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This paper concerns the estimation of a function at a point in nonparametric heteroscedastic regression models with Gaussian noise or noise having unknown distribution. In those cases an asymptotically efficient kernel estimator is constructed for the minimax absolute error risk.

Introduction

We consider the problem of estimating a regression function S at a given point z 0 ∈]0; 1[ under observations

y k = S(x k ) + g(x k , S)ξ k , k ∈ {1, . . . , n} (1) 
where the regressors x k = k/n are deterministic, ξ k are independent identically distributed random variables which will firstly be assumed Gaussian standard then having unknown density. Notice that the variance of the noises g 2 is unknown and depends on the unknown regression function S and the regressors x k .
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Heteroscedastic regression models with this type of scale functionals have been encountered in consumer budget studies utilizing observations on individuals with diverse incomes, in analysis of investment behavior of firms of different sizes and more recently in medical research. For example, [START_REF] Goldfeld | Nonlinear Methods in Econometrics[END_REF] considered polynomial regression models such that y k = α + βx k + u k , E(u 2 k ) = a + bx k + cx 2 k , which is a particular case of our model (1) if we assume the unknown regression function being like S(x) = α + βx and g 2 (x, S) = (a -αc β 2 ) + b -2 αc β x + c β 2 S 2 (x). Other heteroscedastic regression models are studied for instance in [START_REF] Efromovich | Sharp-optimal and adaptive estimation for heteroscedastic nonparametric regression[END_REF], Galtchouk and Pergamenshchikov (2005) and [START_REF] Efromovich | Sequential design and estimation in heteroscedastic nonparametric regression[END_REF].

The problem of Hölder regression estimation has been studied by several authors. For a regression function belonging to a quasi-Hölder class and estimated at a point with squared error loss, [START_REF] Sacks | Asymptotically optimum kernels for density estimation at a point[END_REF] showed that the linear minimax estimator is a kernel estimator. [START_REF] Donoho | Geometrizing rates of convergence[END_REF] further found that this estimator is within 17 percent of asymptotically minimax among all procedures and obtained optimal kernels for Hölder classes. For estimating the whole object or its k th derivative with sup-norm global loss and Hölder class, [START_REF] Korostelev | Exact asymptotically minimax estimator for nonparametric regression in uniform norm[END_REF] and Donoho (1994) proved that a kernel estimator is asymptotically efficient. This article deals with nonparametric estimation of a regression function belonging to a Hölder ball. We work with the absolute error loss and the corresponding risk. Our aim is to find an efficient estimator, that is to say an estimator which achieves the sharp asymptotic behavior of the minimax risk.

To that purpose we use the method developed by [START_REF] Galtchouk | Efficient adaptive nonparametric estimation in heteroscedastic regression models[END_REF] who introduce the local weak Hölder classes to define the risk of an estimator. So we use the classes U z 0 ,δ which allows an arbitrary large derivative but has a Hölder condition based on a Hölder constant tending to zero (see (2)), then define the risk R z 0 ,δ ( S) of an estimator S of S(z 0 ) and the minimax risk inf S R z 0 ,δ ( S) (see ( 11)). In these conditions we prove that a kernel estimator is asymptotically efficient, it means that the minimax risk attains the sharp asymptotic constant. This paper is organized as follows. In section 2 we describe the problem in the case of Gaussian noise with all assumptions needed and define all necessary mathematical objects. Our main results of this problem are written in section 3. The case of unknown noise is related in section 4. Theorems are proved in section 5 and appendix A contains useful results for our proofs.

Statement of the problem

Consider model (1) where g :

[0; 1] × C 1 ([0; 1], R) -→ R *
+ and S are unknown functions, S belonging to the class

H(β) = M >0,K>0 H(M, K, β), where β = 1 + α is known, α ∈]0; 1], H(M, K, β) is the Hölder class defined as H(M, K, β) = S ∈ C 1 ([0; 1], R) : S ′ ≤ M, sup x,y∈[0;1] |S ′ (y) -S ′ (x)| |x -y| α ≤ K , with f = sup x∈[0;1] |f (x)|.
We suppose that the noises (ξ k ) 1≤k≤n are independent identically distributed N (0, 1).

As mentioned in the introduction, we will work with a minimax risk taken over the local weak Hölder class at the point z 0 defined, for 0 < δ < 1, as

U z 0 ,δ = S ∈ H(β) : S ′ ≤ δ -1 ; ∀h > 0, 1 -1 S(z 0 + hu) -S(z 0 ) du ≤ δh β (2) Notice that 1 -1 S(z 0 + hu) -S(z 0 ) du = 1 -1 z 0 +uh z 0 (S ′ (t) -S ′ (z 0 ))dt du, (3) so we have for all S ∈ H(M, K, β) 1 -1 S(z 0 + hu) -S(z 0 ) du ≤ 2K β(β + 1) h β .
That is why the class U z 0 ,δ is called a weak Hölder class. Furthermore (3) implies that H(δ -1 , δ, β) ⊂ U z 0 ,δ for any 0 < δ < 1.

