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Abstract

We study a continuous time random walk on the d-dimensional lattice,
subject to a drift and an attraction to large clusters of a subcritical Bernoulli
site percolation. We find two distinct regimes: a ballistic one, and a subballistic
one taking place when the attraction is strong enough. We identify the speed
in the former case, and the algebraic rate of escape in the latter case. Finally,
we discuss the diffusive behavior in the case of zero drift and weak attraction.
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Keywords: Random walk in random environment, subcritical percolation, anoma-
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1 Model and results

Consider the graph of nearest neighbors on Z
d, d > 1, and write x ∼ y when

‖x − y‖1 = 1. Here, ‖ · ‖1 is the ℓ1-norm, though | · | denotes the Euclidean norm.
An environment is an element ω of Ω = {0, 1}Zd

. Environments are used to
construct the independent identically distributed (i.i.d.) Bernoulli site percolation
on the lattice. We consider the product σ-field on Ω and for p ∈ (0, 1), the probability
P = B(p)⊗Zd

, where B(p) denotes the Bernoulli law with parameter p. A site x in Z
d is

said open if ωx = 1, and closed otherwise. Consider the open connected components
(so-called clusters) in the percolation graph. The cluster of an open site x ∈ Z

d is
the union of {x} with the set of all y ∈ Z

d which are connected to x by a path

∗Partially supported by CNRS (UMR 7599 “Probabilités et Modèles Aléatoires”)
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with all vertices open. The cluster of a closed site is empty. We denote by Cx the
cardinality of the cluster of x.

It is well known that there exists a critical pc = pc(d) such that for p < pc,
P-almost surely, all connected open components (clusters) of ω are finite, though for
p > pc, there a.s. exists an infinite cluster. Moreover, it follows from [1], [10] that, in
the first case, the clusters size has an exponential tail: For any p < pc, there exists
ξ = ξ(p) > 0 such that for all x,

lim
n→∞

1

n
ln P(Cx > n) = −ξ .

In this paper, we fix p < pc. Let ℓ = (ℓk; 1 6 k 6 d) be a unit vector, λ and β two
non-negative number. For every environment ω, let Pω be the law of the continuous
time Markov chain Y = (Yt)t > 0 on Z

d starting at 0 with generator L given for
continuous bounded functions f by

Lf(x) = K
∑

e∼0

eλℓ·e−βCx

[
f(x + e) − f(x)

]
,

where we chose the normalizing constant K as K =
(∑

e∼0 eλℓ·e
)−1

for simplicity.
Given ω, define the measure µ on Z

d by

µ(x) = e2λℓ·x+βCx . (1)

The random measure µ combines a shift in the direction ℓ together with an attrac-
tion to large clusters. Observe that the process Y admits µ as invariant, reversible
measure. The markovian time evolutions of µ are of natural interest in the context
of random walks in random environment. They describe random walks which have a
tendency to live on large clusters, the attraction becoming stronger as β is increased.
The isotropic case, λ = 0, has been considered in [14] with a different, discrete-time
dynamics. There, the authors proved that the walk is diffusive for small β, and sub-
diffusive for large β. The investigation of slowdowns in the anisotropic case is then
natural. In [16], a random resistor network is considered with a invariant reversible
measure of the form C(x, ω)e2λℓ·x where the random field (C(x, ω); x ∈ Z

d) is sta-
tionary ergodic and bounded away from 0 and +∞: in this case, the random walks
in random environment is ballistic for all positive λ.

The study of a general dynamics in the presence of a drift contains many difficult
questions, and the advantage of the particular process Y considered here is that we
can push the analysis farther. We could as well handle the discrete time analogous
of Y , i.e. the random walks in random environment with geometric holding times
instead of exponential ones, which falls in the class of marginally nestling walks in
the standard classification (e.g., [20]). The Markov process Y can also be described
with it skeleton and its jump rates. The skeleton X = (Xn)n∈N is defined as the
sequence of distinct consecutive locations visited by Y . Then, X is a discrete time
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Markov chain with transition probabilities P̃ , given for x ∈ Z
d and e ∼ 0 by

