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The Variable Hierarchy
for the Gamespu-Calculus

Walid Belkhir and Luigi Santocanale

Laboratoire d’Informatique Fondamentale de Marseille
Université de Provence

Abstract. Parity games are combinatorial representations of closedle®n
u-terms. By adding to them draw positions, they have beemizgd by Arnold
and one of the authorﬂ ﬂ,2] intogacalculus ﬂ%]. As done by Berwanger et al.
[E,B] for the propositional modal-calculus, itis possible to classify parity games
into levels of hierarchy according to the number of fixedapeariables. We ask
whether this hierarchy collapses w.r.t. the standardpnétation of the games-
calculus into the class of all complete lattices. We anshierquestion negatively
by providing, for eacln > 1, a parity game=,, with these properties: it unravels
to au-term built up withn fixed-point variables, it is semantically equivalent to
no game with strictly less tham — 2 fixed-point variables.

1 Introduction

Recent work by Berwanger et g [{.5]6,7] proves that theasgive power of the modal
p-calculus [B] increases with the number of fixed point vagabBy introducing the
variable hierarchy and showing that it does not collapssy; thanage to separate the
calculus from dynamic game Iogiﬂ [9]. Their work solves agstanding open problem
but may also be appreciated for its new insights and the negareh paths it discloses
within the theory of fixed-points in computer scienm,l‘ﬂ@ already engaged in
following one of these pathﬂll], we deal here with a logfmalblem. The variable
hierarchy may be defined for evepycalculus and even for iteration theories, since
just one fixed-point operator is sufficient to define it. In @pinion, asking whether
the variable hierarchy for a-calculus is strict is as fundamental as considering the
alternation-depth hierarchy. In this paper we ask this tijpre for the gameg-calculus.

Parity games are combinatorial representations of closetHan:-terms. By adding
to them draw positions (or free variables), A. Arnold and Bn®canale[[{}2] have
structured parity games intbe games:-calculus In other words, the authors defined
substitution, least and greatest fixed-point operatorasaal foru-calculi [E]. The in-
terpretation of the gamegscalculus is over the class of all complete lattié&agether
with its standard preorder, such a calculus may also be stutet as providing a con-
crete description of freg-lattices [TP].

Let us recall the background of the gamesalculus. The interaction between two
players in a game is a standard model of the possible interascbetween a system

! The interpretation in the class of distributive latticeskemthe calculus trivial, since every
u-term is equivalent to a term with no application of fixed+gabperators.
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and its potentially adverse environment. Researchers fiffierent communities are
still working on this model despite its introduction datesck at least fifteen years
[L3,L4[1F]. It was proposed ifi [[lL6] to develop a theory of camication grounded on
similar game theoretic ideas and, moreover, on algebraiceqs such as “free lattice”
[L7] and “free bicomplete categony’ [IL8]. A first work purslihis idea using tools of
categorical Iogic|E|9]. The proposal was further develo'me@] where cycles were
added to lattice terms to enrich the model with possibly itdibehaviors. As a result,
lattice terms were replaced by parity games, and one of thet im@resting tool from
the logics of programs was introduced into the semantics@jramming languages.
Given two parity gamess, H the witness that the relatiof < H holds in every
complete lattice interpretation is a winning strategy fgrascribed player, Mediator,
in a game(G, H). A gameG may also be considered as modelling a synchronous
communication channel available to two users. Then, a wistrategy for Mediator
in (G, H) witnesses the existence of an asynchronous protocol alipame user of7
to communicate with the other user éhensuring absence of deadlocks.

At present, a major interest of thiscalculus is opinion its contribution to the theory
of fixed-point logics. The idea that winning strategies faediator in the gaméG, H)
are sort of proofs was formalized iE[ZO]. More interestingiroof theoretic ideas and
tools — the cut elimination procedure angxpansion, in their game theoretic disguise
— have proved quite powerful to solve deep problems arigiog ffixed-point theory.
These are the alternation-depth hierarchy prob@] [21}aedtatus of the ambiguous
classes|]1]. In[||2] the authors were able to partially expbese ideas to the modal
p-calculus. We show here that similar tools success in @staby the strictness of the
variable hierarchy.

While dealing with the variable hierarchy problem for thergss ;i-calculus, we
shall refer to two digraph complexity measures, émtanglemenand thefeedback
The feedback of a vertex of a tree with back edges is the number of ancestors of
that are the target of a back edge whose source is a descaridarithe feedback of
a tree with back edges is the maximum feedback of its vertides entanglement of a
digraphG, denotect (G), may be defined as followg:is the minimum feedback of its
finite unravellings into a tree with back edgd$hese measures are tied to the logic as
follows. A u-term may be represented as a tree with back-edges, thegigedbwhich
corresponds to the minimum number of fixed point variablexied in theu-term, up
to a-conversion. Also, one may consider terms of a vectgriahlculus, i.e. systems of
equations, and these roughly speaking are graphs. Thehstepanstructs a canonical
solution of a system of equations by meang.é¢erms amounts to the construction of a
finite unravelling of the graph. In view of these considemasi, asking whether a parity
gameG is semantically equivalent to a-term with at mostr-variables amounts to
asking whethe€ belongs to the levef,, defined as follows:

Lo={GeG|G~HwithH € Gand(H) <n}. (1)

Hereg is the collection of parity games with draw positions andenotes the semantic
equivalence. In this paper we ask whether the variable fuleyamade up of the levels
L., collapses: is there a constant 0, such that for alh > k, we havel, = £,? We

answer this question negatively, there is no such condtémshall construct, for each
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n > 1, a parity game,, with two properties: (iX7,, unravels to a tree with back edges
of feedbackn, showing that=,, belongs taZ,,, (i) G,, is semantically equivalent to no
gameinL,,_s. Thus, we prove that the inclusiods,_3 C £, n > 3, are strict.

