
HAL Id: hal-00178664
https://hal.science/hal-00178664

Submitted on 9 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methods to measure and to enhance the testability of
behavioraldescriptions of digital circuits

Jean-François Santucci, Gérard Dray, Marc Boumedine, Norbert Giambiasi

To cite this version:
Jean-François Santucci, Gérard Dray, Marc Boumedine, Norbert Giambiasi. Methods to measure and
to enhance the testability of behavioraldescriptions of digital circuits. First Asian Symposium, 1992.
(ATS ’92), 1992, Hiroshima, Japan. pp.118-123, �10.1109/ATS.1992.224448�. �hal-00178664�

https://hal.science/hal-00178664
https://hal.archives-ouvertes.fr


Methods to Measure and to Enhance the Testability of Behavioral 
Descriptions of Digital Circuits. 

Jean-François Santucci Gérard Dray Marc Boumédine Norbert Giambiasi 

L.E.R.I.
Parc Scientifique G. Besse 30 000 Nîmes, France 

E-mail : santucci@eerie.eerie.fr

Abstract 

This paper presents an approach to reduce the cost of test 
pattern generation of behaviora/ descriptions. This 
approach utilizes a group of methods al/owing the 
designer to assess and to enhance the testability of 
behavioral descriptions. 

1: Introduction 

Recently, new automatic test generation methods for 
digital circuits described according to a behavioral view 
have been developed. A behavioral view allows a circuit 
to be described independently of its internai structure by 
defining how its outputs react when values are applied to 
its inputs. In order to describe the circuit behavior, 
specific languages called H.D.L. (Hardware Description 
Languages) are used, for example DACAPO [I] and 
VHDL [2]. Bchavioral test pattern generation is useful for 
thrcc main reasons : 

• the structural description of a circuit is not always
availablc. The only knowledge about the circuit under test 
may corne from data shects or measurements of signais. 

• the circuit complexity may not allow us to use
conventional test pattern generation tools developed for 
structural descriptions. 

• the test generation process is an integral part of
the design process and one must start implementing it 
during the behavioral design phase. 
Motivated by these facts, various conceptually different 
ATPG methods for behavioral descriptions have becn 
proposed in the recent past [3,4,5, 6,7]. Judging from the 
literature, two different approaches have becn used : test 
pattern generation using symbolic simulation [7] and test 
pattern generation using path sensitization [3,4,5,6]. The 
first approach is limited because for behavioral 
descriptions involving complex data and control 
structures, the analysis of symbolic expressions and the 
resolution of the equations involved in this approach can 
be difficult and even impossible. The second, conceming 
test generation, is based on a fault detection technique and 
a path sensitization principle. This implies the definition 
of a behavioral fault modelling scheme [8] and the 
resolution of several well-known problems 
manifestation of a fault, sensitization, propagation and 
justification. Any test generation algorithm presented in 

the previous work builds a decision trec and applies a 
backtracking search procedure in order to find a solution. 
Because of the exhaustive nature of the search process, the 
number of operations performed to fmd a solution can, in 
the worst possible case, increase exponentially with the 
number of lines of code involved in a behavioral 
description. The aim of this paper is to propose various 
methods in order to reduce the computational cost of the 
behavioral test generation process. We propose a new 
approach in order to enhance the testability of digital 
circuits1 whose behavior is described by an H.D.L. The 
approach consists in developing a set of methods which 
can be used in the following two situations : early in the 
design phase (manufacturing phase) and after the design of 
digital circuits (acceptance phase). This set is divided into 
the following thrcc methods 

• the first method allows the user to modify the
initial behavioral description without adding any 
functionalities to the circuit behavior; 

• the second defines cost fonctions allowing an
estimate of the testability of elements involved in a 
behavioral description which can be used both in guiding 
the behavioral test generation process and in the design 
process; 