∀x ∈ Z
d, ∀e ∼ 0, P̃ (Xn+1 = x + e|Xn = x) =

eλℓ·e

∑
e′∼0 eλℓ·e′

=: p̃e ,

and P̃ (Xn+1 = y|Xn = x) = 0 if y is not a nearest neighbor of x. This Markov chain
is simple, since X is the random walk on Z

d with drift

d(λ) =
1

∑d
k=1 cosh(λℓk)

(
sinh(λℓk)

)

1 6 k 6 d
. (2)

It is plain that for the random walk,

Xn

n
−→ d(λ) P̃ − a.s., (3)

so directional transience is clear and the law of large number for Y boils down to
the study of the clock process which takes care of the real time for jumps. As can be
seen from formula (6), the process considered here is a generalization of the so-called
random walk in a random scenery, or the random walk subordinated to a renewal
process, which are used as effective models for anomalous diffusions. The difference
is essentially that the environment field (i.e., the mean holding times) has here some
short-range correlations due to the percolation. It is also related to the trap model
considered in the analysis of the aging phenomenon introduced in [3]: the aging of
this model has been studied in details, see [4] for a recent review.

For a fixed ω, Pω is called the quenched law and we define the annealed law P
by

P = P × Pω.

Of course, statements which hold P -a.s., equivalently hold Pω-a.s. for P-a.e. envi-
ronment.

Finally, we stress that we assume d > 1 in this paper. The case d = 1 is special
since the critical threshold pc(1) = 1. Moreover, specific techniques are available in
one dimension, e.g. [20] for a survey, however we will stick as much as possible to
techniques applying for all d.

Our first result is the law of large numbers.

Theorem 1. (Law of large numbers) For any λ > 0 and any β > 0,

Yt

t
−−−−→
t→+∞

v(λ, β), P − a.s.,

where

v(λ, β) =
(
EeβC0

)−1

d(λ) . (4)

In particular, v(λ, β) = 0 if β > ξ or λ = 0 though v(λ, β) · ℓ > 0 if β < ξ and

λ 6= 0.
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As in the case λ = 0 considered in [14], slowdowns occur for large disorder
intensity β, when the walk gets trapped on large percolation clusters. This behavior
is reminiscent of the biased random walk on the supercritical percolation infinite
cluster [19], [2] where ballistic or subballistic regimes take place according to the
parameters values. The slowdowns in our paper have a similar nature to those in
some one dimensional random walks in random environment, see [18], [9] and [17].
Moreover, as in the one dimensional case, we obtain here explicit values for the
rate of escape, a rather unusual fact in larger dimension. More drastic (logarithmic)
slowdowns were also found for an unbiased walker in a moon craters landscape in
[6], [7], or diffusions in random potentials [11], but in these models the behavior at
small disorder is qualitatively different from the behavior without disorder.

The next result contains extra information on the subballistic behavior.

Theorem 2. (Subballistic regime) Let β > ξ.

1. For any d > 1 and λ > 0,

ln |Yt|

ln t
−−−−→
t→+∞

ξ

β
P − a.s.

2. If λ = 0, for any d > 2 we have

lim sup
t→+∞

ln |Yt|

ln t
=

ξ

2β
P − a.s.

3. If d = 1 and λ = 0 we have

lim sup
t→+∞

ln |Yt|

ln t
=

1

2
(
β

2ξ
+

1

2
)−1 P − a.s.

Hence, the spread of the random walks in random environment scales alge-
braically with time in all cases. Note that in the isotropic case λ = 0, the slowdown
is larger for d = 1 than for d > 2. This will appear in the proof as a consequence
of the strong recurrence of the simple random walk X in the one-dimensional case.
Note that our results are only in the logarithmic scale, though the scaling limit has
been obtained for the isotropic trap model, in dimension d = 1 (e.g., [4]), and d > 1
[5] with limit given, if the disorder is strong, by the time change of a Brownian mo-
tion by the inverse of a stable subordinator (fractional kinetics). Though we believe
that the scaling limit of our model without drift (λ = 0) is the same, we could not
get finer results because of the presence of correlations in the medium. Moreover,
the case of a drift λ 6= 0 has not been considered in the literature, except for d = 1
with renormalization group arguments [13].

