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Abstract This paper explores the addition of constraints to the linear
programming formulation of the support vector regression problem for the
incorporation of prior knowledge. Equality and inequality constraints are
studied with the corresponding types of prior knowledge that can be con-
sidered for the method. These include particular points with known values,
prior knowledge on any derivative of the function either provided by a prior
model or available only at some specific points and bounds on the function
or any derivative in a given domain. Moreover, a new method for the simul-
taneous approximation of multiple outputs linked by some prior knowledge
is proposed. This method also allows consideration of different types of prior
knowledge on single outputs while training on multiple outputs. Synthetic
examples show that incorporating a wide variety of prior knowledge becomes
easy, as it leads to linear programs, and helps to improve the approxima-
tion in difficult cases. The benefits of the method are finally shown on a
real-life application, the estimation of in-cylinder residual gas fraction in
spark ignition engines, which is representative of numerous situations met
in engineering.

Key words Support Vector Regression – kernel approximation – prior
knowledge – multi-outputs

1 Introduction

In non-linear function approximation, Support Vector Regression (SVR)
has proved to be able to give excellent performances in various applications
[Müller et al., 1997,Stitson et al., 1999,Mattera and Haykin, 1999]. Based
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on the statistical learning theory [Vapnik, 1995], SVR originally leads to a
quadratic programming (QP) problem [Cristianini and Shawe-Taylor, 2000,
Smola and Schölkopf, 2004]. Other formulations of the SVR problem min-
imizing the ℓ1-norm of the parameters can be derived to yield lin-
ear programs (LP) [Weston et al., 1999,Bennett, 1999,Smola et al., 1999b,
Mangasarian and Musicant, 2002]. Some advantages of this latter approach
can be noticed compared to the QP formulation such as the sparsity of sup-
port vectors [Weston et al., 1999,Bennett, 1999,Smola et al., 1999b] or the
ability to use more general kernels [Mangasarian, 2000].

Support Vector Regression aims at learning an unknown function based
only on a training set of N input-output pairs (xi, yi) in a black box
modelling approach. Nonetheless, in real world applications, such as sys-
tem identification, some information is usually known beforehand. This
prior knowledge can take many forms from the positiveness of a physi-
cal variable to the shape of the function on a particular region. Incorpo-
rating this knowledge into the learning scheme can improve the quality
of the model in different ways. The function can be approximated in re-
gions of the input space where the data are sparse, specific properties of
the function such as a maximum or a curvature at some point can be in-
troduced in the model, and so on. However, incorporating prior knowledge
into support vector learning is not trivial and is still a partially open issue.
The methods developed for neural networks and that use prior knowledge
for the network initialization [Andrews and Geva, 1999] or structure selec-
tion (KBANN) [Towell and Shavlik, 1994] cannot be directly transferred to
SVMs since these tasks are typically handled by support vector learning.
The smoothness assumption is also another simple form of prior knowledge
implicitly included in support vector machines (SVM) [Smola et al., 1998,
Evgeniou et al., 2000]. On the other hand, a certain amount of work has
been done in the past decade to build support vector machine classifiers or
kernels, whose outputs are invariant under a known transformation of the
input (see [Lauer and Bloch, 2007] for a recent overview). However, such
type of prior knowledge is rarely available in the regression framework.

The present paper explores the addition of equality or inequality con-
straints of a general form, linear in the parameters, to the LP-SVR problem
and exposes the different types of prior knowledge that can be included in
the learning with this technique. Interesting issues are considered such as:
knowledge in a region of the input space without data, knowledge on any
derivative provided either by a prior model or only at particular points and
prior knowledge between multiple outputs.

The first part of the paper presents the related work and discusses the
differences and advantages of the proposed method. The linear programming
formulation of the SVR problem is then recalled in section 3 before exposing
the proposed method. In particular, section 4 is dedicated to the introduc-
tion of equality constraints to the optimization problem, while section 5
considers prior knowledge in the form of inequalities. Practical examples on
synthetic data are given throughout the paper to show the interest and effi-
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ciency of the methods, while section 6 presents their application to real-life
problems.

Notations: all vectors are column vectors written in boldface and low-
ercase letters whereas matrices are boldface and uppercase, except for the
ith column of a matrix A that is denoted Ai. The vectors 0 and 1 are
vectors of appropriate dimensions with all their components respectively
equal to 0 and 1. For A ∈ R

d×m and B ∈ R
d×n containing d-dimensional

sample vectors, the “kernel” K(A, B) maps R
d×m × R

d×n in R
m×n with

K(A, B)i,j = k(Ai, Bj), where k : R
d × R

d → R is the kernel function.
In particular, if x ∈ R

d is a column vector then K(x, B) is a row vec-
tor in R

1×n. The matrix X ∈ R
N×d contains all the training samples xi,

i = 1, . . . , N , as rows. The vector y ∈ R
N gathers all the target values yi for

these samples. The kernel matrix K(XT , XT ) will be written K for short.
Uppercase Z is a set containing |Z| vectors that constitute the rows of the
matrix Z. The function sinc is defined as sinc(x) = sin(πx)/(πx), for all
x 6= 0 and sinc(0) = 1.

2 Related work

Classification. A certain amount of work has been done in the past decade
to build SVM classifiers or kernels, whose outputs are invariant under a
known transformation of the input. Such invariances can be, for instance,
incorporated by creating new samples to enlarge the training set. This idea
was first introduced in [Poggio and Vetter, 1992] as virtual samples. It is
based on a simple observation that the generalization ability of the obtained
model depends on the number of data at hand. The more relevant samples
we have, the better we learn. This method can be easily implemented in
the context of pattern recognition. For instance, in image recognition, in-
variance of the output to a translation or rotation of the input image is
often considered. In [Schölkopf et al., 1996], the virtual sample approach
was combined with SVMs. The idea was to generate the virtual samples
from support vectors only since they contain all the information about the
problem. The virtual sample method can also directly be applied to regres-
sion, but, in this case, prior knowledge considering invariance of the output
is not easily available (except for a few special cases such as symmetric or
periodic functions). Nonetheless the idea of virtual samples can be modified
to be used for regression when prior knowledge on the function is given in
terms of output values or derivatives instead of invariance as in the proposed
method of section 4.1.

Another simple and straightforward way to incorporate prior knowledge
is to weight the samples. In practice, this amounts to weight the errors or to
choose a different trade-off parameter C for different samples in the criterion
to minimize. Originally, for pattern recognition, different misclassification
costs Ci were introduced in [Joachims, 2002] to deal with unbalanced data,
i.e. providing much more samples of a class compared to the other. Another
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approach for the weighting of SVM can be found in [Wu and Srihari, 2004]
where a confidence value is assigned to every sample based on some knowl-
edge of the data acquisition or labeling procedure. The application to regres-
sion is straightforward. In [Tay and Cao, 2002], the weighting of samples is
applied to non-stationary time-series forecasting where it was noticed that
the distant past data were less significant than the recent past data. To
include this forgetting effect, the weights Ci applied on the errors are given
by an increasing function of time.

Constrained regression. The topic of linearly constrained least squares re-
gression has a long history and is involved in a variety of applications,
both with equality constraints or inequality constraints. Incorporating lin-
ear equality constraints is useful whenever one or several coefficients must be
expressed as a linear combination of the others. This is the case for instance
when the intercept is known to be zero, when the sum of the coefficients
must be equal to 1 or when the steady state gain is known in the dynamical
system identification framework [Söderström and Stoica, 1988]. Inequality
constraints may arise from requirements such as positivity, monotonicity,
and convexity [Lawson and Hanson, 1995]. Many points presented here are
close in spirit to these approaches, in the sense that prior knowledge is
also incorporated by the addition of constraints. However, even if the least
squares formulation can be extended to be applied to non-linear models by
considering expansions of basis functions [Johansen, 1996], it does not han-
dle non-quadratic error criteria nor select the regressors or basis functions
as done in the SVM framework.

