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Abstract. Parity games are combinatorial representations of closed Boolean
µ-terms. By adding to them draw positions, they have been organized by Arnold
and one of the authors [1,2] into aµ-calculus [3]. As done by Berwanger et al.
[4,5] for the propositional modalµ-calculus, it is possible to classify parity games
into levels of hierarchy according to the number of fixed-point variables. We ask
whether this hierarchy collapses w.r.t. the standard interpretation of the gamesµ-
calculus into the class of all complete lattices. We answer this question negatively
by providing, for eachn ≥ 1, a parity gameGn with these properties: it unravels
to aµ-term built up withn fixed-point variables, it is semantically equivalent to
no game with strictly less thann − 2 fixed-point variables.

1 Introduction

Recent work by Berwanger et al. [4,5,6,7] proves that the expressive power of the modal
µ-calculus [8] increases with the number of fixed point variables. By introducing the
variable hierarchy and showing that it does not collapse, they manage to separate theµ-
calculus from dynamic game logic [9]. Their work solves a longstanding open problem
but may also be appreciated for its new insights and the new research paths it discloses
within the theory of fixed-points in computer science [3,10]. We already engaged in
following one of these paths [11], we deal here with a logicalproblem. The variable
hierarchy may be defined for everyµ-calculus and even for iteration theories, since
just one fixed-point operator is sufficient to define it. In ouropinion, asking whether
the variable hierarchy for aµ-calculus is strict is as fundamental as considering the
alternation-depth hierarchy. In this paper we ask this question for the gamesµ-calculus.

Parity games are combinatorial representations of closed Booleanµ-terms. By adding
to them draw positions (or free variables), A. Arnold and L. Santocanale [1,2] have
structured parity games intothe gamesµ-calculus. In other words, the authors defined
substitution, least and greatest fixed-point operators, asusual forµ-calculi [3]. The in-
terpretation of the gamesµ-calculus is over the class of all complete lattices.1 Together
with its standard preorder, such a calculus may also be understood as providing a con-
crete description of freeµ-lattices [12].

Let us recall the background of the gamesµ-calculus. The interaction between two
players in a game is a standard model of the possible interactions between a system
1 The interpretation in the class of distributive lattices makes the calculus trivial, since every
µ-term is equivalent to a term with no application of fixed-point operators.
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and its potentially adverse environment. Researchers fromdifferent communities are
still working on this model despite its introduction dates back at least fifteen years
[13,14,15]. It was proposed in [16] to develop a theory of communication grounded on
similar game theoretic ideas and, moreover, on algebraic concepts such as “free lattice”
[17] and “free bicomplete category” [18]. A first work pursued this idea using tools of
categorical logic [19]. The proposal was further developedin [12] where cycles were
added to lattice terms to enrich the model with possibly infinite behaviors. As a result,
lattice terms were replaced by parity games, and one of the most interesting tool from
the logics of programs was introduced into the semantics of programming languages.
Given two parity gamesG, H the witness that the relationG ≤ H holds in every
complete lattice interpretation is a winning strategy for aprescribed player, Mediator,
in a game〈G, H〉. A gameG may also be considered as modelling a synchronous
communication channel available to two users. Then, a winning strategy for Mediator
in 〈G, H〉 witnesses the existence of an asynchronous protocol allowing one user ofG
to communicate with the other user onH ensuring absence of deadlocks.

At present, a major interest of thisµ-calculus is opinion its contribution to the theory
of fixed-point logics. The idea that winning strategies for Mediator in the game〈G, H〉
are sort of proofs was formalized in [20]. More interestingly, proof theoretic ideas and
tools – the cut elimination procedure andη-expansion, in their game theoretic disguise
– have proved quite powerful to solve deep problems arising from fixed-point theory.
These are the alternation-depth hierarchy problem [21] andthe status of the ambiguous
classes [1]. In [2] the authors were able to partially exportthese ideas to the modal
µ-calculus. We show here that similar tools success in establishing the strictness of the
variable hierarchy.

While dealing with the variable hierarchy problem for the gamesµ-calculus, we
shall refer to two digraph complexity measures, theentanglementand thefeedback.
The feedback of a vertexv of a tree with back edges is the number of ancestors ofv
that are the target of a back edge whose source is a descendantof v. The feedback of
a tree with back edges is the maximum feedback of its vertices. The entanglement of a
digraphG, denotedE(G), may be defined as follows:it is the minimum feedback of its
finite unravellings into a tree with back edges. These measures are tied to the logic as
follows. A µ-term may be represented as a tree with back-edges, the feedback of which
corresponds to the minimum number of fixed point variables needed in theµ-term, up
to α-conversion. Also, one may consider terms of a vectorialµ-calculus, i.e. systems of
equations, and these roughly speaking are graphs. The step that constructs a canonical
solution of a system of equations by means ofµ-terms amounts to the construction of a
finite unravelling of the graph. In view of these considerations, asking whether a parity
gameG is semantically equivalent to aµ-term with at mostn-variables amounts to
asking whetherG belongs to the levelLn defined as follows:

Ln = {G ∈ G | G ∼ H with H ∈ G andE(H) ≤ n } . (1)

HereG is the collection of parity games with draw positions and∼ denotes the semantic
equivalence. In this paper we ask whether the variable hierarchy, made up of the levels
Ln, collapses: is there a constantk ≥ 0, such that for alln ≥ k, we haveLk = Ln? We
answer this question negatively, there is no such constant.We shall construct, for each
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n ≥ 1, a parity gameGn with two properties: (i)Gn unravels to a tree with back edges
of feedbackn, showing thatGn belongs toLn, (ii) Gn is semantically equivalent to no
game inLn−3. Thus, we prove that the inclusionsLn−3 ⊆ Ln, n ≥ 3, are strict.

