Jean-François Santucci
email: santucci@eerie.eerie.fr

Gérard Dray

Marc Boumedine

Norbert Giambiasi

Marc Boumédine

Methods to Measure and to Enhance the Testability of Behavioral Descriptions of Digital Circuits

come

Methods to measure and to enhance the testability of behavioraldescriptions of digital circuits

1: Introduction

Recently, new automatic test generation methods for digital circuits described according to a behavioral view have been developed. A behavioral view allows a circuit to be described independently of its internai structure by defining how its outputs react when values are applied to its inputs. In order to describe the circuit behavior, specific languages called H.D.L. (Hardware Description Languages) are used, for example DACAPO [I] and VHDL [START_REF]IEEE standard VHDL Language reference manual[END_REF]. Bchavioral test pattern generation is useful for thrcc main reasons :

• the structural description of a circuit is not always availablc. The only knowledge about the circuit under test may corne from data shects or measurements of signais.

• the circuit complexity may not allow us to use conventional test pattern generation tools developed for structural descriptions.

• the test generation process is an integral part of the design process and one must start implementing it during the behavioral design phase. Motivated by these facts, various conceptually different ATPG methods for behavioral descriptions have becn proposed in the recent past [START_REF] Barclay | A heuristic chip-kvel lest generation algorithm[END_REF][START_REF] Levendel | Test generation algorithms for computer hardware description languages[END_REF][START_REF] Norrod | An automatic test generation algorithm for hardware description languages[END_REF][START_REF] Giambiasi | Test pattern generation for behavioral descriptions in VHDL[END_REF][START_REF] Su | Functional testing techniques for digital LSI/VLSI systems[END_REF]. Judging from the literature, two different approaches have becn used : test pattern generation using symbolic simulation [START_REF] Su | Functional testing techniques for digital LSI/VLSI systems[END_REF] and test pattern generation using path sensitization [START_REF] Barclay | A heuristic chip-kvel lest generation algorithm[END_REF][START_REF] Levendel | Test generation algorithms for computer hardware description languages[END_REF][START_REF] Norrod | An automatic test generation algorithm for hardware description languages[END_REF][START_REF] Giambiasi | Test pattern generation for behavioral descriptions in VHDL[END_REF]. The first approach is limited becau se for behavioral descriptions involving complex data and control structures, the analysis of symbolic expressions and the resolution of the equations involved in this approach can be difficult and even impossible. The second, conceming test generation, is based on a fault detection technique and a path sensitization principle. This implies the definition of a behavioral fau lt modelling scheme [START_REF] Ghosh | On behavior Fault mode Jing for digital designs[END_REF] and the resolution of several well-known problems manifestation of a fault, sensitization, propagation and justification. Any test generation algorithm presented in the previous work builds a decision trec and applies a backtracking search procedure in order to find a solution.

Because of the exhaustive nature of the search process, the number of operations performed to fmd a solution can, in the worst possible case, increase exponentially with the number of lines of code involved in a behavioral description. The aim of this paper is to propose various methods in order to reduce the computational cost of the behavioral test generation process. We propose a new approach in order to enhance the testability of digital circuits1 whose behavior is described by an H.D.L. The approach consists in developing a set of methods which can be used in the following two situations : early in the design phase (manufacturing phase) and after the design of digital circuits (acceptance phase). This set is divided into the following thrcc methods

• the first method allows the user to modify the initial behavioral description without adding any functionalities to the circuit behavior;

• the second defines cost fonctions allowing an estimate of the testability of elements involved in a behavioral description which can be used both in guiding the behavioral test generation process and in the design process;

