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In dimension 2 and for jets of order 4, there are 9 Demailly-Semple invariant polynomials generated by bracketing the invariants for jets of order 3 (Demailly ; Rousseau). They share 9 fundamental syzygies and an Euler characteristic computation shows that every entire holomorphic curve into a generic smooth complex projective algebraic surface X ⊂ P 3 (C) satisfies global algebraic differential equations provided deg X 9.

For jets of order 5, the algebraic structure explodes in complexity. Bracketing gives 36 invariants. Removing redundancies leaves 24 fundamental invariants, 11 of which, denoted

1 and F 16 1,1 and called bi-invariants, are meaningful for Euler characteristic estimates. Unexpectedly, 5 more appear: X 18 , X 19 , X 21 , X 23 and X 25 . The paper contains an algorithm generating all such (complicated) bi-invariants.

§1. Introduction

En dimension ν 3, la description de l'algèbre DS κ ν des polynômes invariants de Demailly-Semple n'est explicitée dans la littérature que pour les jets d'ordre κ 3 ( [2, 5]) ; en dimension ν = 2 et à l'ordre κ = 3, on sait que l'algèbre DS 3 2 est engendrée par 5 polynômes fondamentaux liés entre eux par une unique syzygie ; en dimension 2 et à l'ordre 4, d'après un travail non publié de Demailly (cf. e.g. [3]), DS [START_REF] Olver | Classical invariant theory[END_REF] 2 est engendrée par 9 polynômes invariants fondamentaux. Dans cet article, nous établissons ce résultat, nous explicitons les syzygies fondamentales entre ces 9 invariants -qui sont aussi au nombre de 9 -, nous effectuons un calcul de Riemann-Roch pour estimer la caractéristique d'Euler du fibré correspondant, et nous en déduisons que toute courbe holomorphe entière à valeurs dans une surface projective algébrique complexe lisse X 2 ⊂ P 3 (C) (très) générique de degré d 9 satisfait des équations algébriques globales non triviales d'ordre 4.

Pour κ 5, la structure algébrique de DS κ 2 explose en complexité. Nous exposons un procédé récursif : le crochet entre deux invariants, qui semble permettre (cf. [3]), en toute dimension et pour les jets d'ordre quelconque, d'engendrer un système fondamental de polynômes invariants, et aussi de trois autres procédés récursifs : identités de Jacobi, identités plückeriennes d'ordre un, et identités plückeriennes d'ordre deux, qui décrivent exhaustivement le gigantesque idéal des rela- tions entre les invariants ainsi construits.

Ces quatre procédés (confirmés sur les cas connus) font apparaître de manière saillante une explosion symbolique incontrôlable. Par exemple, pour le cas ν = 2 et κ = 5 étudié complètement ici, on rec ¸oit 36 invariants bruts dont 12 exactement sont redondants, et on doit tenir compte de 210 syzygies non redondantes de degré 4 entre ces invariants, lesquelles se déploient sur 13 pages manuscrites [START_REF] Cox | Ideals, varieties and algorithms, An introduction to computational algebraic geometry and commutative algebra[END_REF] . En ne considérant que les invariants stables par l'action d'un certain sous-groupe unipotent de GL 2 (C), le nombre de syzygies fondamentales se réduit à 15, ce qui permet d'effectuer un calcul de Riemann-Roch au niveau κ = 5.

Si l'on s'en tenait seulement aux estimations ainsi obtenues pour la caractéristique d'Euler du fibré de Demailly-Semple DS κ 2,m T * X , on pourrait penser qu'il faudrait connaître sa décomposition de Schur pour des niveaux κ au moins 20, eu égard à la difficile conjecture d'hyperbolicité de Kobayashi concernant les surfaces complexes de degré d 5 dans P 3 (C) qui sont (très) génériques ( [2, 5, 3]). Mais l'avenir dira si cette approche ne devrait pas être amendée et réorientée dès le niveau κ = 5, en tenant compte de la structure spécifique de DS [START_REF] Rousseau | Hyperbolicité des variétés complexes[END_REF] 2 . Nos résultats principaux apparaissent dans les Sections 4, 5, 6, 7 et 8. §2. Polynômes invariants et différentiation composée Notations initiales. En dimension ν 2, le jet strict d'ordre κ 1 en un point fixé d'une application holomorphe locale f = (f 1 , f 2 , . . . , f ν ) de C à valeurs dans C ν sera noté :

j κ f := f ′ 1 , . . . , f ′ ν , f ′′ 1 , . . . , f ′′ ν , . . . . . . , f (κ) 
1 , . . . , f (κ) ν .

Polynômes invariants par reparamétrisation. Pour κ 1 entier, on recherche les polynômes P = P(j κ f ) tels que :

P j κ (f • φ) = (φ ′ ) m P (j κ f ) • φ ,
pour tout biholomorphisme local φ : U → φ(U), où U ⊂ C est ouvert, et où m 1 est un entier que nous appellerons poids de P. On note DS κ ν,m l'espace vectoriel constitué par ces polynômes invariants par reparamétrisation ([2]). La réunion DS κ ν := m 1 DS κ ν,m forme une algèbre graduée : DS κ ν,m 1 •DS κ ν,m 2 ⊂ DS κ ν,m 1 +m 2 . On travaillera toujours dans une fibre en un point z ∈ U qui n'apparaîtra pas dans les notations.

Lorsque κ = 1, les composantes f ′ i (i = 1, . . . , ν) du jet d'ordre un satisfont

f i • φ ′ = φ ′ f ′ i ,
et par conséquent, tout polynôme P = P f ′ 1 , . . . , f ′ ν qui ne dépend que du jet d'ordre 1 est invariant par reparamétrisation. Différentiation composée jusqu'à l'ordre 5. En posant g i := f i • φ pour i = 1, . . . , ν, on calcule :

g ′ i = φ ′ f ′ i , g ′′ i = φ ′′ f ′ i + φ ′ 2 f ′′ i , g ′′′ i = φ ′′′ f ′ i + 3 φ ′′ φ ′ f ′′ i + φ ′ 3 f ′′′ i , g ′′′′ i = φ ′′′′ f ′ i + 4 φ ′′′ φ ′ f ′′ i + 3 φ ′′ 2 f ′′ i + 6 φ ′′ φ ′ 2 f ′′′ i + φ ′ 4 f ′′′′ i , g ′′′′′ i := φ ′′′′′ f ′ i + 5 φ ′′′′ φ ′ f ′′ i + 10 φ ′′′ φ ′′ f ′′ i + 15 φ ′′ 2 φ ′ f ′′′ i + + 10 φ ′′′ φ ′ 2 f ′′′ i + 10 φ ′′ φ ′ 3 f ′′′′ i + φ ′ 5 f ′′′′′ i .
Moralement, on recherche tous les polynômes possibles P = P j 5 g qui, lorsqu'on remplace g ′ i , g ′′ i , g ′′′ i , g ′′′′ i et g ′′′′′ i par ces valeurs, ont la vertu de faire disparaître toutes les dérivées intempestives φ ′′ , φ ′′′ , φ ′′′′ et φ ′′′′′ d'ordre 2 de φ, de telle sorte que P j 5 g = φ ′ m P j 5 f ) pour un m ∈ N. Ce calcul d'élimination heuristique fonctionne pour κ = 2 et κ = 3 en dimensions ν = 2 et ν = 3, mais il se complexifie au-delà et nous ne poursuivrons pas la recherche en prenant cette optique.

Donnons toutefois la formule générale de dérivation composée, dite de Faà di Bruno, bien connue dans le cas classique d'une seule variable z ∈ C.

Théorème Pour tout entier κ

1, la dérivée d'ordre κ de chaque fonction composée g i (z) := f i • φ(z) (1 i ν) par rapport à la variable z ∈ C s'exprime comme polynôme à coefficients entiers en les dérivées de f i et de φ :

g (κ) i = κ d=1 1 λ 1 <•••<λ d κ µ 1 1,...,µ d 1 µ 1 λ 1 +•••+µ d λ d =κ κ! (λ 1 !) µ 1 µ 1 ! • • • (λ d !) µ d µ d ! φ (λ 1 ) µ 1 • • • • • • φ (λ d ) µ d f (µ 1 +•••+µ d ) i
.

Dans tout ce qui va suivre, par souci de simplicité, nous nous restreindrons dorénavant à la dimension ν = 2 ; des généralisations en dimension supérieure apparaîtront en temps voulu. §3. Déterminants 2 × 2 et jets d'ordres 3 et 4 Wronskien et généralisations. En examinant g ′ 1 , g ′ 2 , g ′′ 1 et g ′′ 2 , on constate l'invariance par reparamétrisation du wronskien, défini comme étant le déterminant 2 × 2 :

∆ 1,2 := f ′ 1 f ′ 2 f ′′ 1 f ′′ 2 ,
et ce, grâce au calcul élémentaire suivant :

1,2 := g ′ 1 g ′ 2 g ′′ 1 g ′′ 2 = φ ′ f ′ 1 φ ′ f ′ 2 φ ′′ f ′ 1 + φ ′ 2 f ′′ 1 φ ′′ f ′ 2 + φ ′ 2 f ′′ 2 = φ ′ f ′ 1 φ ′ f ′ 2 φ ′ 2 f ′′ 1 φ ′ 2 f ′′ 2 = φ ′ 3 ∆ 1,2 .
Son poids m est égal à 3. Ensuite, en éliminant de manière analogue φ ′′′ et φ ′′ parmi les six équations donnant g ′ 1 , g ′ 2 , g ′′ 1 , g ′′ 2 , g ′′′ 1 et g ′′′ 2 -ou bien en procédant d'une manière alternative -, on trouve les deux invariants de poids m = 5 :

g ′ 1 g ′′′ 2 -g ′′′ 1 g ′ 2 g ′ 1 -3 g ′ 1 g ′′ 2 -g ′′ 1 g ′ 2 g ′′ 1 = φ ′ 5 f ′ 1 f ′′′ 2 -f ′′′ 1 f ′ 2 f ′ 1 -3 f ′ 1 f ′′ 2 -f ′′ 1 f ′ 2 f ′′ 1 , g ′ 1 g ′′′ 2 -g ′′′ 1 g ′ 2 g ′ 2 -3 g ′ 1 g ′′ 2 -g ′′ 1 g ′ 2 g ′′ 2 = φ ′ 5 f ′ 1 f ′′′ 2 -f ′′′ 1 f ′ 2 f ′ 2 -3 f ′ 1 f ′′ 2 -f ′′ 1 f ′ 2 f ′′ 2 .
Déterminants 2 × 2 généralisant le wronskien. Il est commode de réécrire ces deux invariants de poids m = 5 sous une forme contractée en introduisant la notation :

∆ α,β := f (α) 1 f (α) 2 f (β) 1 f (β) 2
, pour tous entiers α, β 1, ce qui donne, pour k = 1, 2 :

1,3 g ′ k -3 1,2 g ′′ k = φ ′ 5 ∆ 1,3 f ′ k -3 ∆ 1,2 f ′′ k .
Notons au passage la formule de dérivation bien connue qui sera utile par la suite :

∆ α,β ′ = f (α+1) 1 f (α) 2 f (β+1) 1 f (β) 2 + f (α) 1 f (α+1) 2 f (β) 1 f (β+1) 2
.

Lemme ( [5]) Le degré de transcendance du corps engendré par les 5 polynômes invariants : 

f ′ 1 , f ′ 2 , Λ 3 := ∆ 1,2 , Λ 5 1 := ∆ 1,3 f ′ 1 -3 ∆ 1,2 f ′′ 1 et Λ 5 2 := ∆ 1,3 f ′ 2 -3 ∆ 1,2 f ′′ 2 , au-dessus de C f ′ 1 , f ′′ 1 , f ′′′ 1 , f ′ 2 , f ′′ 2 ,
0 ≡ f ′ 2 Λ 5 1 -f ′ 1 Λ 5 2 -3 Λ 3 Λ 3 , et de plus, l'idéal des relations entre f ′ 1 , f ′ 2 , Λ 3 , Λ 5 1 , Λ 5 
2 est principal et se réduit à cette unique relation.

Grâce à ladite syzygie, on peut éliminer toutes les puissances de Λ 3 supérieures ou égales à 2 qui apparaissent dans un polynôme général : Deux opérateurs de différentiation. Comment engendrer méthodiquement une liste appropriée de polynômes invariants fondamentaux pour les jets d'ordre κ = 4 ou 5? Voici une première idée : si P est un polynôme invariant de poids m, définissons la différentiation "covariante" :

P ; k := f ′ k P ′ -m f ′′ k P,
où P ′ = P j κ+1 f s'obtient en différentiant P = P j κ f par rapport à la variable z ∈ C.

Lemme Ces deux opérateurs de différentiation (•) ; 1 et (•) ; 2 satisfont la règle de Leibniz :

P • Q ; k = P ; k • Q + P • Q ; k ,
et ils produisent2 des polynômes invariants par reparamétrisation P ;1 et P ;2 qui sont tous deux de poids m + 2.

Exemple. On vérifie immédiatement :

f ′ 2 ; 1 = f ′ 1 f ′′ 2 -f ′′ 1 f ′ 2 ≡ Λ 3 ≡ -f ′ 1 ; 2 , Λ 3 ; i = f ′ i ∆ 1,3 -3 f ′′ i ∆ 1,2 ≡ Λ 5 i .
Ensuite, à l'étage κ = 4, on est naturellement conduit à introduire les quatre nouveaux invariants :

Λ 7 1,1 := Λ 5 1 ; 1 , Λ 7 1,2 := Λ 5 1 ; 2 , Λ 7 2,1 := Λ 5 2 ; 1 , Λ 7 2,2 := Λ 5 2 ; 2 , dont l'expression explicite sera fournie dans un instant.

Produit croisé entre invariants. Comment donner corps à l'idée qu'il doit exister des différentiations covariantes, non seulement par rapport à f ′ 1 et f ′ 2 , mais aussi par rapport à n'importe quel invariant? Supposons donc connus deux polynômes homogènes invariants P de poids m et Q de poids n :

P j κ g = φ ′ m P (j κ f ) • φ , Q j τ g = φ ′ n Q (j τ f ) • φ ,
où l'on a posé g := f • φ. Différentier un polynôme par rapport à la variable z ∈ C revient à lui appliquer l'opérateur de différentiation totale :

D := λ∈N ∂(•) ∂f (λ) • f (λ+1) ,
ce qui nous donne ici :

DP j κ+1 g = m φ ′′ φ ′ m-1 P (j κ f ) • φ + φ ′ m φ ′ DP (j κ+1 f ) • φ DQ j τ +1 g = n φ ′′ φ ′ n-1 Q (j κ f ) • φ + φ ′ n φ ′ DQ (j τ +1 f ) • φ
et pour faire disparaître la dérivée seconde φ ′′ , il suffit d'effectuer un produit croisé, autrement dit de former le déterminant 2 × 2 :

DP j κ+1 g m P j κ g DQ j τ +1 g n Q j τ g = = m φ ′′ φ ′ m-1 P (j κ f ) • φ + φ ′ m+1 DP (j κ+1 f ) • φ m φ ′ m P (j κ f ) • φ n φ ′′ φ ′ n-1 Q (j κ f ) • φ + φ ′ n+1 DQ (j τ +1 f ) • φ n φ ′ n Q (j κ f ) • φ = φ ′ m+1 DP (j κ+1 f ) • φ m φ ′ m P (j κ f ) • φ φ ′ n+1 DQ (j τ +1 f ) • φ n φ ′ n Q (j κ f ) • φ = φ ′ m+n+1 DP j κ+1 f m P j κ f DQ j τ +1 f n Q j τ f
qui s'avère ainsi constituer un nouvel invariant de poids m + n + 1. Notation crochet •, • . Ainsi, toute paire d'invariants produit automatiquement un nouvel invariant :

P, Q := n DP • Q -m P • DQ ,
qui est évidemment antisymétrique par rapport au couple P, Q . Observation. Ces crochets pondérés généralisent les deux opérateurs de différentiation précédents : P ; k ≡ P, f ′ k . De plus, ils satisfont à la règle de Leibniz : P, QR = P, Q R + P, R Q, de telle sorte que l'opérateur •, Q , à savoir : P -→ P, Q , peut être considéré comme un opérateur de dérivation.

Lemme Pour tout triplet P, Q, R d'invariants de poids m, n, o, l'identité suivante de type Jacobi est satisfaite :

0 ≡ P, Q , R + R, P , Q + Q, R , P .
(J ac)

Preuve. Développons le premier double crochet :

P, Q , R = n DP • Q -m P • DQ, R = o n DDP • Q + (n -m) DP • DQ -m P • DDQ R- -(m + n + 1) n DP • Q -m P • DQ DR = no DDP • Q • R + (n -m)o DP • DQ • R -mo P • DDQ • R- -(m + n + 1)n DP • Q • DR + (m + n + 1)m P • DQ • DR.
Il suffit alors de constater que l'annulation identique de la somme suivante :

0 ≡ no DDP • Q • R + (n -m)o DP • DQ • R -mo P • DDQ • R- -(m + n + 1)n DP • Q • DR + (m + n + 1)m P • DQ • DR+ + mn DDR • P • Q + (m -o)n DR • DP • Q -on R • DDP • Q- -(o + m + 1)m DR • P • DQ + (o + m + 1)o R • DP • DQ+ + om DDQ • R • P + (o -n)m DQ • DR • P -nm Q • DDR • P- -(n + o + 1)o DQ • R • DP + (n + o + 1)n Q • DR • DP,
est effectivement satisfaite.

Exemple. Avec P := f ′ 1 , Q := f ′ 2 et R := Λ 3 , nous obtenons :

0 ≡ f ′ 1 , f ′ 2 , Λ 3 + Λ 3 , f ′ 1 , f ′ 2 + f ′ 2 , Λ 3 , f ′ 1 ≡ 0 + Λ 5 1 , f ′ 2 -Λ 5 2 , f ′ 1 ≡ Λ 7 1,2 -Λ 7 2,1 .
Cette relation sera confirmée par les expressions explicites de Λ 7 1,2 et Λ 7 2,1 . Genèse des invariants fondamentaux. Crucialement, il semblerait que l'on puisse engendrer tous les polynômes invariants en les jets d'un ordre κ 1 quelconque, juste en calculant par récurrence tous les crochets possibles, d'un étage de jets λ à l'étage supérieur λ + 1. Cette idée conjecturale ( [3]), sur laquelle nous donnerons plus de précision ultérieurement, est renforcée par le fait que dans la théorie classique des invariants pour une forme binaire κ i=0 a i x i y κ-i de degré κ par rapport à l'action linéaire standard de SL 2 (C) :

x -→ x = αx + βy, y -→ y = γx + δy, 1 = αδ -βγ, κ i=0 a i x i y κ-i -→ κ i=0 a i x i y κ-i , a i = κ l=0 a l min(i,l) j=max(0,i+l-κ) C j i C l-j κ-i α j β l-j γ i-j δ κ+j-i-l , C q p = p! q! (p-q)! ,
on sait établir que deux procédés algébriques élémentaires, à savoir le "processus Ω" et le "processus σ" (cf. [4]) permettent d'engendrer un système fondamental de polynômes P = P a 0 , a 1 , . . . , a κ qui sont invariants :

P a 0 , a 1 , . . . , a κ = P a 0 , a 1 , . . . , a κ .

Reconstitution par crochets des invariants connus.

Pour passer des jets d'ordre 1 aux jets d'ordre 2, seul un crochet (au signe près) peut être formé :

f ′ 1 , f ′ 2 = -f ′ 2 , f ′ 1 = -Λ 3 .
Pour passer des jets d'ordre 2 aux jets d'ordre 3, on peut former trois crochets :

Λ 3 , f ′ 1 Λ 3 , f ′ 2 Λ 3 , Λ 3 ,
le dernier étant trivialement nul, et l'on vérifie immédiatement que les deux premiers fournissent les deux invariants propres à l'étage κ = 3 :

Λ 3 , f ′ i = ∆ 1,3 f ′ i -3 ∆ 1,2 f ′′ i .
Pour passer aux jets d'ordre 4, l'ensemble des crochets que l'on peut former s'identifie à la collection des déterminants 2 × 2 de la matrice matrice 2 × 5 :

f ′ 1 f ′ 2 3 Λ 3 5 Λ 5 1 5 Λ 5 2 Df ′ 1 Df ′ 2 DΛ 3 DΛ 5 1 DΛ 5 2 ,
ce qui fait au total de C 2 5 = 10 crochets, mais en tenant compte du fait que nous connaissons déjà les trois mineurs -calculés à l'étage κ = 3 -de la sous-matrice :

f ′ 1 f ′ 2 3 Λ 3 Df ′ 1 Df ′ 2 DΛ 3 ,
ce sont exactement sept nouveaux crochets qui apparaissent :

Λ 5 i , f ′ j , Λ 5 i , Λ 3 , Λ 5 1 , Λ 5 2 . 
Relations pl ückeriennes. Cependant, le calcul complet des crochets doit tenir compte des relations de Plücker qui existent au niveau des variables initiales des espaces de jets. En effet, l'idéal des relations plückeriennes entre les f (λ) i , 1 λ 5 et les ∆ α,β , 1 α < β 5 est engendré par deux familles quadratiques de relations identiquement satisfaites : dans la première famille :

0 ≡ ∆ β,γ • f (α) i -∆ α,γ • f (β) i + ∆ α,β • f (γ) i ,
i est égal à 1 ou à 2, et les indices supérieurs satisfont 1 α < β < γ 5, ce qui donne 10 × 2 = 20 relations ; et dans la seconde famille :

0 ≡ ∆ α,δ • ∆ β,γ -∆ α,γ • ∆ β,δ + ∆ α,β • ∆ γ,δ , les indices supérieurs satisfont 1 α < β < γ < δ 5, ce qui donne 4 relations.
En vérité, seules les deux paires de relations suivantes, extraites de la première familles, seront utiles à l'étage des jets d'ordre κ = 5 :

0 ≡ ∆ 2,3 f ′ i -∆ 1,3 f ′′ i + ∆ 1,2 f ′′′ i 0 ≡ ∆ 2,4 f ′ i -∆ 1,4 f ′′ i + ∆ 1,2 f ′′′′ i , et à l'étage κ = 4
, seule la première paire peut être utilisée, tandis qu'aucune relation plückerienne n'intervient aux étages κ 3. Il faut en outre attendre κ = 6 pour que la première relation de la seconde famille, à savoir : 

0 ≡ ∆ 1,4 ∆ 2,3 -∆ 1,3 ∆ 2,4 + ∆ 1,2 ∆
DΛ 5 i = ∆ 1,4 f ′ i + ∆ 2,3 f ′ i + ∆ 1,3 f ′′ i -3 ∆ 1,3 f ′′ i -3, ∆ 1,2 f ′′′ i = ∆ 1,4 f ′ i + ∆ 2,3 f ′ i -2 ∆ 1,3 f ′′ i -3 ∆ 1,2 f ′′′ i , expression dans laquelle nous pouvons remplacer ∆ 1,2 f ′′′ i par -∆ 2,3 f ′ i + ∆
DΛ 5 i = ∆ 1,4 f ′ i + 4 ∆ 2,3 f ′ i -5 ∆ 1,3 f ′′ i .
Achevons donc le calcul de la première famille de crochets Λ 5 i , f ′ j en fournissant tous les détails intermédiaires :

Λ 5 i , f ′ j = DΛ 5 i • f ′ j -5 Λ 5 i • f ′′ j = ∆ 1,4 f ′ i + 4 ∆ 2,3 f ′ i f ′ j -5 ∆ 1,3 f ′′ i • f ′ j -5 ∆ 1,3 f ′ i -3 ∆ 1,2 f ′′ i • f ′′ j = ∆ 1,4 f ′ i f ′ j + 4 ∆ 2,3 f ′ i f ′ j -5 ∆ 1,3 f ′′ i f ′ j + f ′ i f ′′ j ) + 15 ∆ 1,2 f ′′ i f ′′ j =: Λ 7 i,j .
Ici, la symétrie indicielle Λ 7 1,2 = Λ 7 2,1 imposée a priori par l'identité de Jacobi montre que l'on devrait se dispenser de Λ 7 2,1 (ou de Λ 7 1,2 dans une liste minimale de polynômes invariants fondamentaux. Invariant de poids 8. Ensuite, grâce à notre normalisation préalable de DΛ [START_REF] Rousseau | Hyperbolicité des variétés complexes[END_REF] i , nous pouvons calculer proprement chacun des deux crochets (i = 1, 2) :

Λ 5 i , Λ 3 = 3 DΛ 5 i • Λ 3 -5 Λ 5 i • DΛ 3 = 3 ∆ 1,4 f ′ i + 12 ∆ 2,3 f ′ i -15 ∆ 1,3 f ′′ i • ∆ 1,2 - -5 ∆ 1,3 f ′ i -15 ∆ 1,2 f ′′ i • ∆ 1,3 = 3 ∆ 1,4 ∆ 1,2 f ′ i + 12 ∆ 2,3 ∆ 1,2 f ′ i -5 ∆ 1,3 ∆ 1,3 f ′ i = f ′ i 3 ∆ 1,4 ∆ 1,2 + 12 ∆ 2,3 ∆ 1,2 -5 ∆ 1,3 ∆ 1,3 ≡ f ′ i M 8 ,
où le nouvel invariant

M 8 := 1 f ′ i Λ 5 i , Λ 3 = 3 ∆ 1,4 ∆ 1,2 + 12 ∆ 2,3 ∆ 1,2 -5 ∆ 1,3 ∆ 1,3
doit être introduit, parce que le résultat est divisible par f ′ i . Question. Pourquoi et comment doit-on être conduit à diviser parfois les crochets pour accéder véritablement à de nouveaux invariants fondamentaux? Fin du passage à l'étage κ = 4 Enfin, calculons et examinons le dernier crochet possible, à nouveau en fournissant scrupuleusement tous les détails intermédiaires :

Λ 5 1 , Λ 5 2 = 5 DΛ 5 1 • Λ 5 2 -5 Λ 5 1 • DΛ 5 2 = 5 ∆ 1,4 f ′ 1 + 4 ∆ 2,3 f ′ 1 -5 ∆ 1,3 f ′′ 1 • ∆ 1,3 f ′ 2 -3 ∆ 1,2 f ′′ 2 - -5 ∆ 1,3 f ′ 1 -3 ∆ 1,2 f ′′ 1 • ∆ 1,4 f ′ 2 + 4 ∆ 2,3 f ′ 2 -5 ∆ 1,3 f ′′ 2 = -15 ∆ 1,4 ∆ 1,2 f ′ 1 f ′′ 2 -60 ∆ 2,3 ∆ 1,2 f ′ 1 f ′′ 2 -25 ∆ 1,3 ∆ 1,3 f ′′ 1 f ′ 2 + + 15 ∆ 1,4 ∆ 1,2 f ′ 2 f ′′ 1 + 60 ∆ 2,3 ∆ 1,2 f ′ 2 f ′′ 1 + 25 ∆ 1,3 ∆ 1,3 f ′′ 2 f ′ 1 = -15 ∆ 1,4 ∆ 1,2 ∆ 1,2 -15 ∆ 2,3 ∆ 1,2 ∆ 1,2 + 25 ∆ 1,3 ∆ 1,3 ∆ 1,2 = -5 ∆ 1,2 3 ∆ 1,4 ∆ 1,2 + 12 ∆ 2,3 ∆ 1,2 -5 ∆ 1,3 ∆ 1,3 ≡ -5 Λ 3 M 8 .
Le résultat étant multiple des deux invariants déjà connus Λ 3 et M 8 , il n'apporte rien de nouveau. Toutefois, conservons trace de la relation :

Λ 5 1 , Λ 5 2 = -5 Λ 3 M 8 . Proposition ([3]) En dimension ν = 2, les neuf polynômes : f ′ 1 , f ′ 2 , Λ 3 := ∆ 1,2 , Λ 5 1 := ∆ 1,3 f ′ 1 -3 ∆ 1,2 f ′′ 1 , Λ 5 2 := ∆ 1,3 f ′ 2 -3 ∆ 1,2 f ′′ 2 , Λ 7 1,1 := ∆ 1,4 + 4 ∆ 2,3 f ′ 1 f ′ 1 -10 ∆ 1,3 f ′ 1 f ′′ 1 + 15 ∆ 1,2 f ′′ 1 f ′′ 1 , Λ 7 1,2 := ∆ 1,4 + 4 ∆ 2,3 f ′ 1 f ′ 2 -5 ∆ 1,3 f ′′ 1 f ′ 2 + f ′′ 2 f ′ 1 + 15 ∆ 1,2 f ′′ 1 f ′′ 2 , Λ 7 2,2 := ∆ 1,4 + 4 ∆ 2,3 f ′ 2 f ′ 2 -10 ∆ 1,3 f ′ 2 f ′′ 2 + 15 ∆ 1,2 f ′′ 2 f ′′ 2 , M 8 := 3 ∆ 1,4 ∆ 1,2 + 12 ∆ 2,3 ∆ 1,2 -5 ∆ 1,3 ∆ 1,3
forment un système générateur de polynômes invariants par reparamétrisation pour les jets d'ordre κ = 4.

Cette proposition sera englobée dans un énoncé plus précis dont la preuve apparaîtra dans la Section 5. §4. Invariants fondamentaux pour les jets d'ordre 5 Dénombrement des crochets. Pour s'élever de l'étage κ = 4 à l'étage κ = 5, l'ensemble des crochets que l'on peut former s'identifie à la collection des déterminants 2 × 2 de la matrice matrice 2 × 9 :

f ′ 1 f ′ 2 3 Λ 3 5 Λ 5 1 5 Λ 5 2 7 Λ 7 1,1 7 Λ 7 1,2 7 Λ 7 2,2 8 M 8 Df ′ 1 Df ′ 2 DΛ 3 DΛ 5 1 DΛ 5 2 DΛ 7 1,1 DΛ 7 1,2 DΛ 7 2,2
DM 8 , ce qui fait au total de C 2 9 = 36 crochets, mais il n'y en a en fait que 36 -10 = 26 à calculer, en tenant compte du fait que nous connaissons déjà les C 2 5 = 10 mineurs -calculés dans la section précédente -de la sous-matrice :

f ′ 1 f ′ 2 3 Λ 3 5 Λ 5 1 5 Λ 5 2 Df ′ 1 Df ′ 2 DΛ 3 DΛ 5 1 DΛ 5 2 .
Heuristique. Nous sommes par conséquent amenés à penser3 que tout polynôme invariant P j 5 f en les jets d'ordre 5 est un polynôme en les neuf précédents polynômes fondamentaux :

f ′ 1 , f ′ 2 , Λ 3 , Λ 5 1 , Λ 7 1,1 , Λ 7 1,2 , Λ 7 2,2 , M 8 ,
auxquels on ajoute tous ceux qui sont obtenus par crochets à l'étage supérieur, après simplification, normalisation plückerienne, division éventuelle, et suppression des invariants redondants. On voit immédiatement que les nouveaux crochets à étudier se distribuent en huit familles :

Λ 7 i,j , f ′ k , M 8 , f ′ i , Λ 7 i,j , Λ 3 , M 8 , Λ 3 , Λ 7 i,j , Λ 5 k , M 8 , Λ 5 i , Λ 7 i,j , Λ 7 k,l , M 8 , Λ 7 i,j .
Avant de calculer et d'examiner tous ces crochets -tâche substantielle s'il en est -, reprenons en main la liste de tous les crochets précédents (i.e. invariants à l'étage κ = 4), en les écrivant avec des indices :

f ′ i Λ 3 := ∆ 1,2 Λ 5 i := ∆ 1,3 f ′ i -3 ∆ 1,2 f ′′ i Λ 7 i,j := ∆ 1,4 f ′ i f ′ j + 4 ∆ 2,3 f ′ i f ′ j -5 ∆ 1,3 f ′′ i f ′ j + f ′ i f ′′ j ) + 15 ∆ 1,2 f ′′ i f ′′ j M 8 := 3 ∆ 1,4 ∆ 1,2 + 12 ∆ 2,3 ∆ 1,2 -5 ∆ 1,3 ∆ 1,3
.