• the third consists in the modification of the
behavioral description by adding functionalities. Since 
some functionalities are added to the circuit behavior, this 
last method cannot be performed if the circuit has already 
been designed. 
Behavioral descriptions can be partitioned into two 
categories, namely non-procedural descriptions and 
procedural descriptions. In this paper, we are only 
interested in procedural descriptions. They are characterized 
by a control flow and a data flow. The control flow 
corresponds to the sequence of operations according to 
control structures involved in the descriptions. The data 
flow corresponds to the objects handled in the description 
and the operations which manipulate these objects. In 
order to facilitate the definition of the three kinds of tools 
previously introduced, it is essential to explain in detail 
the basic concepts linked to behavioral descriptions. We 

1This work is supported by the European ESPRll'-EVEREST
project. 

mailto:santucci@eerie.eerie.fr


have therefore defined an intemal model which highlights, 
on the one band, the sequential and concurrent aspects and, 
on the other band, the separation and interaction between 
the control flow and the data flow [9]. The remainder of 
the paper is organized as follows. Section 2 gives an 
overview of the approach. The intemal model derived from 
behavioral descriptions is presented in Section 3. In 
Section 4 we present a brief overview of the behavioral 
test pattern generator which bas been implemented. 
Section 5 deals with the first method aimed at simplifying 
behavioral descriptions without adding functionalities. In 
Section 6 we describe the cost fonctions which have been 
defined to evaluate the testability of behavioral 
descriptions. The last method involving modifications of 
behavioral descriptions by adding functionalities is 
described in Section 7. Experiment results arc presented in 
Section 8. 

2: Basic strategies : a brief overview 

As already mentioned, our approach for reducing the 
computational cost of behavioral test pattern gcncration is 
based upon three main mcthods : 

• a method aimed at simplifying behavioral
descriptions without adding functionalities. 

• a mcthod designed to evaluate the testability of
behavioral descriptions. 

• a method to improve the testability of behavioral
descriptions with the adding of functionalities. 
One must keep in mind the constraints within which we 
have to work : circuits are described according to only a 
behavioral point of view and we have to keep the cost of 
computing the various methods significantly lower than 
the Test Generation cost they are meant to reduce. 
Let us now briefly outline the most important strategies 
applied in our approach : 
• Before starting to reduce the computational cost of
behavioral test generation, we transform the textual
behavioral description into an internai mode! allowing the
main features of behavioral descriptions to be explicitly
represented : sequential and concurrent aspects and
separation between the control flow and the data flow. In
order to facilitate the definition of the previously
mentioned methods, the mode! suppon of the application
of the algorithm has to mcct two requirements: it should
be easy to handle and explain in detail the basic concepts
linked to behavioral descriptions. In order to satisfy the
first requirement, the definition of the internai model is
based on hierarchical multi-view modelling itsclf based on
graph concepts. To address the second requirement, there
are two levels of modelling : the internai model associated
with a behavioral description has two views. These views
include an external view which represents the
inputs/outputs of the descriptions and an internai view
made up of two pans the separation and interaction of
which are explicit : a control model representing the
sequencing of the operations involved in the description
and a da t a  mode !  represen t ing  the

objects(variables,signals, constants) and the handled 
operations in the behavioral description. 
• The goal of the first method is to define rules that
modify behavioral descriptions in order to increase the
performance of the test generation process. These
modifications are performed without adding any
functionalities to the descriptions : they do not change the
functionalities of the circuit, but reorganize a given
description in such a way that the computational
complexity of the test generation process applied on the
new description is reduced. To achieve such a goal, a first
problem must be solved : we have to measure the
performance of the test generation process on a given
description. Such measurements require the following:

• Their computational cost must be lower than the
cost of the test generation process. 

• They must be independent of the H.D.L. used for
describing the behavior of a given circuit 

• They should not express the complexity of the
algorithrn involved in the circuit behavior, but they have 
to express how the manner in which this behavior is 
described can increasc or reducc the test generation cost. 
To respond to this problem, we have defmed complexity 

measures of a behavioral description based upon 
complexity mcasures developed in software engineering 
[10,11]. We have chosen such a solution for the 
following reasons : 

• A behavioral description of a digital circuit is a
program so that software complexity metrics can h,\ 
applied on it 