To complete the picture, we end by the diffusive case. (Recall that β < ξ is
sufficient for E(eβC0) < ∞.)
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Theorem 3. (Diffusive case regime) Assume λ = 0, and E(eβC0) < ∞. Then,

we have a quenched invariance principle for the rescaled process Zǫ = (Zǫ
t )t > 0,

Zǫ
t = ǫ1/2Yǫ−1t: For almost every ω, as ǫ ց 0, the family of processes Zǫ converges

in law under Pω to the d-dimensional Brownian motion with diffusion matrix Σ =(
d × E(eβC0)

)−1
Id. Moreover,

lim sup
t→+∞

ln |Yt|

ln t
=

1

2
a.s. (5)

For the proof of our results we will take the point of view of the environment
seen from the walker. It turns out that the “static” environmental distribution is
invariant for the dynamics. Hence the environment is always at equilibrium.

The paper is organized as follows. In the next section, we introduce the basic
ingredients for our analysis and we prove the law of large numbers of Theorem 1.
The last section is devoted to the subballistic regime and contains the proofs of
Theorem 2 and 3.

2 Preliminaries and the proof of Theorem 1

For x ∈ Z
d, T x will denote the space shift with vector x. We will consider also the

time shift θ.

Skeleton and clock process of Y . The sequence (Sn; n > 0) of jump times of the
Markov process Y with right-continuous paths is defined by S0 = 0 < S1 < S2 < . . .,
Yt = YSn

for t ∈ [Sn, Sn+1), YSn+1 6= YSn
. The skeleton of Y is the sequence X given

by Xn = YSn
, n > 0. As mentioned above, the skeleton X of Y is the simple random

walk with drift. For any x in Z
d, the jump rate of (Yt)t > 0 at x is e−βCx . Hence

the time Sn of the n-th jump is the sum of n independent random variables with
exponential distribution with mean eβCXi , i = 1, . . . n. This means that the sequence
E = (Ei)i∈N, with Ei = e−βCXi (Si+1 −Si), is a sequence of i.i.d. exponential variables
with mean 1, with E and X independent. The law of this sequence will be denoted
by Q (Q = Exp(1)⊗N, with Exp(1) the mean 1, exponential law). For any n in N,
the time Sn of the n-th jump is given by

Sn =

n−1∑

i=0

Eie
βCXi . (6)

This sequence can be view as a step function St := S[t], where [·] is the integer part,
and we also define its generalized inverse S−1: for any t > 0,

S−1(t) = n ⇐⇒ Sn 6 t < Sn+1 .

We observe that Sn → ∞ as n → ∞ Pω-a.s. for all ω, making the function S−1

defined on the whole of R+. Then, Pω-a.s.,

XS−1(t) = Y (t) , ∀t > 0 . (7)
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and therefore, the process S−1 is called the clock process.
Conversely, let E , X and ω be independent, with distribution Q, P̃ and P respec-

tively, defined on some new probability space. Then, fixing λ and viewing β as a
parameter, by (6) and (7) we construct, on this new probability space, a coupling
of the processes Y = Y (β) for all β ∈ R. The coupling has the properties that the
skeleton is the same for all β, and that the clock processes are such that for β > β ′

and t > 0,
S−1(β; t) 6 S−1(β ′; t). (8)

The environment seen from the walker. Depending on the time being discrete
or continuous, we consider the processes (ω̃n)n∈N and (ω̂t)t > 0 defined by

ω̃n = TXnω , ω̂t = T Ytω = ω̃S−1(t)

for n > 0, t > 0. We start with the case of discrete time.

Lemma 1. Under P , (ω̃i)i∈N is a stationary ergodic Markov chain. The same holds

for (ω̃i, Ei)i∈N.