Spline models. In function modeling by fitting separate models in differ-
ent regions of the input space, the introduction of constraints to take into
account continuity knowledge at the boundary points, denoted knots, is the
basic idea in splines models [Hastie et al., 2001]. Moreover, in smoothing
splines, this idea is extended for avoiding to select the knots by using a
maximal set of knots and controlling the resulting function smoothness by
regularization. Thus some of the ideas presented here have strong links with
splines models. In particular, section 4.4.2 focuses on building multi-models
for continuous function approximation. However, it presents in a general way
the nature of the submodels and extends the fitting criterion to the ℓ1-norm.
Beside this, a certain amount of work has been done to incorporate more
prior knowledge in the form of linear inequalities into spline models, see for
instance [Villalobos and Wahba, 1987] and [Micchelli and Utreras, 1988].

Semiparametric modeling. In [Smola et al., 1999a], prior knowledge is in-
corporated by moving from nonparametric to semiparametric modeling. In
this scheme, the bias term of the the kernel expansion is replaced by a para-
metric model whose parameters are determined by the optimization proce-
dure. Semiparametric modeling can be included either in the quadratic or
linear programming form of SVR.
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Knowledge in a region of input space. In [Fung et al., 2002], the authors
use a different approach and introduce prior knowledge on polyhedral re-
gions in the context of linear programming SVM for linear classification. It
was then extended to the non-linear case in [Fung et al., 2003] via a refor-
mulation of the kernel. In [Mangasarian et al., 2004], it was finally adapted
for regression and later on developed to apply non-linear bounds on the
model in any non-linear region [Mangasarian and Wild, 2007]. An advan-
tage of this method is that the problem remains in a linear programming
(LP) form. However, whenever the non-linear regions are not given as ex-
plicit sets of a finite number of points, these regions have to be discretized
before including the prior knowledge in the learning as a finite set of inequal-
ities. Though also requiring the knowledge to be in the form of a discrete set
of constraints, the method proposed here is more simple and involves less
variables in the optimization program. The increase of complexity for Man-
gasarian’s method is justified in the case of polyhedral regions, for which a
finite set of constraints ensures that the prior knowledge is satisfied for all
points in these regions. But when discretization occurs, as often required
for non-linear regions, this is no more true since adding constraints for the
points of discretization only cannot guarantee that the non-linear bound on
the function holds in the whole non-linear region. Thus, in this case, it is suf-
ficient to consider simpler constraints as will be described in this paper. The
method proposed here is also more general in the sense that it allows for the
inclusion of knowledge on the derivatives of the model. Though Mangasar-
ian’s method could be extended to include prior knowledge on derivatives
of the function, it has not been done so far.

Knowledge on the derivatives. In [Lázaro et al., 2005b], prior knowledge
on the derivatives has been incorporated in the QP formulation of the SVR
problem by considering a training set containing at every point the target
values, not only for the function but also for the derivative. The optimization
problem is extended to include the minimization of the error on the deriva-
tive and thus simultaneously approximate the function and its derivative.
As a result, the derivative of the kernel function is involved in the approx-
imation function, which may slow down the estimations in the test phase.
However, another formulation [Lázaro et al., 2005a] has been proposed to
circumvent this drawback. Whereas these methods consider knowledge on
the derivatives at the training points only, the method proposed here allows
to impose derivative values for any point. This is of particular interest when
incorporating prior knowledge in regions not covered by the training data.

Support vector regression with multiple outputs. The issue of mul-
tiple outputs regression has been previously studied for SVR in
[Sánchez-Fernández et al., 2004]. In this approach, the multiple ε-insensitive
loss functions are replaced by a ℓ2-norm based loss function, resulting in a
single scalar error value taking into account the errors on all the outputs.
Though providing a mean for the regression of multiple outputs with depen-
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dencies, the method does not allow for the inclusion of prior knowledge on
these dependencies. Another approach, proposed in [Weston et al., 2003],
allows to incorporate prior knowledge between multiple outputs. In this ap-
proach, the loss function is considered as a distance in an output feature
space and thus computed by a kernel function defined over the output space.
Prior information on the outputs such as specific loss functions or invari-
ances can be embedded in this output kernel. Being a very general frame-
work, applying to regression as well as classification, this method also re-
quires more complex steps. These include the decomposition of the outputs
Φout(yi) in the output feature space by Kernel Principal Component Analy-
sis (KPCA), learning multiple mappings from the input to the resulting prin-
cipal components and, finally, solving the pre-image problem for every new
test sample, i.e. finding the pre-image yt of the output Φout(yt) estimated
in feature space. In particular, the pre-image problem is still a partially
open issue. The method proposed in section 4.4 allows for a simple formu-
lation of the dependencies between multiple outputs and their inclusion as
a finite set of constraints that leaves the nature of the learning problem un-
changed. In [Maclin et al., 2005], the method of [Mangasarian et al., 2004]
for knowledge-based kernel approximation is extended to provide advice to
a reinforcement learner. In this setting, the value of each output determines
if a specific action must be taken. Prior knowledge may indicate that under
a set of conditions, one action is preferable to another. This amounts to con-
sider the inequality: f1(x) ≥ f2(x) + β, for x satisfying a set of conditions,
where the output f1 represents the preferred action to the one represented
by f2 and β accounts for how much preferable it is. The general framework
proposed in section 5.2 includes this form of prior knowledge as a particular
case.

Conclusion. All the related approaches, that allow the use of prior knowl-
edge for SVR, focus on particular types of prior knowledge. The strength of
the proposed method thus lies in its generality, but also in its simplicity as it
amounts to the addition of linear constraints to the problem. Incorporating
prior knowledge by the addition of constraints has been extensively studied
in other areas such as smoothing splines or least squares regression. The
present paper proposes to transfer these techniques to the LP-SVR frame-
work and explores all the consequences of this transfer, from the inclusion of
basic forms of prior knowledge to the handling of constrained multi-output
regression.

3 Kernel approximation of functions

In kernel regression, the function of input x ∈ R
d is approximated by a

kernel expansion

f(x) =

N
∑

i=1

αik(x, xi) + b = K(x, XT )α + b , (1)
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where the αi, contained in the vector α, and b are the parameters of
the model and k(., .) is the kernel function. Typical kernel functions are
the linear, Gaussian RBF, polynomial and sigmoidal kernels. In all the
numerical examples of this paper, a Gaussian RBF kernel k(x, xi) =
exp

(

−‖x− xi‖
2/2σ2

)

is used, except when mentioned otherwise.

3.1 Linear programming (LP)

In kernel regression via linear programming (LP), the ℓ1-norm of the pa-
rameters α of the kernel expansion is minimized together with the ℓ1-norm
of the errors by

min
(α,b)

‖α‖1 + C
N
∑

i=1

|f(xi) − yi| , (2)

where a hyperparameter C is introduced to tune the trade-off between the
error minimization and the flatness maximization. This problem can be
implemented as the linear program

min
(α,b,ξ,a)

1T a + C1T ξ

s.t. −ξ ≤ Kα + b1− y ≤ ξ

−a ≤ α ≤ a ,

(3)

where ξ and a are vectors of N positive variables. Instead of the ℓ1-norm
of the errors, the ε-insensitive loss function defined as

|ξ|ε =

{

0 if |ξ| ≤ ε ,

|ξ| − ε otherwise,
(4)

can also be used. A possible formulation of the corresponding problem in-
volves 4N + 1 variables [Smola et al., 1999b]. In this paper, we will follow
the approach of [Mangasarian and Musicant, 2002] that involves only 3N+1
variables. In this scheme, the optimization problem becomes in matrix form

min
(α,b,ξ,a)

1T a + C1T ξ

s.t. −ξ ≤ Kα + b1− y ≤ ξ

0 ≤ 1ε ≤ ξ

−a ≤ α ≤ a .

(5)

The parameter ε can be introduced as a variable in the cost function to
be tuned automatically by the algorithm

min
(α,b,ξ,a,ε)

1
N

1T a + C
N

1T ξ − Cµε

s.t. −ξ ≤ Kα + b1− y ≤ ξ

0 ≤ 1ε ≤ ξ

−a ≤ α ≤ a .

(6)
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It can be shown [Mangasarian and Musicant, 2002] that this formulation is
equivalent to the ν-LPR given in [Smola et al., 1999b].