• The propenies of software engineering complex.i ty
measures accord with the requirements of the complexity 
measures of behavioral descriptions. Software complcxity 
measures are easy to compute, not related to a panicular 
programming language, and different from the complexity 
notion associated with the algorithm performed by the 
software. 
Once we are able to measure the complexity of a given 
behavioral description, we can define modifications 
involved in a given behavioral description in order to 
produce a less complex description according to the 
previous measures. The modifications are carried out by 
means of rulcs allowing the user to change the way in 
which the behavior of the circuit is described. 
• The second way to rcduce the computational cost is a
testability analysis method. The objective of this method
is twofold. The first is to provide information in order to 
speed up the search process of behavioral test generation
methods. The second is to point out parts of descriptions
which will produce potential testing problems. As for
most testability analysis approaches for structural
descriptions [12], we use the concepts of controllability
and observability to define the testability of an element of
the internai model of a behavioral description [13]. This
definition involves two steps

• the definition of controllability and observability
measures for the basic elements of the internai model. 



• the definition of different ways of computing the
testability measures according to the authors' suggestions 
[14) in order to compensate for the fact that testability 
measures are not totally accurate. They suggest switching 
among the testability measures during the test generation 

process. 
We therefore propose several ways of computing 
behavioral testability measures based upon the 
computations of testability measures defined for structural 
descriptions. 
• The third way to reduce the test generation cost is to
define design for testability rules for behavioral
descriptions as well. These rules propose modifications of
behavioral descriptions which increase testability by
adding some functionalities to the circuit behavior. One
has to note fhat titis process of designing for testability is
dedicated to behavioral descriptions of digital circuits ;
thus this process does not imply anything about the
internai structure of devices. The only thing this process
must do is seek ways for ensuring a good testability for a
behavioral description while perturbing it as little as
possible. These transformations of a behavioral
description can be perfonned only during the design phase
of an integrated circuit. If a circuit corresponding to the
behavioral description we are dealing with has already
been designed, the proposed testability enhancement
cannot be applied.
The DFf methodology we propose is based on the
following idea:

• When the behavioral description is declared
difficult to test according to the previously introduced 
behavioral testability measures, we can use the 
controllability and observability measures associated with 
each basic element of the internai model (nodes involved 
in the control and data model) in order to select areas of 
the internai models which have to be modified in order to 
increase the weakest testability measures. 

3: The internai modeling. 

This section briefly presents the internai model derived 
from H.D.L. behavioral descriptions [9] . There are two 
levels of internai modeling : an external view and an 
internai view. The external view represents the 
inputs/outputs of the description. The internai view is 
made up of two parts, the separation and the interaction of 
which are explicit : 

• A control model represented by a bipartite graph
involving two kinds of nodes : transitions and places. 
This graph has the following two characteristics 

- the graph is represented in a hierarchical way insofar
as a sub-graph can be associated with a transition. A 
transition with which a sub-graph is associated is called 
"de.composable". The upper hierarchical level transition is 
called the initial transition. 

- the graph is structured. Four types of sub-graphs
allow control structures to be modeled : sequential, 
selective, repetitive and parallel. 

• A data model represented by a graph which has
two types of nodes : operation and data. 

- The data nodes which represcnt variables, signais and
constants. 

- The operation nodes which are of two types :
assignment and decision. A sub-graph is associated 
with each operation node. This sub-graph represents the 
expression involved in the modeling operation. It is 
composed of nodes representing the basic operators 
involved in the language. 

• The interaction between these models takes place
thanks to the association of an operation node with a 
transition of the control model. Such a transition is called 
a non-de.composable transition and can therefore represent 
the assignment of a variable or a decision point for the 
selection of a branch. A transition with which an 
assignment node is associated is called operative. A 
transition with which a decision node is associated is 
called a control transition. 

4: Brief overview of the test pattern 
generator. 