• the third consists in the modification of the behavioral description by adding functionalities. Since some functionalities are added to the circuit behavior, this last method cannot be performed if the circuit has already been designed. Behavioral descriptions can be partitioned into two categories, namely non-procedural descriptions and procedural descriptions. In this paper, we are only interested in procedural descriptions. They are characterized by a control flow and a data flow. The control flow corresponds to the sequence of operations according to control structures involved in the descriptions. The data flow corresponds to the objects handled in the description and the operations which manipulate these objects. In order to facilitate the definition of the three kinds of tools previously introduced, it is essential to explain in detail the basic concepts linked to behavioral descriptions. We have therefore defined an intemal model which highlights, on the one band, the sequential and concurrent aspects and, on the other band, the separation and interaction between the control flow and the data flow [START_REF] Giambiasi | General behavioural modeling framework for hardware systems[END_REF]. The remainder of the paper is organized as follows. Section 2 gives an overview of the approach. The intemal model derived from behavioral descriptions is presented in Section 3. In Section 4 we present a brief overview of the behavioral test pattern generator which bas been implemented. Section 5 deals with the first method aimed at simplifying behavioral descriptions without adding functionalities. In Section 6 we describe the cost fonctions which have been defined to evaluate the testability of behavioral descriptions. The last method involving modifications of behavioral descriptions by adding functionalities is described in Section 7. Experiment results arc presented in Section 8.

2: Basic strategies : a brief overview

As already mentioned, our approach for reducing the computational cost of behavioral test pattern gcncration is based upon three main mcthods :

• a method aimed at simplifying behavioral descriptions without adding functionalities.

• a mcthod designed to evaluate the testability of behavioral descriptions.

• a method to improve the testability of behavioral descriptions with the adding of functionalities. One must keep in mind the constraints within which we have to work : circuits are described according to only a behavioral point of view and we have to keep the cost of computing the various methods significantly lower than the Test Generation cost they are meant to reduce. Let us now briefly outline the most important strategies applied in our approach : • Before starting to reduce the computational cost of behavioral test generation, we transform the textual behavioral description into an internai mode! allowing the main features of behavioral descriptions to be explicitly represented : sequential and concurrent aspects and separation between the control flow and the data flow. In order to facilitate the definition of the previously mentioned methods, the mode! suppon of the application of the algorithm has to mcct two requirements: it should be easy to handle and explain in detail the basic concepts linked to behavioral descriptions. In order to satisfy the first requirement, the definition of the internai model is based on hierarchical multi-view modelling itsclf based on graph concepts. To address the second requirement, there are two levels of modelling : the internai model associated with a behavioral description has two views. These views include an external view which represents the inputs/outputs of the descriptions and an internai view made up of two pans the separation and interaction of which are explicit : a control model representing the sequencing of the operations involved in the description and a data mode! representing the objects(variables,signals, constants) and the handled operations in the behavioral description.

• The goal of the first method is to define rules that modify behavioral descriptions in order to increase the performance of the test generation process. These modifications are performed without adding any functionalities to the descriptions : they do not change the functionalities of the circuit, but reorganize a given description in such a way that the computational complexity of the test generation process applied on the new description is reduced. To achieve such a goal, a first problem must be solved : we have to measure the performance of the test generation process on a given description. Such measurements require the following:

• Their computational cost must be lower than the cost of the test generation process.

• They must be independent of the H.D.L. used for describing the behavior of a given circuit • They should not express the complexity of the algorithrn involved in the circuit behavior, but they have to express how the manner in which this behavior is described can increasc or reducc the test generation cost. To respond to this problem, we have defmed complexity measures of a behavioral description based upon complexity mcasures developed in software engineering [START_REF] Mccabe | Structured Testing[END_REF][START_REF] Halstead | Elements of Software Science[END_REF]. We have chosen such a solution for the following reasons :

• A behavioral description of a digital circuit is a program so that software complexity metrics can h,\ applied on it

• The propenies of software engineering complex. i ty measures accord with the requirements of the complexity measures of behavioral descriptions. Software complcxity measures are easy to compute, not related to a panicular programming language, and different from the complexity notion associated with the algorithm performed by the software. Once we are able to measure the complexity of a given behavioral description, we can define modifications involved in a given behavioral description in order to produce a less complex description according to the previous measures. The modifications are carried out by means of rulcs allowing the user to change the way in which the behavior of the circuit is described.