We combine in this work ideas of [4,5] with the ideas of [21] onthe alternation
depth of the gamesµ-calculus. On the one hand, our gamesGn mimic then-cliques
of [4,5] that are shapes for hardµ-formulae built up withn fixed point variables. On
the other hand, we adapt the notion of synchronizing game [21] to the context of the
variable hierarchy. A strongly synchronizing gameG imposes strong conditions on the
structure of a gameH that is semantically equivalent toG: every move (edge) inG
can be simulated by a non empty finite sequence of moves (a path) of H ; if two paths
simulating distinct edges do intersect, then the edges do intersect as well. We formalize
such situation within the notion of⋆-weak simulation. The main result is that if there
is a⋆-weak simulation ofG by H , thenE(G) − 2 ≤ E(H). The latter statement holds
in the general context of digraphs, not just for the gamesµ-calculus, and might be of
general use.

Combining the result on⋆-weak simulations with the existence of strongly synchro-
nizing gamesGn ∈ Ln, we have been able to prove that the inclusionsLn−3 ⊆ Ln are
strict. We do not yet know whetherLn−1  Ln. To prove the latter strict inclusions, we
might try to reduce the constant2 in the⋆-weak simulation Theorem 14. We remark on
the way that we are exhibited with another difference with the alternation hierarchy for
which the infiniteness of the hierarchy implies that the inclusions between consecutive
classes are strict. We pinpoint next some more problems arising from the present work.
The reader will notice that the number of free variables in the gamesGn increases
with n. He might therefore ask whether hard games can be constructed using a fixed
number of free variables. The question might be answered by exploiting the fact that
a countable number of generators (i.e. free variables) can be simulated within the free
lattice on three generators [17,§1.6]. Such kind of simulation calls for a more general
problem, that of interpreting someµ-calculus into another one. We do not know about
existing results in this direction. Yet we are appealed by such a general question since
translations might be of help in relating analogous and parallel results proved so far for
differentµ-calculi.

The paper is organized as follows. Section 2 introduces the necessary background
on the algebra of parity games and their organization into aµ-calculus. In section 3,
we firstly recall the definition of entanglement; then we define the⋆-weak simulation
between graphs that allows to compare their entanglements.In section 4, we define
strongly synchronizing games and we shall prove theirhardnessw.r.t the variable hi-
erarchy, in particular every equivalent game to a strongly synchronizing one is related
with it by a⋆-weak simulation. In section 5, we construct strongly synchronizing games
of arbitrary entanglement. We sum up the discussion in our main result, Theorem 19.

Notation, preliminary definitions and elementary facts.If G is a graph, then a path
in G is a sequence of the formπ = g0g1 . . . gn such that(gi, gi+1) ∈ EG for 0 ≤ i < n.
A path issimpleif gi 6= gj for i, j ∈ { 0, . . . , n } andi 6= j. The integern is the length
of π, g0 is the source ofπ, notedδ0π = g0, andgn is the target ofπ, notedδ1π = gn.
We denote byΠ+(G) the set of simple non empty (i.e. of length greater than0) paths
in G. A pointed digraph〈V, E, v0〉 of root v0, is a tree if for eachv ∈ V there exists a



4 Walid Belkhir and Luigi Santocanale

unique path fromv0 to v. A tree with back-edgesis a tupleT = 〈V, T, v0, B〉 such that
〈V, T, v0〉 is a tree, andB ⊆ V ×V is a second set of edges such that if(x, y) ∈ B then
y is an ancestor ofx in the tree〈V, T, v0〉. We shall refer to edges inT as tree edges and
to edges inB as back edges. We say thatr ∈ V is a return ofT if there existsx ∈ V
such that(x, r) ∈ B. Thefeedback of a vertexv is the number of returnsr on the path
from v0 to v such that, for some descendantx of v, (x, r) ∈ B. Thefeedback of a tree
with back edgesis the minimum feedback of its vertices. We shall say that a pointed
directed graph(V, E, v0) is a tree with back edges if there is a partition ofE into two
disjoint subsetsT, B such that〈V, T, v0, B〉 is a tree with back edges.

If T is a tree with back edges, then a path inT can be factored asπ = π1∗. . .∗πn∗τ ,
where each factorπi is a sequence of tree edges followed by a back edge, andτ does
not contain back edges. Such factorization is uniquely determined by the occurrences of
back edges inπ. Fori > 0, let ri be the return at the end of the factorπi. Let alsor0 be
the source ofπ. Let theb-length ofπ be the number of back edges inπ. i.e.ri = δ1πi.
For theb-length of

Lemma 1. If π is a simple path ofb-lengthn, thenrn is the vertex closest to the root
visited byπ. Hence, if a simple pathπ lies in the subtree of its source, then it is a tree
path.

We shall deal with trees with back-edges to which a given graph unravels.

Definition 2. A coveror unravellingof a (finite) directed graphH is a (finite) graph
K together with a surjective graph morphismρ : K −→ H such that for eachv ∈ VK ,
the correspondence sendingk to ρ(k) restricts to a bijection from{ k ∈ VK | (v, k) ∈
EK } to { h ∈ VH | (ρ(v), h) ∈ EH }.

The notion of cover of pointed digraphs is obtained from the previous by replacing the
surjectivity constraint by the condition thatρ preserves the root of the pointed digraphs.

2 The Gamesµ-Calculus

In this section we recall the defintion of parity games with draws and how they can be
structured as aµ-calculus. We shall skip the most of the details and focus only on the
syntactical preoder relation≤ betweenµ-terms that characterizes the semantical order
relation.

A parity game with drawsis a tupleG = 〈PosG
E , PosG

A, PosG
D, MG, ρG〉 where:

– PosG
E , PosG

A, PosG
D are finite pairwise disjoint sets of positions (Eva’s positions,

Adam’s positions, and draw positions),
– MG, the set of moves, is a subset of(PosG

E ∪ PosG
A)× (PosG

E ∪ PosG
A ∪ PosG

D),
– ρG is a mapping from(PosG

E ∪ PosG
A) toN.