We combine in this work ideas of][4,5] with the ideas pf]|[21] tre alternation
depth of the gameg-calculus. On the one hand, our ganigs mimic then-cliques
of [,E] that are shapes for hagdformulae built up withn fixed point variables. On
the other hand, we adapt the notion of synchronizing ga@}et{ﬂme context of the
variable hierarchy. A strongly synchronizing gaeémposes strong conditions on the
structure of a gamé/ that is semantically equivalent @: every move (edge) iid-
can be simulated by a non empty finite sequence of moves (j @lath; if two paths
simulating distinct edges do intersect, then the edgestdosiect as well. We formalize
such situation within the notion efweak simulation. The main result is that if there
is ax-weak simulation of7 by H, then&(G) — 2 < £(H). The latter statement holds
in the general context of digraphs, not just for the gameslculus, and might be of
general use.

Combining the result or-weak simulations with the existence of strongly synchro-
nizing gamess,, € £,,, we have been able to prove that the inclusiépss C £, are
strict. We do not yet know whethét,,_; & £,,. To prove the latter strict inclusions, we
might try to reduce the constahin thex-weak simulation Theorelml4. We remark on
the way that we are exhibited with another difference withdternation hierarchy for
which the infiniteness of the hierarchy implies that thelisans between consecutive
classes are strict. We pinpoint next some more problemsgfi®m the present work.
The reader will notice that the number of free variables ia games5,, increases
with n. He might therefore ask whether hard games can be consirusieg a fixed
number of free variables. The question might be answeredplpiging the fact that
a countable number of generators (i.e. free variables) eagirbulated within the free
lattice on three generatol?.l,ﬁ]. Such kind of simulation calls for a more general
problem, that of interpreting somecalculus into another one. We do not know about
existing results in this direction. Yet we are appealed whsaigeneral question since
translations might be of help in relating analogous andlf@rasults proved so far for
differentu-calculi.

The paper is organized as follows. Sectﬂ)n 2 introduces ¢oegsary background
on the algebra of parity games and their organization intecalculus. In sectiof] 3,
we firstly recall the definition of entanglement; then we detimex-weak simulation
between graphs that allows to compare their entanglembntsectionl}l, we define
strongly synchronizing games and we shall prove thandnessw.r.t the variable hi-
erarchy, in particular every equivalent game to a stronghchkronizing one is related
with it by ax-weak simulation. In sectidﬂ 5, we construct strongly syoofzing games
of arbitrary entanglement. We sum up the discussion in oum nesult, Theorerﬂg.

Notation, preliminary definitions and elementary facts.If G is a graph, then a path
in G is a sequence of the form= ggg; ... g, suchthafg;, g;+1) € Eg for0 <i < n.
A path issimpleif g; # g; fori,j € {0,...,n} andi # j. The integern is the length
of 7, go is the source ofr, notedéym = go, andg, is the target ofr, notedj;m = g,,.
We denote byi7T ™ (G) the set of simple non empty (i.e. of length greater thppaths
in G. A pointed digraphV, E, vy) of rootuvy, is atreeif for eachv € V there exists a
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unique path fromy, to v. A tree with back-edgeis a tuple7 = (V, T, vo, B) such that
(V,T,vo) isatree,and3 C V x V is a second set of edges such thatify) € B then

y is an ancestor of in the tree(V, T, vy). We shall refer to edges ifi as tree edges and
to edges inB as back edges. We say that V' is a return of7 if there existst € V
such that(z, r) € B. Thefeedback of a vertexis the number of returnson the path
from v to v such that, for some descendandf v, (x,r) € B. Thefeedback of a tree
with back edgess the minimum feedback of its vertices. We shall say that iatpd
directed graphi{V, E, vp) is a tree with back edges if there is a partitionfofnto two
disjoint subsetd", B such thatV, T, vy, B) is a tree with back edges.

If 7 is atree with back edges, then a patffican be factored as = 7y *. . .xm,, *T,
where each factor; is a sequence of tree edges followed by a back edger alwks
not contain back edges. Such factorization is uniquelyrdeteed by the occurrences of
back edges imr. Fori > 0, letr; be the return at the end of the factqr Let alsor be
the source ofr. Let theb-length ofr be the number of back edgessini.e.r; = d17;.
For theb-length of

Lemma 1. If 7 is a simple path ob-lengthn, thenr,, is the vertex closest to the root
visited byr. Hence, if a simple path lies in the subtree of its source, then it is a tree
path.

We shall deal with trees with back-edges to which a givenlyrapavels.