In this section, we outline the main features of a 
deterministic behavioral test pattern generator [6] fhat we 
have implemented in CommonLISP in an object-orien1.xl 
environment. 
The deterministic test pattern generation algorithm l ,,r 
behavioral descriptions fhat we have defined cornes from 
the framework of studies carried out by [3,4,5]. Onœ 
again, one has to note that this process of Test Pattern 
Generation is dedicated to behavioral descriptions of 
digital circuits ; thus the testing process is independant 
from the structure of the CUT (Circuit Under Test). Since 
it is a fault-oriented automatic test pattern generator, an 
exhaustive fault model has been defincd on the basic 
elements of the internai model. A sub-set of conventional 
faults [8] bas been selected for test generation. These fault 
hypotheses are classified as follows 

• on the elements of the data model : stuck-at fault
hypotheses of an element of the data model, 

• on the elements of the control model : hypothcses
of a bad path selection in a selective control structure, 

• on the elements of interaction between
controVdata : hypotheses of operation skipping. 
Searching for a test pattern consists in solving three kinds 
of problems : problems concerning local fault effect 
manifestation (the first to be solved), constraint 
justification and fault effect propagation. The search for a 
solution involves a decision process. Whenever there are 
several alternatives to solve a justification problem or to 
propagate a fault effect, we choose one of them. But, by 
doing so, we may select a decision that leads to an 
inconsistency (conflict) and thereby involving a failure in 
the test pattern generation process. Therefore, in our 



search for a test, we use a backtracking algorithm that 
allows a systematic exploration of the complete space of 
possible solutions. In order to minimize the number of 
incorrect decisions (and, as a malter of fact, the number of 
backtracks), methods have been defined in order to reduce 
the cost of the test pattern generation process. 

5: Transformation of descriptions. 

Because VHDL allows the designer to express the same 
functionalities in many different abstract ways, it is 
advisable to provide the test generation process with an 
optimal description acc<X"ding to complexity mctrics. This 
section prescnts the method aimed at simplifying 
behavioral descriptions without adding functionalities. 
The goal of this method is to apply rules that modify 
behavioral descriptions in order to increase the 
performance of the test generation process. These 
modifications are performed dcpending on complexity 
metrics associated with the behavioral descriptions. To 
reach this objective, two techniques have been dcveloped: 
a technique to compute the complexity metrics of 
behavioral descriptions and a technique to modify 
behavioral descriptions according to thcir computed 
complexity. 

5.1: Metrics for behavioral descriptions. 

Complcxity metrics for behavioral descriptions are issued 
from software complexity metrics [10,11]. They are based 
on the characteristics of both the control mode! and the 
data model. The control mode! metrics reflect the 
difficulty lo access each transition of the graph from the 
initial transition of the mode!. This difficulty is defined in 
terms of the number of control transitions to be crossed in 
order to reach each transition of the graph, i.e. the nesting 
levcl of each transition of the graph. This number is 
called the accessibility index(AI). lt allows the user to 
obtain two measures: the absolute measure (AAI) and the 
relative measure(RAI). The absolute measure defincs the 
complexity indcpendently of the number of transitions of 
the model. The relative measure is the average nesting 
level of transitions in the contrai mode!. 
The data mode! complexity metrics estimate the difficulty 
in reaching cach data node in the mode!. This difficulty is 
defined as the number of operation and data nodes 
contained in the cone of influence of each data nodc. The 
cone of influence of a node N is a sub-graph of the data 
mode! that includes the edges and nodes of ail the paths 
that start at a primary input data node and terminale at N. 
This difficulty is estimated by dcfining two mcasures: the 
absolute complexity (ADI) and the relative complcxity 
(ROI). The absolute measure represents the definition 
depth of data nodes in the data model. The relative 
measure is the average depth of data nodes in the data 
mode!. 

5.2: Transformation rules. 