Remarque sur le choix des notations. Nous utiliserons systématiquement les grandes lettres, telles que "Λ" (particulièrement facile à écrire à la main), "M", "H", etc., parce que leur taille les rend disponibles pour recevoir non seulement le nombre total de " ′ " en indice supérieur (poids de l'invariant), mais aussi, en indices inférieurs, la suite ordonnée de 1 ou de 2 dont dépend chaque monôme de l'invariant en question. Normalisation préalable des différentiations totales. Nous avons donc huit familles de crochets à calculer, et pour cela, nous travaillerons avec les représentations indiciées de nos invariants connus à l'étage κ = 4. Auparavant, nous devons calculer à l'avance les deux expressions dérivées DΛ 7 i,j et DM 8 , et les normaliser en tenant compte des identités plückeriennes, comme nous l'avons expliqué ci-dessus. Calculons donc, en éliminant ∆ 1,2 f ′′′ i et ∆ 1,2 f ′′′ j à la quatrième ligne :

DΛ 7 i,j = ∆ 1,5 f ′ i f ′ j + ∆ 2,4 f ′ i f ′ j + ∆ 1,4 f ′′ i f ′ j + f ′ i f ′′ j )+ + 4 ∆ 2,4 f ′ i f ′ j + 4 ∆ 2,3 f ′′ i f ′ j + f ′ i f ′′ j -5 ∆ 1,4 f ′′ i f ′ j + f ′ i f ′′ j - -5 ∆ 2,3 f ′′ i f ′ j + f ′ i f ′′ j -5 ∆ 1,3 f ′′′ i f ′ j + 2 f ′′ i f ′′ j + f ′ i f ′′′ j + 15 ∆ 1,3 f ′′ i f ′′ j + + 15 ∆ 1,2 f ′′′ i f ′′ j + 15 ∆ 1,2 f ′′ i f ′′′ j = ∆ 1,5 f ′ i f ′ j + 5 ∆ 2,4 f ′ i f ′ j -4 ∆ 1,4 f ′′ i f ′ j + f ′ i f ′′ j -∆ 2,3 f ′′ i f ′ j + f ′ i f ′′ j - -5 ∆ 1,3 f ′′′ i f ′ j + f ′ i f ′′′ j + 5 ∆ 1,3 f ′′ i f ′′ j - -15 ∆ 2,3 f ′ i f ′′ j + 15 ∆ 1,3 f ′′ i f ′′ j -15 ∆ 2,3 f ′′ i f ′′ j + 15 ∆ 1,3 f ′′ i f ′′ j = ∆ 1,5 f ′ i f ′ j + 5 ∆ 2,4 f ′ i f ′ j -4 ∆ 1,4 f ′′ i f ′ j + f ′ i f ′′ j - -16 ∆ 2,3 f ′′ i f ′ j + f ′ i f ′′ j -5 ∆ 1,3 f ′′′ i f ′ j + f ′ i f ′′′ j + 35 ∆ 1,3 f ′′ i f ′′ j .
Ensuite, le calcul de DM 8 est immédiat car il n'implique aucune relation plückerienne :

DM 8 = 3 ∆ 1,5 ∆ 1,2 + 3 ∆ 2,4 ∆ 1,2 + 3 ∆ 1,4 ∆ 1,3 + + 12 ∆ 2,4 ∆ 1,2 + 12 ∆ 2,3 ∆ 1,3 -10 ∆ 1,4 ∆ 1,3 -10 ∆ 2,3 ∆ 1,3 = 3 ∆ 1,5 ∆ 1,2 + 15 ∆ 2,4 ∆ 1,2 -7 ∆ 1,4 ∆ 1,3 + 2 ∆ 2,3 ∆ 1,3 .
Tableau des différentiations totales. En résumé, nous obtenons les expressions normalisées suivantes pour nos invariants différentiés :

Df ′ i = f ′′ i DΛ 3 = ∆ 1,3 DΛ 5 i = ∆ 1,4 f ′ i + 4 ∆ 2,3 f ′ i -5 ∆ 1,3 f ′′ i DΛ 7 i,j = ∆ 1,5 f ′ i f ′ j + 5 ∆ 2,4 f ′ i f ′ j -4 ∆ 1,4 f ′′ i f ′ j + f ′ i f ′′ j - -16 ∆ 2,3 f ′′ i f ′ j + f ′ i f ′′ j -5 ∆ 1,3 f ′′′ i f ′ j + f ′ i f ′′′ j + 35 ∆ 1,3 f ′′ i f ′′ j DM 8 = 3 ∆ 1,5 ∆ 1,2 + 15 ∆ 2,4 ∆ 1,2 -7 ∆ 1,4 ∆ 1,3 + 2 ∆ 2,3 ∆ 1,3
, et nous pouvons maintenant commencer à engendrer la table de multiplicationpondérée par le poids de nos invariants -entre ces deux listes encadrées, afin de découvrir de nouveaux polynômes invariants fondamentaux à l'étage κ = 5.

Première famille de crochets Λ 7 i,j , f ′ k . Après un calcul direct que nous ne détaillerons pas, mais dans lequel les normalisations plückeriennes n'interviennent pas, nous obtenons :

Λ 7 i,j , f ′ k = DΛ 7 i,j • f ′ k -7 Λ 7 i,j • Df ′ k = ∆ 1,5 f ′ i f ′ j f ′ k + 5 ∆ 2,4 f ′ i f ′ j f ′ k - -4 ∆ 1,4 f ′′ i f ′ j + f ′ i f ′′ j ) f ′ k -7 ∆ 1,4 f ′ i f ′ j f ′′ k - -16 ∆ 2,3 f ′′ i f ′ j + f ′ i f ′′ j f ′ k -28 ∆ 2,3 f ′ i f ′ j f ′′ k - -5 ∆ 1,3 f ′′′ i f ′ j + f ′ i f ′′′ j ) f ′ k + 35 ∆ 1,3 f ′′ i f ′′ j f ′ k + f ′′ i f ′ j f ′′ k + f ′ i f ′′ j f ′′ k - -105 ∆ 1,2 f ′′ i f ′′ j f ′′ k =: Λ 9 i,j,k .
Nous trouvons donc huit nouveaux invariants

Λ 9 1,1,1 , Λ 9 1,1,2 , Λ 9 1,2,1 , Λ 9 1,2,2 , Λ 9 2,1,1 , Λ 9 2,1,2 , Λ 9 2,2,1 et Λ 9 2,2,2
, qui ne s'expriment clairement pas en fonction de ceux connus à l'étage κ = 4, à cause par exemple de la présence du déterminant ∆ 1,5 où apparaissent f ′′′′′

1 et f ′′′′′ 2 .
Observation. Cependant, ces huit invariants ne sont pas indépendants entre eux, ne serait-ce que par héritage de la symétrie

Λ 7 1,2 = Λ 7 2,1 , qui implique les deux relations Λ 9 1,2,k = Λ 9 2,1,k , k = 1, 2.
En fait, il y a quatre relations indépendantes, que l'on peut proposer au lecteur de vérifier par un développement direct :

Λ 9 1,1,2 = Λ 9 1,2,1 -f ′ 1 M 8 Λ 9 1,2,1 = Λ 9 2,1,1 Λ 9 1,2,2 = Λ 9 2,1,2 Λ 9 2,2,1 = Λ 9 2,1,2 + f ′ 2 M 8
. Toutefois, il est incontestablement préférable d'obtenir ces relations comme suit à partir de l'identité de type Jacobi, en posant tout simplement 

P := f ′ i , Q := f ′ j et R := Λ 5 k : 0 ≡ f ′ i , f ′ j , Λ 5 k + Λ 5 k , f ′ i , f ′ j + f ′ j , Λ 5 k , f ′ i . Si l'on tient compte du fait que f ′ i , f ′ j vaut 0 ou ±Λ 3 et si on utilise les relations Λ 5 i , Λ 3 = f ′ i M 8 ,
′ 1 f ′ 1 f ′ 1 , f ′ 1 f ′ 2 f ′ 1 , f ′ 2 f ′ 1 f ′ 2 et f ′ 2 f ′ 2 f ′ 2 en facteur derrière ∆ 1,5 + 5 ∆
M 8 , f ′ i = DM 8 • f ′ i -8 M 8 • f ′′ i = 3 ∆ 1,5 ∆ 1,2 + 15 ∆ 2,4 ∆ 1,2 -7 ∆ 1,4 ∆ 1,3 + 2 ∆ 2,3 ∆ 1,3 f ′ i - -24 ∆ 1,4 ∆ 1,2 + 96 ∆ 2,3 ∆ 1,2 -40 ∆ 1,3 ∆ 1,3 f ′′ i =: M 10 i .
Nous trouvons donc deux nouveaux invariants M 10 1 et M 10 2 de poids 10, qui ne s'expriment pas en fonction de ceux déjà connus, à cause de la présence du produit de déterminants ∆ 1,5 ∆ 1,2 où apparaît f ′′′′′ 1 f ′′ 2 . Troisième famille de crochets Λ 7 i,j , Λ 3 . Bien que le résultat final n'apporte pas de nouvel invariant (cf. infra), nous détaillerons ce calcul :

Λ 7 i,j , Λ 3 = 3 DΛ 7 i,j • Λ 3 -7 Λ 7 i,j • DΛ 3 = 3 ∆ 1,5 ∆ 1,2 f ′ i f ′ j + 15 ∆ 2,4 ∆ 1,2 f ′ i f ′ j -12 ∆ 1,4 ∆ 1,2 f ′′ i f ′ j + f ′ i f ′′ j - -48 ∆ 2,3 ∆ 1,2 f ′′ i f ′ j + f ′ i f ′′ j -15 ∆ 1,3 ∆ 1,2 f ′′′ i f ′ j - -15 ∆ 1,3 ∆ 1,2 f ′ i f ′′′ j + 105 ∆ 1,3 ∆ 1,2 f ′′ i f ′′ j -7 ∆ 1,4 ∆ 1,3 f ′ i f ′ j - -28 ∆ 2,3 ∆ 1,3 f ′ i f ′ j + 35 ∆ 1,3 ∆ 1,3 f ′′ i f ′ j + f ′ i f ′′ j -105 ∆ 1,3 ∆ 1,2 f ′′ i f ′′ j .
Nous utilisons la relation plückerienne pour transformer les deux termes soulignés, qui deviennent :

15 ∆ 2,3 ∆ 1,3 f ′ i f ′ j -15 ∆ 1,3 ∆ 1,3 f ′′ i f ′ j + 15 ∆ 2,3 ∆ 1,3 f ′ i f ′ j -15 ∆ 1,3 ∆ 1,3 f ′ i f ′′ j ,
et ensuite, nous additionnons les monômes égaux et nous regroupons le tout dans un ordre naturel :

Λ 7 i,j , Λ 3 = 3 ∆ 1,5 ∆ 1,2 + 15 ∆ 2,4 ∆ 1,2 -7 ∆ 1,4 ∆ 1,3 + 2 ∆ 2,3 ∆ 1,3 f ′ i f ′ j + + -12 ∆ 1,4 ∆ 1,2 -48 ∆ 2,3 ∆ 1,2 + 20 ∆ 1,3 ∆ 1,3 f ′′ i f ′ j + f ′ i f ′′ j .
Or, cette troisième famille de crochets n'apporte aucun nouvel invariant. En effet, considérons la famille d'identités de Jacobi :

0 ≡ Λ 5 i , f ′ j , Λ 3 + Λ 3 , Λ 5 i f ′ j + f ′ j , Λ 3 , Λ 5 i ≡ Λ 7 i,j , Λ 3 -f ′ i M 8 , f ′ j -Λ 5 j , Λ 5 i .
Si nous faisons tout d'abord i = j (= 1 ou = 2), en utilisant

f ′ i M 8 , f ′ i = f ′ i M 8 , f ′ i = f ′ i M 10
i , nous obtenons les deux relations :

0 ≡ Λ 7 i,i , Λ 3 -f ′ i M 10
i qui montrent que les deux crochets Λ 7 i,i , Λ 3 pour i = 1, 2 sont superflus. Si nous faisons ensuite i = 1 et j = 2, nous obtenons :

0 ≡ Λ 7 1,2 , Λ 3 -M 8 f ′ 1 , f ′ j -f ′ 1 M 8 , f ′ 2 + Λ 5 1 , Λ 5 2 ≡ Λ 7 1,2 , Λ 3 + M 8 Λ 3 -f ′ 1 M 10 2 -5 Λ 3 M 8 ≡ Λ 7 1,2 , Λ 3 -4 Λ 3 M 8 -f ′ 1 M 10 2 ,
ce qui montre que Λ 7 1,2 , Λ 3 est superflu. De la symétrie indicielle Λ 7 1,2 = Λ 7 2,1 on peut déduire sans plus de calcul que le crochet Λ 7 2,1 , Λ 3 est lui aussi superflu, mais il est instructif de faire quand même i = 2 et j = 1 dans l'identité générale :

0 ≡ Λ 7 2,1 Λ 3 -M 8 f ′ 2 , f ′ 1 -f ′ 2 M 8 , f ′ 1 -Λ 5 1 , Λ 5 2 ≡ Λ 7 2,1 , Λ 3 -M 8 Λ 3 -f ′ 2 M 10 1 + 5 Λ 3 M 8 ≡ Λ 7 2,1 , Λ 3 + 4 Λ 3 M 8 -f ′ 2 M 10 1 .
Bien que Λ 7 1,2 = Λ 7 2,1 , nous obtenons une relation indépendante de la précédente, et par soustraction, nous obtenons une nouvelle relation, que nous énonc ¸ons en passant :

0 ≡ f ′ 2 M 10 1 -f ′ 1 M 10 2 -8 Λ 3 M 8
, ce qui anticipe un fait qui va se révéler crucial par la suite : les invariants fondamentaux formés par crochets jouissent d'un très grand nombre de relations algébriques, parfois appelées syzygies, qu'il est difficile d'englober dans une combinatoire unifiée. Poursuivons toutefois pour l'instant notre préparation de tous les invariants que l'on peut former par crochets.

Quatrième famille de crochets M 8 , Λ 3 . Le calcul, "most elementary", donne :

M 8 , Λ 3 = 3 DM 8 • Λ 3 -8 M 8 • DΛ 3 = 9 ∆ 1,5 ∆ 1,2 ∆ 1,2 + 45 ∆ 2,4 ∆ 1,2 ∆ 1,2 -45 ∆ 1,4 ∆ 1,3 ∆ 1,2 - -90 ∆ 2,3 ∆ 1,3 ∆ 1,2 + 40 ∆ 1,3 ∆ 1,3 ∆ 1,3 =: N 12 .
C'est un nouvel invariant N 12 de poids 12 qui a la propriété remarquable de s'exprimer seulement en fonction des déterminants ∆ α,β . En compagnie de Λ 3 et de M 8 , il jouera un rôle central dans l'élaboration d'une base de Gröbner pour l'idéal des syzygies entre les invariants fondamentaux.

Cinquième famille de crochets Λ 7

i,j , Λ 5 k . Cette fois-ci, nous ne détaillerons pas les calculs intermédiaires, puisque nous avons déjà évoqué à présent tous les actes qui permettent de les accomplir. Nous obtenons :

Λ 7 i,j , Λ 5 k = 5 DΛ 7 i,j • Λ 5 k -7 Λ 7 i,j • DΛ 5 k = 5 ∆ 1,5 ∆ 1,3 f ′ i f ′ j f ′ k + 25 ∆ 2,4 ∆ 1,3 f ′ i f ′ j f ′ k -7 ∆ 1,4 ∆ 1,4 f ′ i f ′ j f ′ k - -56 ∆ 2,3 ∆ 1,4 f ′ i f ′ j f ′ k -112 ∆ 2,3 ∆ 2,3 f ′ i f ′ j f ′ k -15 ∆ 1,5 ∆ 1,2 f ′ i f ′ j f ′′ k - -75 ∆ 2,4 ∆ 1,2 f ′ i f ′ j f ′′ k + 15 ∆ 1,4 ∆ 1,3 f ′′ i f ′ j + f ′ i f ′′ j f ′ k + + 35 ∆ 1,4 ∆ 1,3 f ′ i f ′ j f ′′ k + 60 ∆ 2,3 ∆ 1,3 f ′′ i f ′ j + f ′ i f ′′ j f ′ k - -10 ∆ 2,3 ∆ 1,3 f ′ i f ′ j f ′′ k -25 ∆ 1,3 ∆ 1,3 f ′′′ i f ′ j + f ′ i f ′′′ j f ′ k + + 175 ∆ 1,3 ∆ 1,3 f ′′ i f ′′ j f ′ k -100 ∆ 1,3 ∆ 1,3 f ′′ i f ′ j + f ′ i f ′′ j f ′′ k + + 60 ∆ 1,4 ∆ 1,2 f ′′ i f ′ j + f ′ i f ′′ j f ′′ k -105 ∆ 1,4 ∆ 1,2 f ′′ i f ′′ j f ′ k + + 240 ∆ 2,3 ∆ 1,2 f ′′ i f ′ j + f ′ i f ′′ j f ′′ k -420 ∆ 2,3 ∆ 1,2 f ′′ i f ′′ j f ′ k .
Ces six invariants sont nouveaux, à ceci près qu'ils ne sont pas indépendants entre eux. En effet, (J ac) donne :

0 ≡ f ′ i , Λ 5 j , Λ 5 k + Λ 5 k , f ′ i , Λ 5 j + Λ 5 j , Λ 5 
k , f ′ i , relations qui se réduisent à 0 ≡ 0 lorsque j = k, mais qui fournissent deux relations non triviales lorsque j = k, à savoir :

Λ 7 1,2 , Λ 5 1 = Λ 7 1,1 , Λ 5 2 + 5 M 8 Λ 5 1 + 5 Λ 3 M 10 1 , Λ 7 1,2 , Λ 5 2 = Λ 7 2,2 , Λ 5 1 -5 M 8 Λ 5 2 -5 Λ 3 M 10 2 .
Celles-ci nous permettent de n'avoir à considérer que les quatre (au lieu de six) nouveaux invariants :

K 13 1,1,1 := Λ 7 1,1 , Λ 5 1 , K 13 1,1,2 := Λ 7 1,1 , Λ 5 2 , K 13 2,2,1 := Λ 7 2,2 , Λ 5 1 , K 13 2,2,2 := Λ 7 2,2 , Λ 5 2 .
Cependant, le travail n'est pas terminé. Puisque nous constatons que K 13 1,1,1 est divisible par f ′ 1 , nous devons introduire l'invariant de poids 12 :

K 12 1,1 := 1 f ′ 1 Λ 7 1,1 , Λ 5 1 = f ′ 1 f ′ 1 5 ∆ 1,5 ∆ 1,3 + 25 ∆ 2,4 ∆ 1,3 -7 ∆ 1,4 ∆ 1,4 -56 ∆ 2,3 ∆ 1,4 - -112 ∆ 2,3 ∆ 2,3 + f ′ 1 f ′′ 1 -15 ∆ 1,5 ∆ 1,2 -75 ∆ 2,4 ∆ 1,2 + + 65 ∆ 1,4 ∆ 1,3 + 110 ∆ 2,3 ∆ 1,3 + f 1 f ′′′ 1 -50 ∆ 1,3 ∆ 1,3 + + f ′′ 1 f ′′ 1 -25 ∆ 1,3 ∆ 1,3 + 15 ∆ 1,4 ∆ 1,2 + 60 ∆ 2,3 ∆ 1,2 .
Pareillement, K 13 2,2,2 étant divisible par f ′ 2 , nous devons introduire cet invariant défini par K 12 2,2 := 1

f ′ 1 Λ 7 2,2 , Λ 5 2 .
Mais les deux invariants restants, à savoir

K 13 1,1,2 et K 13 2,2,1 , ne sont divisibles ni par f ′ 1 ni par f ′ 2 .
Or nous verrons dans la suite qu'il est naturel d'introduire des "polarisations" de certains invariant spéciaux -tels que K 12 1,1qui ne comportent que des "1" en indices inférieurs et que nous appelerons biinvariants, les "polarisations" de ces invariants spéciaux consistant tout simplement à mettre des "1" et des "2" de toutes les manières possibles en indices inférieurs. Par exemple, les polarisations de Λ 7 1,1 sont :

Λ 7 1,2 , Λ 7 2,1 et Λ 7 2,2 .
Mais alors, comment donc les deux invariants K 13 1,1,2 et K 13 2,2,1 pourraient-ils être obtenus par polarisation, sachant qu'ils ont trois indices inférieurs? Faut-il revenir à K 13 1,1,1 et le polariser? Lemme Si l'on introduit, pour tous i, j appartenant à {1, 2}, les quatre invariants de poids 12 :

K 12 i,j := f ′ i f ′ j 5 ∆ 1,5 ∆ 1,3 + 25 ∆ 2,4 ∆ 1,3 -7 ∆ 1,4 ∆ 1,4 -56 ∆ 2,3 ∆ 1,4 - -112 ∆ 2,3 ∆ 2,3 + (f ′ i f ′′ j + f ′′ i f ′ j ) 2 -15 ∆ 1,5 ∆ 1,2 -75 ∆ 2,4 ∆ 1,2 + + 65 ∆ 1,4 ∆ 1,3 + 110 ∆ 2,3 ∆ 1,3 + (f ′ i f ′′′ j + f ′′′ i f ′ j ) 2 -50 ∆ 1,3 ∆ 1,3 + + f ′′ i f ′′ j -25 ∆ 1,3 ∆ 1,3 + 15 ∆ 1,4 ∆ 1,2 + 60 ∆ 2,3 ∆ 1,2 ,
alors les quatre invariants K 13 1,1,1 , K 13 1,1,2 , K 13 2,2,1 et K 13 2,2,2 précédents sont réobtenus au moyen des quatre relations :

K 13 1,1,1 = f ′ 1 K 12 1,1 , K 13 1,1,2 = f ′ 1 K 12 1,2 - 5 2 Λ 3 M 10 1 -5 Λ 5 1 M 8 , K 13 2,2,1 = f ′ 2 K 12 2,1 + 5 2 Λ 3 M 10 2 + 5 Λ 5 2 M 8 , K 13 2,2,2 = f ′ 2 K 12 2,2 .
Grâce à ce lemme bienvenu, nous pouvons donc introduire l'invariant réduit K 12 1,1 accompagné de ses trois polarisations

K 12 1,2 , K 12 2,1 et K 12 2,2 (en fait K 12 1,2 = K 12 2,1
), et oublier purement et simplement les quatre invariants de poids 13 qui nous étaient fournis par crochets bruts. Preuve. En considérant la permutation 1 ↔ 2 des indices (noter que les ∆ α,β changent de signe), il suffit d'établir la deuxième identité. Nous réécrivons tout d'abord, en repartant de l'expression obtenue pour Λ 7 1,1 , Λ 5 2 :

K 13 1,1,2 = f ′ 1 f ′ 1 f ′ 2 5 ∆ 1,5 ∆ 1,3 + 25 ∆ 2,4 ∆ 1,3 -7 ∆ 1,4 ∆ 1,4 -56 ∆ 2,3 ∆ 1,4 - -112 ∆ 2,3 ∆ 2,3 + f ′ 1 f ′ 1 f ′′ 2 -15 ∆ 1,5 ∆ 1,2 -75 ∆ 2,4 ∆ 1,2 + + 35 ∆ 1,4 ∆ 1,3 -10 ∆ 2,3 ∆ 1,3 + f ′ 1 f ′′ 1 f ′ 2 30 ∆ 1,4 ∆ 1,3 + 120 ∆ 2,3 ∆ 1,3 + + f ′ 1 f ′′ 1 f ′ 2 -50 ∆ 1,3 ∆ 1,3 + f ′′ 1 f ′′ 1 f ′ 2 175 ∆ 1,3 ∆ 1,3 -105 ∆ 1,4 ∆ 1,2 - -420 ∆ 2,3 ∆ 1,2 + f ′ 1 f ′′ 1 f ′′ 2 -200 ∆ 1,3 ∆ 1,3 + 120 ∆ 1,4 ∆ 1,2 + 480 ∆ 2,3 ∆ 1,2 .
Ensuite, nous effectuons la soustraction :

K 13 1,1,1 -f ′ 1 K 12 1,2 = = f ′ 1 f ′ 1 f ′′ 2 - 15 2 ∆ 1,5 ∆ 1,2 - 75 2 ∆ 2,4 ∆ 1,2 + 5 2 ∆ 1,4 ∆ 1,3 -65 ∆ 2,3 ∆ 1,3 + + f ′ 1 f ′′ 1 f ′ 2 15 2 ∆ 1,5 ∆ 1,2 + 75 2 ∆ 2,4 ∆ 1,2 - 5 2 ∆ 1,4 ∆ 1,3 + 65 ∆ 2,3 ∆ 1,3 + + f ′ 1 f ′′′ 1 f ′ 2 - 50 2 ∆ 1,3 ∆ 1,3 + + f ′ 1 f ′ 1 f ′′′ 2 50 2 ∆ 1,3 ∆ 1,3 + + f ′′ 1 f ′′ 1 f ′ 2 175 ∆ 1,3 ∆ 1,3 -105 ∆ 1,4 ∆ 1,2 -420 ∆ 2,3 ∆ 1,2 + + f ′′ 1 f ′ 1 f ′′ 2 -175 ∆ 1,3 ∆ 1,3 + 105 ∆ 1,4 ∆ 1,2 + 420 ∆ 2,3 ∆ 1,2 .
Remarquablement, les coefficients polynomiaux complexes étant opposés par paires de lignes qui se suivent, nous voyons des déterminants 2 × 2 se reformer :

K 13 1,1,1 -f ′ 1 K 12 1,2 = = f ′ 1 - 15 2 ∆ 1,5 ∆ 1,2 ∆ 1,2 - 75 2 ∆ 2,4 ∆ 1,2 ∆ 1,2 + 5 2 ∆ 1,4 ∆ 1,3 ∆ 1,2 - -65 ∆ 2,3 ∆ 1,2 ∆ 1,2 + f ′ 1 50 2 ∆ 1,3 ∆ 1,3 ∆ 1,2 + + f ′′ 1 105 ∆ 1,4 ∆ 1,2 ∆ 1,2 + 420 ∆ 2,3 ∆ 1,2 ∆ 1,2 -175 ∆ 1,3 ∆ 1,3 ∆ 1,3 .
Les deux premiers termes de la première lignes ressemblant à ceux de Λ 3 M 10 1 , nous pouvons écrire :

= - 5 2 Λ 3 M 10 1 + + f ′ 1 - 30 2 ∆ 1,4 ∆ 1,3 ∆ 1,2 -60 ∆ 2,3 ∆ 1,3 ∆ 1,2 + 50 2 ∆ 1,3 ∆ 1,2 ∆ 1,3 + + f ′′ 1 45 ∆ 1,4 ∆ 1,2 ∆ 1,2 + 180 ∆ 2,3 ∆ 1,2 ∆ 1,2 -75 ∆ 1,3 ∆ 1,3 ∆ 1,2 .
Et enfin, nous reconnaissons dans les termes restants l'expression développée de -5 Λ 5 1 M 8 , ce qui nous donne bien la relation annoncée, que nous réécrivons :

K 13 1,1,2 -f ′ 1 K 12 1,2 = -5 2 Λ 3 M 10 1 -5 Λ 5 1 M 8 . Sixième famille de crochets M 8 , Λ 5
i . Par un calcul facile, court et sans mystère qui nous permer de reprendre haleine avant d'envisager la septième et la plus complexe famille de crochets, nous obtenons :

M 8 , Λ 5 i = 5 DM 8 • Λ 5 i -8 M 8 • DΛ 5 i = 15 ∆ 1,5 ∆ 1,3 ∆ 1,2 + 75 ∆ 2,4 ∆ 1,3 ∆ 1,2 + 5 ∆ 1,4 ∆ 1,3 ∆ 1,3 + + 170 ∆ 2,3 ∆ 1,3 ∆ 1,3 -24 ∆ 1,4 ∆ 1,4 ∆ 1,2 -192 ∆ 1,4 ∆ 2,3 ∆ 1,2 - -384 ∆ 2,3 ∆ 2,3 ∆ 1,2 f ′ i + -45 ∆ 1,5 ∆ 1,2 ∆ 1,2 -225 ∆ 2,4 ∆ 1,2 ∆ 1,2 + + 225 ∆ 1,4 ∆ 1,3 ∆ 1,2 + 450 ∆ 2,3 ∆ 1,3 ∆ 1,2 -200 ∆ 1,3 ∆ 1,3 ∆ 1,3 f ′′ i =: H 14 i .
Le résultat n'est divisible ni par Λ 5 i (sinon DΛ 5 i le serait), ni par Λ 3 , ni par f ′ i . Nous trouvons donc deux nouveaux invariants H 14 1 et H 14 2 de poids 14. Septième famille de crochets Λ 7 i,j , Λ 7 k,l . Le calcul complet, que nous détaillons dans la Section 9 parce qu'il est délicat, donne :

Λ 7 i,j , Λ 7 k,l 7 = DΛ 7 i,j • Λ 7 k,l -Λ 7 i,j • DΛ 7 k,l = -5 ∆ 1,5 ∆ 1,3 -25 ∆ 2,4 ∆ 1,3 + 4 ∆ 1,4 ∆ 1,4 + 32 ∆ 1,4 ∆ 2,3 + + 64 ∆ 2,3 ∆ 2,3 f ′ j f ′ l ∆ 1,2 i,k + f ′ i f ′ k ∆ 1,2 j,l + + 15 ∆ 1,5 ∆ 1,2 + 75 ∆ 2,4 ∆ 1,2 -35 ∆ 1,4 ∆ 1,3 + + 10 ∆ 2,3 ∆ 1,3 f ′ i f ′′ l ∆ 1,2 j,k + f ′ k f ′′ j ∆ 1,2 i,l + + -5 ∆ 1,4 ∆ 1,3 -20 ∆ 2,3 ∆ 1,3 f ′ j f ′ l ∆ 1,3 k,i + f ′ i f ′ k ∆ 1,3 l,j + + 25 ∆ 1,3 ∆ 1,3 f ′ j f ′ l ∆ 2,3 k,i + f ′ j f ′ k ∆ 2,3 l,i + f ′ i f ′ l ∆ 2,3 k,j + f ′ i f ′ k ∆ 2,3 l,j + + -60 ∆ 1,4 ∆ 1,2 -240 ∆ 2,3 ∆ 1,2 + + 100 ∆ 1,3 ∆ 1,3 f ′′ i f ′′ k ∆ 1,2 j,l + f ′′ j f ′′ l ∆ 1,2 i,k .
Nous trouvons ainsi trois invariants de poids 15 :

Λ 7 1,1 , Λ 7 1,2 , Λ 7 1,1 , Λ 7 2,2 , Λ 7 1,2 , Λ 7 2,2 ,
mais cependant, ces invariants s'expriment en fonction de ceux que nous connaissons déjà. En effet, spécialisons tout d'abord les indices dans la formule générale et nettoyons les expressions obtenues :

Λ 7 1,1 , Λ 7 1,2 7 = f ′ 1 f ′ 1 -5 ∆ 1,5 ∆ 1,3 ∆ 1,2 -25 ∆ 2,4 ∆ 1,3 ∆ 1,2 + 4 ∆ 1,4 ∆ 1,4 ∆ 1,2 + + 32 ∆ 1,4 ∆ 2,3 ∆ 1,2 + 64 ∆ 2,3 ∆ 2,3 ∆ 1,2 + + 5 ∆ 1,4 ∆ 1,3 ∆ 1,3 -30 ∆ 2,3 ∆ 1,3 ∆ 1,3 + + f ′ 1 f ′′ 1 15 ∆ 1,5 ∆ 1,2 ∆ 1,2 + 75 ∆ 2,4 ∆ 1,2 ∆ 1,2 - -35 ∆ 1,4 ∆ 1,3 ∆ 1,2 + 10 ∆ 2,3 ∆ 1,3 ∆ 1,2 + + f ′′ 1 f ′′ 1 -60 ∆ 1,4 ∆ 1,2 ∆ 1,2 -240 ∆ 2,3 ∆ 1,2 ∆ 1,2 + + 100 ∆ 1,3 ∆ 1,3 ∆ 1,2 , Λ 7 1,2 , Λ 7 2,2 7 = Idem indice 1 ←→ indice 2 , Λ 7 1,1 , Λ 7 2,2 7 = f ′ 1 f ′ 2 -10 ∆ 1,5 ∆ 1,3 ∆ 1,2 -50 ∆ 2,4 ∆ 1,3 ∆ 1,2 + 8 ∆ 1,4 ∆ 1,4 ∆ 1,2 + + 64 ∆ 1,4 ∆ 2,3 ∆ 1,2 + 128 ∆ 2,3 ∆ 2,3 ∆ 1,2 + + 10 ∆ 1,4 ∆ 1,3 ∆ 1,3 -60 ∆ 2,3 ∆ 1,3 ∆ 1,3 + + f ′ 1 f ′′ 2 + f ′′ 1 f ′ 2 2 30 ∆ 1,5 ∆ 1,2 ∆ 1,2 + 150 ∆ 2,4 ∆ 1,2 ∆ 1,2 - -70 ∆ 1,4 ∆ 1,3 ∆ 1,2 + 20 ∆ 2,3 ∆ 1,3 ∆ 1,2 + + f ′′ 1 f ′′ 2 -120 ∆ 1,4 ∆ 1,2 ∆ 1,2 -480 ∆ 2,3 ∆ 1,2 ∆ 1,2 + + 200 ∆ 1,3 ∆ 1,3 ∆ 1,2 .
Si nous examinons le polynôme cubique en ∆ qui est multiple de f ′′ 1 f ′′ 1 dans les deux dernières lignes de l'expression de 1 7 Λ 7 1,1 , Λ 7 1,2 , nous reconnaissons par exemple -20 M 8 ∆ 1,2 , ce qui constitue une coïncidence que nous devrions manifestement exploiter, et ensuite, sans plus tenter de décrire l'ascèse visuelle qui nous permet de deviner des relations algébriques entre de telles expressions, nous trouvons les trois relations suivantes immédiatement vérifiables par développement :

0 ≡ 6 Λ 7 1,1 , Λ 7 1,2 + 35 Λ 5 1 M 10 1 + f ′ 1 H 14 1 , 0 ≡ 6 Λ 7 1,1 , Λ 7 1,2 + 35 Λ 5 1 M 10 2 + Λ 5 2 M 10 1 + f ′ 1 H 14 2 + f ′ 2 H 14 1 , 0 ≡ 6 Λ 7 1,2 , Λ 7 2,2 + 35 Λ 5 2 M 10 2 + f ′ 2 H 14 2 ,
qui montrent que les trois invariants

Λ 7 1,1 , Λ 7 1,2 , Λ 7 1,1 , Λ 7 2,2 et Λ 7 1,2 , Λ 7 
2,2 sont en fait superflus. Bien qu'elle nous ait coté de réels efforts de calculs, cette circonstance n'est pas sans nous déplaire, puisque nous pouvons ainsi réduire de trois unités le nombre d'invariants fondamentaux que nous aurons à considérer ultérieurement.