In the LP formulation, only symmetry of the kernel is required
[Mangasarian and Musicant, 2002]. It is not necessary for the kernel to sat-
isfy Mercer’s conditions (or positive semidefiniteness) as in the original QP
form of the SVR problem where a norm induced by the kernel in the fea-
ture space is used over the weights. Here the norm of the parameters to be
minimized is simply the ℓ1-norm in R

N .

3.2 Linearity of the derivatives of a kernel expansion

Noticing that the kernel expansion (1) is linear in the parameters α allows to
write the derivative of the model output with respect to the jth component
xj of x ∈ R

d as

∂f(x)

∂xj
=

N
∑

i=1

αi

∂k(x, xi)

∂xj
= r1(x)T α , (7)

where r1(x) = [∂k(x, x1)/∂xj . . . ∂k(x, xi)/∂xj . . . ∂k(x, xN )/∂xj ]T . The
derivative (7) is also linear in α. In fact, the form of the kernel expansion
implies that all the derivatives are linear in α such as, for instance, the
Laplacian

∇2f(x) =

d
∑

j=1

∂2f(x)

∂xj2 . (8)

This derivative of the second order is a measure of the roughness of the
function on which prior knowledge might be considered. The linearity in α

allows to write any scalar derivative f (k) of order k as

f (k)(x) = rk(x)T α (9)

where rk(x) contains the coefficients for the kth order derivative that only
depend on the kernel and the training set. r1(x) and r2(x) are given for a
RBF kernel in Appendix A.

Setting up r(x) accordingly, r(x)T α can be any component or linear
combination of components of any derivative of f . This general remark al-
lows the incorporation of constraints on any derivative of a kernel expansion
f into a linear program such as (5).

4 Adding equality constraints

In this section, prior knowledge on the function is considered via nSC sets
of equality constraints of the type

gk(x) = hk(x), ∀x ∈ Zk , (10)
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where the set Zk = {x1, . . . , xp, . . . , x|Zk|} contains the points of interest
for the kth set of constraints. The points of Zk can be chosen in the training
set but are not restricted to these data. As will be seen in the following, the
equalities (10) can be, for many interesting prior knowledge forms, reformu-
lated as equality constraints that are linear in the parameters θ = [αT b]T

and of the general form

Γ k(Zk)θ = βk(Zk) . (11)

The matrix Γ k(Zk) is built from rows γk(x)T as

Γ k(Zk) =

















γk(x1)
T

...
γk(xp)

T

...
γk(x|Zk|)

T

















, (12)

where each row corresponds to a point of interest in Zk. The constraints
(11) can easily be introduced into (5) that becomes the following linear
programming SVR with equality constraints (LPSVR-EC)

min
(α,b,ξ,a)

1T a + C1T ξ

s.t. −ξ ≤ Kα + b1− y ≤ ξ

0 ≤ 1ε ≤ ξ

−a ≤ α ≤ a

Γ k(Zk)θ = βk(Zk), k = 1, . . . , nSC .

(13)

The optimization problem to solve involves 3N + 1 variables,
∑nSC

k=1 |Zk|
equality constraints and 5N inequality constraints.

Though adding equality constraints does not change the linear program-
ming nature of the optimization problem, this can lead to an infeasible
problem. To deal with the case where all the constraints cannot be satisfied
simultaneously, the equalities can also be enforced by soft constraints. In-
troducing a set of nSC vectors zk = [zk

1 . . . zk
p . . . zk

|Zk|
]T of positive slack

variables and a set of trade-off parameters λk leads to the linear program-
ming SVR with soft equality constraints (LPSVR-SEC)

min
(α,b,ξ,a,zk)

1T a + C1T ξ +

nSC
∑

k=1

λk1
T zk

s.t. −ξ ≤ Kα + b1− y ≤ ξ

0 ≤ 1ε ≤ ξ

−a ≤ α ≤ a

−zk ≤ Γ k(Zk)θ − βk(Zk) ≤ zk, k = 1, . . . , nSC ,

(14)
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that involves 3N +1+
∑nSC

k=1 |Zk| variables and 5N +2
∑nSC

k=1 |Zk| inequality
constraints. This problem formulation also offers the possibility to weight
the effect of the prior knowledge on the solution. Large values of λk increase
the fit to the prior knowledge, whereas small values imply a fit closer to the
data.

The problem (14) includes the minimization of the ℓ1-norm of the errors
for the soft equality constraints. Using the ε-insensitive loss function on
these errors (with a different ε than the one used for the training set) is
also possible and straightforward. It can be used to include almost exact
knowledge in an interval by authorizing violations of the equality constraints
that are less than εprior. However, this type of prior knowledge can be
equivalently considered with inequality constraints as studied in section 5.

The following presents typical applications of constrained optimization
for the introduction of prior knowledge with the corresponding settings of
Γ k(Zk) and βk(Zk) for (11). Synthetic examples are provided in sections 4
and 5. Since the purpose of these examples is mainly to show the application
of the method on simple and easy to visualize problems, the hyperparam-
eters are chosen arbitrarily without fine tuning. The mean square error
(MSE) is computed with respect to the true function being approximated
and on the same set of points in the x variable than the one used for training.

4.1 Prior knowledge on particular points

Prior knowledge on the function to approximate can sometimes take the
form of |Z0| particular points (xp, yp) ∈ Z0 for which the values are cer-
tain (intercept, maximal values, equilibrium points. . . ). For these points, we
would like the model to give an exact value and not just an approximation
based on noisy data or a dataset that lacks samples around these points.
One way to tackle this problem is to apply, for these points, hard constraints
of the type

f(xp) = K(xp, X
T )α + b = yp, (15)

while soft constraints are applied to the training set. Defining the matrix
Z0 = [x1 . . . xp . . . x|Z0|]

T and the vector y(0) = [y1 . . . yp . . . y|Z0|]
T ,

the following setting

Γ 0(Z0) =
[

K(ZT
0 , XT ) 1

]

, β0(Z0) = y(0) (16)

is used for the problems (13) or (14) to incorporate the prior knowledge.

The points (xp, yp) can also be considered as virtual samples with high
(or infinite) confidence and thus can be added to the training set as potential
SVs. In this case, the linear program with hard constraints on the virtual
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samples can be formulated as

min
(α,b,ξ,a)

1T a + C1T ξ

s.t. −ξ ≤ K(XT , [XT ZT
0 ])α + b1− y ≤ ξ

0 ≤ 1ε ≤ ξ

−a ≤ α ≤ a

K(ZT
0 , [XT ZT

0 ])α + b1 = y(0) .

(17)

The corresponding output function is given by

f(x) = K(x, [XT ZT
0 ])α + b , (18)

where the vector α contains N + |Z0| parameters, a certain amount of which
will be zero due to the sparsity of LP-SVR.

Example: adding information about one point. In this example, 61 training
points are generated in the interval −3 ≤ x ≤ 3 for the approximation of
sinc(x). A Gaussian noise of standard deviation 0.2 and mean 0 is added to
the training data. To show the efficiency of the method, one virtual sample
(0, 1) is added to the training set. Since this point is known for certain, it is
assigned to a hard constraint implemented by equality as in (17). Figure 1
shows the improvement over a simple LP-SVR trained on the training set
with the virtual sample considered as a standard sample.

4.2 Prior knowledge on the derivatives

Typically, knowledge on the derivatives may include the general shape of the
function, local maxima or minima, saddle-points, high peaks. . . This type
of knowledge is often available but, to our knowledge, there is no general
method for its incorporation into SVR.

Consider that prior knowledge on the kth order derivative f (k) of the
function f is available as

f (k)(xp) = y(k)
p , ∀xp ∈ Zk . (19)

This prior knowledge can be enforced in the training by using (9) and setting

Γ k(Zk) =

















rk(x1)
T 0

...
rk(xp)

T 0
...

rk(x|Zk|)
T 0

















, βk(Zk) =



















y
(k)
1
...

y
(k)
p

...

y
(k)
|Zk|



















, (20)

in one of the problems (13) or (14). This method allows to incorporate prior
knowledge on any derivative of order k for any set of points possibly different



12 Fabien Lauer and Gérard Bloch

−3 −2 −1 0 1 2 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

− − sinc(x)  

virtual sample (0,1) 

approximation with
a hard constraint on
the virtual sample 

approximation with
a soft constraint on
the virtual sample

Fig. 1 Approximation of the sinc function with an added virtual sample (0, 1).
The values for the different parameters are: C = 10, σ = 0.5, ε = 0.1. Applying a
hard constraint on the virtual sample (known for certain) improves the accuracy
around this point.

for each k, while keeping the model in the form of (1). In comparison,
the methods described in [Lázaro et al., 2005b] and [Lázaro et al., 2005a]
require the prior derivative values on all the training points and these points
only.