In order to reduce the complexity of behavioral 
descriptions we have defined two types of transformation 
rules : optimizing mies and precedence rules. 
Behavioral descriptions are represented by means of 
complex algorithmic expressions, data structures, 
procedures, processes, variables and signais and they may 
be described in several ways. In order to provide the 
A TPG with the least complex bchavioral description 
possible, a rule-based technique is used to improve 
descriptions whose complexity is too great. This 
technique allows the user to modify the initial description 
by applying a set of transformation rules that allow those 
configurations having a Jess complex alternative to be 
identified and modified. These transformations are similar 
to those used in optimizing compiler techniques [15]. 
They attempt to limit the number of language artefacts of 
a textual procedural language and propose a more flexible 
representation with a more efficient control and/or data 
structure for testing purposes. 
Another way to modify the behavioral description in ordcr 
to obtain one less complex is to define a new sequcncing 
between operations involved in the data mode! for which 
the execution results are the same as for the initial 
sequencing. Let us call the initial sequencing defined by 
the original description the reference chronology. It goes 
without saying that the reference chronology is an 
acceptable chronology. Depending on the choscn 
chronology, the test pattern generation methodology will 
be more or less performant. Thus, it may be relevant to 
make a choice among several chronologies before 
applying test pattern generation. The acceptable 
chronologies are dcfined from the depcndcncy study carricd 
out between the opcrations described in the reference 
chronology, taking into consideration the relation between 
their input and output data. The data dependency between 
operations or, more generally, between tasks (16] can be 
represented by a preorder graph which implicitly includes 
ail the possible acceptable chronologies. 
According to the complexity metrics presented in S. l, 
before performing the actual test pattern generation, we 
select the acceptable chronology which has the lowest 
complexity. 

6: Behavioral testability measures. 

In this section, we give a brief overview of the different 
ways to compute the controllability and observability 
measures. More details about these computations have 
been prescnted in [13]. 

6.1: Controllability and observability of basic 
elements of the internai model. 

Behavioral testability measures are dedicated to measuring 
the "difficulty" in solving a given justification or fault­
cffect propagation problem (sec Section 4 ). Sin ce 
elements of the control and data mode! are involved in the 
solving of such problems, we define testability measures 



in terms of controllability and observability for each basic 
element of the internai mode!. 
For the basic elements of the data model involvcd in the 
generation process 
• the controllability measures associated with an
operation node indicate the difficully in setting the output
of the operation node at a given value and the
obscrvability measures indicate the difficulty in
propagating a fault effect from the output of the operation
node to a primary output.
• the controllabilily measures associated with a data node
indicate the difficulty in setting the data node to a given
value and the observability measurcs indicatc the difficulty
in propagating a fault effect from the data node to a
primary output.
For the basic clements of the control mode! involved in
the generation process :
• the controllability measures for a transition T indicate
the difficulty in reaching the transition T from the initial
transition and the observability measures indicatc the
difficulty in reaching an observable transition from the
transition T.

6.2: Principles of controllability and 
observability computations. 

Controllability and obscrvability measures associaled with 
elemcnts of the data mode) (resp. control model) are 
computed by taking into account only information given 
by the data model (rcsp. control mode!). Wc have defincd 
three different ways to compute the measures associated 
with the basic elements of the data modcl (distancc-based 
measures, recursive formulae measures and fanout-based 
measures) while only two differenl ways are defined on the 
control model (distance-based and recursive formulac 
measurcs). 

7. Behavioral design methodologies.

Another way to rcduce the cost of test pattern generation 
is to use design methodologies for behavioral 
descriptions. These methodologies propose the designer a 
choicc of descriptions modifications allowing the 
controllability and/or the observability of basic elements 
of the internai model to be increased. These modifications 
involve the addition of functionalities to the bchavioral 
description; indecd they can be performcd only during the 
design phase of an integrated circuit. 
The objective is to propose a set of modification rules for 
the internai mode! allowing the designer to cnhance the 
controllability and/or the observability of the basic 
clements. These enhancements are realised by creating 
ncw access paths toward basic elemenls of the description. 
The access paths can be generated by adding ncw test 
points or new statements. The addition of test points 
allows the designer to generate access paths to the poor 
controllability and observability areas. Two types of test 
points have been defined, referred to as control points and 

observation points. Control points are primary input 
variables used to enhance controllability; observation 
points are primary output variables used to enhance 
observability. A second way to create access paths is to 
add new statements to the description. These statements 
consist either in initializing some basics elements of the 
description or in creating selective access paths by 
defining two behavioral modes : test and normal modes. 
In the normal mode the behavior is the same as it was 
initially. The test mode allows the designer to activate the 
access paths to the poor controllability and observabilily 
areas. 

8: Experiments. 