Huitième famille de crochets M 8 , Λ 7 i,j . Le calcul, qui implique seulement quelques normalisations plückeriennes et bien sr aussi de l'arithmétique formelle élémentaire, fournit l'expression massive suivante, qui est en fait complètement simplifiée :

M 8 , Λ 7 i,j = 7 DM 8 • Λ 7 i,j -8 M 8 • DΛ 7 i,j = -3 ∆ 1,5 ∆ 1,4 ∆ 1,2 -15 ∆ 2,4 ∆ 1,4 ∆ 1,2 -12 ∆ 1,5 ∆ 2,3 ∆ 1,2 + + 40 ∆ 1,5 ∆ 1,3 ∆ 1,3 -60 ∆ 2,4 ∆ 2,3 ∆ 1,2 + 200 ∆ 2,4 ∆ 1,3 ∆ 1,3 - -49 ∆ 1,4 ∆ 1,4 ∆ 1,3 -422 ∆ 1,4 ∆ 2,3 ∆ 1,3 -904 ∆ 2,3 ∆ 2,3 ∆ 1,3 f ′ i f ′ j + + -105 ∆ 1,5 ∆ 1,3 ∆ 1,2 -525 ∆ 2,4 ∆ 1,3 ∆ 1,2 + 205 ∆ 1,4 ∆ 1,3 ∆ 1,3 - -230 ∆ 2,3 ∆ 1,3 ∆ 1,3 + 96 ∆ 1,4 ∆ 1,4 ∆ 1,2 + 768 ∆ 1,4 ∆ 2,3 ∆ 1,2 + + 1536 ∆ 2,3 ∆ 2,3 ∆ 1,2 f ′′ i f ′ j + f ′ i f ′′ j + + -200 ∆ 1,3 ∆ 1,3 ∆ 1,3 f ′′′ i f ′ j + f ′ i f ′′′ j + + 315 ∆ 1,5 ∆ 1,2 ∆ 1,2 + 1575 ∆ 2,4 ∆ 1,2 ∆ 1,2 -1575 ∆ 1,4 ∆ 1,3 ∆ 1,2 - -3150 ∆ 2,3 ∆ 1,3 ∆ 1,2 + 1400 ∆ 1,3 ∆ 1,3 ∆ 1,3 f ′′ i f ′′ j .
Nous obtenons ainsi trois nouveaux invariants de poids 16 :

F 16 1,1 := M 8 , Λ 7 1,1 , F 16 1,2 := M 8 , Λ 7 1,2 = F 16 2,1 , F 16 2,2 := M 8 , Λ 7 2,2 .
Système générateur pour les jets d'ordre 5. Il nous faut donc considérer les vingt-cinq polynômes invariants fondamentaux :

f ′ 1 , f ′ 2 , Λ 3 , Λ 5 1 , Λ 5 2 , Λ 7 1,1 , Λ 7 1,2 , Λ 7 2,2 , M 8 , Λ 9 1,1,1 , Λ 9 1,2,1 , Λ 9 2,1,2 , Λ 9 2,2,2 , M 10 1 , M 10 2 , N 12 , K 12 1,1 , K 12 1,2 , K 12 2,1 , K 12 2,2 , H 14 1 , H 14 2 , F 16 1,1 , F 16 1,2 , F 16 2,2 .
Problème. Décrire explicitement l'idéal des relations entre ces vingt-cinq polynômes et établir que tout polynôme invariant par reparamétrisation P j 5 f se représente comme polynôme P f ′ 1 , . . . , M 8 , . . . , H 14 1 , . . . , F 16 2,2 en ces vingt-cinq invariants fondamentaux. §5. Jets d'ordre 4 en dimension 2 Neuf relations fondamentales Cette section et celle qui suit sont consacrées à l'étude plus accessible de DS [START_REF] Olver | Classical invariant theory[END_REF] 2 . Pour les jets d'ordre 4, on considère les neuf polynômes invariants fondamentaux :

f ′ 1 , f ′ 2 , Λ 3 , Λ 5 1 , Λ 5 2 , Λ 7 1,1 , Λ 7 1,2 , Λ 7 2,2 , M 8 ,
et avant de passer aux jets d'ordre cinq, nous allons démontrer que tout polynôme invariant par reparamétrisation P j4 f se représente comme polynôme de la forme P f ′ 1 , . . . , Λ 5 2 , . . . , M 8 . Trois calculs distincts sur Maple 4 conduisent aux neuf relations fondamentales suivantes entre ces neuf invariants :

0 1 ≡ f ′ 2 Λ 5 1 -f ′ 1 Λ 5 2 -3 Λ 3 Λ 3 , 0 2 ≡ f ′ 2 Λ 7 1,1 -f ′ 1 Λ 7 1,2 -5 Λ 3 Λ 5 1 , 0 3 ≡ f ′ 2 Λ 7 1,2 -f ′ 1 Λ 7 2,2 -5 Λ 3 Λ 5 2 ,     0 4 ≡ f ′ 1 f ′ 1 M 8 -3 Λ 3 Λ 7 1,1 + 5 Λ 5 1 Λ 5 1 , 0 5 ≡ f ′ 1 f ′ 2 M 8 -3 Λ 3 Λ 7 1,2 + 5 Λ 5 1 Λ 5 2 , 0 6 ≡ f ′ 2 f ′ 2 M 8 -3 Λ 3 Λ 7 2,2 + 5 Λ 5 2 Λ 5 2 , 0 7 ≡ f ′ 1 Λ 3 M 8 -Λ 5 1 Λ 7 1,2 + Λ 5 2 Λ 7 1,1 , 0 8 ≡ f ′ 2 Λ 3 M 8 -Λ 5 1 Λ 7 2,2 + Λ 5 2 Λ 7 1,2 , 0 9 ≡ 5 Λ 3 Λ 3 M 8 -Λ 7 2,2 Λ 7 1,1 + Λ 7 1,2 Λ 7 1,2 .
Dans le cas des jets d'ordre κ = 3, seule la première relation est présente ; l'idéal des relations est principal et il constitue per se la base de Gröbner adéquate.

Question. Comment retrouver et prévoir l'existence de toutes ces relations ? Indication de réponse. Au niveau κ = 4, une seule identité de Jacobi peut être formée et elle donne la relation déjà connue Λ 7 1,2 = Λ 7 2,1 , qui est cependant triviale par rapport aux neufs identités listées ci-dessus. Mais en déchiffrant ces neuf équations, ou bien en observant que les deux familles d'identités qui sont satisfaites dans les algèbres plückeriennes et que nous avons déjà utilisées systématiquement pour normaliser l'expression définitive de nos crochets, doivent nécessairement et naturellement "emboîter notre pas" lorsque nous formons tous les déterminants 2×2 de la matrice

f ′ 1 f ′ 2 3 Λ 3 5 Λ 5 1 5 Λ 5 2 Df ′ 1 Df ′ 2 DΛ 3 DΛ 5 1 DΛ 5 2 
, nous devinons [START_REF] Rousseau | Hyperbolicité des variétés complexes[END_REF] , ou nous constatons, que le lemme général suivant est vrai.

Lemme Pour tout quadruplet P, Q, R, S d'invariants de poids m, n, o, p, les deux identités suivantes de type plückérien sont satisfaites :

0 ≡ m P Q, R + o R P, Q + n Q R, P , (Plck 1 ) 0 ≡ P, Q • R, S + S, P • R, Q + Q, S • R, P . (Plck 2 )
Preuve. Si en effet nous développons les deux derniers crochets :

o R n DP • Q -m P • DQ + n Q m DR • P -o R • DP ,
les deux termes extrêmes s'annihilent, tandis que les deux termes centraux :

-om R • P • DQ + nm Q • DR • P ≡ -m P Q, R
reconstituent l'opposé du premier terme de la première identité (Plck 1 ). La seconde (Plck 2 ) n'est qu'une reformulation de la relation plückerienne fondamentale qui est satisfaite par les six mineurs 2 × 2 d'une matrice de taille 2 × 4. On la vérifie en développant les trois produits de déterminants 2 × 2, ce qui produit 12 termes constitués de 6 couples s'annihilant.

Reconstitution des 9 syzygies. Il est très remarquable que les identités (Plck 1 ) permettent de reconstituer les huit premières (parmi neuf) des identités listées (voir ci-dessous), et que la neuvième identité "
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≡" puisse être obtenue comme l'une des identités (Plck 2 ).

En effet, au niveau précédent κ = 3, nous avions cinq polynômes invariants fondamentaux :

f ′ 1 f ′ 2 Λ 3 Λ 5 1 Λ 5 2 .
Par conséquent, le nombre d'identités fondamentales (Plck 1 ) possibles est égal à C 3 5 = 10, et nous les écrivons dans l'ordre suivant :

0 a ≡ f ′ 1 f ′ 2 , Λ 3 + 3 Λ 3 f ′ 1 , f ′ 2 + f ′ 2 Λ 3 , f ′ 1 , 0 b ≡ f ′ 1 f ′ 2 , Λ 5 1 + 5 Λ 5 1 f ′ 1 , f ′ 2 + f ′ 2 Λ 5 1 , f ′ 1 , 0 c ≡ f ′ 1 f ′ 2 , Λ 5 2 + 5 Λ 5 2 f ′ 1 , f ′ 2 + f ′ 2 Λ 5 2 , f ′ 1 , 0 d ≡ f ′ 1 Λ 3 , Λ 5 1 + 5 Λ 5 1 f ′ 1 , Λ 3 + 3 Λ 3 Λ 5 1 , f ′ 1 , 0 e ≡ f ′ 1 Λ 3 , Λ 5 2 + 5 Λ 5 2 f ′ 1 , Λ 3 + 3 Λ 3 Λ 5 2 , f ′ 1 , 0 f ≡ f ′ 1 Λ 5 1 , Λ 5 2 + 5 Λ 5 2 f ′ 1 , Λ 5 1 + 5 Λ 5 1 Λ 5 2 , f ′ 1 , 0 g ≡ f ′ 2 Λ 3 , Λ 5 1 + 5 Λ 5 1 f ′ 2 , Λ 3 + 3 Λ 3 Λ 5 1 , f ′ 2 , 0 h ≡ f ′ 2 Λ 3 , Λ 5 2 + 5 Λ 5 2 f ′ 2 , Λ 3 + 3 Λ 3 Λ 5 2 , f ′ 2 , 0 i ≡ f ′ 2 Λ 5 1 , Λ 5 2 + 5 Λ 5 2 f ′ 2 , Λ 5 1 + 5 Λ 5 1 Λ 5 2 , f ′ 2 , 0 j ≡ 3 Λ 3 Λ 5 1 , Λ 5 2 + 5 Λ 5 2 Λ 3 , Λ 5 1 + 5 Λ 5 1 Λ 5 2 , Λ 3 .
De même, le nombre d'identités plückeriennes (Plck 2 ) possibles est égal au nombre C 4 5 = 5 :

0 k ≡ f ′ 1 , f ′ 2 • Λ 3 , Λ 5 1 + Λ 5 1 , f ′ 1 • Λ 3 , f ′ 2 + f ′ 2 , Λ 5 1 • Λ 3 , f ′ 1 , 0 l ≡ f ′ 1 , f ′ 2 • Λ 3 , Λ 5 1 + Λ 5 2 , f ′ 1 • Λ 3 , f ′ 2 + f ′ 2 , Λ 5 2 • Λ 3 , f ′ 1 , 0 m ≡ f ′ 1 , f ′ 2 • Λ 5 1 , Λ 5 2 + Λ 5 2 , f ′ 1 • Λ 5 1 , f ′ 2 + f ′ 2 , Λ 5 2 • Λ 5 1 , f ′ 1 , 0 n ≡ f ′ 1 , Λ 3 • Λ 5 1 , Λ 5 2 + Λ 5 2 , f ′ 1 • Λ 5 1 , Λ 3 + Λ 3 , Λ 5 2 • Λ 5 1 , f ′ 1 , 0 o ≡ f ′ 2 , Λ 3 • Λ 5 1 , Λ 5 2 + Λ 5 2 , f ′ 1 • Λ 5 1 , Λ 3 + Λ 3 , Λ 5 2 • Λ 5 1 , f ′ 2 .
À présent, nous pouvons réécrire tous ces crochets bruts en utilisant les notations que nous avons introduites pour désigner nos neuf invariants, tout d'abord dans les dix identités (Plck 1 ) :

0 a ≡ -f ′ 1 Λ 5 2 -3 Λ 3 Λ 3 + f ′ 2 Λ 5 1 , 0 b ≡ -f ′ 1 Λ 7 1,2 -5 Λ 3 Λ 5 1 + f ′ 2 Λ 7 1,1 , 0 c ≡ -f ′ 1 Λ 7 2,2 -5 Λ 3 Λ 5 2 + f ′ 2 Λ 7 2,1 , 0 d ≡ -f ′ 1 f ′ 1 M 8 -5 Λ 5 1 Λ 5 1 + 3 Λ 3 Λ 7 1,1 , 0 e ≡ -f ′ 1 f ′ 2 M 8 -5 Λ 5 1 Λ 5 2 + 3 Λ 3 Λ 7 2,1 , 0 f ≡ -5 f ′ 1 Λ 3 M 8 -5 Λ 5 2 Λ 7 1,1 + 5 Λ 5 1 Λ 7 2,1 , 0 g ≡ -f ′ 2 f ′ 1 M 8 -5 Λ 5 2 Λ 5 1 + 3 Λ 3 Λ 7 1,2 , 0 h ≡ -f ′ 2 f ′ 2 M 8 -5 Λ 5 2 Λ 5 2 + 3 Λ 3 Λ 7 2,2 , 0 i ≡ -5 f ′ 2 Λ 3 M 8 -5 Λ 5 2 Λ 7 1,2 + 5 Λ 5 1 Λ 7 2,2 , 0 j ≡ -3 Λ 3 Λ 3 M 8 -Λ 5 2 f ′ 1 M 8 + Λ 5 1 f ′ 2 M 8 ;
et ensuite dans les cinq identités (Plck 2 ) :

0 k ≡ Λ 3 f ′ 1 M 8 + Λ 7 1,1 Λ 5 2 -Λ 7 1,2 Λ 5 1 , 0 l ≡ Λ 3 f ′ 2 M 8 + Λ 7 2,1 Λ 5 2 -Λ 7 2,2 Λ 5 1 , 0 m ≡ 5 Λ 3 Λ 3 M 8 + Λ 7 2,1 Λ 7 1,2 -Λ 7 2,2 Λ 7 1,1 , 0 n ≡ 5 Λ 5 1 Λ 3 M 8 + Λ 7 2,1 f ′ 1 M 8 -Λ 7 1,1 f ′ 2 M 8 , 0 o ≡ 5 Λ 5 2 Λ 3 M 8 + Λ 7 2,2 f ′ 1 M 8 -f ′ 2 Λ 7 1,2 M 8 .
Ici, en admettant bien sr que Λ 1,2 = Λ 2,1 , on constate que :

• " a ≡" fournit " 1 ≡" ; • " b ≡" fournit " 2 ≡" ; • " c ≡" fournit " 3 ≡" ; • " d ≡" fournit " 4 ≡" ;
• " e ≡" fournit "

5

≡" ;

• " f ≡" fournit "

7

≡" ;

• " g ≡" est redondant avec " e ≡" ;

• " h ≡" fournit " 6 ≡" ;

• " i ≡" fournit " 8 ≡" ; • " j ≡" redouble " 1 ≡" en la multipliant par M 8 ; • " k ≡" redouble " f ≡" ; • " l ≡" redouble " i ≡" ;
• " m ≡" fournit la dernière identité manquante "
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≡" ;

• " n ≡" redouble " b ≡" en la multipliant par M 8 ; • " o ≡" redouble " c ≡" en la multipliant par M 8 .

Conclusion.

Toutes les identités algébriques entre les invariants fondamentaux que nous avons trouvées à l'aide de Maple pour les niveaux κ = 3 et κ = 4 peuvent en fait être obtenues mécaniquement grâce aux trois familles fondamentales de syzygies :

(J ac) : 0 ≡ P, Q , R + R, P , Q + Q, R , P , (RF ) : 0 ≡ m P Q, R + o R P, Q + n Q R, P , (Plck) 
: 0 ≡ P, Q • R, S + S, P • R, Q + Q, S • R, P .
Genèse des syzygies. Crucialement, il semblerait que l'on puisse engendrer toutes les relations entre tous les polynômes invariants que l'on construit récursivement par crochets, juste en développant par récurrence toutes les identités (J ac), (Plck 

κ en dimension deux muni des coordonnées f ′ 1 , f ′ 2 , . . . , f (λ) 1 , f (λ) 2 , . . . , f (κ) 1 , f (κ) 2 
, considérons (cf. [5]) l'action du groupe linéaire à deux dimensions GL 2 (C)constitué des matrices 2 × 2 de la forme W := t v u w , où t, u, v, w ∈ C satisfont twuv = 0 -qui est définie diagonalement par la même transformation évidente sur chaque étage de jets :

w • f (λ) 1 := t f (λ) 1 + v f (λ) 2 , w • f (λ) 2 := u f (λ) 1 + w f (λ) 2 ,
pour tout λ tel que 1 λ κ. Décompositions de Schur. La théorie classique des représentations du groupe linéaire permet alors de décomposer toute représentation de GL 2 (C) comme somme directe de représentations d'un certain type, dites de Schur, que l'on repère facilement en recherchant tous les vecteurs qui sont invariants par un certain sous-groupe de GL 2 (C). Énonc ¸ons ce que la théorie générale donne dans le cas qui nous intéresse. Définition. Un polynôme invariant par reparamétrisation P j κ f est appelé biinvariant s'il est un vecteur de plus haut poids pour cette représentation, c'est-à-dire s'il est invariant par l'action du sous-groupe unipotent U 2 (C) constitué des matrices de la forme :

U := 1 0 u 1 .
Autrement dit, un invariant simple

P satisfait P j κ (f • φ) = (φ ′ ) m P (j κ f ) • φ
pour un certain m 1 et c'est un bi-invariant si l'on a de plus :

P 2×inv U • j κ f = P 2×inv j κ f , pour toute matrice unipotente U ∈ U 2 (C). Exemples. Puisque l'on a trivialement U • f ′ 1 = f ′ 1 et U • f ′′ 1 = f ′′ 1 , et aussi : U • ∆ α,β = f (α) 1 f (α) 2 + u f (α) 1 f (β) 1 f (β) 2 + u f (β) 1 = ∆ α,β , nous voyons immédiatement que f ′ 1 , Λ 3 , Λ 5 1 , Λ 7
1,1 et M 8 sont des bi-invariants (au nombre de cinq), tandis que les quatre invariants restants, à savoir

f ′ 2 , Λ 5 2 , Λ 7 1,2 et Λ 7
2,2 ne sont pas bi-invariants. Repérage des représentations de Schur. D'après la théorie générale, à tout vecteur P 2×inv de plus haut poids correspond alors une et une seule représentation de Schur Γ (l 1 ,l 2 ) , où les deux entiers l 1 et l 2 satisfaisant l 1 l 2 sont aisément repérés comme étant les exposants des deux éléments diagonaux qui apparaissent dans la valeur propre [START_REF] Cox | Ideals, varieties and algorithms, An introduction to computational algebraic geometry and commutative algebra[END_REF] , M 8 ←→ Γ [START_REF] Demailly | Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials[END_REF][START_REF] Demailly | Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials[END_REF] .

t • P 2×inv = t 0 0 w • P 2×inv = t l
f ′ 1 ←→ Γ (1,0) , Λ 3 ←→ Γ (1,1) , Λ 5 1 ←→ Γ (2,1) , Λ 7 1,1 ←→ Γ (3,
Fait d'expérience. La détermination directe des bi-invariants en dimension ν = 2 pour les jets d'ordre κ = 4 ou κ = 5 est beaucoup moins coteuse en calcul que la détermination de la totalité des invariants par reparamétrisation. Voici en effet le premier de nos deux résultats principaux.

Théorème Pour les jets d'ordre 4 en dimension 2, tout bi-invariant de poids m, P 2×inv j 4 f 1 , j 4 f 2 , s'écrit sous forme unique :

P 2×inv j 4 f = Q 2×inv f ′ 1 , Λ 3 , Λ 7 1,1 , M 8 + Λ 5 1 R 2×inv f ′ 1 , Λ 3 , Λ 7 1,1 , M 8 , où Q 2×inv et R 2×inv sont deux
polynômes absolument arbitraires en leurs arguments qui sont de poids m et de poids m-5, respectivement. De plus, l'idéal des relations entre les cinq bi-invariants fondamentaux :

f ′ 1 Λ 3 Λ 5 1 Λ 7 1,1 M 8 ,
est principal, et pour préciser, il est engendré par l'unique6 relation :

0 ≡ f ′ 1 f ′ 1 M 8 -3 Λ 3 Λ 7 1,1 + 5 Λ 5 1 Λ 5 1 .
Par conséquent, une base de l'espace vectoriel des polynômes de poids m invariant par reparamétrisation et par rapport à l'action de U 2 (C) est constituée de l'ensemble des monômes :

(f ′ 1 ) α Λ 3 β Λ 7 1,1 γ M 8 δ , avec α + 3β + 7γ + 8δ = m, et : Λ 5 1 (f ′ 1 ) α Λ 3 β Λ 7 1,1 γ M 8 δ , avec α + 3β + 7γ + 8δ = m -5,
et chacun de ces deux monômes correspond respectivement aux deux représentations de Schur :

Γ α+β+3γ+2δ, β+γ+2δ et Γ 2+α+β+3γ+2δ, 1+β+γ+2δ .
Conséquences. Avant d'entreprendre la démonstration de ce premier théorème, notons que l'algèbre complète DS 4 2 des invariants par reparamétrisation s'obtient maintenant facilement en regardant l'orbite, par l'action du groupe complet GL 2 (C), de chacun de nos cinq bi-invariants ; on constate d'ailleurs qu'il suffit de considérer l'action des matrices de la forme 

V := 1 v 0 1 , qui nous fournissent immédiatement : V • f ′ 1 = f ′ 1 + v f ′ 2 , V • Λ 5 1 = Λ 5 1 + v Λ 5 2 , V • Λ 7 1,1 = Λ 7 1,1 + 2v Λ 7 1,2 + v 2 Λ 7 2,
fondamentaux f ′ 1 , f ′ 2 , Λ 3 , Λ 5 1 , Λ 5 2 , Λ 7 1,1 , Λ 7 1,2 , Λ 7 2,2 , M 8 .
Restrictions. Toutefois, cette manière économique de procéder -étude exclusive et exhaustive des bi-invariants suivie de la déduction raccourcie d'une description partielle de l'algèbre complète des invariants -ne fournit pas de description précise de DS 4 2 , c'est-à-dire notamment qu'elle ne fournit pas une écriture unique, en tenant compte des 9 syzygies fondamentales, de tout polynôme général de la forme :

P f ′ 1 , f ′ 2 , Λ 3 , Λ 5 1 , Λ 5 2 , Λ 7 1,1 , Λ 7 1,2 , Λ 7 2,2 , M 8 ,
et qui plus est, il serait impossible d'obtenir un tel résultat complet, et ce pour une raison profonde, à savoir que l'orbite par GL 2 (C) de l'unique syzygie existant entre les bi-invariants ne couvre pas l'ensemble des neuf syzygies fondamentales qui existent entre les invariants complets. Heureusement, puisque seule la décomposition en représentations irréductibles de Schur présente un véritable sens algébrique, et aussi, puisque nous aurons seulement besoin de cette décomposition pour conduire nos calculs de caractéristique d'Euler dans la Section 8, il est en vérité essentiellement inutile de poursuivre plus avant l'étude de DS [START_REF] Olver | Classical invariant theory[END_REF] 2 . Nous confierons quand même au lecteur désireux de s'exercer à maîtriser les bases de Gröbner le soin d'établir l'énoncé suivant, ou d'autres énoncés analogues qu'il pourrait formuler en choisissant à sa guise des ordres monomiaux différents.

Proposition Tout polynôme en les neuf invariants fondamentaux s'écrit de manière unique comme suit :

P f ′ 1 , f ′ 2 , Λ 3 , Λ 7 1,1 , Λ 7 2,2 + Λ 3 Q f ′ 1 , f ′ 2 , Λ 3 , Λ 7 1,1 , Λ 7 2,2 + + Λ 5 1 R f ′ 1 , f ′ 2 , Λ 3 , Λ 7 1,1 , Λ 7 2,2 + Λ 5 2 S f ′ 1 , f ′ 2 , Λ 3 , Λ 7 1,1 , Λ 7 2,2 + + Λ 7 1,2 T f ′ 1 , f ′ 2 , Λ 3 , Λ 7 1,1 , Λ 7 2,2 + Λ 3 Λ 7 1,2 U f ′ 1 , f ′ 2 , Λ 3 , Λ 7 1,1 , Λ 7 2,2 ,
où P, Q, R, S, T et U sont des polynômes arbitraires en leurs arguments.

Démonstration du premier théorème. Par définition de l'invariance par reparamétrisation d'un polynôme P = P j 4 f ) de poids m, on a :

P j 4 (f • φ) = φ ′ m P (j 4 f ) • φ ,
pour tout biholomorphisme local φ de C. En suivant une astuce de [5], nous allons appliquer cette formule à φ :

= f -1 1 en supposant l'inversibilité, d'où φ ′ = 1 f ′ 1 • f -1 1 . On a tout d'abord trivialement f 1 • f -1 1 ′ = Id, d'où f 1 • f -1 1 (λ) = 0 pour tout λ
2 puis, par des calculs directs dont la teneur est déjà élucidée par notre connaissance préalable des invariants Λ 3 , Λ [START_REF] Rousseau | Hyperbolicité des variétés complexes[END_REF] 1 et Λ 7 1,1 :

f 2 • f -1 1 ′ = f ′ 2 f ′ 1 • f -1 1 , f 2 • f -1 1 ′′ = Λ 3 (f ′ 1 ) 3 • f -1 1 , f 2 • f -1 1 ′′′ = Λ 5 1 (f ′ 1 ) 5 • f -1 1 , f 2 • f -1 1 ′′′′ = Λ 7 1,1 (f ′ 1 ) 7 • f -1 1 .
Par conséquent, tout polynôme P(j 4 f ) invariant par reparamétrisation satisfait :

P 1, f ′ 2 f ′ 1 , 0, Λ 3 (f ′ 1 ) 3 , 0, Λ 5 1 (f ′ 1 ) 5 , 0, Λ 7 1,1 (f ′ 1 ) 7 • f -1 1 = 1 f ′ 1 • f -1 1 m P (j 4 f • f -1 1 )
.