Proof of Lemma 1. As (Ei)i∈N is an i.i.d. sequence of variables independent of ω̃, it
is enough to prove Lemma 1 for the process (ω̃i)i∈N. Under P (resp Pω) (ω̃i)i∈N is
markovian with transition kernel R defined for any bounded function f by

Rf(ω) =
∑

e∼0

p̃ef(T eω) ∀ω ∈ Ω,

and initial distribution P (resp δω). The transitions of (ω̃i)i∈N does not depend on ω
like those of X and, in this sense, the sequence is itself a random walk. Since P is
invariant by translation,

E[f(ω̃1)] =

∫ ∑

e∼0

p̃ef(T eω)dP =
∑

e∼0

p̃e

∫
f(T eω)dP = E[f(ω)],

showing that P is an invariant measure for (ω̃i)i∈N.
We will use F to denote the product σ-field on ΩN, and for any k > 0, Fk will

denote the σ-field generated by the k first coordinates. Note that θ is measurable
and preserves the law of ω̃ under P . We have to prove that the invariant σ-field
Σ := {A ∈ F , 1A(ω̃) = 1A(θω̃), P -a.s.} is trivial. Let Y be a Σ-mesurable bounded
random variable on ΩN, we have to show that it is P -a.s. constant.

Define for all ω in Ω, hY (ω) := Eω[Y ]. We will study this function with standard
arguments e.g. chapter 17.1.1 of [12]. Using Markov property and the θ-invariance
of Y , we can show that,

hY (ω̃k) = E[Y |Fk] ∀k ∈ N, P -a.s. (9)
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As a consequence, under P , (hY (ω̃k))k > 0 is both a stationary process and an a.s.
convergent martingale, and hence it is a.s. constant. In particular,

Y = hY (ω̃0) P -a.s.,

what means that Y can be consider as a function of the first coordinate alone. The
next step is to show that hY is P-a.s. harmonic, that is

RhY (ω̃0) = hY (ω̃0), P -a.s.

It is a consequence of the following computation,

RhY (ω̃0) = E[hY (ω̃1)|F0] P -a.s.

= E[E[Y |F1]|F0] P -a.s.

= hY (ω̃0) P -a.s.,

where the second equality is true because of (9). We will now show that Y is invariant
by translation in space. By invariance of P and harmonicity of hY , it is true that

∑

e∼0

∫
p̃e(Y − Y ◦ T e)2dP = 0.

For every e neighbour of 0, p̃e > 0, and the previous equation implies that, P almost
surely Y = Y ◦ T e for any e ∼ 0. Together with the ergodicity of P, this shows that
Y is P -a.s. constant, and completes the proof.

As a consequence of Lemma 1 and Birkhoff’s ergodic theorem, for any fucntion
f in L1(Ω

N) (or f non negative),

1

n

n−1∑

k=0

f(θkω̃)
n→+∞
−−−−→ E[f ] P - a.s.

Now, we turn to the time continuous case, and we consider the empirical distri-
bution 1

t

∫ t

0
δω̂s

ds of the environment seen from the walker up to time t. Our next
result is a law of large numbers for this random probability measure. For small β,
the empirical distribution converges to some limit P

0, which is then an invariant
measure for (ω̂t)t > 0.

Corollary 1. If β < ξ then P -almost surely, the empirical distribution of the

environment seen from the walker, 1
t

∫ t

0
δω̂s

ds, converges weakly to P
0 defined by

dP
0 = eβC

E[eβC ]
dP.

Proof of Corollary 1. We need to show that t−1
∫ t

0
f(ω̂s)ds →

∫
fdP

0 as t → ∞, for
all real bounded continuous function f on Ω. Since eβC0 is integrable when β < ξ,
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this follows from the convergence along the sequence t = Sn, n → ∞. By (6), this
is equivalent to

n−1
∑n−1

i=0 Eie
βCXi f(ω̃i)

n−1
∑n−1

i=0 Eie
βCXi

−→

∫

Ω

fdP
0 , n → ∞.

We first study the P -almost sure convergence of the denominator, i.e. of n−1Sn.
Define the real function g on (RN, ΩN)

g : ((Ei)i∈N, (ω̃i)i∈N) 7→ E0e
βC0(ω̃0)

and note that CXn
= C0(ω̃n). Applying Lemma 1 and the ergodic theorem to (ω̃, E)

and to the non negative function g, we obtain that n−1Sn converges P -almost surely
to E[eβC0 ]. The numerator can be studied with the same arguments, and we obtain
the claim since for β < ξ both limits are finite.