• The second way to rcduce the computational cost is a testability analysis method. The objective of this method is twofold. The first is to provide information in order to speed up the search process of behavioral test generation methods. The second is to point out parts of descriptions which will produce potential testing problems. As for most testability analysis approaches for structural descriptions [12], we use the concepts of controllability and observability to define the testability of an element of the internai model of a behavioral description [13]. This definition involves two steps

• the definition of controllability and observability measures for the basic elements of the internai model. -the graph is structured. Four types of sub-graphs allow control structures to be modeled : sequential, selective, repetitive and parallel.

• the definition of different ways of computing the testability measures according to the authors' suggestions

• A data model represented by a graph which has two types of nodes : operation and data.

-The data nodes which represcnt variables, signais and constants.

-The operation nodes which are of two types : assignment and decision. A sub-graph is associated with each operation node. This sub-graph represents the expression involved in the modeling operation. It is composed of nodes representing the basic operators involved in the language.

• The interaction between these models takes place thanks to the association of an operation node with a transition of the control model. Such a transition is called a non-de.composable transition and can therefore represent the assignment of a variable or a decision point for the selection of a branch. A transition with which an assignment node is associated is called operative. A transition with which a decision node is associated is called a control transition.

4: Brief overview of the test pattern generator.

In this section, we outline the main features of a deterministic behavioral test pattern generator [START_REF] Giambiasi | Test pattern generation for behavioral descriptions in VHDL[END_REF] • on the elements of interaction between controVdata : hypotheses of operation skipping. Searching for a test pattern consists in solving three kinds of problems : problems concerning local fault effect manifestation (the first to be solved), constraint justification and fault effect propagation. The search for a solution involves a decision process. Whenever there are several alternatives to solve a justification problem or to propagate a fault effect, we choose one of them. But, by doing so, we may select a decision that leads to an inconsistency (conflict) and thereby involving a failure in the test pattern generation process. Therefore, in our search for a test, we use a backtracking algorithm that allows a systematic exploration of the complete space of possible solutions. In order to minimize the number of incorrect decisions (and, as a malter of fact, the number of backtracks), methods have been defined in order to reduce the cost of the test pattern generation process.

5: Transformation of descriptions.

Because VHDL allows the designer to express the same functionalities in many different abstract ways, it is advisable to provide the test generation process with an optimal description acc<X"ding to complexity mctrics. This section prescnts the method aimed at simplifying behavioral descriptions without adding functionalities. The goal of this method is to apply rules that modify behavioral descriptions in order to increase the performance of the test generation process. These modifications are performed dcpending on complexity metrics associated with the behavioral descriptions. To reach this objective, two techniques have been dcveloped: a technique to compute the complexity metrics of behavioral descriptions and a technique to modify behavioral descriptions according to thcir computed complexity.

5.1: Metrics for behavioral descriptions.

Complcxity metrics for behavioral descriptions

5.2: Transformation rules.

In order to reduce the complexity of behavioral descriptions we have defined two types of transformation rules : optimizing mies and precedence rules. Behavioral descriptions are represented by means of complex algorithmic expressions, data structures, procedures, processes, variables and signais and they may be described in several ways. In order to provide the A TPG with the least complex bchavioral description possible, a rule-based technique is used to improve descriptions whose complexity is too great. This technique allows the user to modify the initial description by applying a set of transformation rules that allow those configurations having a Jess complex alternative to be identified and modified. These transformations are similar to those used in optimizing compiler techniques [START_REF] Aho | Compilers : Principles, Techniques and tools, Addison-wesley[END_REF]. They attempt to limit the number of language artefacts of a textual procedural language and propose a more flexible representation with a more efficient control and/or data structure for testing purposes. Another way to modify the behavioral description in ordcr to obtain one less complex is to define a new sequcncing between operations involved in the data mode! for which the execution results are the same as for the initial sequencing. Let us call the initial sequencing defined by the original description the reference chronology. It goes without saying that the reference chronology is an acceptable chronology. Depending on the choscn chronology, the test pattern generation methodology will be more or less performant. Thus, it may be relevant to make a choice among several chronologies before applying test pattern generation. The acceptable chronologies are dcfined from the depcndcncy study carricd out between the opcrations described in the reference chronology, taking into consideration the relation between their input and output data. The data dependency between operations or, more generally, between tasks (16] can be represented by a preorder graph which implicitly includes ail the possible acceptable chronologies. According to the complexity metrics presented in S. l, before performing the actual test pattern generation, we select the acceptable chronology which has the lowest complexity.