Recomposons immédiatement avec f 1 pour faire disparaître f -1 1 . Si ensuite nous écrivons le polynôme de départ P = P j 4 f sous la forme générale suivante :

a1+a2+2b1+2b2+•••+4d2=m p a1a2•••d2 • (f ′ 1 ) a1 (f ′ 2 ) a2 (f ′′ 1 ) b1 (f ′′ 2 ) b2 (f ′′′ 1 ) c1 (f ′′′ 2 ) c2 (f ′′′′ 1 ) d1 (f ′′′′ 2 ) d2 , avec des coefficients p a 1 a 2 •••d 2 ∈
C, l'identité obtenue à l'instant nous permet alors d'obtenir une représentation générale de P :

P j 4 f = (f ′ 1 ) m P 1, f ′ 2 f ′ 1 , 0, Λ 3 (f ′ 1 ) 3 , 0, Λ 5 1 (f ′ 1 ) 5 , 0, Λ 7 1,1 (f ′ 1 ) 7 = (f ′ 1 ) m a 1 +a 2 +2b 2 +3c 2 +4d 2 =m p a 1 a 2 0b 2 0c 2 0d 2 1 a 1 (f ′ 2 ) a 2 Λ 3 b 2 Λ 5 1 c 2 Λ 7 1,1 d 2 (f ′ 1 ) a 2 +3b 2 +5c 2 +7d 2 ∈ C f ′ 1 , f ′ 2 , Λ 3 , Λ 5 1 , Λ 7 1,1 1 f ′ 1 ,
qui est presque polynomiale, à ceci près qu'on s'autorise à diviser par f ′ 1 . Calculons alors l'ordre maximal en 1 f ′ 1 de cette expression rationnelle :

max a1+a2+2b2+3c2+4d2=m a 2 + 3b 2 + 5c 2 + 7d 2 -m = max a2+2b2+3c2+4d2=m b 2 + 2c 2 + 3d 2 = 1 2 • max 2b2+3c2+4d2=m 2b 2 + 4c 2 + 6d 2 = m 2 + 1 2 • max 3c2+4d2=m c 2 + 2d 2 = 3 4 m.
Ainsi, tout polynôme P j 4 f ∈ DS 4 2,m est de la forme :

-3 4 m a m (f ′ 1 ) a P a f ′ 2 , Λ 3 , Λ 5 1 , Λ 7 1,1 .
Cependant, toutes les expressions rationnelles de cette forme ne conviennent pas :

Λ 3 Λ 3 f ′ 1 f ′ 1
avec m = 4 ne se simplifie pas pour produire un vrai polynôme appartenant DS [START_REF] Olver | Classical invariant theory[END_REF] 2,m , bien que cette expression rationnelle soit invariante par reparamétrisation. Toutefois, l'énoncé suivant, que nous transférons directement aux jets d'ordre quelconque, est clair.

Lemme Tout polynôme P j κ f ) en le jet strict 

j κ f := f ′ 1 , f ′ 2 , f ′′ 1 , f ′′ 2 , . . . . . . , f (κ) 1 , f (κ) 2 d'ordre κ 1 d'une application holomorphe locale f = (f 1 , f 2 ) : C → C 2 qui
P j κ f ) = -κ-1 κ m a m (f ′ 1 ) a P a f ′ 2 , Λ 3 , Λ 5 1 , Λ 7 1,1 , Λ 9 1,1,1 , . . . , Λ 2κ-1 1,...,1 ,
avec certains polynômes P a de poids ma. Réciproquement, toute expression rationnelle de cette forme qui s'avère être polynomiale en j κ f quand on simplifie numérateur et dénominateur appartient à DS κ 2,m .

Ici, on considère comme précédemment

Λ 9 1,1,1 := Λ 7 1,1 , f ′ 1 , et on introduit généralement par récurrence Λ 2λ-1 1,...,1,1 := Λ 2λ-3 1,...,1 , f ′ 1 pour 3 λ κ.
Décrivons maintenant les polynômes P = P j κ f de DS κ 2,m écrits sous une telle forme rationnelle qui sont invariants par l'action de U 2 (C). Par définition, U •P = P, i.e. explicitement :

P f ′ 1 , f ′ 2 + u f ′ 1 , f ′′ 1 , f ′′ 2 + u f ′′ 1 , . . . , f (κ) 1 , f (κ) 
2 + u f

(κ) 1 = P j κ f , pour tout u ∈ C. De manière équivalente, d du P f ′ 1 , f ′ 2 + u f ′ 1 , f ′′ 1 , f ′′ 2 + u f ′′ 1 , . . . , f (κ) 1 , f (κ) 2 + u f (κ) 1 
≡ 0, ce qui revient à dire que P est annulé identiquement par le champ de vecteurs

U := f ′ 1 ∂ ∂f ′ 2 + f ′′ 1 ∂ ∂f ′′ 2 + • • • + f (κ) 1 ∂ ∂f (κ) 2 ,
i.e. que l'on a : 0 ≡ U P. On constate ensuite immédiatement que :

U • ∆ α,β = f (α) 1 f (β) 2 + u f (β) 1 -f (β) 1 f (α) 2 + u f (α) 1 = ∆ α,β ,
i.e. : 0 ≡ U ∆ α,β , d'où nous déduisons :

U • Λ 3 = Λ 3 , U • Λ 5 1 = Λ 5 1 , U • Λ 7 1,1 = Λ 7 1,1 , U • Λ 9 1,1,1 = Λ 7 1,1 , etc.
En appliquant donc cette dérivation U à la représentation rationnelle d'un polynôme quelconque P j κ f ∈ DS κ 2,m obtenue à l'instant, nous voyons que l'équation 0 ≡ U P est satisfaite si et seulement si chaque P a est indépendant de f ′ 2 . Nous pouvons donc résumer comme suit le résultat obtenu.

Lemme Tout polynôme P 2×inv j κ f ) qui est invariant par reparamétrisation et qui est invariant par rapport à l'action unipotente de U 2 (C) peut être représenté sous la forme :

P 2×inv j κ f ) = -κ-1 κ m a m (f ′ 1 ) a P 2×inv a Λ 3 , Λ 5 1 , Λ 7 1,1 , Λ 9 1,1,1 , . . . , Λ 2κ-1 1,...,1 ,
avec certains polynômes P 2×inv a de poids ma. Réciproquement, toute expression rationnelle de cette forme, si elle s'avère être polynomiale en j κ f quand on simplifie numérateur et dénominateur, appartient nécessairement à DS κ 2,m et constitue un biinvariant véritable.

En revenant à présent aux jets d'ordre 4, utilisons la relation

0 ≡ f ′ 1 f ′ 1 M 8 -3 Λ 3 Λ 7 1,1 + 5 Λ 5 1 Λ 5 1
pour éliminer toutes les puissances de Λ 5 1 qui sont supérieures ou égales à 2 dans chaque polynôme P 2×inv a et réorganisons le tout en puissances de f ′ 1 . Nous obtenons ainsi une nouvelle représentation :

P 2×inv j 4 f = -3 4 m a m (f ′ 1 ) a Q 2×inv a Λ 3 , Λ 7 1,1 , M 8 ) + Λ 5 1 R 2×inv a Λ 3 , Λ 7 1,1 , M 8 ) , avec certains polynômes Q 2×inv a de poids m -a et R 2×inv a
de poids m -5a. Maintenant, c'est un fait remarquable qu'une telle représentation (dans laquelle on a tenu compte de l'idéal des relations entre f ′ 1 , Λ 3 , Λ 5 1 , Λ 7 1,1 et M 8 doit nécessairement ne faire apparaître que des puissances positives de f ′ 1 , et donc être automatiquement polynomiale : nous l'affirmons.

En effet, si tel n'était pas le cas, en prenant pour a l'exposant le plus négatif tel que P 2×inv a +Λ [START_REF] Rousseau | Hyperbolicité des variétés complexes[END_REF] 1 R 2×inv a ≡ 0 et en chassant le dénominateur 1 (f ′ 1 ) -a , nous obtiendrions une équation de la forme

Q 2×inv a Λ 3 , Λ 7 1,1 , M 8 + Λ 5 1 R 2×inv a Λ 3 , Λ 7 1,1 , M 8 = O(f ′ 1 ),
qui s'annulerait lorsque f ′ 1 est égalé à zéro, circonstance qui est exclue par le lemme suivant.

Lemme Étant donné deux polynômes quelconques Q et R de trois variables complexes, l'identité :

0 ≡ Q Λ 3 , Λ 7 1,1 , M 8 + Λ 5 1 R Λ 3 , Λ 7 1,1 , M 8 f ′ 1 =0 est identiquement satisfaite dans C f ′ 2 , f ′′ 1 , f ′′ 2 , f ′′′ 1 , f ′′′ 1 , f ′′′′ 1 , f ′′′′ 2 , lorsque f ′ 1 est éga- lé à zéro, si et seulement si Q et R sont identiquement nuls.
Preuve. Développons en effet tout d'abord cette identité suivant les puissances de

M 8 : 0 ≡ k 0 M 8 k Q k Λ 3 , Λ 7 1,1 + Λ 5 1 R k Λ 3 , Λ 7 1,1 f ′ 1 =0
, la somme étant bien entendu finie. Lorsque f ′ 1 = 0, les expressions :

Λ 3 f ′ 1 =0 = -f ′′ 1 f ′ 2 , Λ 5 1 f ′ 1 =0 = 3(f ′′ 1 f ′ 2 )f ′′ 1 , Λ 7 1,1 f ′ 1 =0 = -15 (f ′′ 1 f ′ 2 )f ′′ 1 f ′′ 1 , M 8 f ′ 1 =0 = 3(f ′′′′ 1 f ′ 2 )(f ′′ 1 f ′ 2 ) -12(f ′′′ 1 f ′′ 2 -f ′′ 1 f ′′′ 2 )(f ′′ 1 f ′ 2 ) -5(f ′′′ 1 f ′ 2 )(f ′′′ 1 f ′ 2 )
.

montrent que M 8 f ′ 1 =0 est algébriquement indépendant des trois polynômes Λ 3 f ′ 1 =0 , Λ 5 1 f ′ 1 =0 , Λ 7 1,1 f ′ 1 =0 . Nous en déduisons que 0 ≡ Q k Λ 3 , Λ 7 1,1 + Λ 5 1 R k Λ 3 , Λ 7 1,1 f ′ 1 =0
pour tout k. L'énoncé suivant permet alors de conclure.

Lemme L'identité polynomiale :

0 ≡ S Λ 3 , Λ 7 1,1 + Λ 5 1 T Λ 3 , Λ 7 1,1 f ′ 1 =0
est satisfaite si et seulement si S = T = 0.

Preuve. Pour simplifier, introduisons les deux variables algébriquement indépendantes x := -f ′′ 1 f ′ 2 et y := f ′′ 1 , de telle sorte que

Λ 3 f ′ 1 =0 = x, Λ 5 1 f ′ 1 =0 = 3 yx, Λ 7 
1,1 f ′ 1 =0 = 15 y 2 x. En développant S et T en série de monômes et en regroupant les termes selon les puissances de y, on obtient une identité :

0 ≡ l y 2l k 15 l s kl x k+l + 3 l y 2l+1 k 15 l t kl x k+l+1
qui se déploie nécessairement en deux collections d'identités :

0 ≡ k 15 l s kl x k+l et 0 ≡ k 15 l t kl x k+l+1
indexées par l, lesquelles impliquent enfin manifestement l'annulation de tous les coefficients s kl et t kl .

Ainsi le lemme implique que Q 2×inv a + Λ 5 1 R 2×inv a ≡ 0, contradiction. Donc en conclusion, l'expression obtenue :

P 2×inv j 4 f = 0 a m (f ′ 1 ) m Q 2×inv a Λ 3 , Λ 7 1,1 , M 8 + Λ 5 1 R 2×inv a Λ 3 , Λ 7 1,1 , M 8
ne fait intervenir que des puissances positives de f ′ 1 : c'est donc un vrai polynôme, et tout polynôme de cette sorte est manifestement invariant par reparamétrisation et par rapport à l'action de U 2 (C). Le théorème est démontré. Remarque sur le degré de transcendance. Observons au passage que les quatre polynômes fondamentaux f ′ 1 , Λ 3 , Λ 7 1,1 et M 8 , dont les puissances apparaissent de manière quelconque dans P 2×inv j 4 f , sont en fait algébriquement indépendants (heureusement!). En effet, en partant des expressions complètes :

f ′ 1 = f ′ 1 Λ 3 = ∆ 1,2 Λ 7 1,1 = ∆ 1,4 f ′ 1 f ′ 1 + 4 ∆ 2,3 f ′ 1 f ′ 1 -10 ∆ 1,3 f ′ 1 f ′′ 1 + 15 ∆ 1,2 f ′′ 1 f ′′ 1 M 8 = 3 ∆ 1,4 ∆ 1,2 + 12 ∆ 2,3 ∆ 1,2 -5 ∆ 1,3 ∆ 1,3 ,
si nous introduisons la combinaison algébrique :

M 8 := M 8 -3 Λ 7 1,1 Λ 3 f ′ 1 f ′ 1 = -5 ∆ 1,3 ∆ 1,3 + 30 ∆ 1,3 ∆ 1,2 f ′′ 1 f ′ 1 -45 ∆ 1,2 ∆ 1,2 f ′′ 1 f ′ 1 f ′′ 1 f ′ 1 , nous voyons immédiatement que f ′ 1 , Λ 3 , Λ 7 
1,1 et M 8 sont algébriquement indépendants, puisque leur expression, de type triangulaire dans les variables de jets, fait successivement apparaître 

f ′ 1 , f ′′ 1 , f ′′′ 1 et f ′′′′ 1 . Lemme Au dessus de C f ′ 1 , f ′ 2 , f ′′ 1 , f ′′ 2 , f ′′′ 1 , f ′′′ 2 , f ′′′′ 1 , f ′′′′ 2 ,

le degré de transcendance du corps engendré par les cinq bi-invariants

f ′ 1 , Λ 3 , Λ 5 1 , Λ 7 1,1 et M 8 est égal à 4, tandis que celui du corps engendré par les neuf invariants f ′ 1 , f ′ 2 , Λ 3 , Λ 5 1 , Λ 5 2 , Λ 7 1,1 , Λ 7 1,2 , Λ 7 
f ′ 1 , Λ 3 , Λ 5 1 , Λ 7 1,1 , M 8 , Λ 9 1,1,1 , M 10 1 , N 12 , K 12 1,1 , H 14 1 , F 16 1,1 .
Sachant que nous avons déjà systématiquement tenu compte de l'identité de Jacobi toutes les fois qu'elle nous permettait de réduire le nombre d'invariants indépendants qui doivent être envisagés, l'idéal des relations qui existe entre nos bi-invariants est alors maintenant construit en écrivant méthodiquement les C 3 5 = 10 relations (Plck 1 ) que l'on peut former en sélectionnant trois colonnes abitraires de la matrice :

f ′ 1 3 Λ 3 5 Λ 5 1 7 Λ 5 1,1 8 M 8 Df ′ 1 DΛ 3 DΛ 5 1 DΛ 7 1,1 DM 8 ,
et aussi les C 4 5 = 5 relations (Plck 2 ) du deuxième type associées à chaque choix de quatre colonnes de cette même matrice, ce qui nous donne :

0 8 ≡ f ′ 1 Λ 3 , Λ 5 1 + 5 Λ 5 1 f ′ 1 , Λ 3 + 3 Λ 3 Λ 5 1 , f ′ 1 , 0 10 ≡ f ′ 1 Λ 3 , Λ 7 1,1 + 7 Λ 7 1,1 f ′ 1 , Λ 3 + 3 Λ 3 Λ 7 1,1 , f ′ 1 , 0 13 ≡ f ′ 1 Λ 3 , M 8 + 8 M 8 f ′ 1 , Λ 3 + 3 Λ 3 M 8 , f ′ 1 , 0 15 ≡ f ′ 1 Λ 5 1 , Λ 7 1,1 + 7 Λ 7 1,1 f ′ 1 , Λ 5 1 + 5 Λ 5 1 Λ 7 1,1 , f ′ 1 , 0 18 ≡ f ′ 1 Λ 5 1 M 8 + 8 M 8 f ′ 1 , Λ 5 1 + 5 Λ 5 1 M 8 , f ′ 1 , 0 25 ≡ f ′ 1 Λ 7 1,1 , M 8 + 8 M 8 f ′ 1 , Λ 7 1,1 + 7 Λ 7 1,1 M 8 , f ′ 1 , 0 51 ≡ 3 Λ 3 Λ 5 1 , Λ 7 1,1 + 7 Λ 7 1,1 Λ 3 , Λ 5 1 + 5 Λ 5 1 Λ 7 1,1 , Λ 3 , 0 54 ≡ 3 Λ 3 Λ 5 1 , M 8 + 8 M 8 Λ 3 , Λ 5 1 + 5 Λ 5 1 M 8 , Λ 3 , 0 61 ≡ 3 Λ 3 Λ 7 1,1 , M 8 + 8 M 8 Λ 3 , Λ 7 1,1 + 7 Λ 7 1,1 M 8 , Λ 3 , 0 71 ≡ 5 Λ 5 1 Λ 7 1,1 , M 8 + 8 M 8 Λ 5 1 , Λ 7 1,1 + 7 Λ 7 1,1 M 8 , Λ 5 1 , 0 23 ′ ≡ f ′ 1 , Λ 3 • Λ 5 1 , Λ 7 1,1 + Λ 7 1,1 , f ′ 1 • Λ 5 1 , Λ 3 + Λ 3 , Λ 7 1,1 • Λ 5 1 , f ′ 1 , 0 26 ′ ≡ f ′ 1 , Λ 3 • Λ 5 1 , M 8 + M 8 , f ′ 1 • Λ 5 1 , Λ 3 + Λ 3 , M 8 • Λ 5 1 , f ′ 1 , 0 33 ′ ≡ f ′ 1 , Λ 3 • Λ 7 1,1 , M 8 + M 8 , f ′ 1 • Λ 7 1,1 , Λ 3 + Λ 3 , M 8 • Λ 7 1,1 , f ′ 1 , 0 43 ′ ≡ f ′ 1 , Λ 5 1 • Λ 7 1,1 , M 8 + M 8 , f ′ 1 • Λ 7 1,1 , Λ 5 1 + Λ 5 1 , M 8 • Λ 7 1,1 , f ′ 1 , 0 98 ′ ≡ Λ 3 , Λ 5 1 • Λ 7 1,1 , M 8 + M 8 , Λ 3 • Λ 7 1,1 , Λ 5 1 + Λ 5 1 , M 8 • Λ 7 1,1 , Λ 3
. Dénombrement des syzygies complètes. L'idéal complet des relations (Plck 1 ) et (Plck 2 ) existant entre les ving-cinq invariants comporte :

C 3 9 + C 4 9 = 84 + 126 = 210,
relations que nous avons patiemment développées sur treize pages manuscrites, mais que nous renonc ¸ons à recopier dans ce fichier L A T E X, pour la simple raison qu'il suffit, comme nous l'avons argumenté, d'étudier seulement les bi-invariants. Sur les 15 signes "≡" donnant les syzygies qui existent entre les bi-invariants, nous conservons, pour mémoire, la numérotation de nos 84 + 126 équations manuscrites.

Énoncé. Voici maintenant l'énoncé que nous devrions attendre comme constituant notre deuxième résultat principal.

Théorème Pour les jets d'ordre 5 en dimension 2, tout bi-invariant de poids m, P 2×inv j 5 f 1 , j 5 f 2 , s'exprime polynomialement en fonction de onze polynômes fondamentaux :

f ′ 1 Λ 3 Λ 5 1 Λ 7 1,1 M 8 Λ 9 1,1,1 M 10 1 N 12 K 12 1,1 H 14 1 F 16 1,1
qui sont donnés explicitement en fonction de j 5 f par les formules calculées à la Section 4, et dont l'idéal des relations est constitué des quinze équations de degré 3 suivantes :

0 8 ≡ -f ′ 1 f ′ 1 M 8 -5 Λ 5 1 Λ 5 1 + 3 Λ 3 Λ 7 1,1 , 0 10 ≡ -f ′ 1 f ′ 1 M 10 1 -7 Λ 5 1 Λ 7 1,1 + 3 Λ 3 Λ 9 1,1,1 , 0 13 ≡ -f ′ 1 N 12 -8 Λ 5 1 M 8 + 3 Λ 3 M 10 1 , 0 15 ≡ -f ′ 1 f ′ 1 K 12 1,1 -7 Λ 7 1,1 Λ 7 1,1 + 5 Λ 5 1 Λ 9 1,1,1 , 0 18 ≡ -f ′ 1 H 14 1 -8 Λ 7 1,1 M 8 + 5 Λ 5 1 M 10 1 , 0 25 ≡ -f ′ 1 F 16 1,1 -8 M 8 Λ 9 1,1,1 + 7 Λ 7 1,1 M 10 1 , 0 51 ≡ -3 Λ 3 K 12 1,1 -7 Λ 7 1,1 M 8 + 5 Λ 5 1 M 10 1 , 0 54 ≡ -3 Λ 3 H 14 1 -8 f ′ 1 M 8 M 8 + 5 Λ 5 1 N 12 , 0 61 ≡ -3 Λ 3 F 16 1,1 -8 f ′ 1 M 8 M 10 1 + 7 Λ 7 1,1 N 12 , 0 71 ≡ -5 Λ 5 1 F 16 1,1 -8 f ′ 1 M 8 K 12 1,1 + 7 Λ 7 1,1 H 14 1 , 0 23 ′ ≡ Λ 5 1 K 12 1,1 + M 8 Λ 9 1,1,1 -Λ 7 1,1 M 10 1 , 0 26 ′ ≡ Λ 5 1 H 14 1 + f ′ 1 M 8 M 10 1 -Λ 7 1,1 N 12 , 0 33 ′ ≡ Λ 5 1 F 16 1,1 + f ′ 1 M 10 1 M 10 1 -Λ 9 1,1,1 N 12 , 0 43 ′ ≡ Λ 7 1,1 F 16 1,1 + f ′ 1 M 10 1 K 12 1,1 -Λ 9 1,1,1 H 14 1 , 0 98 ′ ≡ M 8 F 16 1,1 + N 12 K 12 1,1 -M 10 1 H 14 1 .
Par souci de ne pas alourdir exagérément l'énoncé de ce théorème nous repoussons à la Section 8 l'énoncé précis qui donne les sommes directes de représentations irréductibles de Schur permettant d'entreprendre un calcul de caractéristique d'Euler.

L'action des matrices de la forme :

V := 1 v 0 1
faisant "renaître par polarisation" les 14 invariants qui ne sont pas bi-invariants, nous pouvons en déduire une description partielle, mais suffisante pour notre objectif, de DS 5 2 .

Corollaire Tout polynôme P j 5 f 1 , j 5 f 2 invariant par reparamétrisation s'exprime polynomialement en fonction de vingt-cinq invariants fondamentaux :

f ′ 1 f ′ 2 Λ 3 Λ 5 1 Λ 5 2 Λ 7 1,1 Λ 7 1,2 Λ 7 2,2 M 8 Λ 9 1,1,1 Λ 9 1,2,1 Λ 9 2,1,2 Λ 9 2,2,2 M 10 1 M 10 2 N 12 K 12 1,1 K 12 1,2 K 12 2,1 K 12 2,2 H 14 1 H 14 2 F 16 1,1 F 16 1,2 F 16 2,2
, qui sont donnés par les formules explicites normalisées :

f ′ i Λ 3 := ∆ 1,2 Λ 5 i := ∆ 1,3 f ′ i -3 ∆ 1,2 f ′′ i Λ 7 i,j := ∆ 1,4 f ′ i f ′ j + 4 ∆ 2,3 f ′ i f ′ j -5 ∆ 1,3 f ′′ i f ′ j + f ′ i f ′′ j ) + 15 ∆ 1,2 f ′′ i f ′′ j M 8 := 3 ∆ 1,4 ∆ 1,2 + 12 ∆ 2,3 ∆ 1,2 -5 ∆ 1,3 ∆ 1,3 Λ 9 i,j,k := ∆ 1,5 f ′ i f ′ j f ′ k + 5 ∆ 2,4 f ′ i f ′ j f ′ k - -4 ∆ 1,4 f ′′ i f ′ j + f ′ i f ′′ j ) f ′ k -7 ∆ 1,4 f ′ i f ′ j f ′′ k - -16 ∆ 2,3 f ′′ i f ′ j + f ′ i f ′′ j f ′ k -28 ∆ 2,3 f ′ i f ′ j f ′′ k - -5 ∆ 1,3 f ′′′ i f ′ j + f ′ i f ′′′ j ) f ′ k + 35 ∆ 1,3 f ′′ i f ′′ j f ′ k + f ′′ i f ′ j f ′′ k + f ′ i f ′′ j f ′′ k - -105 ∆ 1,2 f ′′ i f ′′ j f ′′ k , M 10 i := 3 ∆ 1,5 ∆ 1,2 + 15 ∆ 2,4 ∆ 1,2 -7 ∆ 1,4 ∆ 1,3 + 2 ∆ 2,3 ∆ 1,3 f ′ i - -24 ∆ 1,4 ∆ 1,2 + 96 ∆ 2,3 ∆ 1,2 -40 ∆ 1,3 ∆ 1,3 f ′′ i , N 12 := 9 ∆ 1,5 ∆ 1,2 ∆ 1,2 + 45 ∆ 2,4 ∆ 1,2 ∆ 1,2 -45 ∆ 1,4 ∆ 1,3 ∆ 1,2 - -90 ∆ 2,3 ∆ 1,3 ∆ 1,2 + 40 ∆ 1,3 ∆ 1,3 ∆ 1,3 , K 12 i,j := f ′ i f ′ j 5 ∆ 1,5 ∆ 1,3 + 25 ∆ 2,4 ∆ 1,3 -7 ∆ 1,4 ∆ 1,4 -56 ∆ 2,3 ∆ 1,4 -112 ∆ 2,3 ∆ 2,3 + + (f ′ i f ′′ j + f ′′ i f ′ j ) 2 -15 ∆ 1,5 ∆ 1,2 -75 ∆ 2,4 ∆ 1,2 + 65 ∆ 1,4 ∆ 1,3 + 110 ∆ 2,3 ∆ 1,3 + + (f ′ i f ′′′ j + f ′′′ i f ′ j ) 2 -50 ∆ 1,3 ∆ 1,3 + + f ′′ i f ′′ j -25 ∆ 1,3 ∆ 1,3 + 15 ∆ 1,4 ∆ 1,2 + 60 ∆ 2,3 ∆ 1,2 , H 14 i := 15 ∆ 1,5 ∆ 1,3 ∆ 1,2 + 75 ∆ 2,4 ∆ 1,3 ∆ 1,2 + 5 ∆ 1,4 ∆ 1,3 ∆ 1,3 + + 170 ∆ 2,3 ∆ 1,3 ∆ 1,3 -24 ∆ 1,4 ∆ 1,4 ∆ 1,2 -192 ∆ 1,4 ∆ 2,3 ∆ 1,2 - -384 ∆ 2,3 ∆ 2,3 ∆ 1,2 f ′ i + -45 ∆ 1,5 ∆ 1,2 ∆ 1,2 -225 ∆ 2,4 ∆ 1,2 ∆ 1,2 + + 225 ∆ 1,4 ∆ 1,3 ∆ 1,2 + 450 ∆ 2,3 ∆ 1,3 ∆ 1,2 -200 ∆ 1,3 ∆ 1,3 ∆ 1,3 f ′′ i , F 16 i,j := -3 ∆ 1,5 ∆ 1,4 ∆ 1,2 -15 ∆ 2,4 ∆ 1,4 ∆ 1,2 -12 ∆ 1,5 ∆ 2,3 ∆ 1,2 + + 40 ∆ 1,5 ∆ 1,3 ∆ 1,3 -60 ∆ 2,4 ∆ 2,3 ∆ 1,2 + 200 ∆ 2,4 ∆ 1,3 ∆ 1,3 - -49 ∆ 1,4 ∆ 1,4 ∆ 1,3 -422 ∆ 1,4 ∆ 2,3 ∆ 1,3 -904 ∆ 2,3 ∆ 2,3 ∆ 1,3 f ′ i f ′ j + + -105 ∆ 1,5 ∆ 1,3 ∆ 1,2 -525 ∆ 2,4 ∆ 1,3 ∆ 1,2 + 205 ∆ 1,4 ∆ 1,3 ∆ 1,3 - -230 ∆ 2,3 ∆ 1,3 ∆ 1,3 + 96 ∆ 1,4 ∆ 1,4 ∆ 1,2 + 768 ∆ 1,4 ∆ 2,3 ∆ 1,2 + + 1536 ∆ 2,3 ∆ 2,3 ∆ 1,2 f ′′ i f ′ j + f ′ i f ′′ j + + -200 ∆ 1,3 ∆ 1,3 ∆ 1,3 f ′′′ i f ′ j + f ′ i f ′′′ j + + 315 ∆ 1,5 ∆ 1,2 ∆ 1,2 + 1575 ∆ 2,4 ∆ 1,2 ∆ 1,2 -1575 ∆ 1,4 ∆ 1,3 ∆ 1,2 - -3150 ∆ 2,3 ∆ 1,3 ∆ 1,2 + 1400 ∆ 1,3 ∆ 1,3 ∆ 1,3 f ′′ i f ′′ j ,
où les indices i, j et k appartiennent à {1, 2}.

Remarque. Ce deuxième théorème ainsi que son corollaire doivent être restreints à la sous-algèbre engendrée par les crochets, laquelle s'organise de manière cohérente ( [3]) pour former un sous-fibré du fibré des jets de Demailly-Semple au-dessus d'une surface projective algébrique complexe X 2 ⊂ P 3 (C). Nous montrerons en effet à la fin de cette Section 7 que dès les jets d'ordre κ = 5, il existe des invariants fondamentaux supplémentaires qui ne sont pas obtenus par crochets, et qui s'ajoutent aux nombreux invariants qui apparaissent déjà dans les deux énoncés précédents ; de plus, il pourrait exister une infinité d'invariants par reparamétrisation ainsi que de bi-invariants qui sont fondamentaux, ce qui contredirait a fortiori la présomption informelle d'après laquelle les invariants formés par crochets engendrent DS [START_REF] Rousseau | Hyperbolicité des variétés complexes[END_REF] 2 . Ce phénomène est d'autant plus troublant qu'au niveau κ = 4, comme nous l'avons démontré, tous les invariants sont engendrés par crochets. Peut-être existe-il des liens mathématiques profonds entre ce phénomène inattendu et le fait que d = 5 soit aussi le seuil critique optimal attendu pour la Kobayashihyperbolicité des surfaces génériques X 2 ⊂ P 3 (C). L'avenir le dira.

Stratégie. Insistons sur le fait que la stratégie de démonstration que nous allons entreprendre afin de tenter d'établir, comme au niveau κ = 4, que seuls les invariants formés par crochets existent, aurait nécessairement d aboutir si l'algèbre des (bi)invariants engendrés par crochet avait a priori coïncidé avec l'algèbre complète des invariants de Demailly-Semple : ce fait sera argumenté après la fin de nos raisonnements. Ce n'est donc pas cette stratégie qui est en cause, mais la réalité mathématique, et même si cette dernière contredit parfois nos attentes, il nous faut bien admettre et reconnaître que c'est elle, et seulement elle qui agit en maître, partout et toujours. Et puisque cette réalité précède d'une certaine manière dans ses grandes lignes l'exploration et la recherche, notamment lorsqu'il s'agit de structures algébriques, nous n'aurions jamais pu aboutir à une telle conclusion négative sans entreprendre de considérables efforts de calcul. C'est pourquoi nous convions maintenant notre lecteur à découvrir comment nous comptons généraliser au niveau κ = 5 notre démonstration qui était valable pour les jets d'ordre 4, avant de dévoiler les interstices dans lesquelles s'insinuent de nombreux invariants fondamentaux supplémentaires (peut-être une infinité) qui ne sont pas engendrés par crochets.