In this section, we describe differenl experiments which 
have been carried out in order to validate the proposed 
approach. First, we present experiments regarding 
controllability and observability measures, followed by 
experiments donc to validate complexity measures. 

8.1 : Experiments concerning controllability and 
observability measures. 

The objective of these experimenls is to verify that 
controllability and observability measures speed up the 
search process of behavioral test generation and 
consequcnlly reducc its cost 

Methods 
1 2 3 4 5 6 7 

Back1racb/fault 8.36 7.78 5.14 4.82 7.32 4.96 4.62 

Cl 
Dercctcd+Undctcctahl( 45 46 48 48 46 48 48 
°'<WN 5 4 2 2 4 2 2 
Rank 7 6 4 3 5 2 1 

Back:tracb/f ault 21..SS 19.1 14.38 13.12 15.02 12.56 11.22 

C2 Dc1Cctcd+Undetcctal:i.t V 32 38 40 34 40 42  

0,,wed 23 18 12 10 16 10 8 
Rank 7 6 4 3 s 2 1 

Back1racb/faul t 24A2 19.36 18.22 17.46 20.48 18.6 15.3 

C3 
Deloelcd+Undc=tabi< 14 28 31 33 28 30 35 

°'<WN 36 22 19 17 22 20 15 
Rank 7 5 3 2 6 4 1 

Back1racb/fault 15.32 15.35 11.61 7.58 15.41 11..SI 7.9 

C4 
Dc1ecu:d+Undctcctabl1 22 21 23 26 21 26 30 

0,,wed 9 IO 8 5 IO 5 ! 

Rank 5 6 4 2 7 3 1 
,_ �-

Backlncb/Cault 9.52 9.04 9.19 11.47 8.66 951 13.85 

C5 Dcll:c:md+Undetcctati1 21 19 19 17 19 18 16 

Droppod 0 2 2 4 2 3 5 

Rank 1 3 4 6 2 5 7 

Baâtraclu/fault 8.96 4.52 4..S6 4.16 2.96 3.64 4.96 

C6 
Dcrcclcd+Undetcctabl 20 22 22 23 24 2 2  2 1  

°'<wM 5 3 3 2 ! 3 4 
Rank 7 4 5 2 ! 3 6 

Table 1 : Results of the first experiment. 

The approach used for the experiments stems from the 
work of Patel [14 ]. Seven methods have bccn uscd for the 
experiments. Method l (see Table 1) perfonns the test 
pattern generation process without any controllability and 
observability measurcs. The six others consist in 
performing the test pattern generation process by using 
the controllability and observabilily measures described in 
Section 6. The experiment has involved three behavioral 
descriptions of circuits (Cl :ADD _BCD,C2:ALU8, 
C3:ALU64) and three experimental descriptions (C4, C5,



C6). The experiment results are summarized in Table 1. 
They allow us to highlight several important points. The 
first point is that among ail the proposed testability 
measures. none is found to be consistently superior in all 
cases. The second point is that it will be more efficient to 
switch between the different controllability and 
obscrvability measures than to use a sole and unique 
measure. 

8.2: Experiments on complexity measures. 

The objective of these experiments is to verify that using 
the complexity measures proposed in Section 5 allows the 
designer to reduce the cost of the behavioral test 
generation process. This reduction can be made by 
selecting the least complex description from among 
various descriptions of the same integrated circuit (IC). 
The experiments consist in describing the same IC in 

different ways. The test pattern generation process is then 
performed for each description. These cxpcriments have 
been performed on two circuits (C 1 : ADD _BCD and C2 : 
a counter). The behavior of these circuits has been 
described in three different ways (dl d2 d3). The 
cxpcriments results are summarized in Table 2. They 
givc for each behavioral description of the two circuits the 
complexity metrics defined in section 5 and the average 
number of backtracks pcr fault obtaine,d after performing 
the test pattern generation process. They allow us to 
highlight that the cost of the T.G. process is reduced for 
the descriptions pointed out as the least complex 
according to the complcxity mctrics. 