Example: knowledge on the derivatives at particular points. Here, we show
the improvement in the quality of the approximation when only partial in-
formation about the shape is known at particular points via a mixture of
derivatives (first and second order). Consider the problem of approximat-
ing the sinc function from noise-free data but without data around zero,
that is for x in the interval −1 < x < +1. In this setting, the central peak
of the sinc function cannot be approximated without prior knowledge. To
show the effectiveness of the method, we consider only sparse and grossly
approximate prior knowledge: y(1)(0) = 0, y(1)(−0.5) = 1, y(2)(0) = −2.
This corresponds to a function with a maximum at x = 0, increasing around
x = −0.5 and with a peak around x = 0. Figure 2 shows that incorporating
this simple prior knowledge in (14) by (20) allows to recover the shape of
the sinc function. Moreover, it must be noticed that the function is approx-
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imated without any training samples around 0 and thus without support
vectors around 0. However, the number of SVs increases from 8 to 12.

−3 −2 −1 0 1 2 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sinc(x)

approximation      
with prior 
knowledge

approximation         
without prior knowledge

zone without data 

Fig. 2 Approximation of the sinc function without data for x in the interval
−1 < x < +1 and with prior knowledge on the derivatives at 2 particular points
(y(1)(0) = 0, y(1)(−0.5) = 1, y(2)(0) = −2). The values for the different parame-
ters are: λ = 50, C = 10, σ = 0.5, ε = 0.001. Knowledge on very few points helps
to recover the shape of the overall function.

4.3 Prior knowledge from a prior model

In some applications, one may wish to retain certain properties of a previous
model such as the shape or the roughness at some specific points xp in Zk.
This problem corresponds to the learning of a new model while constraining
certain of its derivatives to equal those of the prior model at these particular
points.

Assume now that the the prior model is a kernel expansion on Npr

samples, then fprior(x) =
∑Npr

i=1 αprior
i k(x, xi) + bprior. Using the remark

of section 3.2, its derivatives can also be expressed in a linear form (9) with
respect to the parameters αprior

i as fprior (k)(xp) = r
pr
k (xp)

T αprior. Thus,
in order to retain the kth order derivative from a prior model in kernel
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expansion form, the new model is trained by solving (13) or (14) with the
corresponding setting for (11) that is

Γ k(Zk) =

















rk(x1)
T 0

...
rk(xp)

T 0
...

rk(x|Zk|)
T 0

















, βk(Zk) =

















r
pr
k (x1)

T αprior

...
r

pr
k (xp)

T αprior

...
r

pr
k (x|Zk|)

T αprior

















. (21)

Notice that rk(xp) depends only on the kernel and the training set,
with one component for each training sample. Thus, if the training set X of
the new model includes the Npr points on which the prior model has been
trained and if the same kernel is used for both models, then Npr components
of rk(xp) are equal to the components of r

pr
k (xp). These components can

so be computed only once to speed up the process.

Example: knowledge on the derivative from a prior model helps recovering
empty regions. This example shows the enhancement of the approximation
when the general shape of the function is known via a prior model and
incorporated in the learning by the previously described method. The shape
is enforced by maximizing the similarity of the first order derivatives of the
approximation to the derivatives of the prior model.

Consider the problem of approximating the sinc function based on a
set of training points X without noise and a prior model approximating
s(x) = sinc(x) + δ. Only the shape of the function s(x) is retained as prior
knowledge, the added constant δ is considered unknown. The prior model
is a standard LP-SVR, trained on 31 points of s(x) (with δ = 1) in the
interval −3 ≤ x ≤ 3, yielding the parameters αprior. On the other hand,
the approximation f is trained on 34 points on the intervals −3 ≤ x ≤ −1.4
and 1.4 ≤ x ≤ 3. Figure 3 shows the output of the prior model, the true
sinc function and two approximations: one that includes the prior shape in
the learning (14) by (21) and the other that does not (5). It is clear that
the incorporation of prior knowledge on the shape of the function improves
considerably the accuracy of the approximation with a small increase of the
number of SVs from 8 to 12.

Example: knowledge on the derivative from a prior model helps against the
noise. The next example shows how prior knowledge on the shape can
reduce the effect of noise. Consider the problem of approximating the sinc
function from noisy data. A set of 31 training samples is now generated with
additive Gaussian noise of mean 0 and standard deviation σnoise, for xi in
the interval −3 ≤ xi ≤ 3. Figure 4 shows the results for a large noise level
σnoise = 1 (considering the amplitude of sinc(x) ≈ 1.2). It is clear that a
standard LP-SVR applied to these data cannot approximate correctly the
function. But taking the prior shape into account in the learning (14) by (21)
filters the noise and yields a respectable approximation of the sinc though
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fprior(x) 

Fig. 3 Approximation of the sinc function with prior knowledge on the shape
from a prior model fprior. The values for the different parameters are: λ = 10, C =
13, σ = 0.5, ε = 0.001.

the prior shape is only given by an approximative prior model issued from
a LPSVR training (5) on 31 points of the prior shape s(x) = sinc(x) + δ,
with δ = 1. The number of SVs increases slightly from 7 to 11. These results
were obtained with a “handpicked” trade-off parameter λ = 5 without any
tuning. This trade-off parameter appearing in the problems (13) and (14) is
used to weight the effect of the prior knowledge on the solution. Based on
prior knowledge of the noise level, and so, of the relative relevance of the
data, the approximation can still be enhanced by increasing λ. A large λ
increases the fit to the prior shape as opposed to the fit to the data implied
by a small λ.

This problem is close to the setting of [Lázaro et al., 2005b] and
[Lázaro et al., 2005a] as prior knowledge on the derivatives is given at every
training point. However, here, the derivatives values are not directly avail-
able and are estimated by a prior model trained on another set of samples.

4.4 Prior knowledge between outputs

Simultaneous approximation of multiple functions is easily performed by
neural networks by simply considering a multidimensional output layer. On
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Fig. 4 Approximation of the sinc function with noisy data and prior knowledge
on the shape from a prior model fprior. The values for the different parameters
are: λ = 5, C = 10, σ = 0.5, ε = 1, σnoise = 1. The prior shape filters the noise.

the other hand, SVMs are single-output machines. The common approach
for multi-outputs problems is thus to train as many independent SVMs as
needed, one for each function to approximate. However, in some cases, these
functions may be interdependent and the inclusion of these dependencies in
the learning cannot be directly handled.

This section presents a multi-outputs SVR approach to approximate
multiple functions of the same inputs when some prior knowledge on the
dependencies between these functions is available. Section 4.4.1 will show
how the proposed method can be mixed with the results on prior knowledge
on the derivatives of section 4.2 for the simultaneous approximation of a
function and its derivative.