With this in hand, we can easily complete the

Proof of Theorem 1. Write

Yt

t
=

XS−1(t)

S−1(t))

S−1(t)

S(S−1(t))

S(S−1(t))

t
.

Recall from (3) that the first factor in the right-hand side converge almost surely to
d(λ) as t → ∞. In the proof of Corollary 1 we have shown that S(S−1(t))/S−1(t) →
E[eβC0 ] a.s. for β < ξ, but clearly the result remains true for all β (the limit is infinite
for β > ξ). For the last factor in the right-hand side we simply observe that

S(S−1(t))

S(S−1(t) + 1)
6

S(S−1(t))

t
6 1 , (10)

yielding that S(S−1(t))/t converges P -almost surely to 1 if E[eβC0 ] < ∞: in this
case, we then conclude that Yt/t converges P -almost surely to v(λ, β) given by (4).

In the case E[eβC0 ] = ∞, we just use the right inequality in (10) to obtain the
P -almost surely convergence of Yt/t to v(λ, β) = 0.

3 Subballistic regime, and the proofs of Theorem

2 and 3

We start with a few auxiliary results.

Lemma 2. Assume d > 2 or λ > 0. Then, for any ǫ > 0, there exists α > 0 such

that P -almost surely, we eventually have

♯
{
i 6 n, CXi

> (
1

ξ
− ǫ) ln n

}
> nα

with the notation ♯A for the cardinality of a set A.
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Proof of Lemma 2. Define the range Rn as the number of points visited by (Xi)i∈N

during the first n steps. For λ > 0, there exists a constant c1 > 0 such that P̃ -almost
surely eventually Rn > c1n. For λ = 0 and d > 2, it is well known (see chapter 21 of

[15]) that there exists a constant c2 such that P̃ -almost surely eventually Rn > c2
n

ln n

(when d > 3, the walk is transient and the correct order of Rn is n). In all cases,
there exists a constant c3 > 0 such that under the assumptions of Lemma 2, we have
P̃ -almost surely, eventually, Rn > c3

n
ln n

. For a fixed n in N, we define recursively
the time T n

i by

T n
0 = 0,

T n
i = inf{T n

i−1 < k 6 n, |Xk − XT n
j
| > 2(

1

ξ
− ǫ) ln n, ∀j < i} ∀i > 1,

inf ∅ = +∞.

Note that the balls with center XT n
j

and radius (ξ−1 − ǫ) lnn are pairwise disjoint,
and define Kn the number of such balls, i.e.

Kn = max{i > 0 : T n
i < +∞}

As the cardinality of those ball is c4 lnd n (for some c4 > 0), it follows from the

previous discussion on the range that P̃ -almost surely, eventually, Kn > c n
lnd+1 n

,
where c denotes a positive constant. From now on we fix a path (Xi)i 6 n such that
Kn > c n

lnd+1 n
. Then,

P

(
♯
{
i 6 Kn, CXTn

i
6 (

1

ξ
− ǫ) ln n

}
> Kn − nα

)

= P

(
∃I ⊂ {1, . . .Kn}, ♯I = Kn − [nα] : ∀i ∈ I, CXTn

i
6 (

1

ξ
− ǫ) ln n

)

6
∑

I⊂{1,...Kn},♯I=Kn−[nα]

P

(
∀i ∈ I, CXTn

i
6 (

1

ξ
− ǫ) lnn

)

For all j such that 0 6 j 6 Kn−nα, Bn
i denotes the ball with center XT n

i
and radius

(1
ξ
− ǫ) ln n. The event {CXTn

i
6 (1

ξ
− ǫ) ln n)} is σ{ωx, x ∈ Bn

i } measurable. As the

balls Bn
i are disjoint and the environment is i.i.d.,

P

(
♯
{
i 6 Kn, CXTn

i
6 (

1

ξ
− ǫ) ln n

}
> Kn − nα

)

6

(
Kn

nα

)(
1 − P(C0 > (

1

ξ
− ǫ) lnn)

)Kn−nα

6 c5n
nα(

1 − n−(1−ǫξ)+o(1)
)c n

lnd+1 n ,

for some suitable constant c5 > 0. We now choose α < min(1, ǫξ), so that
∑

n

P

(
♯
{
i 6 Kn, CXTi

6 (
1

ξ
− ǫ) ln n

}
> Kn − nα

)
< ∞

We conclude using Borel-Cantelli’s lemma.
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Lemma 3. Assume β > ξ. For d > 2 or λ > 0, we have lim infn
ln Sn

ln n
>

β
ξ
, P -almost

surely.