Whenever an initial position is specified, these data define agame between player Eva
and player Adam. The outcome of a finite play is determined according to the normal
play condition: a player who cannot move loses. It can also bea draw, if a position
in PosG

D is reached.2 The outcome of an infinite play{ (gk, gk+1) ∈ MG }k≥0 is
2 Observe that there are no possible moves from a position inPosG

D.
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determined by means of the rank functionρG as follows: it is a win for Eva iff the
maximum of the set{ i ∈ N | ∃ infinitely manyk s.t.ρG(gk) = i } is even. To simplify
the notation, we shall usePosG

E,A for the setPosG
E ∪ PosG

A and use similar notations
such asPosG

E,D, etc. We letMaxG = max ρG(PosG
E,A) if the setPosG

E,A is not
empty, andMaxG = −1 otherwise.

To obtain aµ-calculus, as defined [3,§2], we label draw positions with variables
of a countable setX . If λG : PosG

D −→ X is such a labelling andpG
⋆ ∈ PosG

E,A,D

is a specified initial position, then we refer to the tuple〈G, pG
⋆ , λG〉 as a labeled parity

game. We denote byGg the game that differs fromG only on the starting position, i.e.

p
Gg

⋆ = g, we shall write(G, g) to mean that the play has reached positiong. We letx̂
be the game with just one final draw position of zero priority and labeled with variable
x. With G we shall denote the collection of all labeled parity games; as no confusion
will arise, we will call a labeled parity game with simply “game”.

As aµ-calculus, formal composition and fixed-point operations may be defined on
G; moreover,G has meet and join operations. The reader is invited to see [1,§1, §2]
for the definitions of these operations. We believe that the algebraic nature of parity
games is better understood by defining their semantics. To this goal, let us define the
predecessor gameG−, for G a game such thatMaxG 6= −1, i.e. there is at least one
position inPosG

E,A. Let TopG = { g ∈ PosG
E,A | ρG(g) = MaxG }, thenG− is

defined as follows:

– PosG−

E = PosG
E − TopG, PosG−

A = PosG
A − TopG, PosG−

D = PosG
D ∪ TopG,

– MG−

= MG − (TopG × PosG
E,A,D),

– ρG−

is the restriction ofρG to PosG−

E,A.

Given a complete latticeL, the interpretation of a parity gameG in L is a monotone
mapping of the form||G|| : LP G

D −→ LP G
E,A , whereLX is theX-fold product lattice

of L with itself. The interpretation of a parity game is defined inductively. IfPG
E,A = ∅,

thenLP G
E,A = L∅ = 1, the complete lattices with just one element, and there is just

one possible definition of the mapping||G||. Otherwise, ifMaxG is odd, then||G|| is the

parameterized least fixed-point of the monotone mappingLP G
E,A × LP G

D −→ LP G
E,A

defined by the system of equations:

xg =





∨
{ xg′ | (g, g′) ∈ MG } if g ∈ PosG

E ∩ TopG,
∧

{ xg′ | (g, g′) ∈ MG } if g ∈ PosG
A ∩ TopG,

||G−
g ||(XTopG , XPosG

D
) otherwise.

If MaxG is even, then||G|| is the parameterized greatest fixed-point of this mapping.

The preorder on G. In order to describe a preorder on the classG, we shall define a
new game〈G, H〉 for a pair of gamesG andH in G. This is not a pointed parity game
with draws as defined in the previous section; to emphasize this fact, the two players
will be named Mediator and Opponent instead of Eva and Adam.

Definition 3. The game〈G, H〉 is defined as follows:
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– The set of Mediator’s positions isPosG
A ×PosH

E,D ∪ PosG
A,D ×PosH

E ∪ L(M),

and the set of Opponent’s positions isPosG
E ×PosH

E,A,D ∪ PosG
E,A,D ×PosH

A ∪

L(O), whereL(M),L(O) ⊆ PosG
D ×PosH

D are the losing positions for Mediator
and Opponents respectively. They are defined as follows. If(g, h) ∈ PosG

D×PosH
D ,

then: ifλG(g) = λH(h), then the position(g, h) belongs to Opponents, and there
is no move from this position, hence this is a winning position for Mediator. If
λG(g) 6= λH(h), then the position(g, h) belongs to Mediator and there is no move
from this position. The latter is a win for Opponents.

– Moves of〈G, H〉 are either left moves(g, h) → (g′, h), where(g, g′) ∈ MG, or
right moves(g, h) → (g, h′), where(h, h′) ∈ MH ; however the Opponents can
play only with Eva onG or with Adam onH .

– A finite play is a loss for the player who can not move. An infinite playγ is a win
for Mediator if and only if either its left projectionπG(γ) is a win for Adam, or its
right projectionπH(γ) is a win for Eva.

Definition 4. If G and H belong toG, then we declare thatG ≤ H if and only if
Mediator has a winning strategy in the game〈G, H〉 starting from position(pG

⋆ , pH
⋆ ).

The following is the reason to consider such a syntactic relation:

Proposition 5. The relation≤ is sound and complete with respect to the interpretation
in any complete lattice, i.e.G ≤ H if and only if ||G|| ≤ ||H || holds in every complete
lattice.

In the sequel, we shall writeG ∼ H to mean thatG ≤ H andH ≤ G. For other
properties of the relation≤, see for example Proposition2.5 of [1]. One can prove that
G ≤ G, by exibing thecopycatstrategy in the game〈G, G〉: from a position(g, g),
it is Opponent’s turn to move either on the left or on the rightboard. When they stop
moving, Mediator will have the ability to copy all the moves played by the Opponents
so far from the other board until the play reaches the position (g′, g′). There it was also
proved that ifG ≤ H andH ≤ K thenG ≤ K, by describing a game〈G, H, K〉
with the following properties:(1) given two winning strategiesR on 〈G, H〉, andS on
〈H, K〉 there is a winning strategyR‖S on 〈G, H, K〉, that is the composition of the
strategiesR andS, (2) given a winning strategyT on〈G, H, K〉, there exists a winning
strategyT\H on 〈G, K〉.