Démonstration du second théorème. Partons de l'expression rationnelle que nous avons obtenue pour tout polynôme bi-invariant

-4 5 m a m (f ′ 1 ) a P a Λ 3 , Λ 5 1 , Λ 7 1,1 , Λ 9 1,1,1 ,
expression dans laquelle entrent des puissances négatives de f ′ 1 . Le raisonnement que nous avons élaboré pour les jets d'ordre 4 va se généraliser ici, au prix d'une complication supplémentaire mais inévitable, parce que le recours aux bases de Gröbner est en général incontournable pour les idéaux de polynômes à plusieurs variables qui ne sont pas principaux. ≡" entre nos onze bi-invariants fondamentaux font apparaître en première place les six bi-invariants M 8 , Λ 9 1,1,1 , M 10 1 , N 12 , K 12 1,1 , H 14 1 et F 16 1,1 que nous connaissons déjà, mais qui sont invisibles dans le développement en puissances positives et négatives de f ′ 1 que nous venons de rappeler à l'instant, ce dernier ne constituant que la toute première étape de la démonstration. Interprétons donc ces six bi-invariants en les qualifiant intuitivement de "termes fantômes" "cachés" derrière

Ghost rationality. Observons que les six premières syzygies "

f ′ 1 ou derrière f ′ 1 f ′ 1 .
Heuristiquement parlant, ce pourrait tout à fait être parce que7 , dans toute expression purement polynomiale en nos onze bi-invariants vers laquelle se dirige notre démonstration :

P f ′ 1 , Λ 3 , Λ 5 1 , Λ 7 1,1 , M 8 , Λ 9 1,1,1 , M 10 1 , N 12 , K 12 1,1 , H 14 1 , F 16 1,1 ,
l'on peut remplacer ces six bi-invariants spéciaux par leur expression rationnelle en fonction seulement de Λ 3 , de Λ 5 1 , de Λ 7 1,1 et de Λ 9 1,1,1 :

M 8 = 3 Λ 3 Λ 7 1,1 -5 Λ 5 1 Λ 5 1 f ′ 1 f ′ 1 , M 10 1 = 3 Λ 3 Λ 9 1,1,1 -7 Λ 5 1 Λ 7 1,1 f ′ 1 f ′ 1 , N 12 = -45 Λ 3 Λ 5 1 Λ 7 1,1 + 40 Λ 5 1 Λ 5 1 Λ 5 1 f ′ 1 f ′ 1 f ′ 1 , K 12 1,1 = 5 Λ 5 1 Λ 9 1,1,1 -7 Λ 7 1,1 Λ 7 1,1 f ′ 1 f ′ 1 , H 14 1 = -24 Λ 3 Λ 7 1,1 Λ 7 1,1 + 5 Λ 5 1 Λ 5 1 Λ 7 1,1 + 15 Λ 3 Λ 5 1 Λ 9 1,1,1 f ′ 1 f ′ 1 f ′ 1 , F 16 1,1 = -3 Λ 3 Λ 7 1,1 Λ 9 1,1,1 + 40 Λ 5 1 Λ 5 1 Λ 9 1,1,1 -49 Λ 5 1 Λ 7 1,1 Λ 7 1,1 f ′ 1 f ′ 1 f ′ 1 , ce qui impose manifestement des divisions par f ′ 1 f ′ 1 ou par f ′ 1 f ′ 1 f ′ 1
, ce pourrait donc bien être, disions-nous, pour cette seule et simple raison que notre représentation initiale, (trop) facile à obtenir, d'un bi-invariant sous la forme

-4 5 m a m (f ′ 1 ) a P a Λ 3 , Λ 5 1 , Λ 7 1,1 , Λ 9 1,1,1
faisait inévitablement apparaître des puissances négatives de f ′ 1 . Et pour éliminer ces dénominateurs, rien d'autre ne s'offrirait à nous que d'injecter les six bi-invariants fantômes dans l'expression rationnelle initiale. Voilà : nous avons dévoilé une nouvelle idée essentielle qui s'avèrera pertinente et efficiente pour l'étude des invariants de Demailly-Semple à un ordre quelconque. Élimination des puissances négatives de f ′ 1 . En effet, rappelons-nous tout d'abord que dans le cas des jets d'ordre 4, après avoir injecté le seul bi-invariant "fantôme" existant, à savoir M 8 , nous sommes parvenus à éliminer les puissances négatives de f ′ 1 grâce à une normalisation préalable de tout polynôme

P = P Λ 3 , Λ 5 1 , Λ 7 1,1 , M 8 sous la forme Q Λ 3 , Λ 7 1,1 , M 8 + Λ 5 1 R Λ 3 , Λ 7 1,1 , M 8
, ce qui était fort élémentaire, sachant que l'idéal des relations est principal (la théorie des bases de Gröbner est vide dans ce cas), la fin de l'argument reposant seulement sur le fait que lorsqu'on pose f ′ 1 = 0, aucune relation polynomiale non triviale du type

0 ≡ Q Λ 3 , Λ 5 1 , M 8 ) + Λ 5 1 R Λ 3 , Λ 5 1 , M 8 f ′ 1 =0
ne peut être satisfaite.

Observation générale cruciale et poursuite de la démonstration. Aussi est-ce seulement l'idéal des relations entre les bi-invariants restreints à l'hypersurface

{f ′ 1 = 0} qui semble compter. L'enjeu, ici, après avoir injecté les six bi-invariants fantômes M 8 , M 10 1 , N 12 , K 12 1,1 , H 14 1 et F 16 1,1 qui étaient cachés derrière des puissances positives de f ′ 1 , ce qui nous donne aisément une expression générale du type :

-4 5 m a m (f ′ 1 ) a P a Λ 3 , Λ 5 1 , Λ 7 1,1 , M 8 , Λ 9 1,1,1 , M 10 1 , N 12 , K 12 1,1 , H 14 1 , F 16 1,1 ,
dans laquelle nous supposerons, puisque nous perdons tout contrôle après injection des six bi-invariants supplémentaires, que les nouveaux polynômes P a sont arbitraires de poids m-a, l'enjeu alors semble être de parvenir à produire une écriture normalis ée en fonction des syzygies pour représenter de manière unique tout polynôme P de cette espèce, de fac ¸on à ce que toute identité du type :

0 ≡ Écriture unique P Λ 3 , Λ 5 1 , . . . , H 14 1 , F 16 1,1 f ′ 1 =0
, implique que le polynôme P est en fait identiquement nul. Alors l'argument d'élimination de la puissance maximalement négative de f ′ 1 , le tout suivi de la restriction à {f ′ 1 = 0}, cet argument que nous avions utilisé avec succès pour les jets d'ordre 4 fonctionnera à nouveau ici sans modification, et une récurrence immédiate montrera, comme pour les jets d'ordre 4, que les puissances négatives de f ′ 1 n'existent pas, ce que nous désirions obtenir pour achever la démonstration du théorème.

Deux remarques pour mettre un terme à ces considérations heuristiques destinées seulement à dévoiler nettement nos idées en usant du langage spéculatif qui nous a servi de guide pour les élaborer. Premièrement, il est clair que ce plan de démonstration doit fonctionner en toute généralité pour des jets d'ordre quelconque κ 4, et nous montrerons en temps voulu qu'il fonctionne aussi en dimension ν 3. Ensuite, notons -puisqu'il est de l'essence des mathématiques d'être "truffées d'obstacles" -que le saut en difficulté, lorsqu'on passe des jets d'ordre 4 aux jets d'ordre 5, est presque trop considérable pour une intuition de généralité habituée aux récurrences régulières et aux combinatoires qui dévoilent progressivement leurs structures : on passe en effet brutalement de une syzygie à quinze, et même de neuf à deux cents dix, pour ce qui concerne les invariants complets ; comment alors ne pas éprouver le sentiment que la complexité algébrique de ce problème explose trop rapidement? Restriction des syzygies. Poser f ′ 1 = 0, comme nous devons maintenant le faire, nous donne les 15 équations réduites :

0 ≡ -5 Λ 5 1 Λ 5 1 + 3 Λ 3 Λ 7 1,1 f ′ 1 =0 , 0 ≡ -7 Λ 5 1 Λ 7 1,1 + 3 Λ 3 Λ 9 1,1,1 f ′ 1 =0 , 0 ≡ -8 Λ 5 1 M 8 + 3 Λ 3 M 10 1 f ′ 1 =0 , 0 ≡ -7 Λ 7 1,1 Λ 7 1,1 + 5 Λ 5 1 Λ 9 1,1,1 f ′ 1 =0 , 0 ≡ -8 Λ 7 1,1 M 8 + 5 Λ 5 1 M 10 1 f ′ 1 =0 , 0 ≡ -8 M 8 Λ 9 1,1,1 + 7 Λ 7 1,1 M 10 1 f ′ 1 =0 , 0 ≡ -3 Λ 3 K 12 1,1 -7 Λ 7 1,1 M 8 + 5 Λ 5 1 M 10 1 f ′ 1 =0 , 0 ≡ -3 Λ 3 H 14 1 + 5 Λ 5 1 N 12 f ′ 1 =0 , 0 ≡ -3 Λ 3 F 16 1,1 + 7 Λ 7 1,1 N 12 f ′ 1 =0 , 0 ≡ -5 Λ 5 1 F 16 1,1 + 7 Λ 7 1,1 H 14 1 f ′ 1 =0 , 0 ≡ Λ 5 1 K 12 1,1 + M 8 Λ 9 1,1,1 -Λ 7 1,1 M 10 1 f ′ 1 =0 , 0 ≡ Λ 5 1 H 14 1 -Λ 7 1,1 N 12 f ′ 1 =0 , 0 ≡ Λ 5 1 F 16 1,1 -Λ 9 1,1,1 N 12 f ′ 1 =0 , 0 ≡ Λ 7 1,1 F 16 1,1 -Λ 9 1,1,1 H 14 1 f ′ 1 =0 , 0 ≡ M 8 F 16 1,1 + N 12 K 12 -M 10 1 H 14 1 f ′ 1 =0
.

Base de Gröbner. En choisissant l'ordre purement lexicographique ( [1]) sur les monômes de C f ′ 1 , Λ 3 , . . . , H 14 1 , F 16 1,1 qui est déduit de l'ordre suivant sur les monômes élémentaires restreints :

Λ 3 > Λ 5 1 > Λ 7 1,1 > M 8 > Λ 9 1,1,1 > M 10 1 > N 12 > K 12 1,1 > H 14 1 > F 16 1,1 ,
(nous sous-entendons ici la mention "(•)| f ′ 1 =0 "), Maple nous donne la base de Gröbner réduite suivante pour l'idéal complet des syzygies entre nos dix invariants re-streints à {f ′ 1 = 0}, laquelle est constituée de 21 équations :

0 1 ≡ -7 H 14 1 H 14 1 + 5 N 12 F 16 1,1 f ′ 1 =0
,

0 11 ≡ -Λ 9 1,1,1 N 12 + Λ 5 1 F 16 1,1 f ′ 1 =0
,

0 2 ≡ -56 K 12 1,1 H 14 1 + 5 M 10 1 F 16 1,1 f ′ 1 =0
,

0 12 ≡ -Λ 7 1,1 N 12 + Λ 5 1 H 14 1 f ′ 1 =0
,

0 3 ≡ -8 N 12 K 12 1,1 + M 10 1 H 14 1 f ′ 1 =0
,

0 13 ≡ -M 8 Λ 9 1,1,1 + 7 Λ 5 1 K 12 1,1 f ′ 1 =0
,

0 4 ≡ -7 N 12 K 12 1,1 + M 8 F 16 1,1 f ′ 1 =0
,

0 14 ≡ -8 Λ 7 1,1 M 8 + 5 Λ 5 1 M 10 1 f ′ 1 =0
,

0 5 ≡ -5 M 10 1 N 12 + 8 M 8 H 14 1 f ′ 1 =0
,

0 15 ≡ -7 Λ 7 1,1 Λ 7 1,1 + 5 Λ 5 1 Λ 9 1,1,1 f ′ 1 =0
,

0 6 ≡ -5 M 10 1 M 10 1 + 64 M 8 K 12 1,1 f ′ 1 =0
,

0 16 ≡ -7 Λ 7 1,1 N 12 + 3 Λ 3 F 16 1,1 f ′ 1 =0
,

0 7 ≡ -Λ 9 1,1,1 H 14 1 + Λ 7 1,1 F 16 1,1 f ′ 1 =0
,

0 17 ≡ -5 Λ 5 1 N 12 + 3 Λ 3 H 14 1 f ′ 1 =0
,

0 8 ≡ -5 Λ 9 1,1,1 N 12 + 7 Λ 7 1,1 H 14 1 f ′ 1 =0 , 0 18 ≡ -Λ 7 1,1 M 8 + 3 Λ 3 K 12 1,1 f ′ 1 =0
,

0 9 ≡ -5 Λ 9 1,1,1 M 10 1 + 56 Λ 7 1,1 K 12 1,1 f ′ 1 =0 , 0 19 ≡ -8 Λ 5 1 M 8 + 3 Λ 3 M 10 1 f ′ 1 =0
,

0 10 ≡ -8 M 8 Λ 9 1,1,1 + 7 Λ 7 1,1 M 10 1 f ′ 1 =0 , 0 20 ≡ -7 Λ 5 1 Λ 7 1,1 + 3 Λ 3 Λ 9 1,1,1 f ′ 1 =0
,

0 21 ≡ -5 Λ 5 1 Λ 5 1 + 3 Λ 3 Λ 7 1,1 f ′ 1 =0
, toutes déduites de nos 15 syzygies restreintes à {f ′ 1 = 0}, et dont l'ensemble recelle une combinatoire d'une simplicité inattendue qui va se dévoiler à nous dans un instant. Nous avons souligné les monômes de tête pour en extraire l'idéal monomial associé (voir infra).

Bien que cette base de Gröbner nous ait été procurée par Maple, il n'est pas nécessaire que nous nous en remettions au calcul formel électronique pour assurer la rigueur du résultat, puisqu'il est ici très aisé de vérifier : que ces 21 équations sont effectivement conséquence de nos quinze syzygies réduites ; que ces 21 équations forment effectivement une base de Gröbner.

Le premier point se vérifie sans difficulté ; le paragraphe ci-dessous où nous donnons l'expression des bi-invariants restreints à {f ′ 1 = 0} permet d'ailleurs de procéder très rapidement. Pour ce qui est du deuxième point, il nous suffit d'appliquer l'un des nombreux critères caractérisant les bases de Gröbner ( [1]), d'après lequel chaque S-polynôme entre deux équations quelconques doit appartenir à l'idéal engendré par les 21 polynômes, et à cette fin, la tâche de calcul manuel est miraculeusement facilitée par le fait que chacune de ces 21 équations ne comporte que deux termes, avec à chaque fois un signe "-" et un signe "+", ces deux termes étant chacun monomiaux et qui plus est, de degré deux, ce qui fait que chaque Spolynôme entre deux équations ne possède encore que deux termes monomiaux. Par exemple, si on élimine les monômes de tête entre " 20 ≡" et " 21 ≡" en multipliant par des monômes appropriés et en soustrayant :

0 ≡ -7 Λ 5 1 Λ 7 1,1 + 3 Λ 3 Λ 9 1,1,1 • Λ 7 1,1 --5 Λ 5 1 Λ 5 1 + 3 Λ 3 Λ 7 1,1 • Λ 9 1,1,1 f ′ 1 =0 , ≡ -7 Λ 5 1 Λ 7 1,1 Λ 7 1,1 + 5 Λ 5 1 Λ 5 1 Λ 9 1,1,1 ,
on constate que le S-polynôme obtenu appartient bien à notre idéal, puisqu'il coïncide avec l'équation " 15 ≡" multipliée par Λ 5 1 . Les 209 autres S-polynômes restants se traitent de la même manière, à la main, en moins de deux heures, après épuration préalable des notations. Expression des bi-invariants restreints à {f ′ 1 = 0}. Mais avant de poursuivre, il est instructif d'écrire, d'examiner et de commenter la liste de nos onze bi-invariants restreints :

f ′ 1 0 = 0, Λ 3 0 = -f ′′ 1 f ′ 2 =: ∆ 1,2 0 , Λ 5 1 0 = -3 ∆ 1,2 0 f ′′ 1 , Λ 7 1,1 0 = 15 ∆ 1,2 0 f ′′ 1 f ′′ 1 , M 8 0 = 3 ∆ 1,4 0 ∆ 1,2 0 + 12 ∆ 2,3 0 ∆ 1,2 0 -5 ∆ 1,3 0 ∆ 1,3 , Λ 9 1,1,1 0 = -105 ∆ 1,2 0 f ′′ 1 f ′′ 1 f ′′ 1 , M 10 1 0 = -24 ∆ 1,4 0 ∆ 1,2 0 + 96 ∆ 2,3 0 ∆ 1,2 0 -40 ∆ 1,3 0 ∆ 1,3 0 f ′′ 1 , N 12 0 = 9 ∆ 1,5 0 ∆ 1,2 0 ∆ 1,2 0 + 45 ∆ 2,4 0 ∆ 1,2 0 ∆ 1,2 0 -45 ∆ 1,4 0 ∆ 1,3 0 ∆ 1,2 0 - -90 ∆ 2,3 0 ∆ 1,3 0 ∆ 1,2 0 + 40 ∆ 1,3 0 ∆ 1,3 0 ∆ 1,3 0 , K 12 1,1 0 = 15 ∆ 1,4 0 ∆ 1,2 0 + 60 ∆ 2,3 0 ∆ 1,2 0 -25 ∆ 1,3 0 ∆ 1,3 0 f ′′ 1 f ′′ 1 , H 14 1 0 = -45 ∆ 1,5 0 ∆ 1,2 0 ∆ 1,2 0 -225 ∆ 2,4 0 ∆ 1,2 0 ∆ 1,2 0 + 225 ∆ 1,4 0 ∆ 1,3 0 ∆ 1,2 0 + + 450 ∆ 2,3 0 ∆ 1,3 0 ∆ 1,2 0 -200 ∆ 1,3 0 ∆ 1,3 0 ∆ 1,3 0 f ′′ 1 , F 16 1,1 0 = 315 ∆ 1,5 0 ∆ 1,2 0 ∆ 1,2 0 + 1575 ∆ 2,4 0 ∆ 1,2 0 ∆ 1,2 0 -1575 ∆ 1,4 0 ∆ 1,3 0 ∆ 1,2 0 - -3150 ∆ 2,3 0 ∆ 1,3 0 ∆ 1,2 0 + 1400 ∆ 1,3 0 ∆ 1,3 0 ∆ 1,3 0 f ′′ 1 f ′′ 1 .

Divisions wronskiennes. En comparant la deuxième et la troisième équation, nous obtenons par exemple

f ′′ 1 = -1 3 Λ 5 1 | 0 Λ 3 | 0 , et aussi f ′′ 1 f ′′ 1 = 1 15 Λ 7 1,1 | 0 Λ 3 | 0 si l'on compare la
deuxième et la quatrième ligne, et en poursuivant ces observations, nous pouvons écrire :

Λ 3 0 , Λ 5 1 0 , Λ 7 1,1 0 = 5 3 Λ 5 1 | 0 Λ 5 1 | 0 Λ 3 | 0 , M 8 0 , Λ 9 1,1,1 0 = 7 3 Λ 5 1 | 0 Λ 7 1,1 | 0 Λ 3 | 0 = 35 9 Λ 5 1 | 0 Λ 5 1 | 0 Λ 5 1 | 0 Λ 3 | 0 Λ 3 | 0 , M 10 1 0 = 8 3 M 8 | 0 Λ 5 1 | 0 Λ 3 | 0 , N 12 0 , K 12 1,1 0 = 1 3 M 8 | 0 Λ 7 1,1 | 0 Λ 3 | 0 = 5 9 M 8 | 0 Λ 5 1 | 0 Λ 5 1 | 0 Λ 3 | 0 Λ 3 | 0 , H 14 1 0 = 5 3 N 12 | 0 Λ 5 1 | 0 Λ 3 | 0 , F 16 1,1 0 = 7 3 Λ 7 1,1 | 0 N 12 | 0 Λ 3 | 0 = 35 9 Λ 5 1 | 0 Λ 5 1 | 0 N 12 | 0 Λ 3 | 0 Λ 3 | 0 ,
où nous soulignons quatre bi-invariants restreints qui apparaissent fondamentaux, à savoir Λ 3 0 , Λ 5 1 0 , M 8 0 et N 12 0 , puisque les six autres s'expriment en fonction d'eux, après restriction à {f ′ 1 = 0}, lorsqu'on autorise à diviser par le wronskien. Un examen immédiat de l'expression complète de ces quatre bi-invariants restreints fondamentaux Λ 3 0 , Λ 5 1 0 , M 8 0 et N 12 0 montre qu'ils sont algébriquement indépendants, puisqu'ils incorporent successivement

f ′′ 1 , f ′′′ 1 , f ′′′′ 1 et f ′′′′′ 1 . Cette indépendance mutuelle resservira ultérieurement.
Triangle harmonieux des monômes de tête. Comme nous le constatons en examinant notre base de Gröbner, les 21 binômes de tête s'organisent, lorsqu'on les range par ordre (lexicographique) croissant, en un triangle remarquable :

Λ 3 Λ 7 1,1 > Λ 3 Λ 9 1,1,1 > Λ 3 M 10 1 > Λ 3 K 12 1,1 > Λ 3 H 14 1 > Λ 3 F 16 1,1 > Λ 5 1 Λ 9 1,1,1 > Λ 5 1 M 10 1 > Λ 5 1 K 12 1,1 > Λ 5 1 H 14 1 > Λ 5 1 F 16 1,1 > Λ 7 1,1 M 10 1 > Λ 7 1,1 K 12 1,1 > Λ 7 1,1 H 14 1 > Λ 7 1,1 F 16 1,1 > M 8 K 12 1,1 > M 8 H 14 1 > M 8 F 16 1,1 > M 10 1 H 14 1 > M 10 1 F 16 1,1 > N 12 F 16 1,1
(on sous-entend la mention "| 0 " dans ce diagramme) dans lequel nous reconnaissons, à la place des colonnes, les six bi-invariants restreints Λ 7 1,1 0 , Λ 9 1,1,1 0 , M 10 1 0 , K 12 1,1 0 , H 14 1 0 et F 16 1,1 0 , qui s'expriment rationnellement en fonction des quatre biinvariants restreints fondamentaux Λ 3 0 , Λ 5 1 0 , M 8 0 et N 12 0 . Normalisation modulo les syzygies restreintes. Nous pouvons maintenant énoncer et démontrer le lemme sur lequel repose la fin de la démonstration de notre second théorème.

Lemme Tout polynôme arbitraire en les dix bi-invariants restreints :

P Λ 3 0 , Λ 5 1 0 , Λ 7 1,1 0 , M 8 0 , Λ 9 1,1,1 0 , M 10 1 0 , N 12 0 , K 12 1,1 0 , H 14 1 0 , F 16 1,1 0 s'écrit de manière unique, en tenant compte des 21 syzygies gröbnérisées ci-dessus, sous la forme unique : 

P 0 Λ 3 0 , Λ 5 1 0 , M 8 0 , N 12 0 + Λ 7 1,1 0 Q 0 Λ 5 1 0 , Λ 7 1,1 0 , M 8 0 , N 12 0 + + Λ 9 1,1,1 0 R 0 Λ 7 1,1 0 , M 8 0 , Λ 9 1,1,1 0 , N 12 0 + M 10 1 0 S 0 M 8 0 , Λ 9 1,1,1 0 , M 10 1 0 , N 12 0 + + K 12 1,1 0 T 0 Λ 9 1,1,1 0 , M 10 1 0 , N 12 0 , K 12 1,1 0 + H 14 1 0 U 0 Λ 9 1,1,1 0 , N 12 0 , K 12 1,1 0 , H 14 1 0 + + F 16 1,1 0 V 0 Λ 9 1,1,1 0 , K 12 1,1 0 , H 14 1 0 , F 16 1,1 0 , où P 0 , Q 0 , R 0 , S 0 , T 0 , U 0 et V 0 sont
0 ≡ P 0 + Λ 7 1,1 0 Q 0 + Λ 9 1,1,1 0 R 0 + M 10 1 0 S 0 + K 12 1,1 0 T 0 + H 14 1 0 U 0 + F 16 1,1 0 V 0 qui est identiquement satisfaite dans C f ′ 2 , f ′′ 1 , f ′′ 2 , f ′′′ 1 , f ′′′ 2 , f ′′′′ 1 , f ′′′′ 2 , f ′′′′′ 1 , f ′′′′′ 2

lorsqu'on remplace les dix bi-invariants restreints par leur expression en fonction de

j 5 f 0 , implique nécessairement que les sept polynômes P 0 , Q 0 , R 0 , S 0 , T 0 , U 0 et V 0 s'annulent tous identiquement.
Démonstration du lemme principal. D'après la théorie élémentaire des bases de Gröbner, une base de l'espace vectoriel quotient C Λ 3 0 , Λ 5 1 0 , . . . , H 14 1 0 , F 16 1,1 0 21 syzygies restreintes est constitutée de tous les monômes

Λ 3 0 a Λ 5 1 0 b Λ 7 1,1 0 c M 8 0 d Λ 9 1,1,1 0 e M 10 1 0 f N 12 0 g K 12 1,1 0 h H 14 1 0 i F 16 
1,1 0 j qui n'appartiennent pas à l'idéal monomial engendré par les 21 monômes de tête que nous avons disposés en triangle, où les exposants a, b, c, d, e, f, g, h, i, j ∈ N sont des entiers positifs ou nuls. Or un tel monôme appartient à cet idéal monomial si et seulement si il est divisible par l'un des 21 monômes de tête, ce qui revient à dire que le déca-indice a,b,c,d,e,f,g,h,i,j ∈ N 10 appartient à la réunion des 21 sous-ensembles suivants de N 10 :

{a 1} ∩ {c 1} {a 1} ∩ {e 1} {a 1} ∩ {f 1} {a 1} ∩ {h 1} {a 1} ∩ {i 1} {a 1} ∩ {j 1} {b 1} ∩ {e 1} {b 1} ∩ {f 1} {b 1} ∩ {h 1} {b 1} ∩ {i 1} {b 1} ∩ {j 1} {c 1} ∩ {f 1} {c 1} ∩ {h 1} {c 1} ∩ {i 1} {c 1} ∩ {j 1} {d 1} ∩ {h 1} {d 1} ∩ {i 1} {d 1} ∩ {j 1} {f 1} ∩ {i 1} {f 1} ∩ {j 1} {g 1} ∩ {j 1}
Le calcul du complémentaire de cet ensemble est aisé, et il donne :

{a = 0} ∪ {c = e = f = h = i = j = 0} {b = 0} ∪ {e = f = h = i = j = 0} {c = 0} ∪ {f = h = i = j = 0} {d = 0} ∪ {h = i = j = 0} {f = 0} ∪ {i = j = 0} {g = 0} ∪ {j = 0} ,
ce qui se simplifie pour donner 7 composantes définies chacune par six équations :

0 = a = b = c = d = f = g 0 = a = b = c = d = f = j 0 = a = b = c = d = i = j 0 = a = b = c = h = i = j 0 = a = b = f = h = i = j 0 = a = e = f = h = i = j 0 = c = e = f = h = i = j .
(Incidemment, nous avons établi que l'idéal des syzygies restreintes est une intersection complète.) Par conséquent, l'ensemble de tous les monômes qu'il nous reste dans l'espace quotient est constitué des sept listes suivantes : 

Λ 9 1,1,1 0 e K 12 1,1 0 h H 14 1 0 i F 16 1,1 0 j , Λ 9 1,1,1 0 e N 12 0 g K 12 1,1 0 h H 14 1 0 i , Λ 9 1,1,1 0 e M 10 1 0 f N 12 0 g K 12 1,1 0 h , M 8 0 d Λ 9 1,1,1 0 e M 10 1 0 f N 12 0 g , Λ 7 
A ∪ B ∪ C ∪ D ∪ E ∪ F ∪ G = A B A C A ∪ B D A ∪ B ∪ C E A ∪ B ∪ C ∪ D F A ∪ B ∪ C ∪ D ∪ E G A ∪ B ∪ C ∪ D ∪ E ∪ G ,
ce qui nous donne immédiatement la représentation énoncée dans notre lemme, au moyen des sept polynômes arbitraires P 0 , R 0 , S 0 , T 0 , U 0 et V 0 dont les quatre arguments se différencient successivement d'une unité lorsqu'on saute une ligne (de la ligne 1 à la ligne 7), fait combinatoire aussi remarquable qu'imprévu et que nous aimerions voir se confirmer, se généraliser et se stabiliser lorsque nous étudierons les bi-invariants pour les jets d'ordre 6 -projet ambitieux s'il en est. Afin d'établir la deuxième assertion du lemme, supposons maintenant qu'une relation du type :

0 ≡ P 0 + Λ 7 1,1 0 Q 0 + Λ 9 1,1,1 0 R 0 + M 10 1 0 S 0 + K 12 1,1 0 T 0 + H 14 1 0 U 0 + F 16
1,1 0 V 0 est identiquement satisfaite, et remplac ¸ons-y alors les six bi-invariants restreints non fondamentaux par leur expression en fonction de ceux qui sont fondamentaux, ce qui nous donne :

0 ≡ P 0 Λ 3 0 , Λ 5 1 0 , M 8 0 , N 12 0 + Λ 5 1 |0 Λ 5 1 |0 Λ 3 |0 Q 0 Λ 5 1 0 , Λ 5 1 |0 Λ 5 1 |0 Λ 3 |0 , M 8 0 , N 12 0 + + Λ 5 1 |0 Λ 5 1 |0 Λ 5 1 |0 Λ 3 |0 Λ 3 |0 R 0 Λ 5 1 |0 Λ 5 1 |0 Λ 3 |0 , M 8 0 , Λ 5 1 |0 Λ 5 1 |0 Λ 5 1 |0 Λ 3 |0 Λ 3 |0 , N 12 0 + + Λ 5 1 |0 M 8 |0 Λ 3 |0 S 0 M 8 0 , Λ 5 1 |0 Λ 5 1 |0 Λ 5 1 |0 Λ 3 |0 Λ 3 |0 , Λ 5 1 |0 M 8 |0 Λ 3 |0 , N 12 0 + + Λ 5 1 |0 Λ 5 1 |0 M 8 |0 Λ 3 |0 Λ 3 |0 T 0 Λ 5 1 |0 Λ 5 1 |0 Λ 5 1 |0 Λ 3 |0 Λ 3 |0 , Λ 5 1 |0 M 8 |0 Λ 3 |0
, N 12 0 ,

Λ 5 1 |0 Λ 5 1 |0 M 8 |0 Λ 3 |0 Λ 3 |0 + + Λ 5 1 |0 N 12 |0 Λ 3 |0 U 0 Λ 5 1 |0 Λ 5 1 |0 Λ 5 1 |0 Λ 3 |0 Λ 3 |0 , N 12 0 , Λ 5 1 |0 Λ 5 1 |0 M 8 |0 Λ 3 |0 Λ 3 |0 , Λ 5 1 |0 N 12 |0 Λ 3 |0 + Λ 5 1 |0 Λ 5 1 |0 N 12 |0 Λ 3 |0 Λ 3 |0 V 0 Λ 5 1 |0 Λ 5 1 |0 Λ 5 1 |0 Λ 3 |0 Λ 3 |0 , Λ 5 1 |0 Λ 5 1 |0 M 8 |0 Λ 3 |0 Λ 3 |0 , Λ 5 1 |0 N 12 |0 Λ 3 |0 , Λ 5 1 |0 Λ 5 1 |0 N 12 |0 Λ 3 |0 Λ 3 |0 .
Pour en déduire l'annulation de ces 7 polynômes P 0 , Q 0 , R 0 , S 0 , T 0 , U 0 et V 0 , si nous commenc ¸ons par multiplier cette identité par le dénominateur Λ 3 | 0 µ de son expression réduite, nous obtenons une identité de la forme :

0 ≡ Λ 3 µ P 0 Λ 3 0 , Λ 5 1 0 , M 8 0 , N 12 0 + Λ 3 0 µ-1 • reste polynomial,
laquelle montre tout d'abord immédiatement que le premier polynôme P 0 s'annule identiquement, puisque Λ 3 0 , Λ 5 1 0 , M 8 0 et N 12 0 sont algébriquement indépendants. Supprimons donc P 0 . Ensuite, en multipliant par une puissance suffisamment élevée Λ 3 | 0 µ pour éliminer les puissances négatives de Λ 3 | 0 qui apparaissent dans Q 0 , R 0 , S 0 , T 0 , U 0 et V 0 , et en divisant le tout par le facteur Λ [START_REF] Rousseau | Hyperbolicité des variétés complexes[END_REF] 1 | 0 présent devant chacun des six polynômes restants, nous obtenons une identité de la forme :

0 ≡ Λ 3 0 µ Λ 5 1 0 Q 0 + M 8 0 S 0 + N 12 0 U 0 + Λ 3 0 µ-1 • reste polynomial,
d'où nous déduisons l'annulation identique du polynôme :

0 ≡ Λ 3 0 µ Λ 5 1 0 Q 0 Λ 5 1 0 , Λ 5 1 | 0 Λ 5 1 | 0 Λ 3 | 0 , M 8 0 , N 12 0 + + M 8 0 S 0 M 8 0 , Λ 5 1 | 0 Λ 5 1 | 0 Λ 5 1 | 0 Λ 3 | 0 Λ 3 | 0 , Λ 5 1 | 0 M 8 | 0 Λ 3 | 0 , N 12 0 + + N 12 0 U 0 Λ 5 1 | 0 Λ 5 1 | 0 Λ 5 1 | 0 Λ 3 | 0 Λ 3 | 0 , N 12 0 , Λ 5 1 | 0 Λ 5 1 | 0 M 8 | 0 Λ 3 | 0 Λ 3 | 0 , Λ 5 1 | 0 N 12 | 0 Λ 3 | 0 .
Ensuite, si nous introduisons les développement finis de ces trois polynômes :

Q 0 t 1 , t 2 , t 3 , t 4 ) = coeff • t α 1 t β 2 t γ 3 t δ 4 , S 0 t 1 , t 2 , t 3 , t 4 ) = coeff • t α ′ 1 t β ′ 2 t γ ′ 3 t δ ′ 4 , U 0 t 1 , t 2 , t 3 , t 4 ) = coeff • t α ′′ 1 t β ′′ 2 t γ ′′ 3 t δ ′′ 4 ,
nous en déduirons l'annulation de Q 0 , de S 0 et de U 0 grâce à l'observation suivante.