Definition 2. A coveror unravellingof a (finite) directed graph is a (finite) graph
K together with a surjective graph morphigm K — H such that for each € Vi,
the correspondence sendikgo p(k) restricts to a bijection fror{ k € Vi | (v, k) €
Ex}tto{heVy|(p(v),h) € Ex }.

The notion of cover of pointed digraphs is obtained from trevjwus by replacing the
surjectivity constraint by the condition thapreserves the root of the pointed digraphs.

2 The Gamesu-Calculus

In this section we recall the defintion of parity games withwids and how they can be
structured as a-calculus. We shall skip the most of the details and focug onlthe
syntactical preoder relatiod betweernu-terms that characterizes the semantical order
relation.

A parity game with drawss a tupleG' = (Pos$, Pos§, Pos$, MY, p%) where:

— Pos%, Pos§, Pos% are finite pairwise disjoint sets of positions (Eva’s pasit,
Adam’s positions, and draw positions),

— ME, the set of moves, is a subset(@tos% U Pos§) x (Pos% U Pos§ U Pos%),

- p% is a mapping fron{ Pos& U PosG) to N,

Whenever an initial position is specified, these data defiganae between player Eva
and player Adam. The outcome of a finite play is determinedmaticg to the normal
play condition: a player who cannot move loses. It can alsa lkeaw, if a position
in Pos% is reached. The outcome of an infinite play (gx,gr+1) € MY }iso is

2 Observe that there are no possible moves from a positidtoif;.
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determined by means of the rank functipfi as follows: it is a win for Eva iff the
maximum of the sefi € N | Finfinitely manyk s.t. p%(gx) = i } is even. To simplify
the notation, we shall usBos$; 4 for the setPos U Pos§ and use similar notations
such asPos p,, etc. We letMaz® = max p®(Pos§ 4) if the setPos% , is not
empty, and\/az® = —1 otherwise.

To obtain au-calculus, as definecﬂ[&Z], we label draw positions with variables
of a countable seX. If \¥ : Posf — X is such a labelling andS € Pos% , |,
is a specified initial position, then we refer to the tupdg p&, \) as a labeled parity
game. We denote b§f, the game that differs fror& only on the starting position, i.e.
pfg = g, we shall write(G, g) to mean that the play has reached posigoliVe letZ
be the game with just one final draw position of zero prioritd é&abeled with variable
x. With G we shall denote the collection of all labeled parity gamesn@a confusion
will arise, we will call a labeled parity game with simply “ge”.

As ap-calculus, formal composition and fixed-point operatioreg/rhe defined on
G; moreoverG has meet and join operations. The reader is invited to Be?gl[@,Z]
for the definitions of these operations. We believe that tgetaaic nature of parity
games is better understood by defining their semantics. i$qthal, let us define the
predecessor gan@—, for G a game such that/az® # —1, i.e. there is at least one
position in POS%A. Let Top® = {g € POS%A | p%(9) = Max®}, thenG~ is
defined as follows:

— Pos%i = Posg — TopG, POSIC{ = Posg — TopG, Pos%f = Posg U TopG,
- M& =M% — (Top® x POS%AD),
— p“ s the restriction op“ to Pos ,.

Given a complete lattic&, the interpretation of a parity gante in L is a monotone
mapping of the form{G| : LPS — [FPEa , whereLX is the X -fold product lattice
of L with itself. The interpretation of a parity game is defineduntively. Ing’I4 =0,
thenLFa = [0 — 1, the complete lattices with just one element, and theress ju
one possible definition of the mappig|. Otherwise, ifM ax is odd, therl G| is the

parameterized least fixed-point of the monotone mapphfggA x LP5 — [PEa
defined by the system of equations:

V{zg|(g.9) e M®} if g€ PosGnTop®,

z,=3 N{zygl|(g,9)e M%} ifge Pos§nTop®,
”G; ”(XTopGaXPosg) otherwise

If Maz® is even, therjG| is the parameterized greatest fixed-point of this mapping.

The preorder on G. In order to describe a preorder on the clgssve shall define a

new gameG, H) for a pair of games? andH in G. This is not a pointed parity game
with draws as defined in the previous section; to emphasigdaht, the two players

will be named Mediator and Opponent instead of Eva and Adam.

Definition 3. The gameG, H) is defined as follows:
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— The set of Mediator’s positions Bos§ x Posfl ;, U Pos§ |, x Posy; U L(M),
and the set of Opponent's positionsiss x Posfl 4 , U Pos% 4 p x Posi{ U
L(0), whereL(M), L(O) C Pos$ x Post are the losing positions for Mediator
and Opponents respectively. They are defined as follog.Af € Pos$ x PosH,
then: if \&(g) = Af(h), then the positiorig, h) belongs to Opponents, and there
is no move from this position, hence this is a winning posifir Mediator. If
A\%(g) # M (h), then the positiorig, 7) belongs to Mediator and there is no move
from this position. The latter is a win for Opponents.

— Moves of(G, H) are either left movegg, h) — (¢', h), where(g,g') € M, or
right moves(g, k) — (g,h’), where(h,h') € M*; however the Opponents can
play only with Eva orG or with Adam on H.