Proof of Lemma 3. Let η be a positive real number. With ǫ := η/β, from Lemma

2, there exists α > 0 such that P̃ ⊗ P-almost surely, there exists a natural number
N = N(X, ω) such that for n > N , the set I = {i 6 n, CXi

> (1
ξ
− ǫ) ln n} has

cardinality ♯I > nα. For n > N ,

Q(Sn < nβ/ξ−η) 6 Q(Eie
βCXi < nβ/ξ−η, i ∈ I)

< Q(E1e
βCXi < nβ/ξ−η)nα

< Q(E1 < nβǫ−η)nα

= (1 − e−1)nα

.

From previous inequality, we obtain that Q(Sn < nβ/ξ−η) is the general term of a
convergent series and we can use Borel-Cantelli’s Lemma to conclude.

Lemma 4. Assume β > ξ. For d > 1 and λ > 0, we have P -almost surely,

lim supn
lnSn

lnn
6

β
ξ
.

Proof of Lemma 4. For any α in (0, 1), by subadditivity we have (u+ v)α 6 uα + vα

for all positive u, v, and then

Sα
n 6

n∑

i=1

Eα
i eαβCXi .

Now, define the function fα

fα : (RN, ΩN) → R

((Ei)i∈N, (ω̃i)i∈N) → Eα
0 eαβC0(ω̃0).

Applying Lemma 1 and the ergodic theorem to (ω̃, E) with the non negative function
fα, we obtain that for any α such that αβ < ξ,

lim sup
n→+∞

Sα
n

n
6 lim

n→+∞

∑n
i=1 E

α
i eαβCXi

n
= EQ(Eα

1 ) × E(eαβC0) < ∞

almost surely. Therefore,

lim sup
n→+∞

ln Sn

ln n
<

1

α
.

Since α is arbitrary in (0, ξ/β), the proof is complete.

The two following lemmas deal with the one dimensional case. Notice that when
d = 1, for all n > 0,

P(C > n) = p
n−1∑

k=0

pkpn−1−k = npn,

and as a consequence ξ = − ln p.
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Lemma 5. Assume β > ξ. For d = 1 and λ = 0, we have P -almost surely,

lim supn
lnSn

lnn
6

β
2ξ

+ 1
2
.

Proof of Lemma 5. Here we need to relabel our sequence of exponential variables
(Ei; i > 0). For y ∈ Z, k ∈ N, define Ey,k) by

Ey,k = (En with i such that Xi = y, ♯{j : 0 6 j 6 i, Xj = y} = k ,

i.e. the exponential corresponding to the k-th passage at y. These new variables are
a.s. well defined when d = 1 and λ = 0, and it is not difficult to see that the sequence
(Ey,k)y∈Z,k∈N is i.i.d. with mean 1 exponential distribution, and independent of X
and of ω. The number of visits of the walk to a site y at time n will be denoted by
θ(n, y). We can rewrite Sn in the following way,

Sn =
n−1∑

i=0

eβCXiEi =
∑

y∈Z

eβCy




θ(n,y)−1∑

k=0

Ey,k


 . (11)

Notice that for any η > 0, P̃ -almost surely for n large enough, θ(n, y) = 0 for

y > n
1
2
+η (see for example Theorem 5.7 p44 in [15]). As a consequence, we obtain

that for any positive α < 1, P̃ -almost surely for n large enough,

Sα
n 6

n
1
2+η∑

y=−n−
1
2 +η

eαβCy




θ(n,y)−1∑

k=0

Ey,k




α

.