Assertion Les trois familles de monômes :

(i) Λ 3 0 µ-β Λ 5 1 0 1+α+2β M 8 0 γ N 12 0 δ , (ii) Λ 3 0 µ-2β ′ -γ ′ Λ 5 1 0 3β ′ +γ ′ M 8 0 1+α ′ +γ ′ N 12 0 δ ′ , (iii) Λ 3 0 µ-2α ′′ -2γ ′′ -δ ′′ Λ 5 1 0 3α ′′ +2γ ′′ +δ ′′ M 8 0 γ ′′ N 12 0 1+β ′′ +γ ′′
, ne contiennent aucune redondance, i.e. chaque monôme correspondand à un choix de (α, β, γ, δ), ou de (α ′ , β ′ , γ ′ , δ ′ ), ou encore de (α ′′ , β ′′ , γ ′′ , δ ′′ ) apparaît une et une seule fois.

En effet, nous vérifions tout d'abord pour la première famille, que l'auto-intersection :

µ -β = µ -β, 1 + α + 2β = 1 + α + 2β γ = γ δ = δ, est vide, c'est-à-dire implique α = α, β = β, γ = γ, δ = δ,
puis de même pour la deuxième famille :

µ-2β ′ -γ ′ = µ-2β ′ -γ ′ , 3β ′ +γ ′ = 3β ′ +γ ′ , α ′ +γ ′ = α ′ +γ ′ , δ ′ = δ ′ ,
et aussi pour la troisième famille :

µ -2α ′′ -2γ ′′ -δ ′′ = µ -2α ′′ -2γ ′′ -δ ′′ , 3α ′′ + 2γ ′′ + δ ′′ = 3α ′′ + 2γ ′′ + δ ′′ , γ ′′ = γ ′′ , β ′′ + γ ′′ = β ′′ + γ ′′ .
Ensuite, des formules pour l'intersection entre la première et la deuxième famille :

-β = -2β ′ -γ ′ , 1 + α + 2β = 3β ′ + γ ′ , γ = 1 + α ′ + γ ′ , δ = δ ′ , découle l'équation α = -γ ′ -β ′ -1,
impossible parce que l'exposant entier α doit impérativement être 0. De même, l'intersection entre la première et la troisième famille :

-β = -2α ′′ -2γ ′′ -δ ′′ , 1+α+2β = 3α ′′ +2γ ′′ +δ ′′ , γ = γ ′′ , δ = 1+β ′′ +γ ′′ ,
implique l'équation impossible α = -1-α ′′ -2γ ′′ -δ ′′ , et enfin aussi, l'intersection entre la deuxième et la troisième famille :

-2β ′ -γ ′ = -2α ′′ -2γ ′′ -δ ′′ , 3β ′ + γ ′ = 3α ′′ + 2γ ′′ + δ ′′ , 1 + α ′ + γ ′ = γ ′′ , δ ′ = 1 + β ′′ + γ ′′ , d'où découle γ ′ = δ ′′ + 2γ ′′ , implique l'équation impossible α ′ = -1 -γ ′′ -δ ′′ , ce qui démontre l'assertion.
Ainsi, nous pouvons supprimer Q 0 , S 0 et U 0 , et nous sommes ramenés à étudier l'identité restante, qui est du type :

0 ≡ Λ 3 0 µ Λ 5 1 0 R 0 Λ 5 1 | 0 Λ 5 1 | 0 Λ 3 | 0 , M 8 0 , Λ 5 1 | 0 Λ 5 1 | 0 Λ 5 1 | 0 Λ 3 | 0 Λ 3 | 0 , N 12 0 + + M 8 0 T 0 Λ 5 1 | 0 Λ 5 1 | 0 Λ 5 1 | 0 Λ 3 | 0 Λ 3 | 0 , Λ 5 1 | 0 M 8 | 0 Λ 3 | 0 , N 12 0 , Λ 5 1 | 0 Λ 5 1 | 0 M 8 | 0 Λ 3 | 0 Λ 3 | 0 + N 12 0 V 0 Λ 5 1 | 0 Λ 5 1 | 0 Λ 5 1 | 0 Λ 3 | 0 Λ 3 | 0 , Λ 5 1 | 0 Λ 5 1 | 0 M 8 | 0 Λ 3 | 0 Λ 3 | 0 , Λ 5 1 | 0 N 12 | 0 Λ 3 | 0 , Λ 5 1 | 0 Λ 5 1 | 0 N 12 | 0 Λ 3 | 0 Λ 3 | 0 .
Assertion Les trois familles de monômes :

(iv) Λ 3 0 µ-α-2γ Λ 5 1 0 1+2α+3γ M 8 0 β N 12 0 δ , (v) Λ 3 0 µ-2α ′ -β ′ -2δ ′ Λ 5 1 0 3α ′ +β ′ +2δ ′ M 8 0 1+β ′ +δ ′ N 12 0 γ ′ , (vi) Λ 3 0 µ-2α ′′ -2β ′′ -γ ′′ -2δ ′′ Λ 5 1 0 3α ′′ +2β ′′ +γ ′′ +2δ ′′ M 8 0 β ′′ N 12 0 1+γ ′′ +δ ′′
, ne contiennent aucune redondance, i.e. chaque monôme correspondand à un choix de (α, β, γ, δ), ou de (α ′ , β ′ , γ ′ , δ ′ ), ou encore de (α ′′ , β ′′ , γ ′′ , δ ′′ ) apparaît une et une seule fois.

En effet, il est tout d'abord facile de vérifier que chacune des trois auto-intersections est triviale. Ensuite, des formules pour l'intersection entre la première et la deuxième famille :

α+2γ = 2α ′ +β ′ +2δ ′ , 1+2α+3γ = 3α ′ +β ′ +2δ ′ , β = 1+β ′ +δ ′ , δ = γ ′ ,
découle l'équation 1 + α + γ = α ′ dont nous nous servons pour remplacer α ′ dans la seconde équation, ce qui conduit à l'impossibilité 0 = 2 + α + β ′ + 2δ ′ . De même, l'intersection entre la première et la troisième famille :

α + 2γ = 2α ′′ + 2β ′′ + γ ′′ + 2δ ′′ , 1 + 2α + 3γ = 3α ′′ + 2β ′′ + γ ′′ + 2δ ′′ , β = β ′′ , δ = 1 + γ ′′ + δ ′′ ,
conduit à l'impossibilité 0 = 2 + α + 2β ′′ + γ ′′ + 2δ ′′ en remplac ¸ant α ′′ = 1 + α + γ dans la seconde équation. Enfin, l'intersection entre la deuxième et la troisième famille :

2α ′ + β ′ + 2δ ′ = 2α ′′ + 2β ′′ + γ ′′ + 2δ ′′ , 3α ′ + β ′ + 2δ ′ = 3α ′′ + 2β ′′ + γ ′′ + 2δ ′′ , 1 + β ′ + δ ′ = β ′′ , γ ′ = 1 + γ ′′ + δ ′′ , conduit à α ′ = α ′′ , d'où β ′ + 2δ ′ = 2β ′′ + γ ′′ + 2δ ′′ , puis en réécrivant la troisième équation et en y remplac ¸ant -β ′ -2δ ′ par -2β ′′ -γ ′′ -2δ ′′ , puis -β ′′ par -1-β ′ -δ ′ : 1 = β ′′ -β ′ -2δ ′ + δ ′ = β ′′ -2β ′′ -γ ′′ -2δ ′′ + δ ′ = -β ′′ -γ ′′ -2δ ′′ + δ ′ = -1 -β ′ -γ ′′ -2δ ′′ ,
équation tout aussi impossible que les deux précédentes. Ceci achève la démonstration de notre lemme principal. Syzygies complètes et substitutions algébriques. Nous parvenons enfin à la dernière étape de la démonstration de notre second théorème. Soit P 2×inv j 5 f un biinvariant quelconque, et reprenons son développement en puissances positives et négatives de f ′ 1 :

P 2×inv = -4 5 m a m (f ′ 1 ) a P a Λ 3 , Λ 5 1 , Λ 7 1,1 , M 8 , Λ 9 1,1,1 , M 10 1 , N 12 , K 12 1,1 , H 14 1 , F 16 1,1 , 
que nous avions obtenu pour le représenter en injectant (artificiellement) les six biinvariants fantômes dans une expression initiale qui ne montrait que Λ 3 , Λ 5 1 , Λ 7 1,1 et Λ 9 1,1,1 . Choisissons l'exposant a maximalement négatif et examinons le polynôme :

P a Λ 3 , Λ 5 1 , Λ 7 1,1 , M 8 , Λ 9 1,1,1 , M 10 1 , N 12 , K 12 1,1 , H 14 1 , F 16 1,1 .
Notre base de Gröbner pour les bi-invariants restreints est obtenue à partir de nos 15 syzygies fondamentales restreintes, et ce au moyen d'un certain nombre d'opérations algébriques élémentaires : multiplication et addition d'équations, calcul de Spolynômes et divisions euclidiennes subséquentes, opérations autorisées dans toute structure d'idéal algébrique. Il en découle que les mêmes opérations qui produisent les 21 équations normalisées satisfaites sur {f ′ 1 = 0} peuvent aussi être conduites sans poser f ′ 1 = 0, et alors elles produisent, à partir des 15 syzygies complètes, la même liste de 21 équations dans laquelle chaque identité "0 ≡" doit être remplacé par "O(f ′ 1 ) ≡", le terme O(f ′ 1 ) désignant un reste, variable selon le contexte, qui dépend a priori de tous les onze bi-invariants 8 et qui s'annule lorsqu'on fait f ′ 1 =

8 Ici, le raisonnement fonctionne seulement si l'algèbre complète des bi-invariant doit coïncider a priori avec l'algèbre engendrée par crochets : sous cette condition, le reste derrière f ′ 1 doit alors nécessairement être fonction des onze bi-invariants. Toutefois, nous allons voir dans un instant que de nouveaux bi-invariants fondamentaux "fantômes" se cachent derrière f ′ 1 , exactement comme nous avions interprété Λ 9 1,1,1 , M 10 1 , N 12 , K 12 1,1 , H 14 1 et F 16 1,1 , ces nouveaux bi-invariants n'étant pas construits par crochet. 0, c'est-à-dire qui est multiple de f ′ 1 . Par conséquent, si nous appliquons à P a la même normalisation modulo les syzygies que dans le lemme principal (ce qui revient à substituer toutes les occurences des monômes de tête), mais sans prendre la restriction à {f ′ 1 = 0}, nous obtenons une expression du même type, et ce, avec un reste :

P a = P a Λ 3 , Λ 5 1 , M 8 , N 12 + Λ 7 1,1 Q a Λ 5 1 , Λ 7 1,1 , M 8 , N 12 + + Λ 9 1,1,1 R a Λ 7 1,1 , M 8 , Λ 9 1,1,1 , N 12 + M 10 1 S a M 8 , Λ 9 1,1,1 , M 10 1 , N 12 + + K 12 1,1 T a Λ 9 1,1,1 , M 10 1 , N 12 , K 12 1,1 + H 14 1 U a Λ 9 1,1,1 , N 12 , K 12 1,1 , H 14 1 + + F 16 1,1 V Λ 9 1,1,1 , K 12 1,1 , H 14 1 , F 16 1,1 + + f ′ 1 reste f ′ 1 , Λ 3 , Λ 5 1 , Λ 7 1,1 , M 8 , Λ 9 1,1,1 , M 10 1 , N 12 , K 12 1,1 , H 14 1 , F 16 1,1
, a priori non contrôlé, mais qui est heureusement repoussé dans les puissances supérieures (f ′ 1 ) a+1 , (f ′ 1 ) a+2 , . . . . Ainsi, nous normalisons l'expression du premier polynôme P a , à savoir celui qui apparaît dans la puissance maximalement négative de f ′ 1 . Et enuite, nous soumettons le nouveau coefficient de (f ′ 1 ) a+1 , qui vient de subir l'interférence du reste, et que nous noterons encore P a , nous soumettons ce nouveau coefficient au même processus de normalisation modulo les 21 syzygies non restreintes, et ainsi de suite, jusqu'à l'exposant maximalement positif (toujours borné par m) de f ′ 1 , ce qui nous donne une expression finale de la forme :

P 2×inv j 5 f = -4 5 m a m (f ′ 1 ) a P a Λ 3 , Λ 5 1 , M 8 , N 12 + Λ 7 1,1 Q a Λ 5 1 , Λ 7 1,1 , M 8 , N 12 + + Λ 9 1,1,1 R a Λ 7 1,1 , M 8 , Λ 9 1,1,1 , N 12 + M 10 1 S a M 8 , Λ 9 1,1,1 , M 10 1 , N 12 + + K 12 1,1 T a Λ 9 1,1,1 , M 10 1 , N 12 , K 12 1,1 + H 14 1 U a Λ 9 1,1,1 , N 12 , K 12 1,1 , H 14 1 + + F 16 1,1 V a Λ 9 1,1,1 , K 12 1,1 , H 14 1 , F 16 1,1 . 
Et maintenant enfin, nous pouvons achever la démonstration : s'il existait des puissances négatives de f ′ 1 dans une telle somme, on multiplierait alors P 2×inv j 5 f par la puissance positive minimale (f ′ 1 ) -a de f ′ 1 qui élimine les dénominateurs, on poserait f ′ 1 = 0 et le lemme principal -which was specially designed on that purpose -tuerait alors les sept polynômes P a , Q a , R a , S a , T a , U a et V a , ce qui contredirait le choix de a. Il n'existe donc que des puissances positives de f ′ 1 , et comme tout polynôme de la forme générale

P f ′ 1 , Λ 3 , Λ 5 1 , M 8 , N 12 + Λ 7 1,1 Q f ′ 1 , Λ 5 1 , Λ 7 1,1 , M 8 , N 12 + + Λ 9 1,1,1 R f ′ 1 , Λ 7 1,1 , M 8 , Λ 9 1,1,1 , N 12 + M 10 1 S f ′ 1 , M 8 , Λ 9 1,1,1 , M 10 1 , N 12 + + K 12 1,1 T f ′ 1 , Λ 9 1,1,1 , M 10 1 , N 12 , K 12 1,1 + H 14 1 U f ′ 1 , Λ 9 1,1,1 , N 12 , K 12 1,1 , H 14 1 + + F 16 1,1 V f ′ 1 , Λ 9 1,1,1 , K 12 1,1 , H 14 1 , F 16 1,1
, constitue trivialement un bi-invariant, écrit qui plus est sous forme unique grâce au lemme fondamental, notre second théorème est à présent complètement démontré.

Observation. Dans cette dernière étape du raisonnement, les termes de reste cidessus ont beau être divisibles par f ′ 1 , il ne sont pas nécessairement polynomiaux en nos onze bi-invariants fondamentaux ; si cela avait été le cas, la stratégie aurait fonctionné comme pour les jets d'ordre 4. Plus précisément, lorsqu'on compare la liste originale des 15 syzygies restreintes à la liste complète des 21 syzygies restreintes, les 6 syzygies ajoutées sont déduites des 15 initiales en autorisant à diviser une syzygie par tout bi-invariant non identiquement nul qui est en facteur, notamment par le wronskien Λ 3 , et c'est pour cette raison que les termes de reste ci-dessus ne sont pas nécessairement polynomiaux en les onze bi-invariants fondamentaux. Après un examen détaillé, on découvre donc l'existence de exactement 7 bi-invariants "fantômes" supplémentaires qui ne sont pas obtenus par crochets et qui se cachent derrière f ′ 1 , à savoir :

X 18 := -5 Λ 9 1,1,1 M 10 1 + 56 Λ 7 1,1 K 12 1,1 f ′ 1 = f ′ 1 f ′ 1 f ′ 1 -18816 ∆ 1,4 ∆ 2,3 2 -25088 ∆ 2,3 3 -15 ∆ 1,5 2 ∆ 1,2 -150 ∆ 1,5 ∆ 2,4 ∆ 1,2 + 315 ∆ 1,5 ∆ 1,4 ∆ 1,3 + 960 ∆ 1,5 ∆ 2,3 ∆ 1,3 -375 ∆ 2,4 2 ∆ 1,2 + 1575 ∆ 2,4 ∆ 1,4 ∆ 1,3 + 4800 ∆ 2,4 ∆ 2,3 ∆ 1,3 -392 ∆ 1,4 3 -4704 ∆ 1,4 2 ∆ 2,3 -f ′ 1 f ′ 1 f ′′ 1 -2475 ∆ 2,4 ∆ 1,4 ∆ 1,2 -9900 ∆ 2,4 ∆ 2,3 ∆ 1,2 -2850 ∆ 1,5 ∆ 1,3 2 + 51330 ∆ 1,4 ∆ 2,3 ∆ 1,3 + 92760 ∆ 2,3 2 ∆ 1,3 -14250 ∆ 2,4 ∆ 1,3 2 + 7035 ∆ 1,4 2 ∆ 1,3 -495 ∆ 1,5 ∆ 1,4 ∆ 1,2 -1980 ∆ 1,5 ∆ 2,3 ∆ 1,2 -f ′ 1 f ′ 1 f ′′′ 1 -11100 ∆ 2,3 ∆ 1,3 2 -3150 ∆ 1,4 ∆ 1,3 2 + f ′ 1 f ′′ 1 f ′′ 1 -109440 ∆ 2,3 2 ∆ 1,2 -19050 ∆ 2,3 ∆ 1,3 2 -32325 ∆ 1,4 ∆ 1,3 2 + 11025 ∆ 1,5 ∆ 1,3 ∆ 1,2 + 55125 ∆ 2,4 ∆ 1,3 ∆ 1,2 -6840 ∆ 1,4 2 ∆ 1,2 -54720 ∆ 1,4 ∆ 2,3 ∆ 1,2 -f ′ 1 f ′′ 1 f ′′′ 1 + 30000 ∆ 1,3 3 -f ′′ 1 f ′′ 1 f ′′ 1 11025 ∆ 1,5 ∆ 1,2 2 -55125 ∆ 2,4 ∆ 1,2 2 + 55125 ∆ 1,4 ∆ 1,3 ∆ 1,2 + 110250 ∆ 2,3 ∆ 1,3 ∆ 1,2 -49000 ∆ 1,3 3 . X 19 := -5 M 10 1 M 10 1 + 64 M 8 K 12 1,1 f ′ 1 = f ′ 1 1170 ∆ 1,5 ∆ 1,4 ∆ 1,3 ∆ 1,2 -45 ∆ 1,5 2 ∆ 1,2 2 -450 ∆ 1,5 ∆ 2,4 ∆ 1,2 2 + 74220 ∆ 2,3 2 ∆ 1,3 2 + 3780 ∆ 1,5 ∆ 2,3 ∆ 1,3 ∆ 1,2 -1600 ∆ 1,5 ∆ 1,3 3 -1125 ∆ 2,4 2 ∆ 1,2 2 + 5850 ∆ 2,4 ∆ 1,4 ∆ 1,3 ∆ 1,2 + 18900 ∆ 2,4 ∆ 2,3 ∆ 1,3 ∆ 1,2 -8000 ∆ 2,4 ∆ 1,3 3 -1344 ∆ 1,4 3 ∆ 1,2 -16128 ∆ 1,4 2 ∆ 2,3 ∆ 1,2 + 1995 ∆ 1,4 2 ∆ 1,3 2 -64512 ∆ 1,4 ∆ 2,3 2 ∆ 1,2 + 27660 ∆ 1,4 ∆ 2,3 ∆ 1,3 2 -86016 ∆ 2,3 3 ∆ 1,2 + f ′′ 1 -74400 ∆ 2,3 ∆ 1,3 3 -10800 ∆ 2,4 ∆ 1,4 ∆ 1,2 2 -2160 ∆ 1,5 ∆ 1,4 ∆ 1,2 2 -8640 ∆ 1,5 ∆ 2,3 ∆ 1,2 2 + 3600 ∆ 1,5 ∆ 1,3 2 ∆ 1,2 + 64800 ∆ 1,4 ∆ 2,3 ∆ 1,3 ∆ 1,2 -43200 ∆ 2,4 ∆ 2,3 ∆ 1,2 2 + 18000 ∆ 2,4 ∆ 1,3 2 ∆ 1,2 + 10800 ∆ 1,4 2 ∆ 1,3 ∆ 1,2 -27600 ∆ 1,4 ∆ 1,3 3 + 86400 ∆ 2,3 2 ∆ 1,3 ∆ 1,2 + f ′′′ 1 16000 ∆ 1,3 4 . X 21 := -5 M 10 1 N 12 + 8 M 8 H 14 1 f ′ 1 = -135 ∆ 1,5 2 ∆ 1,2 3 -1350 ∆ 1,5 ∆ 2,4 ∆ 1,2 3 + 1350 ∆ 1,5 ∆ 1,4 ∆ 1,3 ∆ 1,2 2 + 2700 ∆ 1,5 ∆ 2,3 ∆ 1,3 ∆ 1,2 2 -1200 ∆ 1,5 ∆ 1,3 3 ∆ 1,2 -3375 ∆ 2,4 2 ∆ 1,2 3 + 6750 ∆ 2,4 ∆ 1,4 ∆ 1,3 ∆ 1,2 2 + 13500 ∆ 2,4 ∆ 2,3 ∆ 1,3 ∆ 1,2 2 -6000 ∆ 2,4 ∆ 1,3 3 ∆ 1,2 -576 ∆ 1,4 3 ∆ 1,2 2 -6912 ∆ 1,4 2 ∆ 2,3 ∆ 1,2 2 -495 ∆ 1,4 2 ∆ 1,3 2 ∆ 1,2 -27648 ∆ 1,4 ∆ 2,3 2 ∆ 1,2 2 + 9540 ∆ 1,4 ∆ 2,3 ∆ 1,3 2 ∆ 1,2 + 1200 ∆ 1,4 ∆ 1,3 4 -36864 ∆ 2,3 3 ∆ 1,2 2 + 32580 ∆ 2,3 2 ∆ 1,3 2 ∆ 1,2 -7200 ∆ 2,3 ∆ 1,3 4 . X 23 := -7 N 12 K 12 1,1 + M 8 F 16 1,1 f ′ 1 = f ′ 1 432 ∆ 1,5 ∆ 1,4 2 ∆ 1,2 2 + 3456 ∆ 1,5 ∆ 1,4 ∆ 2,3 ∆ 1,2 2 + 1710 ∆ 1,5 ∆ 1,4 ∆ 1,3 2 ∆ 1,2 -3150 ∆ 1,5 ∆ 2,4 ∆ 1,3 ∆ 1,2 2 + 540 ∆ 1,5 ∆ 2,3 ∆ 1,3 2 ∆ 1,2 -1600 ∆ 1,5 ∆ 1,3 4 -7875 ∆ 2,4 2 ∆ 1,3 ∆ 1,2 2 + 6912 ∆ 1,5 ∆ 2,3 2 ∆ 1,2 2 -8000 ∆ 2,4 ∆ 1,3 4 -2352 ∆ 1,4 3 ∆ 1,3 ∆ 1,2 -23904 ∆ 1,4 2 ∆ 2,3 ∆ 1,3 ∆ 1,2 + 2205 ∆ 1,4 2 ∆ 1,3 3 -78336 ∆ 1,4 ∆ 2,3 2 ∆ 1,3 ∆ 1,2 + 34740 ∆ 1,4 ∆ 2,3 ∆ 1,3 3 -81408 ∆ 2,3 3 ∆ 1,3 ∆ 1,2 + 72180 ∆ 2,3 2 ∆ 1,3 3 + 2160 ∆ 2,4 ∆ 1,4 2 ∆ 1,2 2 + 17280 ∆ 2,4 ∆ 1,4 ∆ 2,3 ∆ 1,2 2 + 8550 ∆ 2,4 ∆ 1,4 ∆ 1,3 2 ∆ 1,2 + 34560 ∆ 2,4 ∆ 2,3 2 ∆ 1,2 2 + 2700 ∆ 2,4 ∆ 2,3 ∆ 1,3 2 ∆ 1,2 -315 ∆ 1,5 2 ∆ 1,3 ∆ 1,2 2 + f ′′ 1 23625 ∆ 2,4 2 ∆ 1,2 3 -47250 ∆ 2,4 ∆ 1,4 ∆ 1,3 ∆ 1,2 2 -94500 ∆ 2,4 ∆ 2,3 ∆ 1,3 ∆ 1,2 2 + 42000 ∆ 2,4 ∆ 1,3 3 ∆ 1,2 + 576 ∆ 1,4 3 ∆ 1,2 2 + 6912 ∆ 1,4 2 ∆ 2,3 ∆ 1,2 2 + 20745 ∆ 1,4 2 ∆ 1,3 2 ∆ 1,2 + 27648 ∆ 1,4 ∆ 2,3 2 ∆ 1,2 2 + 945 ∆ 1,5 2 ∆ 1,2 3 + 9450 ∆ 1,5 ∆ 2,4 ∆ 1,2 3 -9450 ∆ 1,5 ∆ 1,4 ∆ 1,3 ∆ 1,2 2 -18900 ∆ 1,5 ∆ 2,3 ∆ 1,3 ∆ 1,2 2 + 8400 ∆ 1,5 ∆ 1,3 3 ∆ 1,2 + 71460 ∆ 1,4 ∆ 2,3 ∆ 1,3 2 ∆ 1,2 -37200 ∆ 1,4 ∆ 1,3 4 + 36864 ∆ 2,3 3 ∆ 1,2 2 + 48420 ∆ 2,3 2 ∆ 1,3 2 ∆ 1,2 -64800 ∆ 2,3 ∆ 1,3 4 + f ′′′ 1 16000 ∆ 1,3 5 . Y 23 := -8 N 12 K 12 1,1 + M 10 1 H 14 1 f ′ 1 = X 23 . X 25 := -56 K 12 1,1 H 14 1 + 5 M 10 1 F 16 1,1 f ′ 1 = f ′ 1 f ′ 1 -45 ∆ 1,5 2 ∆ 1,4 ∆ 1,2 2 -180 ∆ 1,5 2 ∆ 2,3 ∆ 1,2 2 -3600 ∆ 1,5 2 ∆ 1,3 2 ∆ 1,2 -2800 ∆ 1,5 ∆ 1,4 ∆ 1,3 3 -83200 ∆ 1,5 ∆ 2,3 ∆ 1,3 3 -1125 ∆ 2,4 2 ∆ 1,4 ∆ 1,2 2 -4500 ∆ 2,4 2 ∆ 2,3 ∆ 1,2 2 -90000 ∆ 2,4 2 ∆ 1,3 2 ∆ 1,2 -14000 ∆ 2,4 ∆ 1,4 ∆ 1,3 3 -416000 ∆ 2,4 ∆ 2,3 ∆ 1,3 3 -150528 ∆ 1,4 3 ∆ 2,3 ∆ 1,2 -903168 ∆ 1,4 2 ∆ 2,3 2 ∆ 1,2 + 163800 ∆ 1,4 2 ∆ 2,3 ∆ 1,3 2 -2408448 ∆ 1,4 ∆ 2,3 3 ∆ 1,2 + 1129500 ∆ 1,4 ∆ 2,3 2 ∆ 1,3 2 -9408 ∆ 1,4 4 ∆ 1,2 + 3675 ∆ 1,4 3 ∆ 1,3 2 -2408448 ∆ 2,3 4 ∆ 1,2 + 2132400 ∆ 2,3 3 ∆ 1,3 2 -450 ∆ 1,5 ∆ 2,4 ∆ 1,4 ∆ 1,2 2 -1800 ∆ 1,5 ∆ 2,4 ∆ 2,3 ∆ 1,2 2 -36000 ∆ 1,5 ∆ 2,4 ∆ 1,3 2 ∆ 1,2 + 11970 ∆ 1,5 ∆ 1,4 2 ∆ 1,3 ∆ 1,2 + 187920 ∆ 1,5 ∆ 2,3 2 ∆ 1,3 ∆ 1,2 + 59850 ∆ 2,4 ∆ 1,4 2 ∆ 1,3 ∆ 1,2 + 939600 ∆ 2,4 ∆ 2,3 2 ∆ 1,3 ∆ 1,2 + 474300 ∆ 2,4 ∆ 1,4 ∆ 2,3 ∆ 1,3 ∆ 1,2 + 94860 ∆ 1,5 ∆ 1,4 ∆ 2,3 ∆ 1,3 ∆ 1,2 + f ′ 1 f ′′ 1 -2556600 ∆ 1,4 ∆ 2,3 ∆ 1,3 3 -5014200 ∆ 2,3 2 ∆ 1,3 3 -187950 ∆ 1,4 2 ∆ 1,3 3 + 5621760 ∆ 1,4 ∆ 2,3 2 ∆ 1,3 ∆ 1,2 + 5652480 ∆ 2,3 3 ∆ 1,3 ∆ 1,2 -2764800 ∆ 2,4 ∆ 2,3 2 ∆ 1,2 2 + 99000 ∆ 2,4 ∆ 2,3 ∆ 1,3 2 ∆ 1,2 + 500000 ∆ 2,4 ∆ 1,3 4 + 174720 ∆ 1,4 3 ∆ 1,3 ∆ 1,2 + 1751040 ∆ 1,4 2 ∆ 2,3 ∆ 1,3 ∆ 1,2 -276480 ∆ 1,5 ∆ 1,4 ∆ 2,3 ∆ 1,2 2 -105300 ∆ 1,5 ∆ 1,4 ∆ 1,3 2 ∆ 1,2 -552960 ∆ 1,5 ∆ 2,3 2 ∆ 1,2 2 + 19800 ∆ 1,5 ∆ 2,3 ∆ 1,3 2 ∆ 1,2 + 100000 ∆ 1,5 ∆ 1,3 4 + 551250 ∆ 2,4 2 ∆ 1,3 ∆ 1,2 2 -172800 ∆ 2,4 ∆ 1,4 2 ∆ 1,2 2 -1382400 ∆ 2,4 ∆ 1,4 ∆ 2,3 ∆ 1,2 2 -526500 ∆ 2,4 ∆ 1,4 ∆ 1,3 2 ∆ 1,2 -34560 ∆ 1,5 ∆ 1,4 2 ∆ 1,2 2 + 22050 ∆ 1,5 2 ∆ 1,3 ∆ 1,2 2 + 220500 ∆ 1,5 ∆ 2,4 ∆ 1,3 ∆ 1,2 2 + f ′ 1 f ′′′ 1 28000 ∆ 1,4 ∆ 1,3 4 + 472000 ∆ 2,3 ∆ 1,3 4 + f ′′ 1 f ′′ 1 330750 ∆ 1,5 ∆ 1,4 ∆ 1,3 ∆ 1,2 2 + 661500 ∆ 1,5 ∆ 2,3 ∆ 1,3 ∆ 1,2 2 -294000 ∆ 1,5 ∆ 1,3 3 ∆ 1,2 -330750 ∆ 1,5 ∆ 2,4 ∆ 1,2 3 + 1653750 ∆ 2,4 ∆ 1,4 ∆ 1,3 ∆ 1,2 2 + 3307500 ∆ 2,4 ∆ 2,3 ∆ 1,3 ∆ 1,2 2 -1470000 ∆ 2,4 ∆ 1,3 3 ∆ 1,2 -2880 ∆ 1,4 3 ∆ 1,2 2 -34560 ∆ 1,4 2 ∆ 2,3 ∆ 1,2 2 -812475 ∆ 1,4 2 ∆ 1,3 2 ∆ 1,2 -138240 ∆ 1,4 ∆ 2,3 2 ∆ 1,2 2 -33075 ∆ 1,5 2 ∆ 1,2 3 + 1446000 ∆ 1,4 ∆ 1,3 4 -184320 ∆ 2,3 3 ∆ 1,2 2 -3077100 ∆ 2,3 2 ∆ 1,3 2 ∆ 1,2 + 2844000 ∆ 2,3 ∆ 1,3 4 -826875 ∆ 2,4 2 ∆ 1,2 3 -3192300 ∆ 1,4 ∆ 2,3 ∆ 1,3 2 ∆ 1,2 + f ′′ 1 f ′′′ 1 -640000 ∆ 1, 3 5 . 
X 27 := -7 H 14 1 H 14 1 + 5