— A finite play is a loss for the player who can not move. An irdiplay~ is a win
for Mediator if and only if either its left projectionis () is a win for Adam, or its
right projectionr () is a win for Eva.

Definition 4. If G and H belong toG, then we declare that: < H if and only if
Mediator has a winning strategy in the garf@, H) starting from positior(p&, p?).

The following is the reason to consider such a syntactidiozla

Proposition 5. The relation< is sound and complete with respect to the interpretation
in any complete lattice, i.¢7 < H if and only if |G| < |H]| holds in every complete
lattice.

In the sequel, we shall writ&’ ~ H to mean thatz < H and H < G. For other
properties of the relatiort, see for example Propositi@nas of [. One can prove that
G < G, by exibing thecopycatstrategy in the gamé&=, G): from a position(g, g),

it is Opponent’s turn to move either on the left or on the righard. When they stop
moving, Mediator will have the ability to copy all the movdayed by the Opponents
so far from the other board until the play reaches the pas(ijt ¢'). There it was also
proved that ifG < H andH < K thenG < K, by describing a gamé&=, H, K)
with the following properties(1) given two winning strategie® on (G, H), andS on
(H, K) there is a winning strategi||.S on (G, H, K), that is the composition of the
strategiesk andS, (2) given a winning strateg¥ on (G, H, K), there exists a winning
strategyl\ i on (G, K).

The game(G, H, K) is the fundamental tool that will allow us to deduce the de-
sired structural properties of gamg&swhich are equivalent to a specified gatgby
considering the gam@, H, G), sectior4. The gamg=, H, K ) is obtained by gluing
the gamesG, H) and(H, K) on the central board as follows.

Definition 6. Positions of the gaméG, H, K) are triples (g, h, k) € Posfj_’EﬂD X
Pos!{ ;, , x Pos’ 1, such that

— the set of Mediator’s positions is

Pos§ x Pos'l ) x Posk , U Pos§ , x Pos'l  , x Pos& U L£(M)
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and the set of Opponent’s positions is
Pos€ x Pos! p p x Pospy 4 p U P08g7A7D x Pos!{ j p x Posk U L£(0),

whereL(M), L(O) C Pos$ x Pos"{ , ,x Poss are positions of Meditor and Op-
ponents, respectively, defined as follows. Whengveér k) € Pos$ xPosﬁEp X
Poss, thenifh € Posp 4, then the positiorig, 2, k) belongs to Mediator, other-
wise, i.e.h € PosH, then the final positiotig, i, k) belongs to Opponents if and
only if \%(g) = M (h) = AE (k).

— Moves of(G, H, K) are either left move$g, h, k) — (¢, h, k) where(g,¢’) €
M© or central movesg, h, k) — (g, ', k), where(h,h') € M*, or right moves
(g,h,k) — (g,h, k"), where(k, k") € M*¥; however the Opponents can play only
with Eva onG or with Adam onk'.

— As usual, a finite play is a loss for the player who cannot méweinfinite playy
is a win for Mediators if and only ifr¢ () is a win for Adam orG, or i () is a
win for Eva onk.

3 Entanglement andx-Weak Simulations

Let us recall the main tool which measures the combinatesaénce of the variable
hierarchy level on directed graphs. This is #r@anglemensof a digraphG and might
already be defined ahe minimum feedback of the finite unravelingg-ointo a tree
with back edgesThe entanglement off may also be characterized by means of a
special Robber and Cops gadigG, k), k = 0,...,|Vg|. This game, defined if][7],
is played by Thief against Cops, a tehai k& cops, as follows.

Definition 7. The entanglement gandg€G, k) of a digraphG is defined by:

— Its positions are of the fornfv, C, P), wherev € Vg, C C Vg and|C| < k,
P € {Cops, Thief}.
— Initially Thief chooses, € V' and moves tdvg, 0, Cops).
— Cops can move frorfw, C, Cops) to (v, C’, Thief) whereC’ can be
1. C : Cops skip,
2. CU{wv} : Cops add a new Cop on the current position,
3. (C\{x})uU{wv}:Cops move aplaced Cop to the current position.
— Thief can move frontw, C, Thief) to (v', C, Cops) if (v,v") € Eq andv’ ¢ C.

Every finite play is a win for Cops, and every infinite play isia for Thief.

The following will constitute our working definition of emglement:£(G), the en-
tanglement of7, is the minimunk € {0,...,|Vs|} such that Cops have a winning
strategy in€(G, k). The following proposition provides a useful variant of amgle-
ment games.

Proposition 8. Let g(G, k) be the game played as the gafg7, k) apart that Cops
is allowed to retire a number of cops placed on the graph. Thatops moves are of
the form

3 We shall use the singular to emphasize that Cops constite@na
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- (9,C,Cops) — (g,C", Thief) (generalized skip move),
- (g9,C,Cops) — (g,C" U{ g}, Thief) (generalized replace move),

where in both cases” C C. Tflen Cops has a winning strategy8(G, k) if and only
of he has a winning strategy (G, k).