The game〈G, H, K〉 is the fundamental tool that will allow us to deduce the de-
sired structural properties of gamesH which are equivalent to a specified gameG, by
considering the game〈G, H, G〉, section 4. The game〈G, H, K〉 is obtained by gluing
the games〈G, H〉 and〈H, K〉 on the central boardH as follows.

Definition 6. Positions of the game〈G, H, K〉 are triples (g, h, k) ∈ PosG
A,E,D ×

PosH
A,E,D × PosK

A,E,D such that

– the set of Mediator’s positions is

PosG
A × PosH

A,E,D × PosK
E,D ∪ PosG

A,D × PosH
A,E,D × PosK

E ∪ L(M)
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and the set of Opponent’s positions is

PosG
E × PosH

A,E,D × PosK
E,A,D ∪ PosG

E,A,D × PosH
A,E,D × PosK

A ∪ L(O) ,

whereL(M),L(O) ⊆ PosG
D×PosH

A,E,D×PosK
D are positions of Meditor and Op-

ponents, respectively, defined as follows. Whenever(g, h, k) ∈ PosG
D×PosH

A,E,D×

PosK
D , then ifh ∈ PosH

E,A, then the position(g, h, k) belongs to Mediator, other-
wise, i.e.h ∈ PosH

D , then the final position(g, h, k) belongs to Opponents if and
only if λG(g) = λH(h) = λK(k).

– Moves of〈G, H, K〉 are either left moves(g, h, k) → (g′, h, k) where(g, g′) ∈
MG or central moves(g, h, k) → (g, h′, k), where(h, h′) ∈ MH , or right moves
(g, h, k) → (g, h, k′), where(k, k′) ∈ MK ; however the Opponents can play only
with Eva onG or with Adam onK.

– As usual, a finite play is a loss for the player who cannot move.An infinite playγ
is a win for Mediators if and only ifπG(γ) is a win for Adam onG, or πK(γ) is a
win for Eva onK.

3 Entanglement and⋆-Weak Simulations

Let us recall the main tool which measures the combinatorialessence of the variable
hierarchy level on directed graphs. This is theentanglementof a digraphG and might
already be defined asthe minimum feedback of the finite unravelings ofG into a tree
with back edges. The entanglement ofG may also be characterized by means of a
special Robber and Cops gameE(G, k), k = 0, . . . , |VG|. This game, defined in [7],
is played by Thief against Cops, a team3 of k cops, as follows.

Definition 7. The entanglement gameE(G, k) of a digraphG is defined by:

– Its positions are of the form(v, C, P ), wherev ∈ VG, C ⊆ VG and |C| ≤ k,
P ∈ {Cops, Thief}.

– Initially Thief choosesv0 ∈ V and moves to(v0, ∅, Cops).
– Cops can move from(v, C, Cops) to (v, C′, Thief) whereC′ can be

1. C : Cops skip,
2. C ∪ { v } : Cops add a new Cop on the current position,
3. (C \ { x }) ∪ { v } : Cops move a placed Cop to the current position.

– Thief can move from(v, C, Thief) to (v′, C, Cops) if (v, v′) ∈ EG andv′ /∈ C.

Every finite play is a win for Cops, and every infinite play is a win for Thief.

The following will constitute our working definition of entanglement:E(G), the en-
tanglement ofG, is the minimumk ∈ { 0, . . . , |VG| } such that Cops have a winning
strategy inE(G, k). The following proposition provides a useful variant of entangle-
ment games.

Proposition 8. Let Ẽ(G, k) be the game played as the gameE(G, k) apart that Cops
is allowed to retire a number of cops placed on the graph. Thatis, Cops moves are of
the form
3 We shall use the singular to emphasize that Cops constitute ateam.
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– (g, C, Cops) → (g, C′, Thief) (generalized skip move),
– (g, C, Cops) → (g, C′ ∪ { g }, Thief) (generalized replace move),

where in both casesC′ ⊆ C. Then Cops has a winning strategy inE(G, k) if and only
of he has a winning strategy iñE(G, k).

⋆-Weak Simulations. We define next a relation between graphs, called⋆-weak simu-
lation, that we shall use to compare their entanglements. Intuitively, there is a⋆-weak
simulation of a graphG by H if every edge ofG is simulated by a non empty finite
path ofH . Moreover, two edgese1, e2 of G not sharing a common endpoint, are sim-
ulated by pathsπ1, π2 that do not intersect. These simulations arise when considering
gamesH which are semantically equivalent to some strongly synchronizing gameG,
as defined in Section 4.

Definition 9. A weak simulation(R, ς) of G byH is a binary relationR ⊆ VG × VH

that comes with a partial functionς : VG × VG × VH −→ Π+(H), such that:

– R is surjective, i.e. for everyg ∈ VG there existsh ∈ VH such thatgRh,
– R is functional, i.e. ifgiRh for i = 1, 2, theng1 = g2,
– if gRh andg → g′, thenς(g, g′, h) is defined andh′ = δ1ς(g, g′, h) is such that

g′Rh′.

Now we want to study conditions under which existence of a weak simulation ofG
byH implies thatE(G) is some lower bound ofE(H). To this goal, we abuse of notation
and writeh ∈ ς(g, g′, h0) if ς(g, g′, h0) = h0h1 . . . hn and, for somei ∈ { 0, . . . , n },
we haveh = hi. If G = (VG, EG) is a directed graph then its undirected version
S(G) = (VG, ES(G)) is the undirected graph such that{g, g′} ∈ ES(G) iff (g, g′) ∈ EG

or (g′, g) ∈ EG. Thus we say thatG hasgirth at leastk if the shortest cycle inS(G)
has length at leastk, G does not contain loops, and(g, g′) ∈ EG implies(g′, g) 6∈ EG.