6: Behavioral testability measures.

In this section, we give a brief overview of the different ways to compute the controllability and observability measures. More details about these computations have been prescnted in [START_REF] Santucci | A methodology 10 reduce the computational cost of behavioral test pattern generation[END_REF].

8: Experiments.

In this section, we describe differenl experiments which have been carried out in order to validate the proposed approach. First, we present experiments regarding controllability and observability measures, followed by experiments donc to validate complexity measures.

: Experiments concerning controllability and observability measures.

The objective of these experimenls is to verify that controllability and observability measures speed up the search process of behavioral test generation and consequcnlly reducc its cost Experiments concerning the first method (involving both complexity measures and optimising rules) are in progress. We have reported some preliminary, but encouraging experimental results.

Our future work will concentrate on a number of investigations which are briefly described below:

. an interesting question appears to be whether benefits can be gained from the application of dynamic testability measures .

. it would be intcresting to devclop algorithmic techniques that definitely lead to improvements of behavioral A TPG.

3 :

 3 [14) in order to compensate for the fact that testability measures are not totally accurate. They suggest switching among the testability measures during the test generation process . We therefore propose several ways of computing behavioral testability measures based upon the computations of testability measures defined for structural descriptions. • The third way to reduce the test generation cost is to define design for testability rules for behavioral descriptions as well. These rules propose modifications of behavioral descriptions which increase testability by adding some functionalities to the circuit behavior. One has to note fhat titis process of designing for testability is dedicated to behavioral descriptions of digital circuits ; thus this process does not imply anything about the internai structure of devices. The only thing this process must do is seek ways for ensuring a good testability for a behavioral description while perturbing it as little as possible. These transformations of a behavioral description can be perfonned only during the design phase of an integrated circuit. If a circuit corresponding to the behavioral description we are dealing with has already been designed, the proposed testability enhancement cannot be applied. The DFf methodology we propose is based on the following idea: • When the behavioral description is declared difficult to test according to the previously introduced behavioral testability measures, we can use the controllability and observability measures associated with each basic element of the internai model (nodes involved in the control and data model) in order to select areas of the internai models which have to be modified in order to increase the weakest testability measures. The internai modeling. This section briefly presents the internai model derived from H.D.L. behavioral descriptions [9] . There are two levels of internai modeling : an external view and an internai view. The external view represents the inputs/outputs of the description. The internai view is made up of two parts, the separation and the interaction of which are explicit : • A control model represented by a bipartite graph involving two kinds of nodes : transitions and places. This graph has the following two characteristics -the graph is represented in a hierarchical way insofar as a sub-graph can be associated with a transition. A transition with which a sub-graph is associated is called "de.composable". The upper hierarchical level transition is called the initial transition.

 fhat we have implemented in CommonLISP in an object-orien1.xl environment. The deterministic test pattern generation algorithm l ,,r behavioral descriptions fhat we have defined cornes from the framework of studies carried out by [3,4,5]. Onoe again, one has to note that this process of Test Pattern Generation is dedicated to behavioral descriptions of digital circuits ; thus the testing process is independant from the structure of the CUT (Circuit Under Test). Since it is a fault-oriented automatic test pattern generator, an exhaustive fault model has been defincd on the basic elements of the internai model. A sub-set of conventional faults [8] bas been selected for test generation. These fault hypotheses are classified as follows • on the elements of the data model : stuck-at fault hypotheses of an element of the data model, • on the elements of the control model : hypothcses of a bad path selection in a selective control structure,