Let us give the assumptions needed. Firstly we suppose that lim n→∞ sup

S∈U z 0 ,δ 1 q n n k=1 Q x k -z 0 h g 2 (x k , S) 1 2 -g(z 0 , S) = 0, (4) 
with

q n = n k=1 Q x k -z 0 h , Q = I [-1;1] and h = n -1/(2β+1) .
Moreover we assume that there exists g ⋆ > 0 and g ⋆ < ∞ such that

g ⋆ ≤ inf 0≤x≤1 inf S∈C 1 ([0;1],R) g(x, S) ≤ sup 0≤x≤1 sup S∈C 1 ([0;1],R) g(x, S) ≤ g ⋆ (5)
and that the function g is differentiable in the Frechet sense with respect to S in C 1 ([0; 1], R) uniformly over x ∈ [0; 1], i.e. for any S, S 0 ∈ C 1 ([0; 1], R)

g(x, S) = g(x, S 0 ) + L x,S 0 (S -S 0 ) + Γ x,S 0 (S -S 0 ), (6) 
where the linear operator L x,S 0 is bounded on C 1 ([0; 1], R) uniformly over x ∈ [0; 1], i.e. for any S 0 ∈ C 1 ([0; 1], R) there exists some positive constant

C S 0 such that sup x∈[0;1] sup S∈C 1 ([0;1],R), S =0 |L x,S 0 (S)|/ S ≤ C S 0 (7) 
and the residual term Γ x,S 0 (S) satisfies the property lim

S →0 sup x∈[0;1] Γ x,S 0 (S)/ S = 0. ( 8 
)
Remark 2.1 Note that hypothesis (4) is verified when for all ε > 0, there exists η > 0 such that if |xz 0 | ≤ η, then sup

S∈C 1 ([0;1],R) |g(x, S) -g(z 0 , S)| ≤ ε.
In particular a function g satisfies this property if it is uniformly continuous with respect to both variables.

Remark 2.2

Let us give a general example of a function g satisfying hypothesis (4)-( 8) above. Let V : R -→ R + and G : [0; 1]×R -→ R + two differentiable functions such that

V ′ ∞ < ∞, G ⋆ = inf x∈[0,1], y∈R G(x, y) > 0, G ′ ⋆ = sup x∈[0;1], y∈R ∂G ∂y (x, y) < ∞. Define g 2 (x, S) = G(x, S(x)) + 1 0 V (S(t))dt. ( 9 
)
The derivative in the Frechet sense of g is given by

L x,S (f ) = 1 2g(x, S) ∂G ∂y (x, S(x))f (x) + 1 2g(x, S) 1 0 V ′ (S(t))f (t)dt, so we have sup x∈[0;1] sup S∈C 1 ([0;1],R), S =0 |L x,S (f )| f ∞ ≤ G ′ ⋆ + V ∞ 2 √ G ⋆ .
Writing Taylor's expansion of functions y → G(x, y) at the point (x, S(x)) and V at the point S(t) to the first order:

G(x, S(x) + f (x)) = G(x, S(x)) + ∂G ∂y (x, S(x))f (x) + f (x)ε x,S (f (x)), V (S(t) + f (t)) = V (S(t)) + V ′ (S(t))f (t) + f (t)ε t,S (f (t)),
we can easily show that

|Γ x,S (f )| f ∞ ≤ G ′ ⋆ + V ′ ∞ 8G 3/2 ⋆ g 2 (x, S + f ) -g 2 (x, S) + 1 2 √ G ⋆ |ε x,S (f (x))| + 1 0 |ε t,S (f (t))|dt . ( 10 
)
Now if we take G(x, y) = α 0 + α 1 x + α 2 sin 2 y and V (y) = α 3 sin 2 y for all (x, y) ∈ [0, 1] × R, with α 0 > 0 and α 1 , α 2 , α 3 ∈ R + , then the function g defined as ( 9) is uniformly continuous, bounded by √ α 0 and

√ α 0 + α 1 + α 2 + α 3 .
Moreover by writing explicitly the functions ε x,S and εx,S for this case, we can prove thanks to (10) that g satisfies hypothesis (8). So we have exhibited an example of function g which satisfies all assumptions needed.

For any estimator Sn (z 0 ) of S(z 0 ) we define the following risk

R z 0 ,δ ( Sn ) = sup S∈U z 0 ,δ E S ϕ n | Sn (z 0 ) -S(z 0 )| g(z 0 , S) , (11) 
where E S is the expectation taken with respect to the law P S in (1) and

ϕ n = n β 2β+1
. The aim is to attain the sharp constant with this rate ϕ n . It is only assumed that β ∈]1; 2] because if β > 2 we should use a kernel Q of order [β] i.e. such that u j Q(u)du = 0 for j = 1, 2, . . . , [β] and Q(u)du < ∞, where [a] denotes the integer part of the number a.

Lower and upper bounds

In this section we give the lower bound for the minimax risk and show that the kernel estimator Ŝn (z 0 ), defined by

Ŝn (z 0 ) = 1 q n n k=1 Q x k -z 0 h y k , (12) 
is asymptotically efficient as we give the upper bound for its risk.