Definition 10. We say that a weak simulation(R, ς) of G byH is a⋆-weak simulation
(or that it has the⋆-property) ifG has girth at least4, and if(g, g′), (g̃, g̃′) are distinct
edges ofG andh ∈ ς(g, g′, h0), ς(g̃, g̃′, h̃0), then|{ g, g′, g̃, g̃′ }| = 3.

We explain next this property. Given(R, ς), consider the set

C(h) = { (g, g′) ∈ EG | ∃h0 s.t.h ∈ ς(g, g′, h0) } .

Lemma 11. Let (R, ς) be a⋆-weak simulation ofG by H . If C(h) is not empty, then
there exists an elementc(h) ∈ VG such that for each(g, g′) ∈ C(h) eitherc(h) = g or
c(h) = g′. If moreover|C(h)| ≥ 2, then this element is unique.

That is,C(h) considered as an undirected graph, is a star. Sincec(h) is unique whenever
|C(h)| ≥ 2, thenc(h) is a partial function which is defined for allh with |C(h)| ≥ 2.
This allows to define a partial functionf : VH −→ VG, which is defined for all theh
for whichC(h) 6= ∅, as follows:

f(h) =






c(h), |C(h)| ≥ 2 ,

g, if C(h) = { (g, g′) } andh has no predecessor,

g′, otherwise, provided thatC(h) = { (g, g′) } .

(2)



The Variable Hierarchy for the Gamesµ-Calculus 9

Let us remark that ifh ∈ ς(g, g′, h0), thenf(h) ∈ { g, g′ }. If gRh and h has no
predecessor, thenf(h) = g. Also, if h′ is the target ofς(g, g′, h0) andg′ has a successor,
thenf(h′) = g′.

Lemma 12. If (R, ς) is a ⋆-weak simulation ofG by H and ρ : K −→ H is an
unravelling ofH , then there exists a⋆-weak simulation(R̃, ς̃) of G byK.

Let us now recall that ifH is a tree with back edges, rooted ath0, of feedbackk, then
Cops has acanonical winning strategyin the gameE(H, k) from position(h0, C, Cops).
Every time a return is visited, a cop is dropped on such a return. If a cop has to be re-
placed in order to occupy such a return, then the cop which is closest to the root is
chosen.

Remark 13.Let us remark that, by using the canonical strategy, (i) every path chosen
by Thief inH is a tree path, (ii) if the position inE(H, k) is of the form(h, C, Thief),
andh′ 6= h is in the subtree ofh, then the unique tree path fromh to h′ does contain
no cops, apart possibly for the vertexh. Finally, a vertexh ∈ VH determines a position
(h, CH(h), Thief) in the gameE(H, k) that has been reached from the initial position
(h0, ∅, Cops) and where Cops have being playing according the canonical strategy.
CH(h) is determined as the set of returnsr of H on the tree path fromh0 to h such that
the tree path fromr to h contains at mostk returns.

The following Theorem establishes the desired connection between⋆-weak simula-
tions and entanglement.

Theorem 14. If (R, ς) is a⋆-weak simulation ofG byH , thenE(G) ≤ E(H) + 2.

Proof. Let k = E(H). We shall define first a strategy for Cops in the gameẼ(G, k+2).
In a second time, we shall prove that this strategy is awinningstrategy for Cops.

Let us consider Thief’s first move iñE(G, k + 2). This move picksg ∈ G leading
to the position(g, ∅, Cops) of Ẽ(G, k + 2). Cops answers by occupying the current
position, i.e. he moves to(g, { g }, Thief). After this move, Cops also chooses a tree
with back edges of feedbackk to whichH unravel,π : T (H) −→ H , such that the
root h0 of T (H) satisfiesgRπ(h0). WE can also suppose thath0 is not a return, thus
it has no predecessor. According to Lemma 12 we can lift the⋆-weak simulation(R, ς)
to a⋆-weak simulation(R̃, ς̃) of G byT (H). In other words, we can suppose from now
on thatH itself is a tree with back edges of feedbackk rooted ath0 and, moreover, that
gRh0.

From this point on, Cops uses a memory to choose how to place cops in the game
Ẽ(G, k + 2). To each Thief’s position(g, CG, Thief) in Ẽ(G, k + 2) we associate a
data structure (the memory) consisting of a tripleM(g, C, Thief) = (p, c, h), where
c, h ∈ VH andp ∈ VH∪{⊥} (we assume that⊥ 6∈ VH ). Moreoverc is an ancestor ofh
in the tree and, wheneverp 6= ⊥, p is an ancestor ofc as well.

Intuitively, we are matching the play iñE(G, k+2) with a play inE(H, k), started at
the rooth0 and played by Cops according to the canonical strategy. Thusc is the vertex
of H currently occupied by Thief in the gameE(H, k).4 Instead of recalling all the play
4 More precisely we are associating to the position(g, CG, Thief) of E(G,k + 2) the position
(c, CH , Thief) in E(H,k), whereCH is determined asCH = CH(c) as in Remark 13.
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(that is, the history of all the positions played so far), we need to record the last position
played inE(H, k): this isp, which is undefined when the play begins. Cops onG are
positioned on the images of Cops onH by the functionf defined in (2). Moreover, Cops
eagerly occupies the last two vertices visited onG. Thief’s moves onG are going to be
simulated by sequences of Thief’s moves onH , using the⋆-weak simulation(R, ς). In
order to make this possible, a simulation of the formς(g̃, g, h̃) must be halted before
its targeth; the current positionc is such halt-point. This implies that the simulation
of g → g′ by (R, ς) and the sequence of moves inH matching Thief’s move onG are
sligthly out of phase. To cope with that, Cops must guess in advance what might happen
in the rest of the simulation and this is why he puts cops on thecurrent and previous
positions inG. We also need to recordh, the target of the previous simulation into the
memory.