Here and below, the sum
∑b

y=a with real numbers a < b, ranges over all y ∈ Z with

a 6 y 6 b. Notice now that for any ν > 0, P̃ -almost surely for n large enough,
sup{θ(n, y), y ∈ Z} < n

1
2
+ν(see for example Theorem 11.3 p118 in [15]) and we

obtain for such n,

1

2n
1
2
+ηn( 1

2
+ν)α

Sα
n 6

1

2n
1
2
+η

n
1
2 +η∑

y=−n−
1
2+η

eαβCy (
1

n
1
2
+ν

n
1
2+ν∑

k=0

Ey,k)
α. (12)

For any y in Z and n in N, we define uy,n =
1

n
1
2
+ν

n
1
2 +ν∑

k=0

Ey,k. Fix µ > 0, according to

the large deviation principle for i.i.d. sequences, there exists Iµ > 0 such that, for
any y in Z and any n in N,

Q(|uy,n − 1| > µ) 6 e−Iµn
1
2 +ν

.

Using the independance of the (Ey,k)y∈Z,k∈N, it is easy to check that Q(∃y ∈ [−n
1
2
+η, n

1
2
+η], |uy,n−

1| > µ) is the general term of a convergent series and using Borel-Cantelli’s lemma

we obtain that Q-almost surely, for n large enough and for any −n
1
2
+η < y < n

1
2
+η,

|uy,n − 1| < µ. (13)

11



From the ergodicity of the environment, it is true that P-almost surely,

1

2n
1
2
+η

n
1
2 +η∑

y=−n−
1
2+η

eαβCy
n→+∞
−−−−→ E[eαβC ]. (14)

Using now (12),(13) and (14), we obtain that for any α < ξ/β, there exists M < +∞
such that, P -almost surely for n large enough,

Sn < Mn
1
2α

+ η
α

+ 1
2
+ν .

Since the last inequality is true for η and µ arbitrary small and α arbitrary close to
ξ/β, the proof is complete.

Lemma 6. Assume β > ξ. For d = 1 and λ = 0, we have P -almost surely,

lim infn→∞
lnSn

ln n
>

β
2ξ

+ 1
2
.

Proof of Lemma 6. Let η and ν be two positive real numbers. We recall two facts
used in Lemma 5, P̃ -almost surely and for n large enough,

• θ(n, y) = 0 for any y > n
1
2
+ η

2 ,

• sup{θ(n, y), y ∈ Z} < n
1
2
+ νξ

4 .

As a consequence of those two facts, P̃ -almost surely, for n large enough, at least

n
1
2
− νξ

4 sites are visited more than n
1
2
−η times, we will denote the set of those sites

by On. Fix now a path (Xi)i > 0 such that for all n > 0, ♯On > n
1
2
− νξ

4 . As in the

proof of Lemma 3, we can choose a familly of αn := n
1
2−

νξ
4

1
2
( 1

ξ
−ν) ln n

points (yi)i 6 αn
in

On such that the intervals (Ii)i 6 αn
centered in (yi)i 6 αn

and of length 1
2
(1

ξ
− ν) are

disjoint. If all sites of an intervall are open, it will be said open, otherwise it will be
said closed. Using the fact that the (Ii)i 6 αn

are disjoint, we obtain that,

P(Ii is closed, for all i 6 αn) 6 (1 − n− 1
2
(1−νξ)+o(1))αn

6 e−n
νξ
4 +o(1)

.

As a consequence of Borell-Cantelli’s lemma we obtain that P -almost surely, for n
large enough, there exists at least one site visited more than n

1
2
−η times and that

belongs to a cluster of size greater than 1
2
(1

ξ
− ν) ln n, we will note this site ỹn, and

therefore,

Sn >

n
1
2−η∑

i=0

n
β
2ξ

−νβEỹn,i.

Using the large deviation upper bound similarly to the lines below (12), we obtain
from the last inequality that P -almost surely, for n large enough,

Sn >
1

2
n

1
2
+ β

2ξ
−νβ−η.

Since ν and η can be choosen arbitrary small, this last inequality ends the proof.

12



Proof of Theorem 2. We first assume that β > ξ. From Lemma 3 and Lemma 4, we
know that under assumptions of parts 1 or 2 of Theorem 2,

lim
n→+∞

ln Sn

ln n
=

β

ξ
P − a.s.