The multi-outputs SVR implements m functions fj of the same inputs
that are learned from the training set (X , y1, . . . , yj , . . . , ym). The approx-

imated output vector f(x) = [f1(x) . . . fj(x) . . . fm(x)]T is given by

f(x)T = K(x, XT )A + bT , (22)

where the matrix A = [α1 . . . αj . . . αm] and the vector b =
[b1 . . . bj . . . bm]T collect the parameters.
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It is assumed that some prior knowledge on a linear combination of the
m outputs with coefficients µj is available in the form

m
∑

j=1

µjfj(x) = h(x), ∀x ∈ Z , (23)

for an arbitrary function h. Defining the parameter vector θ̃ =
[αT

1 b1 . . . αT
m bm]T and setting

β(Z) =

















h(x1)
...

h(xp)
...

h(x|Z|)

















, (24)

the matrix Γ (Z) is built as in (12) from the rows γ(xp)
T in order to rewrite

the prior knowledge (23) in the general form Γ (Z)θ̃ = β(Z). For a single
point xp of the set Z, this leads to

γ(xp)
T θ̃ = µ1f1(xp) + · · · + µmfm(xp) . (25)

Writing the output fj as

fj(xp) =
[

K(xp, X
T ) 1

]

[

αj

bj

]

, (26)

allows to rewrite (25) as

γ(xp)
T θ̃ =

[

K(xp, X
T ) 1

]

(

µ1

[

α1

b1

]

+ · · · + µm

[

αm

bm

])

, (27)

in which the parameter vector θ̃ can be introduced by

γ(xp)
T θ̃ =

[

K(xp, X
T ) 1

] [

µ1I . . . µmI
]

θ̃ , (28)

where I stands for the identity matrix of size N +1. This formulation gives
γ(xp)

T and thus yields, for the whole set Z, the matrix

Γ (Z) =
[

K(ZT , XT ) 1
] [

µ1I . . . µmI
]

. (29)

The training of a multi-outputs SVR can thus be performed by solving
a problem similar to (14) but with multiple outputs as follows

min
(θ̃,ξj ,ã,z)

1T ã +

m
∑

j=1

Cj1
T ξj + λ1T z

s.t. −ξj ≤ Kαj + bj1− yj ≤ ξj , j = 1, . . . , m
0 ≤ 1εj ≤ ξj , j = 1, . . . , m

−ã ≤ α̃ ≤ ã

−z ≤ Γ (Z)θ̃ − β(Z) ≤ z ,

(30)
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where ã = [aT
1 . . . aT

m]T , α̃ = [αT
1 . . . αT

m]T , Γ (Z) and β(Z) are set
respectively as in (29) and (24), and where the subscript j indicates the jth
output. Different hyperparameters Cj and εj are assigned to each output fj .
This problem involves m(3N +1)+ |Z| variables and 5Nm+ |Z| constraints.

The prior knowledge between multiple outputs is thus easily incorpo-
rated in a linear program by adding equality constraints (then relaxed by
slack variables) in a general form similar to the one used for the other types
of prior knowledge. All these types of prior knowledge can so be mixed to-
gether. The example in the following section will show how to learn two
functions simultaneously while considering that one is the derivative of the
other. Then section 4.4.2 will show how the multi-outputs SVR can be used
for a simple multi-models problem.

4.4.1 Approximating a function and its derivative by multi-outputs SVR
with prior knowledge Consider the problem of approximating two func-
tions knowing that one is the derivative of the other with respect to a
particular component xl. Then, using the results of both sections 4.2 and
4.4, this prior knowledge can be used to enhance the training. In this case,
the prior knowledge for a point x is written

∂f1(x)

∂xl
− f2(x) = r1(x)T α1 − K(x, XT )α2 − b2 = 0 (31)

The points on which this prior knowledge is considered are the points of the
training set (Z = X). The corresponding setting is thus

Γ (Z) =

















r1(x1)
T 0 −K(x1, X

T ) −1
...

r1(xi)
T 0 −K(xi, X

T ) −1
...

r1(xN )T 0 −K(xN , XT ) −1

















, (32)

and
β(Z) = 0 , (33)

for the problem (30).

Example: position and speed of a synthetic mechanical system. Let two
output variables y1 and y2 be the position and speed of a mechanical system
with one input variable (the time). The particular example studied here
uses y1(x) = sin(x) and y2(x) = cos(x). The training data is composed of
31 samples in the interval 0 ≤ x ≤ 3 with an additive centered Gaussian
noise of standard deviation 0.2. Figure 5 shows the resulting approximations
on both functions y1 and y2 with and without prior knowledge between
these outputs considered. The prior knowledge f ′

1(x) = f2(x) is included
in (30) by (32) and (33) with a trade-off parameter set at λ = 5. The
other hyperparameters are set at the same values for both methods and for
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Fig. 5 Simultaneous approximation of two functions y1 = sin(x) (top) and y2 =
cos(x) (bottom) with prior knowledge between outputs: f ′

1(x) = f2(x). The values
for the different parameters are: C1 = C2 = 10, σ = 0.3, ε1 = ε2 = 0.1, λ = 5.
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both outputs: C1 = C2 = 10, σ = 0.3, ε1 = ε2 = 0.1. The MSE decreases
dramatically when adding the prior knowledge above: from 0.016 to 0.0007
for y1, and from 0.0106 to 0.0069 for y2. Moreover the general shapes of the
functions are recovered without being much affected by the noise.

4.4.2 Multi-models for continuous function approximation The following
assumes that the function to approximate is composed of different subfunc-
tions in different known regions of the input space. Though the method
can be applied to multidimensional inputs, only the one-dimensional case is
presented here for the sake of clarity. In this case, the prior knowledge leads
to consider the approximation function f(x) computed from a multitude of
submodels fj(x) as

f(x) =























f1(x) , if l1 ≤ x ≤ u1

f2(x) , if l2 ≤ x ≤ u2

...

fn(x) , if ln ≤ x ≤ un

. (34)

Moreover, if the function to approximate is continuous, then a coupling
between the submodels can be expressed as

fj(x) = fj+1(x), for x = uj = lj+1 , (35)

where fj is the submodel for the input region lj ≤ x ≤ uj , trained only on
this region (training set Xj).

The simultaneous training of the submodels with continuity prior en-
forced by hard constraints is, in this case, expressed as

min
(α̃,b,ξj ,ã)

1T ã +
m
∑

j=1

Cj1
T ξj

s.t. −ξj ≤ Kjαj + bj1− yj ≤ ξj , j = 1, . . . , m
0 ≤ 1εj ≤ ξj , j = 1, . . . , m

−ã ≤ α̃ ≤ ã

Γ (Z)θ̃ = β(Z) ,

(36)

where Kj = K(XT
j , XT

j ),

Γ (Z) =







K(u1, X
T
1 ) 1 −K(u1, X

T
2 ) −1 0 . . .

0 0 K(u2, X
T
2 ) 1 −K(u2, X

T
3 ) −1 0 . . .

. . .






, (37)

and

β(Z) = 0 . (38)
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Depending on the partitioning of the training set, the parameter vectors
αj may be of different sizes. Thus, the formulation of the output (22) is not
valid anymore. In this case, the outputs are computed separately by

fj(x) = K(x, XT
j )αj + bj (39)

Example: piecewise affine (PWA) function approximation. In this exam-
ple, the continuous function to approximate is composed of three affine
parts: y = 0.5x, for 0 ≤ x ≤ 3; y = 2x− 4.5, for 3 ≤ x ≤ 6; y = −2x + 19.5,
for 6 ≤ x ≤ 10. The training data contains 101 points with additive Gaus-
sian noise of standard deviation 1 and mean 0. Figure 6 shows the training
data, the function, its approximation with a single SVR using RBF kernels
and an approximation using the previously described method (36) with lin-
ear kernels and the settings (37) and (38). The test error decreases when
considering a multitude of linear submodels (MSE= 0.078) instead of using
a single RBF model (MSE= 0.117), whereas the number of SVs is equiva-
lent and equals 3 for both methods. This number is highly correlated to the
number of affine pieces in the global function. Comparing to independent
linear models using only the prior knowledge on the piecewise affine form of
the function, the overall MSE is also reduced thanks to the prior knowledge
on the continuity. Moreover, the continuity ensured by the proposed method
cannot be obtained by independent linear models.

5 Adding inequality constraints

As seen in the previous section, equality constraints allow the inclusion of a
large variety of prior knowledge. However, some interesting types of knowl-
edge cannot be written in equalities and requires the use of inequalities such
as, for instance, the monotonicity of the function: f (1)(x) ≤ 0 or f (1)(x) ≥ 0
for all x. This section proposes to include these types of knowledge on the
function by considering inequality constraints such as

gk(x) ≤ hk(x), ∀x ∈ Zk , (40)

where the set Zk contains the |Zk| points of interest for the kth set of
constraints. As for equalities, these inequalities can be reformulated as in-
equality constraints that are linear in the parameters θ = [α b]T , of the
general form

Γ k(Zk)θ ≤ βk(Zk) , (41)

that can be introduced into (5) without changing the linear programming
nature of the optimization problem that becomes the following linear pro-
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Fig. 6 Approximation of a piecewise affine function. The values for the different
parameters of the multi-outputs SVR are Cj = 0.2, εj = 1,∀j, and for the single
SVR with RBF kernels: C = 1, ε = 1, σ = 2. Continuity is enforced by the prior
knowledge f1(x) = f2(x) for x = 3 and f2(x) = f3(x) for x = 6.

gramming SVR with inequality constraints (LPSVR-IC)

min
(α,b,ξ,a)

1T a + C1T ξ

s.t. −ξ ≤ Kα + b1− y ≤ ξ

0 ≤ 1ε ≤ ξ

−a ≤ α ≤ a

Γ k(Zk)θ ≤ βk(Zk), k = 1, . . . , nSC .