AAl RAI ADI ROI BacltlracU 

/fa alla 

dl 4 0.36 35 1.45 8.36 

Cl d2 6 0.42 56 1.86 25.62 

d3 8 0.47 80 2.35 30.74 

dl 28 1. 77 42 2 16.S 

C2 d2 30 2 49 2.75 25.21 
d3 32 2.53 56 3.6 56 

Table 2 : Results of the second experiment. 

9: Conclusions and future work. 

In this paper we have presented an approach for managing 
the tcsting related aspects of behavioral descriptions of 
digital circuits. The goal of this approach is to keep the 
cost of behavioral test pattern gencration process into 
rcasonnable bound, i.e. as Iow as possible. This goal is 
addressed by combining three kinds of methods: 
. a method aimed at simplifying behavioral description 
without adding functionnalities. 
. a method designed to assess the testability of behavioral 
descriptions and to use the related testability measure to 
spced up the test pattern gencration process. 
. a method define,d to improve the testability of behavioral 
description with the addition of functionalities. 

The two füst methods have been used in experimental 
studies to show that they lead to an effective test 
generation cost reduction. Based on these experiments we 
can conclude that testability measures must be used in 
order to accelerate the behavioral deterministic test pattern 
generation process. 
Experiments concerning the first method (involving both 
complexity measures and optimising rules) are in 
progress. We have reported some preliminary, but 
encouraging experimental results. 
Our future work will concentrate on a number of 
investigations which are briefly described below: 
. an interesting question appears to be whether benefits 
can be gained from the application of dynamic testability 
measures . 
. it would be intcresting to devclop algorithmic techniques 
that definitely lead to improvements of behavioral A TPG. 

References : 
[l) "DACAPO III", user manual Version 1.0, Dosis GmbH, 
September 1988. 
[2] "IEEE standard VHDL Language reference manual",
IEEE standard 1076, 1987. 
[3] D.S. Barclay, J.R. Armstrong, "A heuristic chip-kvel 
lest generation algorithm", 24th DAC, 1987, pp.257-261. 
[4] U.H. Levendel, P.R. Menon, "Test generation
algorithms for computer hardware description
languages",IEEE Trans. on computers, Vol. C-31, N° 7, July
1982, pp. 577-588
[5] F. E. Norrod, "An automatic test generation algorithm 
for hardware description languages," 26th DAC, 1989, 
pp.429-434.
[6] N. Giambiasi, J.F. Santucci, A.L. Courbis, V. Pla,
"Test pattern generation for behavioral descriptions in
VHDL", Euro-VHDL 91, Stockholm, September 1991,
pp.228-235.
[7] S.Y.H. Su, T. Lin, Functional testing techniques for
digital LSI/VLSI systems, 21th DAC, 1984, p. 517-528.
[8] S. Ghosh, T.J. Chalcraborty, "On behavior Fault 
mode Jing for digital designs", Journal of electronic tes ting 
theory and applications, 2, ppI35-151 (1991).
[9] N. Giambiasi , J.F. Santucci, A.L. Courbis, M. 
Boumédine, "General behavioural modeling framework for
hardware systems", EDAC, March 1990.
[10] T. J. McCabe , Structured Testing, IEEE Computer
Society 1983.
[ 11] M. Halstead,Elements of Software Science, Elsevier 
North-Holland, New-York, 1977. 
[12] M. Abramovici, M.A. Breuer, A.D. Friedman, Digital 
Systems Testing And Testable Design, Chapter. 9, Computer 
Science Press, New York 1990.
[13]J.F. Santucci, G. Dray, N. Giambiasi, M. Boumédine, "A 
methodology 10 reduce the computational cost of behavioral 
test pattern generation",29th DAC, 1992, pp267-272. 
[14] S. Patel and J. Patel, "Effectiveness of heuristics
measures for automatic test pattern generation," 23rd DAC,
1986, pp. 547-552.
[15] A. V. Aho, R. Sethi and J. D. Ullman, "Compilers : 
Principles, Techniques and tools, Addison-wesley", Ch.ap. 9,
1986 .
[16] R. Cosnard, "Algorithme parallèle : une étude de 
complexité, TSI 1987. Vol. 6, N°2. 