 are issued from software complexity metrics [10,11]. They are based on the characteristics of both the control mode! and the data model. The control mode! metrics reflect the difficulty lo access each transition of the graph from the initial transition of the mode!. This difficulty is defined in terms of the number of control transitions to be crossed in order to reach each transition of the graph, i.e. the nesting levcl of each transition of the graph. This number is called the accessibility index(AI). lt allows the user to obtain two measures: the absolute measure (AAI) and the relative measure(RAI). The absolute measure defincs the complexity indcpendently of the number of transitions of the model. The relative measure is the average nesting level of transitions in the contrai mode!. The data mode! complexity metrics estimate the difficulty in reaching cach data node in the mode!. This difficulty is defined as the number of operation and data nodes contained in the cone of influence of each data nodc. The cone of influence of a node N is a sub-graph of the data mode! that includes the edges and nodes of ail the paths that start at a primary input data node and terminale at N. This difficulty is estimated by dcfining two mcasures: the absolute complexity (ADI) and the relative complcxity (ROI). The absolute measure represents the definition depth of data nodes in the data model. The relative measure is the average depth of data nodes in the data mode!.

6. 1 : 7 .

 17 Controllability and observability of basic elements of the internai model. Behavioral testability measures are dedicated to measuring the "difficulty" in solving a given justification or fault cffect propagation problem (sec Section 4). Sin ce elements of the control and data mode! are involved in the solving of such problems, we define testability measures in terms of controllability and observability for each basic element of the internai mode!. For the basic elements of the data model involvcd in the generation process • the controllability measures associated with an operation node indicate the difficully in setting the output of the operation node at a given value and the obscrvability measures indicate the difficulty in propagating a fault effect from the output of the operation node to a primary output. • the controllabilily measures associated with a data node indicate the difficulty in setting the data node to a given value and the observability measurcs indicatc the difficulty in propagating a fault effect from the data node to a primary output. For the basic clements of the control mode! involved in the generation process : • the controllability measures for a transition T indicate the difficulty in reaching the transition T from the initial transition and the observability measures indicatc the difficulty in reaching an observable transition from the transition T. 6.2: Principles of controllability and observability computations. Controllability and obscrvability measures associaled with elemcnts of the data mode) (resp. control model) are computed by taking into account only information given by the data model (rcsp. control mode!). Wc have defincd three different ways to compute the measures associated with the basic elements of the data modcl (distancc-based measures, recursive formulae measures and fanout-based measures) while only two differenl ways are defined on the control model (distance-based and recursive formulac measurcs). Behavioral design methodologies. Another way to rcduce the cost of test pattern generation is to use design methodologies for behavioral descriptions. These methodologies propose the designer a choicc of descriptions modifications allowing the controllability and/or the observability of basic elements of the internai model to be increased. These modifications involve the addition of functionalities to the bchavioral description; indecd they can be performcd only during the design phase of an integrated circuit. The objective is to propose a set of modification rules for the internai mode! allowing the designer to cnhance the controllability and/or the observability of the basic clements. These enhancements are realised by creating ncw access paths toward basic elemenls of the description. The access paths can be generated by adding ncw test points or new statements. The addition of test points allows the designer to generate access paths to the poor controllability and observability areas. Two types of test points have been defined, referred to as control points and observation points. Control points are primary input variables used to enhance controllability; observation points are primary output variables used to enhance observability. A second way to create access paths is to add new statements to the description. These statements consist either in initializing some basics elements of the description or in creating selective access paths by defining two behavioral modes : test and normal modes. In the normal mode the behavior is the same as it was initially. The test mode allows the designer to activate the access paths to the poor controllability and observabilily areas.