*-Weak Simulations. We define next a relation between graphs, calledeak simu-
lation, that we shall use to compare their entanglements. Inéljtithere is ax-weak
simulation of a grapltz by H if every edge ofGG is simulated by a non empty finite
path of H. Moreover, two edges, , e of G hot sharing a common endpoint, are sim-
ulated by pathsr;, w2 that do not intersect. These simulations arise when consgle
gamesH which are semantically equivalent to some strongly synaiaing gameG,

as defined in Sectidi 4.

Definition 9. A weak simulation( R, ) of G by H is a binary relationR C Vi x Vi
that comes with a partial function: Vi x Vo x Vg — II'M(H), such that:

— Ris surjective, i.e. for every € Vi there existg € Vi such thayRh,
— Risfunctional, i.e. ifg; Rh for i = 1,2, theng; = go,
— if gRhandg — ¢, theng(g, ¢’, h) is defined andv’ = d1<(g,¢’, k) is such that

g RN .

Now we want to study conditions under which existence of akvggaulation ofG
by H implies that€ (G) is some lower bound & (H ). To this goal, we abuse of notation
and writeh € ¢(g, ¢, ho) if <(g,9’, ho) = hohy ... hy, and, for some € {0,...,n},
we haveh = h;. If G = (Vg, E¢) is a directed graph then its undirected version
S(G) = (Va, Es(c)) is the undirected graph such tat ¢'} € Eg(q) iff (9,9') € Ec
or(¢',g) € Eg. Thus we say that? hasgirth at leastk if the shortest cycle irf (G)
has length at leadt, G does not contain loops, arid, ¢') € E implies(¢’, g) € Fq-.

Definition 10. We say that a weak simulatidi®, ) of G by H is ax-weak simulation
(or that it has thex-property) if G has girth at least, and if (g, g'), (g, ) are distinct
edges oty andh € §(g, g/a h()), g(gv g/, h()), then|{ 9, glv gv g/ }| =3.

We explain next this property. GiveiR, <), consider the set
C(h) ={(9,9') € Eg | Iho st.h €<(g,9',ho) } .

Lemma 11. Let (R, ) be ax-weak simulation ofz by H. If C'(h) is not empty, then
there exists an elemeath) € Vi such that for eaclig, ¢’) € C(h) eitherc(h) = g or
c(h) = ¢'. If moreoverC(h)| > 2, then this element is unique.

Thatis,C'(h) considered as an undirected graph, is a star. Sifigds unique whenever
|C(R)| = 2, thenc(h) is a partial function which is defined for allwith |C(h)| > 2.
This allows to define a partial functioh: Vg — Vi, which is defined for all thé
for whichC(h) # 0, as follows:

c(h), [C(h)| =2,
flh) =<y, if C(h) ={(g,9")} andh has no predecessor (2
q, otherwise, provided that' (k) = { (g,9’) } .
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Let us remark that ifh € <(g,9’,ho), thenf(h) € {g,¢'}. If gRh andh has no
predecessor, thef(h) = g. Also, if " is the target o (g, ¢’, ho) andg’ has a successor,
thenf(h') =¢'.

Lemma 12. If (R,<) is a x-weak simulation ofx by H andp : K — H is an
unravelling ofH, then there exists &weak simulatior{ R, <) of G by K.

Let us now recall that iff is a tree with back edges, rooted/gt of feedbacki, then
Cops has aanonical winning strategiy the game (H, k) from position(hg, C, Cops).
Every time a return is visited, a cop is dropped on such amettia cop has to be re-
placed in order to occupy such a return, then the cop whicloisest to the root is
chosen.

Remark 13.Let us remark that, by using the canonical strategy, (i)yepath chosen
by Thiefin H is a tree path, (ii) if the position ifi( H, k) is of the form(h, C, Thief),
andh’ # his in the subtree ok, then the unique tree path frointo i’ does contain
no cops, apart possibly for the vertexFinally, a vertexh € Vy determines a position
(h,Cu(h), Thief) in the gameE(H, k) that has been reached from the initial position
(ho,0,Cops) and where Cops have being playing according the canonickgy.
Cr(h) is determined as the set of returnsf H on the tree path from, to 4 such that
the tree path from to h contains at most returns.

The following Theorem establishes the desired connectitwéden-weak simula-
tions and entanglement.

Theorem 14. If (R, <) is ax-weak simulation ofF by H, then&(G) < E(H) + 2.

Proof. Letk = £(H). We shall define first a strategy for Cops in the gaft@, k+2).
In a second time, we shall prove that this strategywsraningstrategy for Cops.

Let us consider Thief’s first move ifi(G, k + 2). This move pickg € G leading
to the position(g, #, Cops) of g(G, k + 2). Cops answers by occupying the current
position, i.e. he moves tQy, { g }, Thief). After this move, Cops also chooses a tree
with back edges of feedbadkto which H unravel,x : 7(H) — H, such that the
root by of 7 (H) satisfiesyRw(ho). WE can also suppose thia is not a return, thus
it has no predecessor. According to Lenmla 12 we can lifktheak simulation(R, <)
to ax-weak simulatior( R, ¢) of G by 7 (H). In other words, we can suppose from now
on thatH itself is a tree with back edges of feedbackooted ath, and, moreover, that
thQ
_ From this point on, Cops uses a memory to choose how to plgzeindhe game
E(G,k + 2). To each Thief’s positiortg, Ce, Thief) in (G, k + 2) we associate a
data structure (the memory) consisting of a triplg, C, Thief) = (p, c, h), where
¢,h € Vi andp € VgU{ L } (we assumethat ¢ V). Moreover is an ancestor of
in the tree and, whenevpr# L, p is an ancestor aof as well.