(42)

To deal with the case where all the constraints cannot be satisfied si-
multaneously, the inequalities can also be enforced by soft constraints. In-
troducing a set of nSC vectors zk = [zk

1 . . . zk
p . . . zk

|Zk|
]T of positive slack

variables and a set of trade-off parameters λk leads to the linear program
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SVR with soft inequality constraints (LPSVR-SIC)

min
(α,b,ξ,a,zk≥0)

1T a + C1T ξ +

nSC
∑

k=1

λk1
T zk

s.t. −ξ ≤ Kα + b1− y ≤ ξ

0 ≤ 1ε ≤ ξ

−a ≤ α ≤ a

Γ k(Zk)θ − βk(Zk) ≤ zk, k = 1, . . . , nSC .
(43)

5.1 Prior on the function, the derivatives and from a prior model

All the forms of prior knowledge described in section 4 can be considered
with inequalities instead of equalities by using (42) or (43) and setting Γ k

and βk as depicted for the equalities. This corresponds to the inclusion of
bounds on the function or any derivative. For instance the following prior

knowledge on the derivative f (k)(xp) ≤ y
(k)
p , for all xp in Zk, can be included

in the learning by setting

Γ k(Zk) =

















rk(x1)
T 0

...
rk(xp)

T 0
...

rk(x|Zk|)
T 0

















, βk(Zk) =



















y
(k)
1
...

y
(k)
p

...

y
(k)
|Zk|



















, (44)

for the linear program (42) or (43). A practical use of inequalities occurs for
instance when the function to estimate corresponds to a physical variable
known to be positive. In this absurd approximations that yield negative
values can be avoided by forcing bounds on the function as prior knowledge
in the learning process.

Example: lower bound on the function. This example is taken from
[Mangasarian et al., 2004] and shows the benefit of including a lower bound
on the function in a corrupted region of input space. The data to be modeled
are generated by the sinc function with an additional Gaussian noise of mean
0 and standard deviation 0.5 for 32 points in the intervals −3 ≤ x ≤ −1.43
and 1.43 ≤ x ≤ 3. Three points at x = 0 with output values y = −1, 0
and +1 are added to the training set in order to mislead the approxima-
tion. Three models are trained on these data: the standard LP-SVR without
prior knowledge (5), the Knowledge-Based Kernel Approximation (KBKA)
[Mangasarian et al., 2004] and the proposed LP-SVR with prior knowledge
(43). The knowledge originally used for KBKA is f(x) ≥ sinc(0.25) in the
interval −0.25 ≤ x ≤ 0.25. In order to include this information in our
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method, three points x = −0.25, 0 and 0.25 are considered with the output
value y = sinc(0.25). The settings for constraints (41) are thus given by (16)
with Z0 = [−0.25 0 0.25]T and y0 = [sinc(0.25) sinc(0.25) sinc(0.25)]T . The
hyperparameters of the KBKA are chosen as in [Mangasarian et al., 2004]:
C = 13, σ = 0.7071, µ1 = 5, µ2 = 450. The other models use the same
values for C and σ. λ is arbitrarily set to 10. The resulting approximations
for the three models appear in Figure 7. This example shows that even in
the case of knowledge defined over polyhedral sets, our method, though re-
quiring discretization of these sets, can yield comparable results to the ones
obtained by Mangasarian’s method. The MSE computed on 101 equally
spaced points in the interval [−3, 3] is respectively 0.176, 0.104 and 0.032
for the LP-SVR without knowledge, the KBKA and the proposed method.

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

Fig. 7 Approximation of the sinc function (dashed line) with additional wrong
data at x = 0. The mode without knowledge (dash-dotted line) cannot re-
cover the true shape around x = 0. Prior knowledge stating that f(x) ≥
sinc(0.25) in the interval −0.25 ≤ x ≤ 0.25 is included either by the method
of [Mangasarian et al., 2004] (dotted line) or by the proposed method (solid line).
The values for the different parameters are: λ = 10, C = 13, σ = 0.7071, ε = 0.01.

Example: knowledge on the derivatives at particular points by inequalities.
Taking the example of Sect. 4.2 and using the same prior knowledge, in-
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equality constraints might help to approximate the infinite second order
derivative at x = 0. In the setting of section 4.2, an equality constraint
enforces f (2)(0) = −2, which penalizes notably the values less than −2. At
the contrary, the constraint f (2)(0) ≤ −2 is less restrictive and can let the
derivative go to minus infinite. Figure 8 shows the approximations provided
by (13) and (43) respectively using equality and inequality constraints. The
two methods gave very comparable results. Actually, the inequality con-
straints bounding the magnitude of the derivatives from below are active
and thus become equalities. This is explained by the use of the RBF kernel
and the minimization of the parameters αi that lead to a smooth function.
Thus the algorithm looks for the smoothest function that satisfies the con-
straints, i.e. the function with minimum derivatives in magnitude, which cor-
responds in this case to the equality constraints y(1)(0) = 0, y(1)(−0.5) = 1
and f (2)(0) = −2.

−3 −2 −1 0 1 2 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

true sinc 

with 
equality
constraints 

with inequality
constraints 

Fig. 8 Approximation of the sinc function without data for x in the interval
−1 < x < +1 and with prior knowledge on the derivatives at 2 particular points
(y(1)(0) ≤ 0.1, y(1)(−0.5) ≥ 1, y(2)(0) ≤ −2) incorporated via inequality con-
straints (solid line) and equalities (dash line). The values for the different param-
eters are: λ = 50, C = 10, σ = 0.5, ε = 0.001.
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5.2 Prior knowledge between outputs

The multi-outputs SVR of section 4.4 can also consider prior knowledge on
a linear combination of the m outputs as inequalities

m
∑

j=1

µjfj(x) ≤ h(x), ∀x ∈ Z , (45)

for an arbitrary function h. In this case, the training of a multi-outputs
SVR is performed by solving, as in (30), the following problem

min
(α̃,b,ξj ,ã,z≥0)

1T ã +

m
∑

j=1

Cj1
T ξj + λ1T z

s.t. −ξj ≤ Kαj + bj1 − yj ≤ ξj , j = 1, . . . , m
0 ≤ 1εj ≤ ξj , j = 1, . . . , m

−ã ≤ α̃ ≤ ã

Γ (Z)θ̃ − β(Z) ≤ z ,

(46)

with the same setup (29) and (24) as for equalities. Of course, hard con-
straints can also be considered here, leading to

min
(α̃,b,ξj ,ã)

1T ã +

m
∑

j=1

Cj1
T ξj

s.t. −ξj ≤ Kαj + bj1− yj ≤ ξj , j = 1, . . . , m
0 ≤ 1εj ≤ ξj , j = 1, . . . , m

−ã ≤ α̃ ≤ ã

Γ (Z)θ̃ ≤ β(Z) .

(47)

The prior knowledge as inequalities between multiple outputs is thus
easily incorporated in a linear program by adding inequalities in a general
form similar to the one used for the other types of prior knowledge.