The previous considerations are formalized by requiring the following conditions
to hold. To make sense of them, let us say thatf({ p }) = f(p) if p ∈ VH and that
f({ p }) = ∅ if p = ⊥. In the last two conditions we require thatp 6= ⊥.

• CG = f(CH(c)) ∪ f({ p }) ∪ { g } , (COPS)

• f(c) = g, andf(h′) ∈ f({ p }) ∪ { g }, (TAIL)

whenverh′ lies on the tree path fromc to h .

• f(p) → g , f(p)Rh̃ for someh̃ ∈ VH , c ∈ ς(f(p), g, h̃), (HEAD)

andh is the target ofς(f(p), g, h̃) ,

• on the tree path fromp to c, c is the only vertex s.t.f(c) = g . (HALT)

Sinceh0 has no predecessors, thengRh0 impliesf(h0) = g. Thus, at the beginning,
the memory is set to(⊥, h0, h0) and conditions (COPS) and (TAIL) hold.

Consider now a Thief’s move of the form(g, CG, Thief) → (g′, CG, Cops), where
g′ 6∈ CG. If g′ has no successor, then Cops simply skips, thus reaching a winning
position. Let us assume thatg′ has a successor, and writeς(g, g′, h) = hh1 . . . hn,
n ≥ 1; observe thatf(hn) = g′. If for somei = 1, . . . , n hi is not in the subtree of
c, then the strategy halts, Cops abandons the game and looses.Otherwise, all the path
π = c . . . hh1 . . . hn lies in the subtree ofc. By eliminating cycles fromπ, we obtain
a simple pathσ, of sourcec and targethn, which entirely lies in the subtree ofc. By
Lemma 1,σ is the tree path fromc to hn. An explicit description ofσ is as follows:
we can writeσ as the composeσ0 ⋆ σ1, where the target ofσ0 and source ofσ1 is the
vertex ofς(g, g′, h) which is closest to the rooth0; moreoverσ0 is a prefix of the tree
path fromc to h, andσ1 is a postfix of the pathς(g, g′, h).

We cutσ as follows: we letc′ be the first vertex on this path such thatf(c′) = g′.
Thief’s moveg → g′ onG is therefore simulated by Thief’s moves fromc to c′ onH .
This is possible since every vertex lies in the subtree ofc and thus it has not yet been
explored. Cops consequently occupies the returns on this path, thus modifyingCH to
C′

H = CH(c′) = (CH \ X) ⊎ Y , whereY is a set of at mostk vertexes containing the
last returns visited on the path fromc to c′.

After the simulation onH , Cops moves to(g′, C′
G, Thief) in Ẽ(G, k + 2), where

C′
G = f(C′

H) ∪ { g, g′ }. Let us verify that this is an allowed move according to the
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rules of the game. We remark thatf(Y ) ⊆ f({ p }) ∪ { g, g′ } and therefore

C′
G = f(CH \ X) ∪ f(Y ) ∪ { g, g′ }

= (f(CH \ X) ∪ (f(Y ) \ { g′ }) ∪ { g }) ∪ { g′ } = A ∪ { g′ } ,

whereA = f(CH \X)∪(f(Y )\{ g′ })∪{ g } ⊆ f(CH)∪f({ p })∪{ g } = CG. After
the simulation Cops also updates the memory toM(g′, C′

G, Thief) = (c, c′, hn). Since
f(c) = g, then condition (COPS) clearly holds. Also,f(c) = g → g′, gRh andhn is
the target ofς(f(c), g′, h). We have also thatc′ ∈ σ1 and hencec′ ∈ ς(f(c), g′, h),
since otherwisec′ ∈ σ0 and f(c′) ∈ { f(p), g }, contradictingf(c′) = g′ and the
condition on the girth ofG. Thus condition (HEAD) holds as well. Also, condition
(HALT) holds, since by constructionc′ is the first vertex on the tree path fromc toh such
thatf(c′) = g′. Let us verify that condition (TAIL) holds: by constructionf(c′) = g′,
and the path fromc′ to hn is a postfix ofς(g, g′, h), and hencef(h′) ∈ { g, g′ } if h′

lies on this tree path.
Let us now prove that the strategy is winning: Cops will neverabandon. To this goal

we need to argue that when Thief plays the moveg → g′ on G, then the simulation
ς(g, g′, h) = hh1 . . . hn lies in the subtree ofc. If this is not the case, leti be the
first index such thathi is not in the subtree ofc. Thereforehi is a return and, by the
assumptions onH and the on canonical strategy,hi ∈ CH(c). Sincehi ∈ ς(g, g′, h),
f(hi) ∈ { g, g′ }. Observe, however that we cannot havef(hi) = g′, otherwiseg′ ∈
f(CH(c)) ⊆ CG. We deduce thatf(hi) = g and thatg ∈ f(CH) ⊆ CG.

SinceCG 6= ⊥, then (g, CG, Thief) is not the initial position of the play, so
that, if M(g, CG, Thief) = (p, c, h), thenp 6= ⊥. Let us now consider the last two
moves of the play before reaching position(g, CG, Thief). These are of the form
(f(p), C̃G, Thief) → (g, C̃G, Cops) → (g, CG, Thief), and have been played ac-
cording to this strategy. Sinceg 6∈ C̃G, it follows that the Cop onhi has been dropped
on H during the previous round of the strategy, simulating the move f(p) → g on G
by the tree path fromp to c. This is however in contradiction with condition (HALT),
stating thatc is the only vertexh on the tree path fromp to c such thatf(h) = c. ⊓⊔

4 Strongly Synchronizing Games

In this section we definestrongly synchronizinggames, a generalization of synchroniz-
ing games introduced in [21]. We shall show that, for every game H equivalent to a
strongly synchronizing gameG, there is a⋆-weak simulation ofG by H .5

Let us say thatG ∈ G is bipartite if MG ⊆ PosG
E ×PosG

A,D ∪ PosG
A ×PosG

E,D.