N 12 F 16 1,1 f ′ 1 = f ′ 1 -1032192 ∆ 1,4 ∆ 2,3 3 ∆ 1,2 2 -186300 ∆ 1,4 ∆ 2,3 ∆ 1,3 4 -3375 ∆ 2,4 2 ∆ 1,4 ∆ 1,2 3 + 5625 ∆ 2,4 2 ∆ 1,3 2 ∆ 1,2 2 -540 ∆ 1,5 2 ∆ 2,3 ∆ 1,2 3 + 12705 ∆ 1,4 3 ∆ 1,3 2 ∆ 1,2 + 1320720 ∆ 2,3 3 ∆ 1,3 2 ∆ 1,2 -64512 ∆ 1,4 3 ∆ 2,3 ∆ 1,2 2 + 225 ∆ 1,5 2 ∆ 1,3 2 ∆ 1,2 2 -135 ∆ 1,5 2 ∆ 1,4 ∆ 1,2 3 -13500 ∆ 2,4 2 ∆ 2,3 ∆ 1,2 3 -387072 ∆ 1,4 2 ∆ 2,3 2 ∆ 1,2 2 -1350 ∆ 1,5 ∆ 2,4 ∆ 1,4 ∆ 1,2 3 -5400 ∆ 1,5 ∆ 2,4 ∆ 2,3 ∆ 1,2 3 + 2250 ∆ 1,5 ∆ 2,4 ∆ 1,3 2 ∆ 1,2 2 + 3510 ∆ 1,5 ∆ 1,4 2 ∆ 1,3 ∆ 1,2 2 -10650 ∆ 1,5 ∆ 1,4 ∆ 1,3 3 ∆ 1,2 + 45360 ∆ 1,5 ∆ 2,3 2 ∆ 1,3 ∆ 1,2 2 -38100 ∆ 1,5 ∆ 2,3 ∆ 1,3 3 ∆ 1,2 + 17550 ∆ 2,4 ∆ 1,4 2 ∆ 1,3 ∆ 1,2 2 -53250 ∆ 2,4 ∆ 1,4 ∆ 1,3 3 ∆ 1,2 + 226800 ∆ 2,4 ∆ 2,3 2 ∆ 1,3 ∆ 1,2 2 -190500 ∆ 2,4 ∆ 2,3 ∆ 1,3 3 ∆ 1,2 + 187560 ∆ 1,4 2 ∆ 2,3 ∆ 1,3 2 ∆ 1,2 + 877140 ∆ 1,4 ∆ 2,3 2 ∆ 1,3 2 ∆ 1,2 + 8000 ∆ 1,5 ∆ 1,3 5 + 40000 ∆ 2,4 ∆ 1,3 5 -4032 ∆ 1,4 4 ∆ 1,2 2 -9975 ∆ 1,4 2 ∆ 1,3 4 -1032192 ∆ 2,3 4 ∆ 1,2 2 -563100 ∆ 2,3 2 ∆ 1,3 4 + 126900 ∆ 2,4 ∆ 1,4 ∆ 2,3 ∆ 1,3 ∆ 1,2 2 + 25380 ∆ 1,5 ∆ 1,4 ∆ 2,3 ∆ 1,3 ∆ 1,2 2 + f ′′ 1 -259200 ∆ 2,4 ∆ 1,4 ∆ 2,3 ∆ 1,2 3 -518400 ∆ 2,4 ∆ 2,3 2 ∆ 1,2 3 + 432000 ∆ 2,4 ∆ 2,3 ∆ 1,3 2 ∆ 1,2 2 -90000 ∆ 2,4 ∆ 1,3 4 ∆ 1,2 + 32400 ∆ 1,4 3 ∆ 1,3 ∆ 1,2 2 + 324000 ∆ 1,4 2 ∆ 2,3 ∆ 1,3 ∆ 1,2 2 -136800 ∆ 1,4 2 ∆ 1,3 3 ∆ 1,2 + 1036800 ∆ 1,4 ∆ 2,3 2 ∆ 1,3 ∆ 1,2 2 -878400 ∆ 1,4 ∆ 2,3 ∆ 1,3 3 ∆ 1,2 + 186000 ∆ 1,4 ∆ 1,3 5 + 1036800 ∆ 2,3 3 ∆ 1,3 ∆ 1,2 2 -1324800 ∆ 2,3 2 ∆ 1,3 3 ∆ 1,2 + 564000 ∆ 2,3 ∆ 1,3 5 + 108000 ∆ 2,4 ∆ 1,4 ∆ 1,3 2 ∆ 1,2 2 -103680 ∆ 1,5 ∆ 2,3 2 ∆ 1,2 3 -6480 ∆ 1,5 ∆ 1,4 2 ∆ 1,2 3 -51840 ∆ 1,5 ∆ 1,4 ∆ 2,3 ∆ 1,2 3 + 21600 ∆ 1,5 ∆ 1,4 ∆ 1,3 2 ∆ 1,2 2 + 86400 ∆ 1,5 ∆ 2,3 ∆ 1,3 2 ∆ 1,2 2 -18000 ∆ 1,5 ∆ 1,3 4 ∆ 1,2 -32400 ∆ 2,4 ∆ 1,4 2 ∆ 1,2 3 + f ′′′ 1 -80000 ∆ 1,3 6 .
Toutes les tentatives de calcul algébrique pour égaler l'un de ces 6 bi-invariants supplémentaires à un certain polynôme entre les 11 bi-invariants que nous connaissons déjà conduisent à un échec. Toutefois, nous vérifierons dans un instant que X 27 = M 8 X 19 , et nous établirons que les 11 + 5 = 16 bi-invariants :

f ′ 1 , Λ 3 , Λ 5 1 , Λ 7 1,1 , M 8 , Λ 9 1,1,1 , M 10 1 , N 12 , K 12 1,1 , H 14 1 , F 16 1,1
X 18 , X 19 , X 21 , X 23 , X 25 sont mutuellement indépendants. De surcroît, nous allons constater que de nouveaux bi-invariants "fantômes" doivent encore nécessairement apparaître. Déduction de relations impliquant le wronskien et X 18 , . . . , X 27 . Sans poser f ′ 1 = 0, multiplions l'équation " 10 ≡" par M 10 :

0 ≡ -7 Λ 5 1 Λ 7 1,1 M 10 1 + 3 Λ 3 Λ 9 1,1,1 M 10 1 -f ′ 1 f ′ 1 M 10 1 M 10 1 .
Éliminons le binôme souligné Λ 5 1 M 10 1 grâce à "
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≡" multipliée par Λ 7 1,1 :

0 ≡ - 56 5 Λ 7 1,1 Λ 7 1,1 M 8 - 7 5 f ′ 1 Λ 7 1,1 H 14 1 + 3 Λ 3 Λ 9 1,1,1 M 10 1 -f ′ 1 f ′ 1 M 10 1 M 10 1 .
Enfin, si nous éliminons le binôme souligné Λ 7 1,1 M 8 grâce à l'équation (immédiatement déduite de " 51 ≡" et de " 18 ≡") suivante :

0 51 ≡ -Λ 7 1,1 M 8 + 3 Λ 3 K 12 1,1 -f ′ 1 H 14 1
multipliée par Λ 7 1,1 , nous obtenons une identité :

0 ≡ Λ 3 -5Λ 9 1,1,1 M 10 1 + 56 Λ 7 1,1 K 12 1,1 + f ′ 1 5 3 f ′ 1 M 10 1 M 10 1 -49 3 Λ 7 1,1 H 14 1
dans laquelle apparaît f ′ 1 X 18 . En procédant de manière analogue pour X 19 , X 21 , X 23 , X 25 et X 27 , et en éliminant à la fin le facteur non identiquement nul f ′ 1 , nous obtenons de nouvelles syzygies impliquant nos six nouveaux bi-invariants :

0 a ≡ -49 Λ 7 1,1 H 14 1 + 3 Λ 3 X 18 + 5 f ′ 1 M 10 1 M 10 1 , 0 b ≡ 5 M 10 1 N 12 -56 M 8 H 14 1 + 3 Λ 3 X 19 , 0 c ≡ 5 N 12 N 12 + 64 M 8 M 8 M 8 + 3 Λ 3 X 21 , 0 d ≡ 7 N 12 H 14 1 + 8 M 8 M 8 M 10 1 + 3 Λ 3 X 23 , 0 e ≡ 35 N 12 F 16 1,1 -448 M 8 M 8 K 12 1,1 + 40 M 8 M 10 1 M 10 1 + 3 Λ 3 X 25 , 0 f ≡ 5 M 8 M 10 1 N 12 -56 M 8 M 8 H 14 1 + 3 Λ 3 X 27 .
Ce ne sont pas les seules syzygies supplémentaires : par exemple :

0 ≡ Λ 9 1,1,1 H 14 1 -8 Λ 7 1,1 F 16 1,1 + Λ 5 1 X 18 , 0 ≡ M 10 1 H 14 1 -8 M 8 F 16 1,1 + Λ 5 1 X 19 , 0 ≡ N 12 H 14 1 + 8 M 8 M 8 M 10 1 + Λ 5 1 X 21 , 0 ≡ N 12 F 16 1,1 + M 8 M 10 1 M 10 1 + Λ 5 1 X 23 .
et d'autres encore peuvent être formées, que nous ne rechercherons pas ici.

Restriction à {f ′ 1 = 0}. L'expression en fonction de j 5 f de nos six nouveaux bi-invariants se simplifie lorsqu'on pose f ′ 1 = 0 :

X 18 0 = f ′′ 1 f ′′ 1 f ′′ 1 11025 ∆ 1,5 0 ∆ 1,2 0 2 + 55125 ∆ 2,4 0 ∆ 1,2 0 2 -55125 ∆ 1,4 0 ∆ 1,3 0 ∆ 1,2 0 -110250 ∆ 2,3 0 ∆ 1,3 0 ∆ 1,2 0 + 49000 ∆ 1,3 0 3 ,
et l'on a des expressions similaires pour X 19 0 , X 21 0 , X 23 0 , X 25 0 et X 27 0 . En fait, grâce à nos six nouvelles syzygies " 1 0 , M 8 0 et N 12 0 (tout en rappelant les expressions les expressions que nous connaissons déjà) :

Λ 3 0 , Λ 5 1 , Λ 7 1,1 0 = 5 3 Λ 5 1 Λ 5 1 Λ 3 0 , M 8 0 , Λ 9 1,1,1 0 = 35 9 Λ 5 1 Λ 5 1 Λ 5 1 Λ 3 Λ 3 0 , M 10 1 0 = 8 3 M 8 Λ 5 1 Λ 3 0 , N 12 0 , K 12 1,1 0 = 5 9 M 8 Λ 5 1 Λ 5 1 Λ 3 Λ 3 0 , H 14 1 0 = 5 3 N 12 Λ 5 1 Λ 3 0 , F 16 1,1 0 = 35 9 Λ 5 1 Λ 5 1 N 12 Λ 3 Λ 3 0 , X 18 0 = 1225 Λ 5 1 Λ 5 1 Λ 5 1 N 12 Λ 3 Λ 3 Λ 3 0 , X 19 0 = 80 3 Λ 5 1 M 8 N 12 Λ 3 Λ 3 0 , X 21 0 = -5 3 
N 12 N 12 Λ 3 0 -64 3 M 8 M 8 M 8 Λ 3 0 , X 23 0 = -35 9 Λ 5 1 N 12 N 12 Λ 3 Λ 3 0 -64 9 Λ 5 1 M 8 M 8 M 8 Λ 3 0 , X 25 0 = -1225 Λ 5 1 Λ 5 1 N 12 N 12 Λ 3 Λ 3 Λ 3 0 -320 27 Λ 5 1 Λ 5 1 M 8 M 8 M 8 Λ 3 Λ 3 Λ 3 0 , X 27 0 = 80 3 Λ 5 1 M 8 M 8 N 12 Λ 3 Λ 3 0
.

Assertion Le bi-invariant X 18 ne s'exprime pas comme un certain polynôme en les onze bi-invariants construits par crochets

f ′ 1 , Λ 3 , Λ 5 1 , Λ 7 1,1 , M 8 , Λ 9 1,1,1 , M 10 1 , N 12 , K 12 1,1 , H 14 1 et F 16 1,1 .
Preuve. Par l'absurde, supposons que

X 18 = coeff • f ′ 1 a Λ 3 b Λ 5 1 c Λ 7 1,1 d M 8 e Λ 9 1,1,1 f M 10 1 g N 12 h K 12 1,1 i H 14 1 j F 16 1,1 k ,
avec des exposants entiers a, b, c, d, e, f , g, h, i, j et k tous 0, et posons f ′ 1 = 0 pour en déduire une relation de la forme :

(Λ 5 ) 3 N 12 (Λ 3 ) 3 0 = coeff • Λ 3 b Λ 5 1 c Λ 5 1 Λ 5 1 Λ 3 d M 8 e Λ 5 1 Λ 5 1 Λ 5 1 Λ 3 Λ 3 f Λ 5 1 M 8 Λ 3 g N 12 h Λ 5 1 Λ 5 1 M 8 Λ 3 Λ 3 i Λ 5 1 N 12 Λ 3 j Λ 5 1 Λ 5 1 N 12 Λ 3 Λ 3 k 0 = coeff • Λ 3 b-d-2f -g-2i-j-2k Λ 5 1 c+2d+3f +g+2i+j+2k M 8 e+g+i N 12 h+j+k .
Si nous identifions alors les exposants des quatre quantités algébriquement indépendantes : Assertion Le bi-invariant X 19 ne s'exprime pas comme un certain polynôme en les douze bi-invariants

         3 = -b + d + 2f + g + 2i + j + 2k, 3 = c + 2d + 3f + g + 2i + j + 2k, 0 = e + g + i, 1 = h + j + k,
f ′ 1 , Λ 3 , Λ 5 1 , Λ 7 1,1 , M 8 , Λ 9 1,1,1 , M 10 1 , N 12 , K 12 1,1 , H 14 1 , F 16 1,1 X 18 .
Preuve. Le même raisonnement que pour l'assertion précédente teste l'existence d'une représentation restreinte de la forme :

Λ 5 M 8 N 12 Λ 3 Λ 3 0 = coeff • Λ 3 b-d-2f -g-2i-j-2k-3l Λ 5 1 c+2d+3f +g+2i+j+2k+3l
M 8 e+g+i N 12 h+j+k+l 0 , laquelle conduit au système suivant de quatre équations entre entiers 0 : 

         2 -b + d + 2f + g + 2i + j + 2k +
-7 Λ 7 1,1 F 16 1,1 +Λ 5 1 X 18 f ′ 1 , -5 Λ 9 1,1,1 F 16 1,1 +Λ 7 1,1 X 18 f ′ 1 , -49 K 12 1,1 H 14 1 +M 8 X 18 f ′ 1 , -56 K 12 1,1 F 16 1,1 +M 10 1 X 18 f ′ 1 , -7 H 14 1 F 16 1,1 +N 12 X 18 f ′ 1 , -5 F 16 1,1 F 16 1,1 +H 14 1 X 18 f ′ 1 , -48 M 8 N 12 +Λ 3 X 19 f ′ 1 , -6 M 10 1 H 14 1 +Λ 5 1 X 19 f ′ 1 , -48 K 12 1,1 H 14 1 +Λ 7 1,1 X 19 f ′ 1 , -48 K 12 1,1 F 16 1,1 +Λ 9 1,1,1 X 19 f ′ 1 ,
et ensuite, il nous faut encore soumettre chacune de ces expressions au test de savoir si elle ne s'exprime pas polynomialement en fonction d'une liste croissante de biinvariants connus à l'étape précédente. Question. L'algèbre DS [START_REF] Rousseau | Hyperbolicité des variétés complexes[END_REF] 2 possède-t-elle une infinité de bi-invariants fondamentaux? §8. Calculs de caractéristique d'Euler Surfaces algébriques complexes projectives dans P 3 (C). Soit X ⊂ P 3 (C) une surface algébrique complexe projective lisse de degré d 1. D'après [2], lorsque x parcourt X, la réunion des fibres DS κ 2,m x que nous avons étudiées d'un point de vue purement algébrique en un point fixé, s'organise de manière cohérente en un sous-fibré DS κ 2,m T * X du fibré J κ (C, X) des jets d'ordre κ d'applications holomorphes de C à valeurs dans X. Nous renvoyons le lecteur à [2, 5] pour de plus amples informations géométriques. Pour fixer les idées, choisissons maintenant κ = 4.

À chaque monôme bi-invariant parmi les deux listes fournies par le premier théorème, à savoir :

(f ′ 1 ) a Λ 3 b Λ 7 1,1 d M 8 e ou Λ 5 1 (f ′ 1 ) a Λ 3 b Λ 7 1,1 d M 8 e
correspond alors le fibré de Schur9 :

Γ (a+b+3d+2e, b+d+2e) T * X ou Γ (2+a+b+3d+2e, 1+b+d+2e) T * X ,
de telle sorte que DS 4 2,m T * X est isomorphe à la somme directe de ces deux familles de fibrés de Schur, où le quadruplet d'entiers positifs ou nuls (a, b, d, e) prend toutes les valeurs telles que a + 3b + 7d + 8e = m pour la première famille, et où il prend toutes les valeurs satisfaisant 5 + a + 3b + 7d + 8e = m pour la deuxième famille. Retour sur le choix d'une base de Gröbner pour les jets d'ordre 4. Nous n'avons pas encore fait remarquer que notre choix de Λ [START_REF] Rousseau | Hyperbolicité des variétés complexes[END_REF] 1 Λ 5 1 f ′ 1 =0 comme monôme de tête dans l'unique syzygie restreinte qui existe entre les cinq bi-invariants fondamentaux restreints Λ 3 0 , Λ 5 1 0 , Λ 7 1,1 0 et M 8 0 au niveau κ = 4 n'était pas en harmonie avec le choix d'ordre lexicographique que nous avions fait au niveau κ = 5 et qui nous avait fournit une base de 21 syzygies faisant apparaître un triangle remarquable de monômes de tête. En effet, si nous voulions rétablir la cohérence entre les deux niveaux κ = 4 et κ = 5, nous devrions, au niveau κ = 4, choisir plutôt l'ordre purement lexicographique déduit de l'ordre suivant entre bi-invariants restreints :

Λ 3 > Λ 5 1 > Λ 7 1,1 > M 8
(nous sous-entendons ici la mention "(•) f ′ 1 =0 "), ce qui conduit à changer de monôme de tête dans l'unique syzygie restreinte existante :

0 ≡ -5Λ 5 1 Λ 5 1 + 3 Λ 3 Λ 7 1,1 f ′ 1 =0
. Lemme Avec ce nouveau choix d'ordre qui anticipe une harmonie avec le niveau suivant κ = 5, tout polynôme bi-invariant de poids m dans DS [START_REF] Olver | Classical invariant theory[END_REF] 2,m s'écrit de manière unique :

P 2×inv j 4 f = P f ′ 1 , Λ 3 , Λ 5 1 , M 8 + Λ 7 1,1 Q f ′ 1 , Λ 5 1 , Λ 7 1,1 , M 8 = a+3b+5c+8e=m coeff • (f ′ 1 ) a Λ 3 ) b Λ 5 1 c M 8 e + + 7+a+5c+7d+8e=m coeff • Λ 7 1,1 (f ′ 1 ) a Λ 5 1 c Λ 7 1,1 d M 8 e ,
et par conséquent, le fibré de Demailly-Semple DS 4 2,m T * X est isomorphe à la somme directe suivante de fibrés de Schur :

DS 4 2,m T * X = a+3b+5c+8e=m Γ (a+b+2c+2e, b+c+2e) T * X 7+a+5c+7d+8e=m Γ (3+a+2c+3d+2e, 1+c+d+2e) T * X .
Caractéristique d'Euler des fibrés de Schur. Si c i = c i (T X ), i = 1, 2, désignent les classes de Chern de d'une surface complexe X, on a la formule suivante ( [5]) :

χ X, Γ (l 1 ,l 2 ) T * X = 1 6 c 2 1 l 3 1 -l 3 2 - 1 6 c 2 (l 1 -l 2 ) 3 + O |λ| 2
pour la caractéristique d'Euler du fibré de Schur Γ (l 1 ,l 2 ) T * X . Mentionnons au passage que pour X de dimension trois, la formule devient :

-χ X, Γ (l 1 ,l 2 ,l 3 ) T * X = = -c 3 1! 2! 3! l 1 l 2 l 3 l 2 devant c 2
1 et devant -c 2 lorsqu'on effectue la première somme de caractéristiques, que nous appellerons "A" (la seconde s'appellera "B") : où nous avons utilisé le fait que les sommes de Riemann sont suffisamment bien approximées par des intégrales si l'on s'intéresse seulement au coefficient de m 6 . Ensuite, si nous procédons de la même manière pour la deuxième somme directe de fibrés de Schur :

χ X, 7+a+5c+7d+8e=m Γ (3+a+2c+3d+2e, 1+c+d+2e) T * X = 7+a+5c+7d+8e=m χ X, Γ (3+a+2c+3d+2e, 1+c+d+2e) T * X = a+5c+7d+8e=m χ X, Γ (a+2c+3d+2e, c+d+2e) T * X + O(m 5 ),
en observant que décalage de 7 dans le poids m, ainsi que les deux décalages de 3 et de 1 dans l 1 et dans l 2 ne contribuent en fait qu'en O(m 5 ) dans le résultat final, ce qui nous permet de les négliger, nous pouvons dresser une table de calculs élémentaires analogue à la précédente :

m = a + 5c + 7d + 8e, l 1 = a + 2c + 3d + 2e = m -3c -4d -6e, l 2 = c + d + 2e, l 1 -l 2 = m -4c -5d -8e,
remplacer a+5c+7d+8e=m par 5c+7d+8e m après avoir éliminé a, de telle sorte que nous sommes ramenés à calculer les deux intégrales suivantes : En définitive, nous obtenons les deux coefficients rationnels totaux Corollaire Si A est un fibré en droites ample sur X, pour tout m suffisamment grand, il y a des sections globales de DS [START_REF] Olver | Classical invariant theory[END_REF] 2,m T * X ⊗A -1 lorsque d 9, et toute courbe entière f = C → X doit satisfaire l'équation différentielle globale correspondante.

C 1 ∈ m 6 • Q et C 2 ∈ m 6 Q de c 2 1 et de -c 2 : C 1 = A 1 + B 1 =
Passage aux jets d'ordre 5. Maintenant, la correspondance entre bi-invariants fondamentaux et représentations de Schur :

f ′ 1 ←→ Γ (1,0) , Λ 3 ←→ Γ (1,1) , Λ 5 1 ←→ Γ (2,1) , Λ 7 1,1 ←→ Γ (3,1) , M 8 ←→ Γ (2,2) , Λ 9 1,1,1 ←→ Γ (4,1) , M 10 
1 ←→ Γ [START_REF] Demailly | Oral communication at the Conference, Effective Aspects of Complex Hyperbolic Varieties, Aber Wrac'h[END_REF][START_REF] Demailly | Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials[END_REF] , N 12 ←→ Γ [START_REF] Demailly | Oral communication at the Conference, Effective Aspects of Complex Hyperbolic Varieties, Aber Wrac'h[END_REF][START_REF] Demailly | Oral communication at the Conference, Effective Aspects of Complex Hyperbolic Varieties, Aber Wrac'h[END_REF] , K 12 1,1 ←→ Γ [START_REF] Olver | Classical invariant theory[END_REF][START_REF] Demailly | Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials[END_REF] , H 14 1 ←→ Γ [START_REF] Olver | Classical invariant theory[END_REF][START_REF] Demailly | Oral communication at the Conference, Effective Aspects of Complex Hyperbolic Varieties, Aber Wrac'h[END_REF] , F 16 1,1 ←→ Γ [START_REF] Rousseau | Hyperbolicité des variétés complexes[END_REF][START_REF] Demailly | Oral communication at the Conference, Effective Aspects of Complex Hyperbolic Varieties, Aber Wrac'h[END_REF] , Étant donné qu'il existe des invariants fondamentaux supplémentaires, nous pourrions attendre encore avant d'entreprendre un calcul de Riemann-Roch, mais nous avons quand même l'opportunité de nous restreindre à la sous-algèbre engendrée par les crochets.