8. 2 :Table 2 : 9 :

 229 Experiments on complexity measures. The objective of these experiments is to verify that using the complexity measures proposed in Section 5 allows the designer to reduce the cost of the behavioral test generation process. This reduction can be made by selecting the least complex description from among various descriptions of the same integrated circuit (IC). The experiments consist in describing the same IC in different ways. The test pattern generation process is then performed for each description. These cxpcriments have been performed on two circuits (C 1 : ADD _BCD and C2 : a counter). The behavior of these circuits has been described in three different ways (dl d2 d3). The cxpcriments results are summarized in Table 2. They givc for each behavioral description of the two circuits the complexity metrics defined in section 5 and the average number of backtracks pcr fault obtaine,d after performing the test pattern generation process. They allow us to highlight that the cost of the T.G. process is reduced for the descriptions pointed out as the least complex according to the complcxity mctrics. Results of the second experi m e n t. Conclusions and future work.In this paper we have presented an approach for managing the tcsting related aspects of behavioral descriptions of digital circuits. The goal of this approach is to keep the cost of behavioral test pattern gencration process into rcasonnable bound, i.e. as Iow as possible. This goal is addressed by combining three kinds of methods: . a method aimed at simplifying behavioral description without adding functionnalities. . a method designed to assess the testability of behavioral descriptions and to use the related testability measure to spced up the test pattern gencration process. . a method define,d to improve the testability of behavioral description with the addition of functionalities.The two füst methods have been used in experimental studies to show that they lead to an effective test generation cost reduction. Based on these experiments we can conclude that testability measures must be used in order to accelerate the behavioral deterministic test pattern generation process.

36 7.78 5.14 4.82 7.32 4.96 4.62 Cl Dercctcd+Undctcctahl(45 46 48

					Methods		
		1	2	3	4	5	6	7
	Back1racb/fault Rank	8.5 7	4 6	2 4	2 3	4 5	2 2	2 1

48 46 48 48 °'<WN

Back:trac ault 21..SS 19.1 14.38 13.12 15.02 12.56 11.22 C2 Dc1Cctcd+Undetcctal:i.t V 32 38 40 34 40 42

	0,,wed Rank	23 7	18 6	12 4	10 3	16 s 2 1 10 8
	Back1racbfaul t	24A2 19.			

36 18.22 17.46 20.48 18.6 15.3 C3 Deloelcd+Undc=tabi< 14 28 31 33 28 30 35

	°'<WN Rank	36 7	22 5	19 3	17 2	22 6	20 4	15 1
	Back1racbfault C4 Dc1ecu:d+Undctcctabl1 22 21 23 26 21 26 30 15.32 15.35 11.61 7.58 15.41 11..SI 7.9 0,,wed 9 IO 8 5 IO 5 ! Rank 5 6 4 2 7 3 1 ,_ �-Backlncb/Cault 9.52 9

.04 9.19 11.47 8.66 951 13.85 C5 Dcll:c:md+Undetcctati1 21 19 19 17 19 18 16

	Droppod Rank	0 1	2 3	2 4	4 6	2 2	3 5	5 7
	Baâtraclu/							

fault 8.96 4.52 4..S6 4.16 2.96 3.64 4.96 C6 Dcrcclcd+Undetcctabl 20 22 22 23 24 22 21

	°'<wM Rank	5 7	3 4	3 5	2 2	! !	3 3	4 6

Table 1 : Results of the first experiment. The approach used for the experiments stems from the work of Patel [14]. Seven methods have bccn uscd for the experiments. Method l (see Table 1) perfonns the test pattern generation process without any controllability and observability measurcs. The six others consist in performing the test pattern generation process by using the controllability and observabilily measures described in Section 6. The experiment has involved three behavioral descriptions of circuits (Cl :ADD _BCD,C2:ALU8, C3:ALU64) and three experimental descriptions (C4, C5, C6). The experiment results are summarized in Table 1. They allow us to highlight several important points. The first point is that among ail the proposed testability measures. none is found to be consistently superior in all cases. The second point is that it will be more efficient to switch between the different controllability and obscrvability measures than to use a sole and unique measure.

 1

This work is supported by the European ESPRll'-EVEREST project.