjlyk/) with (i,j, k’) ;ﬁ (i/,j/, k’/) From this pOSitiOﬂ
Mediator cannot mOVéwZ’J”k, vilyjlyk/) — (wiyjyk, wilyjlyk/), nor (wiyjyk, vilyjlyk/) —
(w j 1, vin o i), since the girth ofG,, being equal to6 implies that(z, j, k) #
(i//, j//, k’//) andvi/gj/gk// € POSi", falling back into casmi).
Case (iv). If g € Posg" and(i,j, k) # (¢,4',k"), then Mediator cannot move
(wiyjyk,vizyjzyk/) — (wiyjyk,wizyjzykz). He cannot either movf:wi,j,k,vigj/,kz) —
(Wi j s, vin ju ) SiNCEV ju o € PosG™, thus falling back either into caf&Yii), or

into casd{III).
Therefore, the only possibility is thate Pos3" and(i, j, k) = (¢/, ', k). O

Dualizing the previous proof we obtain:

Lemma 6.9. If (G, g) < (Gn,wi ;) then eitherg = w; ;5 or g € Pos$" and
g = Vijk-

Lemma 6.10. If (G,viyjyk) S (G,vilyjlyk/) andviyjyk ;ﬁ Uil 57 k' then eitherviyjyk S
Pos{{™ and (vi k. virjoxr) € M, o v € Posgr and (vir jrwr, vijn) €
MG~
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Proof. Let us suppose that ; , € Pos$". We remark thav; .+ ¢ Pos%", and
thus we split the proof into two cases.
Case (). If vir i € PosGr, then Opponents can move; ; x, virjr i) —
(viyjyk, wilyjlyk/). This is a lost position by LemnE®.9.
Case (ii). Therefore we have; ;i . € Posg". Mediator has two kinds of moves. He
can choose to move to a “variable”, that is, to mOug; x, vir j+ k1) — (Vi j &, Wir j1 1)
or (vijk,virjr k) — (wijk, v k). These moves, however, lead to lost posi-
tions, by Lemmaf8 arli®.9. Therefore, if the posifian ., v; ;) is winning,
then he can only movéviyjyk,vizyjzyk/) — (viyjyk,viuyjuyku) or (viyjyk,vizyjzykz) —
(viuyjuyku, vilyjlyk/). In the first case, if the positio(n;iyjyk, viuyjuyku) is Winning, then
(i,7,k) = (&, 7", k") by casdl); henc€v;: ;1 k', vi j 1) € M. In the second case,
if Mediator moves to a Winning pOSitiCXﬂ)iyjyk, vilyjlyk/) — (viuyjuyku, vilyjlyk/), then
(&, j', k") = (", 5", k") by the dual of casEJi) and hente ; s, vir j1 1) € Mn.

O

Thus we are ready to prove:
Proposition 6.11. The games/,, are strongly synchronizing.

Proof. Let us prove first thatG, g) ~ (G, §) impliesg = §. Let us assume that
(G,g) ~ (G, 3), we split the proof thay = § into three cases, according to the color
of g.

Case (i). Assumeg € Pos5" and thus ley = w; j 5. If g # §, then Lemm4ZEI8
implies thatj = v; j x With § € Pos%. Similarly LemmalBIP implies that = v, ; 5
with g € Posf". Thus we reach a contradiction, and therefpee g.

Case (ii). Letus assume that = v; ;jx € Pose". Then(G,wiix) < (G, g) ~
(G, ) and thereforg = v; ; . by LemmdRB.

Case (jii). If g = vijx € Pos§* then(G,§) ~ (G,g) < (G, w; ;) and therefore

g = v; j 1 by LemmcRD.

Let us now prove that(?, g) < (G, §) andg # g impliesg € Posg" and(g,g) €
MC% org € Posg" and(g,j) € M%».

This is the case iff € Pos%" or § € Poss, by Lemmadialg anfl.9. If both
9.3 € Posg",, then the statement follows from LemilZCg. 10. O
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