Intuitively, we are matching the play 8 G, k+2) with a play in€(H, k), started at
the roothy and played by Cops according to the canonical strategy. & lauthe vertex
of H currently occupied by Thief in the gand¢ H, k).* Instead of recalling all the play

* More precisely we are associating to the positignCc, Thicf) of £(G, k + 2) the position
(¢, Cu,Thief)in E(H, k), whereCy is determined a€'y = Cr (c) as in Remarl 13.
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(that s, the history of all the positions played so far), veed to record the last position
played in€(H, k): this is p, which is undefined when the play begins. Copgbare
positioned on the images of Cops Arby the functionf defined in KIZ). Moreover, Cops
eagerly occupies the last two vertices visitedcarThief’s moves orGG are going to be
simulated by sequences of Thief’s movesinusing thex-weak simulation( R, <). In
order to make this possible, a simulation of the far@, g, ) must be halted before
its targeth; the current positior is such halt-point. This implies that the simulation
of g — ¢’ by (R, ) and the sequence of moveshihmatching Thief’'s move oxr are
sligthly out of phase. To cope with that, Cops must guesswaack what might happen
in the rest of the simulation and this is why he puts cops orcthreent and previous
positions inG. We also need to record the target of the previous simulation into the
memory.

The previous considerations are formalized by requirirggftllowing conditions
to hold. To make sense of them, let us say theip }) = f(p) if p € Vg and that
f{p}) =0if p= L. Inthe last two conditions we require thatt L.

o Co=f(Cr(e)Uf({p})U{g}, (CoPS)

e f(c)=g, andf(r) € f({p}U{g}, (TAIL)
whenverh' lies on the tree path fromto 4 .

e f(p) — g, f(p)Rhfor someh € Vi, c € <(f(p),g,h), (HEAD)
andh is the target of (f(p), g, ) ,

e on the tree path fromp to ¢, c is the only vertex s.tf(c) = g. (HALT)

Sinceh, has no predecessors, thglih implies f (ho) = g. Thus, at the beginning,
the memory is set to.L, h, ho) and conditions[(COPS) anfi (TAIL) hold.

Consider now a Thief’s move of the forfn, C;, Thief) — (¢', Cq, Cops), where
g ¢ Cg. If ¢’ has no successor, then Cops simply skips, thus reaching rangin
position. Let us assume that has a successor, and wrigég, ', h) = hhq ... hy,

n > 1; observe thaff (h,,) = ¢'. If for somei = 1,...,n h; is not in the subtree of
¢, then the strategy halts, Cops abandons the game and |@ibeswise, all the path
m = c...hhy...h, lies in the subtree of. By eliminating cycles fromr, we obtain
a simple pathr, of sourcec and target:,,, which entirely lies in the subtree ef By
LemmaD.,a is the tree path frona to h,,. An explicit description ot is as follows:
we can writeo as the compose, * o1, where the target ofy and source of; is the
vertex ofs(g, ¢, h) which is closest to the rodty; moreovers, is a prefix of the tree
path frome to h, ando; is a postfix of the path(g, ¢, h).

We cuto as follows: we let’ be the first vertex on this path such thidt’) = ¢'.
Thief’s moveg — ¢’ on G is therefore simulated by Thief’s moves franto ¢’ on H.
This is possible since every vertex lies in the subtree afid thus it has not yet been
explored. Cops consequently occupies the returns on tttis fheus modifyingCy to
Cy =Cu(d)=(Cy\ X)WY, whereY is a set of at most vertexes containing the
last returns visited on the path frasio ¢'.

After the simulation orff, Cops moves tdg’, Cf;, Thief) in 5~(G, k + 2), where
Ci = f(Cy) U{yg,d'}. Let us verify that this is an allowed move according to the
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rules of the game. We remark th&tY) C f({p})U{g,¢' } and therefore

Ce=fCa\X)Uf(Y)U{g, ¢}
=(fCu\X)U(fM\{d Hu{ghu{gd}=A4U{d},

whereA = f(Cir\ X)U(f(Y)\{g' )U{g} C F(Ca)Uf({p})U{g} = Co. After
the simulation Cops also updates the memowyitgy’, C(,, Thief) = (¢, ¢, hy). Since
f(¢) = g, then condition[[CORS) clearly holds. Alsf(c) = ¢ — ¢, gRh andh,, is
the target ok (f(c),¢’, h). We have also that’ € o, and hence’ € <(f(c¢), ¢, h),
since otherwise’ € oy and f(¢') € { f(p),g}, contradictingf(c’) = ¢’ and the
condition on the girth ofG. Thus condition [HEAP) holds as well. Also, condition
holds, since by constructiariis the first vertex on the tree path frarto h such
that f(¢') = ¢'. Let us verify that condition[(TAIL) holds: by constructigifc’) = ¢/,
and the path from’ to h,, is a postfix ofc(g, ¢, h), and hencef (h') € {g,q’ } if W
lies on this tree path.