Example: ordered functions. Consider the problem of simultaneously ap-
proximating two scalar functions while knowing that one is greater than the
other. In this case, the prior knowledge f1(x) ≤ f2(x) may help to enhance
the quality of the model. In this example, the functions y1 = sin(x) and
y2 = sin(x) + 0.1 are approximated based on noisy data. A Gaussian noise
of mean zero and standard deviation 0.2 has been added to both functions
for 71 samples in the interval 0 ≤ x ≤ 7. Two outliers are added to the
training set of y1: (3.7, 0) and (3.8, 0), as shown on Figure 9. On this prob-
lem, training two independent models by (11), with the parameters set to
C = 10, ε = 0.1 and σ = 0.5, yields approximations that are significantly
in violation of the prior knowledge. At the contrary, using the proposed
method with hard constraints (47) allows to obtain better approximations
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that respect the constraints, as shown on Fig. 9. Moreover, the effect of the
outliers on y1 is reduced thanks to the relation imposed between f1 and f2

and the fact that the training data for y2 do not contain outliers. The MSE
for y1 is reduced from 0.0102 to 0.0034, and for y2 from 0.0072 to 0.0035.
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Fig. 9 Approximation of two sine functions y1 = sin(x) and y2 = sin(x) + 0.1
with the corresponding training sets. The approximation uses the prior knowledge
f1(x) ≤ f2(x). The values for the different parameters are: C1 = C2 = 1, σ =
0.5, ε1 = ε2 = 0.1.

6 Numerical examples

This section provides three examples of practical use for the proposed
method. The two first examples deal with the identification of simulated
nonlinear dynamical systems. The last example shows the benefit of the
method on a real-life application, namely, the estimation of in-cylinder resid-
ual gas fraction in spark ignition engines.
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6.1 Nonlinear dynamical system with known equilibrium points

Consider the discrete-time nonlinear dynamical system taken from
[Narendra and Parthasarathy, 1990] and described by

y(k + 1) =
y(k)y(k − 1)[y(k) + 2.5]

1 + y2(k) + y2(k − 1)
+ u(k) , (48)

where y(k) and u(k) are respectively the output and the input of the sys-
tem at step k. The aim of this example is to find a Nonlinear AutoRe-
gressive model with eXogenous input (NARX) ŷ(k + 1) = f(y(k), y(k −

1), u(k)) that minimizes the mean square error MSE =
∑Nt

k=1(y(k) −
ŷ(k))2 over a trajectory of Nt test points, for which the NARX model
is used as a simulation model ŷ(k + 1) = f(ŷ(k), ŷ(k − 1), u(k)). In
[Narendra and Parthasarathy, 1990], the two equilibrium points in state
space (y(k) = 0, y(k − 1) = 0) and (y(k) = 2, y(k − 1) = 2) of the un-
forced system (for u(k) = 0) are considered to be known. These points are
the solutions in y of the equation (48), with y(k + 1) = y(k) = y(k− 1) = y
and for u(k) = 0.

A trajectory is generated from the initial condition (y(1) = 1, y(0) =
1) by 100 iterations of the system (48) with additional Gaussian noise of
mean 0 and standard deviation 0.1 for a uniformly distributed random input
sequence in the interval [−2, 2]. This trajectory is used to build the training
set as xi = [y(i) y(i − 1) u(i)]T and yi = y(i + 1), for i = 1, . . . , 100.
Two models are trained on these data: a standard LP-SVR without prior
knowledge (5) and a LP-SVR with hard constraints (13) on the equilibrium
points such that f([0 0 0]T ) = 0 and f([2 2 0]T ) = 0. For both algorithms
RBF kernels are used and the hyperparameters are arbitrarily chosen to
be C = 10, σ = 1 and ε = 0.01. The MSE is evaluated on the test set
built from a different trajectory of 100 points generated by (48) from the
initial condition (y(1) = 0.5, y(0) = 0.5) and a sinusoidal input u(k) =
sin(2πk/25). Table 1 shows the average and standard deviation of the test
MSE computed over 100 runs. A gain in performance is observed when prior
knowledge on equilibrium points is used as the average MSE decreases by
20.4 %.

Table 1 Average and standard deviation of the test MSE over 100 runs for the
modeling of the nonlinear dynamical system (48). The average MSE decreases
when using prior knowledge on the equilibrium points of the system.

Model error

with prior knowledge 0.354 ± 0.356
without prior knowledge 0.445 ± 0.457
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6.2 Nonlinear dynamical system with prior knowledge on the input function

Consider the discrete-time nonlinear dynamical system also taken from
[Narendra and Parthasarathy, 1990] and described by

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k) , (49)

where y(k) and u(k) are respectively the output and the input of the system
at step k. In this example, the predictions are based on two variables only as
ŷ(k+1) = f(y(k), u(k)). The prior knowledge extracted from the expression
of the system is that the partial derivative of f with respect to the input
must be an even function.

As in the previous example, the training set is built from a trajectory
that is generated from the initial condition (y(1) = 0) by 100 iterations of
the system (49) with additional Gaussian noise of mean 0 and standard de-
viation 0.1 for a uniformly distributed random input sequence in the interval
[−2, 2]. Two models with RBF kernels are trained on these data: a standard
LP-SVR without prior knowledge (5) and a LP-SVR (14) with prior knowl-
edge on derivatives such that ∂f(y(k), u(k))/∂u = ∂f(y(k),−u(k))/∂u.
To include this information, the partial derivative of f is computed by
(55) at every point (y(k), u(k)) of the training set to build the matrix
R = [r1(y(1), u(1)) . . . r1(y(k), u(k)) . . . r1(y(N), u(N))]T and also at
all N points (y(k),−u(k)) to build a similar matrix R̃. The prior knowl-
edge Rα = R̃α is then included in the learning (14) by setting, as in (20),
Γ = [(R − R̃) 0] and β = 0. The hyperparameters are arbitrarily chosen
to be C = 10, σ = 1 and ε = 0.01. The prior knowledge parameter λ is
set to 1. The MSE is evaluated on the test set built from a different trajec-
tory generated from the initial condition (y(0) = 0) and the input u(k) =
sin(2πk/25)+sin(2πk/10), as in [Narendra and Parthasarathy, 1990]. Table
2 shows the average and standard deviation of the test MSE computed over
100 runs. A gain in performance is observed when prior knowledge is used
as the average MSE decreases by 25.7 %.

Table 2 Average and standard deviation of the test MSE over 100 runs for the
modeling of the nonlinear dynamical system (49). The average MSE decreases
when forcing the partial derivative of the model with respect to the input to be
even.

Model error

with prior knowledge 1.158 ± 0.755
without prior knowledge 1.560 ± 0.667
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6.3 Estimation of in-cylinder residual gas fraction

The application deals with the estimation of residual gases in the cylinders of
Spark Ignition (SI) engines with Variable Camshaft Timing (VCT). More
precisely, we are interested in estimating the residual gas mass fraction
as studied in [Bloch et al., 2007]. Knowing this fraction allows to control
torque as well as pollutant emissions. The residual gas mass fraction χres

can be expressed as a function of the engine speed Ne, the ratio pman/pexh,
where pman and pexh are respectively the (intake) manifold pressure and
the exhaust pressure, and an overlapping factor OF , which is an image of
the time during which the valves are opened together.

The available data are provided, on one hand, from the modeling and
simulation environment Amesim [Imagine, 2006], which uses a high fre-
quency zero-dimensional thermodynamic model and, on the other hand,
from off line measurements, which are accurate, but complex and costly to
obtain, by direct in-cylinder sampling [Giansetti et al., 2007]. The problem
is thus as follows. How to obtain a simple, embeddable, black box model
with a good accuracy and a large validity range for the real engine, from
precise real measurements as less numerous as possible and a representa-
tive, but possibly biased, prior simulation model? The problem thus posed,
although particular, is very representative of numerous situations met in
engine control, and more generally in engineering, where complex models,
more or less accurate, exist and where the experimental data which can be
used for calibration are difficult or expensive to obtain.

Three datasets are built from the available data composed of 26 experi-
mental samples plus 26 simulation samples:

– the training set (X, y) composed of a limited amount of real data (N
samples),

– the test set composed of independent real data (26 − N samples),
– the simulation set (Z, yp) composed of data provided by the simulator

(Npr = 26 samples).

The test samples are assumed to be unknown during the training and are
retained for testing only. It must be noted that the inputs of the simulation
data do not exactly coincide with the inputs of the experimental data.