Base de Gröbner. En choisissant l'ordre purement lexicographique sur les monômes de C Λ 3 , . . . , H 14 1 , F 16 1,1 , f ′ 1 qui est déduit de l'ordre suivant sur les monômes élémentaires restreints (noter que f ′ 1 est placé en dernière position10 ) :

Λ 3 > Λ 5 1 > Λ 7 1,1 > M 8 > Λ 9 1,1,1 > M 10 1 > N 12 > K 12 1,1 > H 14 1 > F 16 1,1 > f ′
D'après la théorie des bases de Gröbner, une base de l'espace vectoriel : 

C Λ 3 , Λ 5 
Λ 3 a Λ 5 1 b Λ 7 1,1 c M 8 d Λ 9 1,1,1 e M 10 1 f N 12 g K 12 1,1 h H 14 1 i F 16 1,1 j f ′ 1 k
qui n'appartiennent pas à l'idéal monomial engendré par les 26 monômes de tête de chacun des 26 générateurs que nous avons soulignés. Or un tel monôme appartient à cet idéal monomial si et seulement si il est divisible par l'un des 26 monômes de tête, ce qui revient à dire que le muti-indice a, b, c, d, e, f, g, h, i, j, k ∈ N 11 appartient à la réunion des 26 sous-ensembles suivants de N 11 :

{f 3} ∩ {i 1} ∩ {j 1} ∩ {k 1}, {e 1} ∩ {g 1} ∩ {j 1}, {e 1} ∩ {f 1} ∩ {i 1}, {d 1} ∩ {j 1}, {d 1} ∩ {f 1} ∩ {h 1} ∩ {i 1} ∩ {k 1}, {d 1} ∩ {e 1} ∩ {i 1}, {d 1} ∩ {e 1} ∩ {g 1} ∩ {h 1}, {d 2} ∩ {h 1} ∩ {k 1}, {d 2} ∩ {e 1} ∩ {h 1}, {c 1} ∩ {j 1}, {b 1} ∩ {j 1}, {a 1} ∩ {j 1}, {c 1} ∩ {i 1}, {b 1} ∩ {i 1}, {a 1} ∩ {i 1}, {c 1} ∩ {g 1} ∩ {h 1}, {b 1} ∩ {h 1}, {a 1} ∩ {h 1}, {c 1} ∩ {f 1}, {b 1} ∩ {f 1}, {a 1} ∩ {f 1}, {c 1} ∩ {d 1} ∩ {h 1}, {b 1} ∩ {e 1}, {a 1} ∩ {e 1}, {c 2} ∩ {h 1}, {a 1} ∩ {c 1}.
Pour calculer le complémentaire de cette réunion, on procède comme dans la Section 7, en regroupant séparément les 6 intersections commenc ¸ant par {a 1}, puis les 5 commenc ¸ant par {b 1}, puis les 6 commenc ¸ant par {c 1}, puis les 6 commenc ¸ant par {d 1}, puis les 2 commanc ¸ant par {e 1}, et puis enfin la dernière, qui commence par {f 1}. Trouver le complémentaire global reviendra donc à calculer l'intersection de six sous-ensembles de N 11 . Clairement, le premier et le deuxième complémentaires sont donnés par :

N 1 := {a = 0} ∪ {c = e = f = g = h = i = j = 0}, N 2 := {b = 0} ∪ {e = f = h = i = j = 0}.
Ensuite, calculons le troisième complémentaire, en simplifiant progressivement les intersections, et ce, en partant du dernier terme :

N 3 := {c = 1} ∪ {c = 0} ∪ {h = 0} {c = 0} ∪ {d = 0} ∪ {h = 0} {c = 0} ∪ {f = 0} {c = 0} ∪ {g = 0} ∪ {h = 0} {c = 0} ∪ {i = 0} {c = 0} ∪ {j = 0} = {c = 1} ∪ {c = 0} ∪ {h = 0} {c = 0} ∪ {d = 0} ∪ {h = 0} {c = 0} ∪ {f = 0} {c = 0} ∪ {c = g = i = j = 0} ∪ {h = i = j = 0} = {c = 0} ∪ {f = h = i = j = 0} ∪ {c = 1, d = f = g = i = j = 0}.
Les calculs suivants donnent :

N 4 := {d = 0} ∪ {e = h = j = 0} ∪ {e = j = k = 0} ∪ {h = i = j = 0}∪ ∪ {d = 1, e = i = j = 0} ∪ {d = 1, e = f = j = 0} ∪ {d = 1, g = i = j = 0}∪ ∪ {d = 1, e = h = j = 0} ∪ {d = 1, h = i = j = 0} ∪ {d = 1, e = j = k = 0}, N 5 := {e = 0} ∪ {f = g = 0} ∪ {f = j = 0} ∪ {g = i = 0} ∪ {i = j = 0}, N 6 := {f = 2} ∪ {f = 1} ∪ {f = 0} ∪ {i = 0} ∪ {j = 0} ∪ {k = 0}.
En développant l'intersection finale :

N 1 ∩ N 2 ∩ N 3 ∩ N 4 ∩ N 5 ∩ N 6 ,
nous pouvons négliger toutes les composantes qui incorporent un nombre 7 d'équations, puisque dans la sommation de fibrés de Schur, la contribution ne sera qu'en O(m 7 ), les termes principaux étant multiples rationnels non nuls de m 8 . Ainsi, en négligeant de tels termes, nous obtenons exactement 16 composantes de dimension 5 définies par 6 équations :

{a = b = c = d = e = 0, f = 2} ∪ {a = b = c = d = e = 0, f = 1} ∪ {a = b = c = d = e = f = 0} ∪ {a = b = c = d = e = i = 0} ∪ {a = b = c = d = e = j = 0} ∪ {a = b = c = d = e = k = 0} ∪ {a = b = c = d = f = g = 0} ∪ {a = b = c = d = f = i = 0} ∪ {a = b = c = d = g = i = 0} ∪ {a = b = c = d = i = j = 0} ∪ {a = b = c = e = h = j = 0} ∪ {a = b = c = e = j = k = 0} ∪ {a = b = c = h = i = j = 0} ∪ {a = b = f = h = i = j = 0} ∪ {a = e = f = h = i = j = 0} ∪ {c = e = f = h = i = j = 0}.
Les 16 familles de monômes correspondant à ces équations peuvent être rangées dans un tableau :

A : • • • • • M 10 1 2 N 12 g K 12 1,1 h H 14 1 i F 16 1,1 j (f ′ 1 ) k B : • • • • • M 10 1 N 12 g K 12 1,1 h H 14 1 i F 16 1,1 j (f ′ 1 ) k C : • • • • • • N 12 g K 12 1,1 h H 14 1 i F 16 1,1 j (f ′ 1 ) k D : • • • • • M 10 1 f N 12 g K 12 1,1 h • F 16 1,1 j (f ′ 1 ) k E : • • • • • M 10 1 f N 12 g K 12 1,1 h H 14 1 i • (f ′ 1 ) k F : • • • • • M 10 1 f N 12 g K 12 1,1 h H 14 1 i F 16 1,1 j • G : • • • • Λ 9 1,1,1 e • • K 12 1,1 h H 14 1 i F 16 1,1 j (f ′ 1 ) k H : • • • • Λ 9 1,1,1 e • N 12 g K 12 1,1 h • F 16 1,1 j (f ′ 1 ) k I : • • • • Λ 9 1,1,1 e M 10 1 f • K 12 1,1 h • F 16 1,1 j (f ′ 1 ) k J : • • • • Λ 9 1,1,1 e M 10 1 f N 12 g K 12 1,1 h • • (f ′ 1 ) k K : • • • M 8 d • M 10 1 f N 12 g • H 14 1 i • (f ′ 1 ) k L : • • • M 8 d • M 10 1 f N 12 g K 12 1,1 h H 14 1 i • • M : • • • M 8 d Λ 9 1,1,1 e M 10 1 f N 12 g • • • (f ′ 1 ) k N : • • Λ 7 1,1 c M 8 d Λ 9 1,1,1 e • N 12 g • • • (f ′ 1 ) k O : • Λ 5 1 b Λ 7 1,1 c M 8 d • • N 12 g • • • (f ′ 1 ) k P : Λ 3 a Λ 5 1 b • M 8 d • • N 12 g • • • (f ′ 1 ) k
Ensuite, lorsqu'on effectue la somme des caractéristiques d'Euler des fibrés de Schur correspondants, il n'est pas nécessaire de réorganiser ces familles de telle sorte qu'elles soient d'intersection vide, puisque de toute fac ¸on, chaque intersection entre deux familles ne contribuera au final qu'en O(m 7 ). Nous pouvons donc additionner les seize couples d'intégrales correspondantes. Voici les deux premières, que l'on confie aisément à Maple : 

C = C 1 C 2 = 1, 887 • • •
est inférieur à celui de DS 4 2 T * X : confirmation supplémentaire de l'inadéquation et de l'insuffisance du sous-fibré engendrée par les crochets. Problème ouvert. Changer d'optique quant au calcul de Riemann-Roch, en tenant compte d'une étude préalable, reprise à partir de zéro, de la structure spécifique de DS [START_REF] Rousseau | Hyperbolicité des variétés complexes[END_REF] 2 T * X . Le procédé de division par f ′ 1 des générateurs de l'idéal des relations entre invariants restreints à {f ′ 1 = 0} constitue un procédé adéquat et complet d'engendrement qui doit être poussé au-delà de X 25 . §9. Appendice 1 : jets d'ordre 3 en dimension 3 Expression initiale. Comme annoncé dans la Section 4, nous détaillons ici le calcul (délicat) des trois crochets entre les trois invariants Λ 7 1,1 , Λ 7 1,2 , Λ 7 2,2 de poids 7:

Λ 7 i,j , Λ 7 k,l 7 = DΛ 7 i,j • Λ 7 k,l -Λ 7 i,j • DΛ 7 k,l .
Développement économe. N'écrivons que le premier produit, en résumant le second par le symbole (i, j) ←→ (k, l), parce qu'il s'en déduit par ce simple changement d'indices:

= ∆ 1,5 f i f ′ j + 5 ∆ 2,4 f ′ i f ′ j -4 ∆ 1,4 f ′′ i f ′ j + f ′ i f ′′ j -16 ∆ 2,3 f ′′ i f ′ j + f ′ i f ′′ j )- -5 ∆ 1,3 f ′′′ i f ′ j + f ′ i f ′′′ j + 35 ∆ 1,3 f ′′ i f ′′ j • ∆ 1,4 f ′ k f ′ l + 4 ∆ 2,3 f ′ k f ′ l - -5 ∆ 1,3 f ′′ k f ′ l + f ′ k f ′′ l + 15 ∆ 1,2 f ′′ k f ′′ l - -(i, j) ←→ (k, l) = ∆ 1,5 ∆ 1,4 f ′ i f ′ j f ′ k f ′ l • + 5 ∆ 2,4 ∆ 1,4 f ′ i f ′ j f ′ k f ′ l • -4 ∆ 1,4 ∆ 1,4 f ′′ i f ′ j + f ′ i f ′′ j ) f ′ k f ′ l - -16 ∆ 2,3 ∆ 1,4 f ′′ i f ′ j + f ′ i f ′′ j ) f ′ k f ′ l -5 ∆ 1,4 ∆ 1,3 f ′′′ i f ′ j + f ′ i f ′′′ j f ′ k f ′ l + + 35 ∆ 1,4 ∆ 1,3 f ′′ i f ′′ j f ′ k f ′ l + 4 ∆ 1,5 ∆ 2,3 f ′ i f ′ j f ′ k f ′ l • + 20 ∆ 2,4 ∆ 2,3 f ′ i f ′ j f ′ k f ′ l • - -16 ∆ 1,4 ∆ 2,3 f ′′ i f ′ j + f ′ i f ′′ j f ′ k f ′ l -64 ∆ 2,3 ∆ 2,3 f ′′ i f ′ j + f ′ i f ′′ j f ′ k f ′ l - -20 ∆ 2,3 ∆ 1,3 f ′′′ i f ′ j + f ′ i f ′′′ j f ′ k f ′ l + 140 ∆ 2,3 ∆ 1,3 f ′′ i f ′′ j f ′ k f ′ l - -5 ∆ 1,5 ∆ 1,3 f ′ i f ′ j f ′′ k f ′ l + f ′ k f ′′ l -25 ∆ 2,4 ∆ 1,3 f ′ i f ′ j f ′′ k f ′ l + f ′ k f ′′ l + + 20 ∆ 1,4 ∆ 1,3 f ′′ i f ′ j + f ′ i f ′′ j f ′′ k f ′ l + f ′ k f ′′ l • + 80 ∆ 2,3 ∆ 1,3 f ′′ i f ′ j + f ′ i f ′′ j f ′′ k f ′ l + f ′ k f ′′ l • + + 25 ∆ 1,3 ∆ 1,3 f ′′′ i f ′ j + f ′ i f ′′′ j f ′′ k f ′ l + f ′ k f ′′ l -175 ∆ 1,3 ∆ 1,3 f ′′ i f ′′ j f ′′ k f ′ l + f ′ k f ′′ l + + 15 ∆ 1,5 ∆ 1,2 f ′ i f ′ j f ′′ k f ′′ l + 75 ∆ 2,4 ∆ 1,2 f ′ i f ′ j f ′′ k f ′′ l -60 ∆ 1,4 ∆ 1,2 f ′′ i f ′ j + f ′ i f ′′ j f ′′ k f ′′ l - -240 ∆ 2,3 ∆ 1,2 f ′′ i f ′ j + f ′ i f ′′ j f ′′ k f ′′ l -75 ∆ 1,3 ∆ 1,2 f ′′′ i f ′ j + f ′ i f ′′′ j f ′′ k f ′′ l + + 525 ∆ 1,3 ∆ 1,2 f ′′ i f ′′ j f ′′ k f ′′ l • - -(i, j) ←→ (k, l).
Nous soulignons (en ajoutant un petit cercle) les termes qui s'annihilent avec ceux qui leur correspondent dans la permutation (i, j) ←→ (k, l). Nous utilisons les relations plückeriennes pour remplacer le dernier terme restant, à savoir:

-75 ∆ 1,3 ∆ 1,2 f ′′′ i f ′ j + f ′ i f ′′′ j f ′′ k f ′′ l + 75 ∆ 1,3 ∆ 1,2 f ′′′ k f ′ l + f ′ k f ′′′ l f ′′ i f ′′ j par: -75 ∆ 1,3 ∆ 1,3 f ′′ i f ′ j f ′′ k f ′′ l + 75 ∆ 1,3 ∆ 2,3 f ′ i f ′ j f ′′ k f ′′ l - -75 ∆ 1,3 ∆ 1,3 f ′ i f ′′ j f ′′ k f ′′ l + 75 ∆ 2,3 ∆ 1,3 f ′ i f ′ j f ′′ k f ′′ l ,
et nous additionnons tous ces termes en effectuant des regroupements qui n'impliquent que des sommations de nombres entiers:

= -5 ∆ 1,5 ∆ 1,3 f ′ i f ′ j f ′′ k f ′ l + f ′ k f ′′ l -25 ∆ 2,4 ∆ 1,3 f ′ i f ′ j f ′′ k f ′ l + f ′ k f ′′ l + 15 ∆ 1,5 ∆ 1,2 f ′ i f ′ j f ′′ k f ′′ l + + 75 ∆ 2,4 ∆ 1,2 f ′ i f ′ j f ′′ k f ′′ l -4 ∆ 1,4 ∆ 1,4 f ′′ i f ′ j + f ′ i f ′′ j f ′ k f ′ l -32 ∆ 1,4 ∆ 2,3 f ′′ i f ′ j + f ′ i f ′′ j f ′ k f ′ l - -64 ∆ 2,3 ∆ 2,3 f ′′ i f ′ j + f ′ i f ′′ j f ′ k f ′ l -5 ∆ 1,4 ∆ 1,3 f ′′′ i f ′ j + f ′ i f ′′′ j f ′ k f ′ l + 35 ∆ 1,4 ∆ 1,3 f ′′ i f ′′ j f ′ k f ′ l - -20 ∆ 2,3 ∆ 1,3 f ′′′ i f ′ j + f ′ i f ′′′ j f ′ k f ′ l + 140 ∆ 2,3 ∆ 1,3 f ′′ i f ′′ j f ′ k f ′ l + 150 ∆ 2,3 ∆ 1,3 f ′ i f ′ j f ′′ k f ′′ l - -60 ∆ 1,4 ∆ 1,2 f ′′ i f ′ j + f ′ i f ′′ j f ′′ k f ′′ l -240 ∆ 2,3 ∆ 1,2 f ′′ i f ′ j + f ′ i f ′′ j f ′′ k f ′′ l + + 25 ∆ 1,3 ∆ 1,3 f ′′′ i f ′ j + f ′ i f ′′′ j f ′′ k f ′ l + f ′ k f ′′ l -175 ∆ 1,3 ∆ 1,3 f ′′ i f ′′ j f ′′ k f ′ l + f ′ k f ′′ l - -75 ∆ 1,3 ∆ 1,3 f ′′ i f ′ j + f ′ i f ′′ j f ′′ k f ′′ l - -(i, j) ←→ (k, l).
Synthèse de déterminants. Maintenant, la soustraction suivie de la permutation fait apparaître des déterminants 2 × 2: on a en effet cinq relations immédiatement vérifiables par développement:

f ′ i f ′ j f ′′ k f ′ l + f ′ k f ′′ l -f ′ k f ′ l f ′′ i f ′ j + f ′ i f ′′ j = f ′ j f ′ l ∆ 1,2 i,k + f ′ i f ′ k ∆ 1,2 j,l , f ′ i f ′ j f ′′ k f ′′ l -f ′′ i f ′′ j f ′ k f ′ l = f ′ i f ′′ l ∆ 1,2 j,k + f ′ k f ′′ j ∆ 1,2 i,l , f ′′′ i f ′ j + f ′ i f ′′′ j f ′ k f ′ l -f ′′′ k f ′ l + f ′ k f ′′′ l f ′ i f ′ j = f ′ j f ′ l ∆ 1,3 k,i + f ′ i f ′ k ∆ 1,3 l,j , f ′′ i f ′ j + f ′ i f ′′ j f ′′ k f ′′ l -f ′′ k f ′ l + f ′ k f ′′ l f ′′ i f ′′ j = f ′′ i f ′′ k ∆ 1,2 j,l + f ′′ j f ′′ l ∆ 1,2 i,k , f ′′′ i f ′ j + f ′ i f ′′′ j f ′′ k f ′ l + f ′ k f ′′ l -f ′′′ k f ′ l + f ′ k f ′′′ l f ′′ i f ′ j + f ′ i f ′′ j = f ′ j f ′ l ∆ 2,3 k,i + f ′ j f ′ k ∆ 2,3 l,i + f ′ i f ′ l ∆ 2,3 k,j + f ′ i f ′ k ∆ 2,3 l,j .
En regroupant les termes, on obtient l'expression finale de 1 7 Λ 7 i,j , Λ 7 k,l . §10. Appendice 2 : jets d'ordre 3 en dimension 3

Jets d'ordre κ = 3 en dimension ν = 3. Pour terminer, donnons une description "à la main" des générateurs de DS 3 3 qui ne fasse pas appel à des arguments raffinés de théorie des invariants (cf. [5]).

Recherchons directement les bi-invariants, i.e. les polynômes invariants par reparamétrisation qui sont aussi invariants par l'action du sous-groupe unipotent U 3 (C) ⊂ GL 3 (C) constitué des matrices de la forme:

U :=   1 0 0 u a 1 0 u c u b 1   , qui est définie par U • f (λ) 1 := f (λ) 1 , puis U • f (λ) 2 := f (λ) 2 + u a f (λ) 1 et enfin U • f (λ) 3 := f (λ) 3 + u b f (λ) 2 + u c f (λ)
1 , pour λ = 1, 2, 3. Un premier raisonnement initial entièrement similaire à celui que nous avons tiré de [5] pour DS [START_REF] Olver | Classical invariant theory[END_REF] 2,m fournit une représentation de tout P ∈ DS [START_REF] Demailly | Oral communication at the Conference, Effective Aspects of Complex Hyperbolic Varieties, Aber Wrac'h[END_REF] 3,m sous la forme rationnelle

P j 3 f = -2 3 m a m (f ′ 1 ) a P a f ′ 2 , f ′ 3 , Λ 3 
1,2 , Λ 3 1,3 , Λ 5 1,2;1 , Λ 5 1,3;1 , où les invariants Λ 3 i,j et Λ 5 i,j;k sont simplement définis par:

Λ 3 i,j := ∆ 1,2 i,j et Λ 5 i,j;k := ∆ 1,3 i,j f ′ k -3 ∆ 1,2 i,j f ′′ k .
Ensuite, si nous considérons le sous-groupe de U 3 (C) constitué des matrices de la forme:

U :=   1 0 0 u a 1 0 u c 0 1   ,
lesquelles stabilisent tous les invariants qui apparaissent dans notre première expression rationnelle:

U • Λ 3 1,2 = Λ 3 1,2 , U • Λ 5 1,2;1 = Λ 5 1,2;1 , U • Λ 3 1,3 = Λ 3 1,3 , U • Λ 5 1,3;1 = Λ 5 1,3;1 , mais agissent en perturbant f ′ 2 et f ′ 3 par U •f ′ 2 = f ′ 2 +u a f ′ 1 et U •f ′ 3 = f ′ 3 +u c f ′ 1
, nous voyons que si P est aussi invariant par l'action unipotente, alors chaque polynôme P a ci-dessus doit en fait être indépendant de f ′ 2 et de f ′ 3 , d'où:

P 2×inv j 3 f = -2 3 m a m
(f ′ 1 ) a P a Λ 3 1,2 , Λ 3 1,3 , Λ 5 1,2;1 , Λ 5 1,3;1 .

Mais ce n'est pas terminé, car il faut encore s'assurer de l'invariance par l'action du sous-groupe constitué des matrices de la forme: fait naître, en tant que nouveau bi-invariant "fantôme" caché derrière (f ′ 1 ) 2 , le déterminant wronskien en dimension trois:

D 6 1,2,3 := f ′ 1 f ′ 2 f ′ 3 f ′′ 1 f ′′ 2 f ′′ 3 f ′′′ 1 f ′′′ 2 f ′′′ 3 ,
et en injectant ce nouveau bi-invariant, nous obtenons une nouvelle expression pour le bi-invariant quelconque dont nous étions partis:

P 2×inv j 3 f = -2 3 m a m
(f ′ 1 ) a P a Λ 3 1,2 , Λ 5 1,2;1 , D 6 1,2,3 , laquelle incorpore toujours des puissances négatives de f ′ 1 . Mais pour terminer, nous affirmons qu'il n'existe en fait aucune puissance négative de f ′ 1 , car sinon, après multiplication par la puissance maximalement négative de f ′ 1 (cf. le raisonnement conduit dans la Section 6) et après restriction à {f ′ 1 = 0}, nous obtiendrions une identité du type:

0 ≡ P a Λ 3 1,2 , Λ 5 1,2;1 , D 6 1,2,3 f ′ 1 =0 = P a -f ′′ 1 f ′ 2 , 3 f ′′ 1 f ′ 2 f ′′ 1 , 0 f ′ 2 f ′ 3 f ′′ 1 f ′′ 2 f ′′ 3 f ′′′ 1 f ′′′ 2 f ′′′ 3 ,
qui impliquerait immédiatement P a ≡ 0, par indépendance algébrique de ses trois arguments.

En conclusion, nous avons redémontré (cf. [5]) qu'en dimension ν = 3 pour les jets d'ordre κ = 3, les polynômes bi-invariants s'écrivent:

P 2×inv j 3 f = P f ′ 1 , Λ 3 
1,2 , Λ 5 1,2;1 , D 6 1,2,3 , où P est un polynôme arbitraire, aucune syzygie n'existant entre ces quatre biinvariants fondamentaux, et par conséquent, en polarisant les indices -ce qui revient à faire agir le groupe complet GL 3 (C) -, nous déduisons que les polynômes généraux invariants par reparamétrisation s'écrivent comme polynômes quelconques en fonction de 16 invariants fondamentaux:

P j 3 f = P f ′ 1 , f ′ 2 , f ′ 3 , Λ 3 
1,2 , Λ 3 1,3 , Λ 3 2,3 , Λ 5 1,2;1 , Λ 5 1,2;2 , Λ 5 1,2;3 , Λ [START_REF] Rousseau | Hyperbolicité des variétés complexes[END_REF] 1,3;1 , Λ 5 1,3;2 , Λ 5 1,3;3 , Λ 5 2,3;1 , Λ 5 2,3;2 , Λ 5 2,3;3 , D 6 1,2,3 .

On vérifie aussi que parmi les 62 syzygies existant entre ces 16 invariants qui ont été obtenues par un calcul sur Maple (cf. les références dans [5]), 30 d'entre elles sont fondamentales et qu'elles proviennent toutes des trois procédures que nous avons décrites.

2 , 2

 22 et M 8 est égal à 5. §7. Jets d'ordre 5 en dimension 2 Idéal des relations. Nous pouvons donc maintenant poursuivre notre étude des polynômes invariants par reparamétrisation au niveau des jets d'ordre κ = 5. À cet étage, parmi les ving-cinq invariants que nous avons calculés et normalisés dans la Section 4, onze d'entre eux sont bi-invariants de manière évidente, à savoir ceux qui ne comportent que des "(•) 1 " en indice inférieur :

1i

  ces sept listes se recouvrent partiellement -par exemple : l'intersection de la première et de la deuxième ligne est constitutée des monômes de la forme Λ 9 -, nous devons encore les réorganiser de telle sorte qu'il n'y ait plus aucune intersection entre elles, et si nous désignons ces listes par les septs lettres A, B, C, D, F et G, il nous suffit en fait tout simplement d'écrire :

  intervenir le wronskien, nous pouvons exprimer ces restrictions en fonction seulement des quatre bi-invariants restreints algébriquement indépendants que sont Λ 3 0 , Λ 5

  nous déduisons e = g = i = 0 de la troisième ligne, puis 0 = c + b + d + f en soustrayant la première de la seconde, d'où c = b = d = f = 0, ce qui fait que première et quatrième ligne se simplifient comme :3 = j + 2k et 1 = h + j + k,d'où h = 0, puis k = 2 et enfin 3 = j + 4, ce qui est impossible.

3 0 3 0

 33 db (m -2b -3c -6e) 3 -(b + c + 2e) 3 + O(m 5 ) db (m -3b -4c -8e) 3 + O(m 5 )

5 0 5 0

 55 dc (m -3c -4d -6e) 3 -(c + d + 2e) 3 + O(m 5 dc (m -4c -5d -8e) 3 + O(m 5 ) =36949 m 6 4 321 800 000 + O(m 5 ).

  9g -8h -10i -11j) 3 -(3g + 2h + 3i + 3j) 3 + O(m 7 12g -10h -13i -14j) 3 + O(m 7 ) = 5015441 m 8 1233357203570688 + O(m 7 ) ;les quinze autres fournissent des expressions similaires. Nous déduisons donc dans chacun des deux cas par sommation de seize nombres rationnels :

  un calcul direct, le troisième et dernier invariant fondamental pour cette action, à savoir:Λ 3 1,2 Λ 5 1,3;1 -Λ 3 1,3 Λ 5 1,2;1 ≡ f ′ 1 f ′ 1 D 6 1,2,3

  [START_REF] Demailly | Oral communication at the Conference, Effective Aspects of Complex Hyperbolic Varieties, Aber Wrac'h[END_REF][START_REF] Olver | Classical invariant theory[END_REF] commence à interfèrer, mais nous n'entreprendrons pas l'étude de DS 6

	2
	dans cet article.
	Normalisations préalables des différentielles totales. Ainsi, nous sommes con-
	duits à normaliser DΛ 5 i avant de calculer Λ 7 i,j , en développant tout d'abord :

  1,3 f ′′ i afin d'éliminer toute présence de f ′′′ i , ce qui nous donne une expression normalisée et compacte ne contenant que trois termes :

  [START_REF] Demailly | Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials[END_REF][START_REF] Olver | Classical invariant theory[END_REF] le sont.

	Deuxième famille de crochets M 8 , f ′ i . Le calcul, immédiat, libre d'ambigu ïté
	plückerienne et ne nécessitant aucune réorganisation, fournit le résultat suivant :

  La cohomologie des fibrés de Schur sur une variété projective lisse étant connue (cf. e.g.[5] et voir la Section 8 ci-dessous), nous cherchons maintenant à décomposer en représentations irréductibles de Schur les gradués de poids m de nos deux algèbres d'invariants DS[START_REF] Olver | Classical invariant theory[END_REF] 2 et DS 5 2 . Action linéaire diagonale sur les jets. À cette fin, sur l'espace des jets d'ordre

1 ) et (Plck 2 ) possibles lorsqu'on passe d'un étage de jets λ à l'étage supérieur λ + 1. Cette idée conjecturale est renforcée par le fait que dans la théorie classique des invariants, il existe aussi trois procédés automatiques qui engendrent l'idéal des relations entre les invariants, et on démontre rigoureusement

([4]

) que tel est bien le cas, sans toutefois poursuivre l'étude plus avant, afin de trouver des bases de Gröbner signifiantes d'un point combinatoire, ou afin de dévoiler des harmonies formelles encore inconnues qui montreraient explicitement en quoi l'algèbre des invariants est de Cohen-Macaulay, ce qui est toujours le cas pour un groupe réductif (

[4]

). §6. Décomposition en représentations de Schur Motivation.

  , M 8 est juste constituée des polynômes en les neuf invariants par reparamétrisation que nous avions engendrés en calculant méthodiquement des crochets.

	Corollaire Pour les jets d'ordre quatre en dimension deux, l'algèbre DS 4 2 des
	polynômes invariants par reparamétrisation est polynomialement engendrée par
	les neuf invariants

2 

, et de cette manière, non seulement nous engendrons facilement les quatre invariants fondamentaux non bi-invariants que nous connaissions déjà, mais encore -et c'est là qu'apparaît une stratégie crucialement simplifiée que nous ré-exploiterons ultérieurement pour l'étude de DS

[START_REF] Rousseau | Hyperbolicité des variétés complexes[END_REF] 

2 -, nous déduisons que l'orbite des polynômes arbitraires en f ′ 1 , Λ 3 , Λ 5 1 , Λ 7 1,1

  des polynômes absolument arbitraires en leurs quatre arguments, et pour préciser, toute relation du type :

  et ici, la contradiction se voit immédiatement en soustrayant la première équation de la seconde, ce qui nous donne l'équation impossible -1 = c + b + d + f .

	Suite. Par des raisonnements similaires, on établit -comme annoncé -qu'il est
	réellement nécessaire d'introduire les 5 bi-invariants supplémentaires :
	X 18 , X 19 , X 21 , X 23 , X 25 ,
	lesquels ne sont pas engendrés par crochets.
	Poursuite du processus d'engendrement. Mais ce n'est pas tout : grâce à la liste
	des valeurs que prennent nos 16 bi-invariants en f ′ 1 = 0, nous constatons qu'il nous
	faut introduire encore d'autres bi-invariants, notamment :
	3l,
	1 = c + 2d + 3f + g + 2i + j + 2k + 3l,
	1e + g + i,
	1h + j + k,

  Les classes de Chernc i = c i (T X ), i = 1, 2, de X sont reliées au degré d de X par c 2 1 = (4d) 2 d et c 2 = d (d 2 -4d + 6).Demailly a conjecturé que ce quotient tend vers l'infini avec κ. Les valeurs numériques 1, 44 • • • , 1, 80 • • • et 2, 12 • • • suggèrent une certaine lenteur de la convergence potentielle.

			1797 m 6 36 879 360	+ O(m 5 ),
	C 2 = A 2 + B 2 =	848 m 6 36 879 360	+ O(m 5 ).
	Application. Proposition En dimension deux pour les jets d'ordre quatre, la caractéristique
	d'Euler de DS 4 2,m T * X vaut :		
	χ X, DS 4 2,m T * X =	m 6 36 879 360	1 797 c 2 1 -848 c 2 + O(m 5 ),
	donc si l'on pose :		
	C := 1 797 848 = 2, 119 • • • ,
	alors en réexprimant le tout en fonction du degré, on a l'équivalence :
	χ X, DS 4 2,m T * X ∼ d q Remarque. Le quotient C des coefficients de c 2 1 797 m 6 36 879 360 1 et de c 2 vaut 47 26 = 1, 807 • • • 11 (cf. [5]), et il pour les jets d'ordre 3, d'où q C (d) est positif pour tout d vaut 13 9 = 1, 444 • • • pour les jets d'ordre 2 (cf. [2]), d'où q C (d) est positif pour tout d 15.

C (d), quand m → ∞, avec un polynôme quadratique q C (d) := d 2 (C -1)d(8 C -4) + 16 C -6 qui est positif pour tout degré d 9.

Pour les jets d'ordre κ = 6, nous ne nous sommes pas risqué à calculer les 325 invariants attendus, ni à entreprendre d'écrire les 14 950 syzygies de degré 5 qui nous sont données automatiquement.

La démonstration, laissée au lecteur qui désirerait anticiper, apparaîtra dans un instant comme absorbée par une observation plus générale.

Cette idée sera discutée plus avant dans la Section 7.

Les résultats que l'on rec ¸oit (après un quart d'heure de calcul environ) dépendent de l'ordre monomial choisi ; ils comprennent d'autres relations superflues, i.e. déduites des neuf fondamentales que nous listons, parce que le logiciel doit effectuer algorithmiquement l'opération dite "Spolynôme" sur tous les couples d'identités, suivie d'une division par les éléments présents, afin de compléter le calcul d'une base de Gröbner réduite. L'auteur remercie Erwan Rousseau de lui avoir communiqué cette liste, ainsi que l'invariant M 8 .

L'auteur a d'abord deviné et reconstitué les relations générales qui sous-tendent les neufs identités précédentes avant d'arranger synoptiquement la formation de nouveaux invariants par simple calcul de mineurs 2 × 2.

Ce fait a été confirmé par un calcul de l'idéal des relations sur Maple.

(et même, "ce devrait très vraisemblablement être parce que. . . ", si nous avions déjà achevé la démonstration de notre deuxième théorème!)

Pour obtenir les deux entiers l 1 et l 2 de Γ (l1, l2) T * X , rappellons qu'il suffit de compter le nombre de fois qu'apparaissent les indices "(•) 1 et "(•) 2 " dans chacun de ces monômes, sachant qu'ils apparaissent chacun exactement une fois dans tout déterminant ∆ α,β .

+ O |l| 9 , et enfin, ajoutons qu'il ne serait pas difficile de fournir la formule générale, valable en dimension quelconque. Sommations de caractéristiques. En revenant à la dimension deux, nous déduisons tout d'abord trivialement du lemme précédent la formule sommatoire suivante pour

Sinon, les bases fournies contiennent plus d'une soixantaine d'équations.

la caractéristique d'Euler de la première somme directe de fibrés de Schur :

et ensuite, grâce à une table de calculs linéaires destinée à éliminer l'exposant a :

ce qui nous permet de remplacer a+3b+5c+8e=m par 3b+5c+8e m , nous pouvons calculer les deux coefficients rationnels

Maple nous donne la base de Gröbner réduite suivante pour l'idéal complet des syzygies entre nos onze bi-invariants restreints à {f ′ 1 = 0}, laquelle est constituée de 26 équations :