Let us now prove that the strategy is winning: Cops will nedgaindon. To this goal
we need to argue that when Thief plays the mgve: ¢’ on G, then the simulation
¢(g,9',h) = hhy...h, lies in the subtree of. If this is not the case, let be the
first index such that; is not in the subtree of. Thereforeh; is a return and, by the
assumptions ot/ and the on canonical strategy, € Cy(c). Sinceh; € <(g,¢’, h),
f(hi) € {g,9'}. Observe, however that we cannot ha\(@;) = ¢', otherwiseg’ €
f(Cr(c)) C Cg. We deduce thaft(h;) = g and thaly € f(Cy) C Cq.

SinceCqe # L, then(g,Cq,Thief) is not the initial position of the play, so
that, if M (g, Cq, Thief) = (p,c,h), thenp # L. Let us now consider the last two
moves of the play before reaching positiopn Cq, Thief). These are of the form
(f(p),Cq,Thief) — (g,Cq,Cops) — (g,Cq,Thief), and have been played ac-
cording to this strategy. Singe¢ C, it follows that the Cop orh; has been dropped
on H during the previous round of the strategy, simulating theven(p) — g on G
by the tree path fromp to c. This is however in contradiction with conditioLT),
stating that is the only vertex: on the tree path from to ¢ such thatf (k) = c. a

4 Strongly Synchronizing Games

In this section we definstrongly synchronizingames, a generalization of synchroniz-
ing games introduced i [P1]. We shall show that, for evenngdl equivalent to a
strongly synchronizing gam@, there is a-weak simulation of7 by H.°

Letus say thafi € G isbipartiteif M C Pos% x Pos§ ;, U Pos§ x Posg .

Definition 15. A gameG is strongly synchronizingdf its is bipartite, it has girth strictly
greater thard and, for every pair of positiong, &, the following conditions hold:

1. if(G,g) ~ (G, k) theng = k.
2. if (G,g9) < (G,k) and (G, k) £ (G,g), thenk € Pos$ and(k,g) € M, or
g € Pos§ and(g, k) € MC.

5 In the sequel, we shall not distiguish between a game andhitsrlying graph.
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A consequence of the previous definition is tiiz only winning strategy for Medi-
ator in the gameG, G) is the copycat strategyrhus strongly synchronizing games
are synchronizing as defined ip J21]. We list next some usefoperties of strongly
synchronizing games.

Lemma 16. LetG be a strongly synchronizing and lgt, ¢'), (7, §') € M be distinct.

1. If (G, g) ~ i theng € Pos$ and\(g) = «.
2. If g, § € Pos§ and, for some gam& andh € Pos'!, we have

(G,g') < (H,h) <(G,g)and(G,g") < (H,h) < (G,7),

theng =gorg =g’ and[{g,9'.9.9'} = 3.
3. If g € Pos% andj = Pos§ and, for somedf andh € Pos™, we have

(G.g') < (H,h) < (G,g) and(G,g) < (H,h) < (G,7) ,

theng =g org’ = g,and|{g,9',3,7 }| = 3.
We are ready to state the main result of this section.

Proposition 17. Let G be a strongly synchronizing game, and kéte G be such that
G < H < G, then there is a-weak simulation ofr by H.

Proof. Let R, S be two winning strategies for Mediator {&7, H) and(H, G), respec-
tively. LetT = R||S be the composal strategy {t+, H, G). Define

gRhiff (g, h,g) is a position ofl" andg, h belong to the same player

We consider firstR and prove that it is functional and surjective.gifRh,i = 1,2
then (g1, h, g1) and(ga, h, g2) are positions ofl’, hence(G, ¢g1) < (H,h) < (G, g1)
and(G, g2) < (H,h) < (G, g2), consequentlyG, g1) ~ (G, g2) impliesg; = g2, by
definition. For surjectivity, we can assume that (a) algbsitions of are reachable
from the initial positionp®, (b) p& andp!’ belong to the same player (by possibly
adding toH a new initial position leading to the old one). Sinfgy is the copycat
strategy, givery € Pos$ , p,, from the initial position(p$, p, p) of (G, H,G),
the Opponents have the ability to reach a position of the fgynmi, g). The explicit
construction of the function will show thath can be chosen to belong to the same
player ag.

We construct now the functionso that(R,<) is a weak simulation. I Rh and
(9,9') € M€, then we construct = h, ..., h' such thaty’ Rh’. SinceG is bipartite,
thenh # B’ andw is nonempty. We let(g, ¢’, h) be a reduction ofr to a nonempty
simple path.

We assumeg, h) € (Pos%, Post), the case(g,h) € (Pos§, Pos'l) is dual.
From position(g, i, g) it is Opponent’s turn to move on the left, they choose a move
(9,9") € M©. Sinced is bipartite, we have either € Pos% or g’ € Pos§.