The simulator being biased but approximating rather well the over-
all shape of the function, the prior knowledge will be incorporated on
the derivatives. In order to be able to evaluate the prior derivatives a

prior model, fprior(x) =
∑Npr

i=1 αprior
i k(x, xi) + bprior, is first trained on

the simulation data only. This prior model is then used to provide the
values y′

p = r
pr
1 (xp)

T αprior of the derivative with respect to the input
pman/pexh, at the points xp of the simulation set. The proposed model
is then trained by a variant of algorithm (14) with derivative constraints
(21), where the points xp are added as potential SVs. Defining the matrix

R(ZT , [XT ZT ]) = [r1(x1) . . . r1(xp) . . . r1(xNpr)]T , where r1(x) cor-

responds to the derivative of f(x) = K(x, [XT ZT ])α + b with respect to
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the input pman/pexh, this algorithm reads

min
(α,b,ξ,a,z)

1

N + Npr
1T a +

C

N
1T ξ +

λ

Npr
1T z

s.t. −ξ ≤ K(XT , [XT ZT ])α + b1− y ≤ ξ

0 ≤ 1ε ≤ ξ

−a ≤ α ≤ a

−z ≤ R(ZT , [XT ZT ])α − y′
p ≤ z .

(50)

The hyperparameters have also been changed to C/N and λ/Npr to main-
tain the same order of magnitude between the regularization, error and
prior knowledge terms in the cost function. This allows to ease the choice
of their value based on the application goals and confidence on the prior
knowledge. Hence, the hyperparameters become problem-size independent.
The inclusion of the points of Z as potential SVs supports the model in
the regions of input space not covered by the training data but where prior
knowledge is given.

As the points of interest xp are different of the inputs x found in the
training set, the methods of [Lázaro et al., 2005b] or [Lázaro et al., 2005a]
cannot be used.

In this experiment, the proposed model is compared to an experimental
model trained by (5) on the training set only and a mixed model trained
by (5) on the training set simply extended with the simulation data. The
training of this latter model is close in spirit to the virtual sample approach,
where additional data are added to the training set. These models are eval-
uated on the basis of three indicators: the root mean square error (RMSE)
on all experimental data (RMSE total), the RMSE on the test set (RMSE
test) and the maximum absolute error on all experimental data (MAE).

Before training, the variables are normalized with respect to their mean
and standard deviation. When both experimental and simulation data are
available, the simulation data are preferred since they are supposed to cover
a wider region of the input space. Thus, the mean and standard deviation
are determined on the simulation data for all the models except for the
experimental model, in which case the training set must be used to deter-
mine the normalization parameters. The different hyperparameters are set
according to the following heuristics. One goal of the application is to ob-
tain a model that is accurate on both the training and test samples (the
training points are part of the performance index RMSE total). Thus C is
set to a large value (C = 100) in order to ensure a good approximation of
the training points. Accordingly, ε is set to 0.001 in order to approximate
the real data well. The trade-off parameter λ of the proposed method is
set to 100, which gives as much weight to both the training data and the
prior knowledge. Since all standard deviations of the inputs equal 1 after
normalization, the RBF kernel width σ is set to 1.

Two sets of experiments are performed for very low numbers of training
samples N = 6 and N = 3. The results in Table 3 show that both the
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Table 3 Errors on the residual gas mass fraction for a training set sizes N = 6
and N = 3. ’–’ appears when the result is irrelevant (model mostly constant).

N Model RMSE total RMSE test MAE

1 (experimental model) 6.00 6.84 15.83
2 (prior model) 4.93 4.86 9.74

6 3 (mixed model) 4.88 4.85 9.75
4 (proposed-model) 2.15 2.44 5.94

1 (experimental model) – – –
2 (prior model) 4.93 4.93 9.74

3 3 (mixed model) 4.86 4.89 9.75
4 (proposed model) 2.79 2.97 5.78

experimental and the mixed models cannot yield a better approximation
than the prior model with so few training data. Moreover, for N = 3, the
experimental model yields a quasi-constant function due to the fact that the
model has not enough free parameters (only 3 plus a bias term) and thus
cannot model the data. In this case, the RMSE is irrelevant. On the contrary,
the proposed model do not suffer from this problem and yields good results
from very few training samples. Moreover, the performance decreases only
slightly when reducing the training set size from 6 to 3. Thus, the proposed
method seems to be a promising alternative to obtain a simple black box
model with a good accuracy from a limited number of experimental data
and a prior simulation model.

7 Conclusion

This paper reviewed the possibilities allowed by adding constraints to the
optimization problem for the incorporation of prior knowledge into LPSVR
learning. Equality and inequality constraints were studied with the corre-
sponding applications illustrated by examples. Many types of prior knowl-
edge can be taken into account by the proposed method such as particular
points with known values, prior knowledge on any derivative either pro-
vided by a prior model or available only at some points, bounds on the
function or a derivative. . . This extends and regroups the previous works of
[Mangasarian and Wild, 2007] and [Lázaro et al., 2005b], which considered
particular forms of prior knowledge. Moreover, a new method for the simul-
taneous approximation of multiple outputs linked by some prior knowledge
has been proposed. This method uses the general framework for the incor-
poration of prior knowledge by the addition of constraints and thus allows
consideration of different types of prior knowledge on single outputs while
training on multiple outputs. The methods were applied to nonlinear sys-
tem identification problems and promising results were obtained on real-life
data for the estimation of in-cylinder residual gas fraction in spark ignition



Incorporating Prior Knowledge in Support Vector Regression 33

engines. On this application, the addition of virtual samples with derivative
values, not handled in [Lázaro et al., 2005b], efficiently improved the model.

A Derivatives of f with the RBF kernel

Considering the RBF kernel k(x, xi) = exp
(

−‖x − xi‖
2/2σ2

)

, gives the
following derivative of f with respect to xj , the jth component of x,

∂f(x)

∂xj
=

1

σ2

N
∑

i=1

αik(x, xi)(x
j
i − xj) (51)

=
1

σ2
(Xj − 1Nxj)T DK(x,XT ) α = r1(x)T α ,

where DK(x,XT ) = diag
(

K(x, XT )
)

and Xj represents the jth column of

X.
Looking at the second order derivatives

∂2f(x)

∂xj2 =
1

σ2

N
∑

i=1

αi

[

k(x, xi)(x
j
i − xj)2

σ2
− k(x, xi)

]

(52)

=
1

σ2

N
∑

i=1

αik(x, xi)

(

(xj
i − xj)2

σ2
− 1

)

,

gives

∇2f(x) =
1

σ2

d
∑

j=1

N
∑

i=1

αik(x, xi)

(

(xj
i − xj)2

σ2
− 1

)

, (53)

which becomes in matrix form

∇2f(x) =
1

σ4

d
∑

j=1

[

((Xj − 1Nxj)2)T Dk(x,XT ) α
]

−
d

σ2
k(x, XT )α (54)

=





1

σ4

d
∑

j=1

[

((Xj − 1Nxj)2)T Dk(x,XT )

]

−
d

σ2
k(x, XT )



α

= r2(x)T α ,

where (Xj − 1Nxj)2 is a vector with all components equals to the squares
of the components of (Xj − 1Nxj).

To summarize the results, the following parameters can be used to con-
strain the first order derivative with respect to xj and the Laplacian:

r1(x)T =
1

σ2
(Xj − 1Nxj)T DK(x,XT ) , (55)

r2(x)T =
1

σ4

d
∑

j=1

[

((Xj − 1Nxj)2)T Dk(x,XT )

]

−
d

σ2
k(x, XT ) . (56)
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gen, J., and Vapnik, V. (1997). Predicting time series with support vector
machines. In Proc. of the Int. Conf. on Artificial Neural Networks, pages 999–
1004.

[Narendra and Parthasarathy, 1990] Narendra, K. S. and Parthasarathy, K.
(1990). Identification and control of dynamical systems using neural networks.
IEEE Trans. on Neural Networks, 1(1):4–27.

[Poggio and Vetter, 1992] Poggio, T. and Vetter, T. (1992). Recognition and
structure from one 2D model view: Observations on prototypes, object classes
and symmetries. Technical Report AIM-1347, Massachusetts Institute of Tech-
nology, Cambridge, MA, USA.

[Sánchez-Fernández et al., 2004] Sánchez-Fernández, M., De Prado-Cumplido,
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