From the inequalities

ln S(S−1(t))

ln S−1(t)
6

ln t

ln S−1(t)
<

ln S(S−1(t) + 1)

lnS−1(t)
,

we deduced that P -almost surely,

lim
t→+∞

ln t

ln S−1(t)
=

β

ξ
.

Applying the same arguments as above, we deduce from Lemma 5 and Lemma 6
that under assumptions of part 3 of Theorem 2,

lim
t→+∞

ln t

ln S−1(t)
=

β

2ξ
+

1

2
, P − a.s.

Write now,
ln |Yt|

ln t
=

ln |XS−1(t)|

ln S−1(t)

ln S−1(t)

ln t
.

To conclude in the case β > ξ, note that under assumptions of part 1, ln |Xn|
lnn

con-

verges P̃ -almost surely to 1 and under assumption of part 2 and 3, P̃ -almost surely,
lim supn→+∞

ln |Xn|
ln n

= 1
2

by the law of iterated logarithm.
To extend the results to the border case β = ξ, we use the property (8) of

the coupling, which implies that the long-time limit of ln |Yt|
ln t

is non-increasing in β.
This completes the proof of part 1 with β = ξ. Now, we will prove independently
lim supn→+∞

ln |Yt|
ln t

= 1/2 (5) below. Again, by the monotonicity of the coupling, this
ends the proof of parts 2 and 3 with β = ξ.

Proof of Theorem 3. First observe that when λ = 0,

f(Yt) −

∫ t

0

(2d)−1e−βCYs

∑

e∼0

[
f(Ys + e) − f(Ys)

]
ds

is a Pω-martingale for f continuous and bounded. Then, for all ω, the process Y is
a square integrable martingale under the quenched law Pω. Its bracket is the unique
process 〈Y 〉 taking its values in the space of nonnegative symmetric d × d matrices
such that YtY

∗
t − 〈Y 〉t is a martingale and 〈Y 〉0 = 0. We easily compute

〈Y 〉t =

∫ t

0

e−βCYs ds × d−1Id
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By Corollary 1, we see that the bracket Zǫ is such that, for all t > 0,

〈Zǫ〉t = ǫ〈Y 〉ǫ−1t

= ǫ

∫ ǫ−1t

0

e−βCYs ds × d−1Id

−→ tΣ as ǫ ց 0

P -a.s., and then in Pω-probability for a.e. ω. Let us fix such an ω, and use the
law Pω. Since the martingale Zǫ has jumps of size ǫ−1/2 tending to 0 and since its
bracket converges to a deterministic limit, it is well known (e.g. Theorem VIII-3.11
in [8]) that the sequence (Zǫ, ǫ > 0) converges to the centered Gaussian process with
variance tΣ, yielding the desired invariance principle under Pω.

We now prove (5). Since λ = 0 we have lim supn ln |Xn|/ lnn = 1/2, P̃ -a.s., and
since EeβC0 < ∞ it holds a.s. limt ln S−1(t)/ ln t = 1. This implies the claim.

Concluding remarks: (i) Part 2 of Theorem 2 deals with the upper limit in the
subdiffusive case λ = 0, β > ξ. We comment here on the lower limit. In dimension
d > 3, n−1/2|X[ns]| converges to a transient Bessel process, and it is not difficult to
see that

lim sup
t→∞

ln |Yt|

ln t
= lim

t→∞

ln |Yt|

ln t
= ξ/(2β)

In dimension d 6 2, X is recurrent, and then lim inft |Yt| = 0 and

lim inf
t→∞

ln |Yt|

ln t
= −∞

(ii) A natural question is: What does the environment seen from the walker
look like in the subballistic case? In fact, the prominent feature is that the size of
surrounding cluster is essentially the largest one which was visited so far. Consider
for instance the case of positive λ. One can prove that, for β > ξ and ǫ > 0,

1

t

∣∣∣
{
s ∈ [0, t] : (ln t)−1CYs

∈ [β−1 − ǫ, β−1 + ǫ]
} ∣∣∣ −→ 1

P -a.s. as t ր ∞.

Acknowlegement: We thank Marina Vachkosvskaia for stimulating discussions on
the model.
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