Definition 15. A gameG is strongly synchronizingiff its is bipartite, it has girth strictly
greater than4 and, for every pair of positionsg, k, the following conditions hold:

1. if (G, g) ∼ (G, k) theng = k.
2. if (G, g) ≤ (G, k) and (G, k) 6≤ (G, g), thenk ∈ PosG

E and(k, g) ∈ MG, or
g ∈ PosG

A and(g, k) ∈ MG.

5 In the sequel, we shall not distiguish between a game and its underlying graph.
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A consequence of the previous definition is thatthe only winning strategy for Medi-
ator in the game〈G, G〉 is the copycat strategy. Thus strongly synchronizing games
are synchronizing as defined in [21]. We list next some usefulproperties of strongly
synchronizing games.

Lemma 16. LetG be a strongly synchronizing and let(g, g′), (g̃, g̃′) ∈ MG be distinct.

1. If (G, g) ∼ x̂ theng ∈ PosG
D andλ(g) = x.

2. If g, g̃ ∈ PosG
E and, for some gameH andh ∈ PosH , we have

(G, g′) ≤ (H, h) ≤ (G, g) and(G, g̃′) ≤ (H, h) ≤ (G, g̃) ,

theng = g̃ or g′ = g̃′, and|{ g, g′, g̃, g̃′ }| = 3.
3. If g ∈ PosG

E andg̃ = PosG
A and, for someH andh ∈ PosH , we have

(G, g′) ≤ (H, h) ≤ (G, g) and(G, g̃) ≤ (H, h) ≤ (G, g̃′) ,

theng = g̃′ or g′ = g̃, and|{ g, g′, g̃, g̃′ }| = 3.

We are ready to state the main result of this section.

Proposition 17. Let G be a strongly synchronizing game, and letH ∈ G be such that
G ≤ H ≤ G, then there is a⋆-weak simulation ofG byH .

Proof. Let R, S be two winning strategies for Mediator in〈G, H〉 and〈H, G〉, respec-
tively. Let T = R||S be the composal strategy in〈G, H, G〉. Define

gRh iff (g, h, g) is a position ofT andg, h belong to the same player.

We consider firstR and prove that it is functional and surjective. IfgiRh, i = 1, 2
then(g1, h, g1) and(g2, h, g2) are positions ofT , hence(G, g1) ≤ (H, h) ≤ (G, g1)
and(G, g2) ≤ (H, h) ≤ (G, g2), consequently(G, g1) ∼ (G, g2) impliesg1 = g2, by
definition 15. For surjectivity, we can assume that (a) all the positions ofG are reachable
from the initial positionpG

⋆ , (b) pG
⋆ andpH

⋆ belong to the same player (by possibly
adding toH a new initial position leading to the old one). SinceT\H is the copycat
strategy, giveng ∈ PosG

E,A,D, from the initial position(pG
⋆ , pH

⋆ , pG
⋆ ) of 〈G, H, G〉,

the Opponents have the ability to reach a position of the form(g, h, g). The explicit
construction of the functionς will show thath can be chosen to belong to the same
player asg.

We construct now the functionς so that(R, ς) is a weak simulation. IfgRh and
(g, g′) ∈ MG, then we constructπ = h, . . . , h′ such thatg′Rh′. SinceG is bipartite,
thenh 6= h′ andπ is nonempty. We letς(g, g′, h) be a reduction ofπ to a nonempty
simple path.

We assume(g, h) ∈ (PosG
E , PosH

E ), the case(g, h) ∈ (PosG
A, PosH

A ) is dual.
From position(g, h, g) it is Opponent’s turn to move on the left, they choose a move
(g, g′) ∈ MG. SinceG is bipartite, we have eitherg′ ∈ PosG

D or g′ ∈ PosG
A.

Case (i). If g′ ∈ PosG
D then the strategyT suggests playing a finite path onH ,

(g′, h, g) →∗ (g′, h∗, g), possibly of zero length, and then it will suggest to play on
the external right board. An infinite path played only onH cannot arise, sinceT is a
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winning strategy and such an infinite path is not a win for Mediator. SinceT\H is the
copycat strategy,T suggests the only move(g′, h∗, g) → (g′, h∗, g′). From this position
T suggests playing a path onH leading to a final draw positionhf ∈ PosH

D as follows
(g′, h∗, g′) →∗ (g′, hf , g′), such thatλG(g′) = λH(hf ), thereforeg′Rhf .

Case (ii). If g′ ∈ PosG
A then from position(g′, h, g) it is Mediator’s turn to move.

We claim thatT will suggest playing a nonempty finite path(g′, h, g) →+ (g′, h′, g)
on the central boardH , whereh′ ∈ PosH

A , and then suggests the move(g′, h′, g) →

(g′, h′, g′). Let h̃ ∈ PosH
A,E,D be such that the position(g′, h̃, g) has been reached

from (g′, h, g), through a (possibly empty) sequence of central moves, by playing with
T . ThenT cannot suggest a move on the left board(g′, h̃, g) → (g′′, h̃, g), sinceT\H

is the copycat strategy. Also, if̃h ∈ PosH
E , T cannot suggest a move on the right board

(g′, h̃, g) → (g′, h̃, g̃). The reason is thatT = R||S, and the position(h̃, g) of 〈H, G〉
does not allow a Mediator’s move on the right board. Thus a sequence of central moves
on H is suggested byT and, as mentioned above, this sequence cannot be infinite.
We pretend that its endpointh′ ∈ PosH

A . We already argued thath′ 6∈ PosH
E , let us

argue thath′ 6∈ PosH
D . If this were the case, then strategyT suggests the only move

(g′, h′, g) → (g′, hn, g′), hence(G, g′) ∼ (H, h′). By Lemma 16.1, we getg′ ∈ PosG
D,

contradictingg′ ∈ PosG
A.