Case (i). If ¢’ € Pos% then the strategy’ suggests playing a finite path di,
(¢’ h,g) —* (¢',h*,g), possibly of zero length, and then it will suggest to play on
the external right board. An infinite path played only Bncannot arise, sincg is a
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winning strategy and such an infinite path is not a win for Mali. Sincel\\ 4 is the
copycat strategyl’ suggests the only move’, h*, g) — (¢, h*, ¢’). From this position

T suggests playing a path di leading to a final draw positioh; € Pos! as follows
(g’ h*, ") —* (¢',hy,g'), such that®(g’) = A (hy), thereforey’ Rh;.

Case (ii). If ¢’ € Pos§ then from position(¢’, h, g) it is Mediator’s turn to move.
We claim thatT” will suggest playing a nonempty finite patl/, h,g) —% (¢, 7/, g)

on the central boardf, whereh’ € Pos’f, and then suggests the mog, »’, g) —
(¢',1'.g'). Leth € Pos™ ; ;, be such that the positiofy’, &, g) has been reached
from (¢', h, g), through a (possibly empty) sequence of central moves, dyimd with

T. ThenT cannot suggest a move on the left bo&gtl h, g) — (9”, h, g), sincel\ g

is the copycat strategy. Also, if € Post, T cannot suggest a move on the right board
(¢'sh,g) — (¢',h,§). The reason is that = R||S, and the positiorih, ¢) of (H, G)
does not allow a Mediator’s move on the right board. Thus asece of central moves
on H is suggested by" and, as mentioned above, this sequence cannot be infinite.
We pretend that its endpoint € Posfl. We already argued that ¢ Pos, let us
argue thaty’ ¢ PosZ. If this were the case, then strate@ysuggests the only move
(¢'sh',g) — (g'shn,g'), henceG, ¢') ~ (H,1'). By Lemmd 16.1, we gef € Pos&,
contradictingy’ € Pos§.

This proves thafR, ) is a weak simulation. We prove next thak, <) has thex-
property, thus assume thiat € <(g, ¢’ ho), s(, 7', ho). Let us suppose first that § €
Posit. By looking at the construction of these paths, we obseragttie sequence of
moves

(gvh’()ag> - (g/vh’()vg) -7 (glvh’*ag> —* (g/vh’nvg) - (g/ahn;g/>
(§,h0,9) — (§'sho,9) =" (3", 10", 9) =" (s hins ) — (G, hm, §)

maybe played in the gamé&/, H, G), according to the winning strate@y= R||S. We
have therefore thd(z, ¢') < (H, h*) < (G, g) and(G, §') < (H,h*) < (G, §).% Con-
sequenty{ g,¢', 3,3 }| = 3, by Lemmd16.2. Ify € Pos% andj € Pos$, a similar
argument shows that the positiof#g, h*, g) and(g, h*, §') may be reached witf’ and
hence(G, ¢') < (H,h*) < (G,g) and(G,§) < (H,h*) < (G,§"). Lemmg1p.3 im-
pliesthen{ g,¢’, 3,3 }| = 3. Finally, the case§y, §) € { (Pos§, Pos$), (Pos§, Pos§) }
are handled by duality. This completes the proof of Proimsﬁ. a

5 Construction of Strongly Synchronizing Games

In this section we complete the hierarchy theorem by coaosiry, forn > 1, strongly
synchronizinggames,, such tha€(G,,) = n. This games mimic the-cliques already
used in [#] to prove that the variable hierarchy for the modahlculus is infinite. We

& Similar inequalites maybe derived evemif € Pos%. In this case the moves in the central
board may be interleaved with the move on the right board.
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begin by drawing the gam@,:

Copfens) ooy
Codeon @ | [ @ @)
(oo o) | [ Qo) o)
(oo o) | Qo) o)
Codeond @ |\ @) ()
CaDIS YD IS

The general definition of the gandg, is as follows. Le{n| denote the set0,...,n —
1}andletl, = {(,4,k) € [n] x [n] x [5] | kK = 0 impliesj = 0 }. We define

PosS™ = {wijx | (i,5,k) € I, andkmod2 =0},

PosSr = {wijx | (i,5,k) € I, andkmod2 =1},

PosSr = {wijr | (4,5,k) € 1, }.
LetX = {x; ;% | 4,5 > 0,k € [n]} be a countable set of variables, the labelling of

draw positions\&» : Pos%" — X, sendsw; ; x to z; j .. The moves\ & either lye
on some cycle:

Vi,0,0 = Vi j1, Vijk = Vigk+1, K=1,...,4, Vi j,5 = V5,0,0 5
or lead to draw positionsy; j . — w; ;. Finally, the priority functiorp®~ assigns a
constant odd priority to all positions. We state next themfiacts about the gamés,:
Proposition 18. The gamesr,, are strongly synchronizing anfi(G,,) = n.

The proof of the statement is omitted for lack of space. Wenaxre ready to state our
main achievement of this paper.

Theorem 19. For n > 3, the inclusions,,_3 C L,, are strict. Therefore the variable
hierarchy for the gameg-calculus is infinite.

By the previous Proposition the garig, € £,,. Also, sinceG,, is strongly synchro-
nizing, if H ~ G, then there exists aweak simulation ofz,, by H. It follows by
Theoren] 14 that — 2 < £(H). ThereforeG ¢ L,,_3.
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