This proves that(R, ς) is a weak simulation. We prove next that(R, ς) has the⋆-
property, thus assume thath∗ ∈ ς(g, g′, h0), ς(g̃, g̃′, h̃0). Let us suppose first thatg, g̃ ∈
PosH

E . By looking at the construction of these paths, we observe that the sequence of
moves

(g, h0, g) → (g′, h0, g) →∗ (g′, h∗, g) →∗ (g′, hn, g) → (g′, hn, g′)

(g̃, h̃0, g̃) → (g̃′, h̃0, g̃) →∗ (g̃′, h∗, g̃) →∗ (g̃′, h̃m, g̃) → (g̃′, h̃m, g̃′)

maybe played in the game〈G, H, G〉, according to the winning strategyT = R||S. We
have therefore that(G, g′) ≤ (H, h∗) ≤ (G, g) and(G, g̃′) ≤ (H, h∗) ≤ (G, g̃).6 Con-
sequently|{ g, g′, g̃, g̃′ }| = 3, by Lemma 16.2. Ifg ∈ PosG

E andg̃ ∈ PosG
A, a similar

argument shows that the positions(g′, h∗, g) and(g̃, h∗, g̃′) may be reached withT and
hence(G, g′) ≤ (H, h∗) ≤ (G, g) and(G, g̃) ≤ (H, h∗) ≤ (G, g̃′). Lemma 16.3 im-
plies then|{ g, g′, g̃, g̃′ }| = 3. Finally, the cases(g, g̃) ∈ { (PosG

A, PosG
A), (PosG

A , PosG
E) }

are handled by duality. This completes the proof of Proposition 17. ⊓⊔

5 Construction of Strongly Synchronizing Games

In this section we complete the hierarchy theorem by constructing, forn ≥ 1, strongly
synchronizing gamesGn such thatE(Gn) = n. This games mimic then-cliques already
used in [4] to prove that the variable hierarchy for the modalµ-calculus is infinite. We

6 Similar inequalites maybe derived even ifh∗ ∈ PosH

D . In this case the moves in the central
board may be interleaved with the move on the right board.
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begin by drawing the gameG2:

v0,0,0HOINJMKL
π

x0,0,0HOINJMKLoo

v0,0,1HOINJMKL
����

��
�

σ
x0,0,1HOINJMKLoo

v0,0,2HOINJMKL
��

π
x0,0,2HOINJMKLoo

v0,0,3HOINJMKL
��

σ
x0,0,3HOINJMKLoo

v0,0,4HOINJMKL
��

π
x0,0,4HOINJMKLoo

v0,0,5HOINJMKL
��

σ
x0,0,5HOINJMKLoo

v0,1,1HOINJMKL
��?

??
??

σ
x0,1,1HOINJMKLoo

v0,1,2HOINJMKL
��

π
x0,1,2HOINJMKLoo

v0,1,3HOINJMKL
��

σ
x0,1,3HOINJMKLoo

v0,1,4HOINJMKL
��

π
x0,1,4HOINJMKLoo

v0,1,5HOINJMKL
��

σ
x0,1,5HOINJMKLoo

v1,0,0HOINJMKL
π

x1,0,0HOINJMKLoo

v1,0,1HOINJMKL
����

��
�

σ
x1,0,1HOINJMKLoo

v1,0,2HOINJMKL
��

π
x1,0,2HOINJMKLoo

v1,0,3HOINJMKL
��

σ
x1,0,3HOINJMKLoo

v1,0,4HOINJMKL
��

π
x1,0,4HOINJMKLoo

v1,0,5HOINJMKL
��

σ
x1,0,5HOINJMKLoo

v1,1,1HOINJMKL
��?

??
??

σ
x1,1,1HOINJMKLoo

v1,1,2HOINJMKL
��

π
x1,1,2HOINJMKLoo

v1,1,3HOINJMKL
��

σ
x1,1,3HOINJMKLoo

v1,1,4HOINJMKL
��

π
x1,1,4HOINJMKLoo

v1,1,5HOINJMKL
��

σ
x1,1,5HOINJMKLoo

$$ ##__ 		

The general definition of the gameGn is as follows. Let[n] denote the set{ 0, . . . , n−
1 } and letIn = { (i, j, k) ∈ [n] × [n] × [5] | k = 0 impliesj = 0 }. We define

PosGn

A = { vi,j,k | (i, j, k) ∈ In andk mod 2 = 0 } ,

PosGn

E = { vi,j,k | (i, j, k) ∈ In andk mod 2 = 1 } ,

PosGn

D = {wi,j,k | (i, j, k) ∈ In } .

Let X = { xi,j,k | i, j ≥ 0, k ∈ [n] } be a countable set of variables, the labelling of
draw positions,λGn : PosGn

D −→ X , sendswi,j,k to xi,j,k. The movesMGn either lye
on some cycle:

vi,0,0 → vi,j,1, vi,j,k → vi,j,k+1, k = 1, . . . , 4, vi,j,5 → vj,0,0 ,

or lead to draw positions:vi,j,k → wi,j,k. Finally, the priority functionρGn assigns a
constant odd priority to all positions. We state next the main facts about the gamesGn:

Proposition 18. The gamesGn are strongly synchronizing andE(Gn) = n.

The proof of the statement is omitted for lack of space. We arenow ready to state our
main achievement of this paper.

Theorem 19. For n ≥ 3, the inclusionsLn−3 ⊆ Ln are strict. Therefore the variable
hierarchy for the gamesµ-calculus is infinite.

By the previous Proposition the gameGn ∈ Ln. Also, sinceGn is strongly synchro-
nizing, if H ∼ Gn, then there exists a⋆-weak simulation ofGn by H . It follows by
Theorem 14 thatn − 2 ≤ E(H). ThereforeG 6∈ Ln−3.
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