Theorem 3.1 For any δ ∈]0; 1[, lim inf n→∞ inf S R z 0 ,δ ( S) ≥ E|ξ| √ 2 , ξ ∼ N (0, 1),
where the infimum is taken over all estimators S of S(z 0 ).

Theorem 3.2 For the estimator Ŝn (z 0 ) from ( 12), the following inequality holds:

lim sup δ→0 lim sup n→∞ R z 0 ,δ ( Ŝn (z 0 )) ≤ E|ξ| √ 2 , ξ ∼ N (0, 1).

Case of unknown noise distribution

In this section we suppose that the (ξ k ) in model ( 1) are independent identically distributed with an unknown density p belonging to

P ε,L = p : +∞ -∞ xp(x)dx = 0, +∞ -∞ x 2 p(x)dx = 1, +∞ -∞ |x| 2+ε p(x)dx ≤ L ,
with ε > 0 and L > 0 sufficiently large to have the density of the standard Gaussian random variable in P ε,L .

We define the risk corresponding to this case as Rz 0 ,δ ( Sn ) = sup

p∈P ǫ,L sup S∈U z 0 ,δ E S ϕ n | Sn (z 0 ) -S(z 0 )| g(z 0 , S) .
In the following theorems we give the sharp lower bound for the minimax risk over all estimators and establish the upper bound for the minimax risk for the kernel estimator Ŝn (z 0 ) of S(z 0 ) defined in (12).

Theorem 4.1 For any δ ∈]0; 1[, one has:

lim inf n→∞ inf S Rz 0 ,δ ( S) ≥ E|η| √ 2 , η ∼ N (0, 1),
where the infimum is taken over all estimators S of S(z 0 ).

Theorem 4.2 The kernel estimator ( 12) is asymptotically efficient. Indeed it satisfies the inequality:

lim sup δ→0 lim sup n→∞ Rz 0 ,δ ( Ŝn (z 0 )) ≤ E|η| √ 2 , η ∼ N (0, 1).
5 Proof of the theorems 5.1 Proof of theorem 3.1

For all ν ∈ 0; 1 4 , denote S ν (x) = ϕ -1 n V ν x -z 0 h
, where the function V ν is defined by:

V ν (x) = 1 ν +∞ -∞ Qν (u)l u -x ν du , Qν (u) = I {|u|≤1-2ν} + 2I {1-2ν≤|u|≤1-ν} ,
and l is a non-negative function, infinitely differentiable on R, such that for

|z| ≥ 1, l(z) = 0 and 1 -1
l(z)dz = 1. One can easily see that for any 0 < ν < 1 4 , we have V ν (0) = 1 and

1 -1 V ν (x)dx = 2. Let ν ∈]0; 1 4 [, b > 0 and δ ∈]0; 1[. Denote S ν,u (x) = u ϕ n V ν x -z 0 h , where 
x, u ∈ R. Thanks to lemma A.1, if |u| ≤ b there exists an integer n ν,b,δ > 0 such that S ν,u ∈ U z 0 ,δ for all n ≥ n ν,b,δ . Therefore for n ≥ n ν,b,δ , one has:

R z 0 ,δ ( S) ≥ sup |u|≤b 1 g(z 0 , S ν,u ) E Sν,u ϕ n | S(z 0 ) -S ν,u (z 0 )| ≥ 1 2b b -b 1 g(z 0 , S ν,u ) E Sν,u v a ϕ n ( S(z 0 ) -S ν,u (z 0 )) du := I n (a, b),
where v a (x) = |x| ∧ a, a > 0.

Write P Sν,u the law of (y

k ) k=1,...,n , where y

(1) k = S ν,u (x k ) + g(x k , S ν,u )ξ k , and P the law of (y (0) k ) k=1,...,n , where y (0) k = g(x k , S ν,u )ξ k . These two measures are equivalent and the corresponding Radon-Nikodym derivative is at the point (y 1 , . . . , y n ):

ρ n (u) = dP Sν,u dP (y 1 , . . . , y n ) = exp    - 1 2 n k=1   y k -S ν,u (x k ) g(x k , S ν,u ) 2 - y k g(x k , S ν,u ) 2      = exp uς n η n - u 2 2 ς 2 n where ς 2 n = 1 ϕ 2 n n k=1 V 2 ν x k -z 0 h g 2 (x k , S ν,u ) and η n = 1 ς n ϕ n n k=1 V ν x k -z 0 h g 2 (x k , S ν,u ) y k .
Under the law P, η n is a standard Gaussian random variable.

We prove in lemma A.2 that

ς 2 n ---→ n→∞ 1 -1 V 2 ν (z) g 2 (z 0 , 0) dz =: σ 2 ν . (13) 
So we rewrite ρ n (u) = exp uσ ν η n -u 2 σ 2 ν 2 + r n , where r n converges in Pprobability to zero.

Denoting ψ a,n ( S, S ν,u ) = v a (ϕ n ( Sn (z 0 ) -S ν,u (z 0 ))) and E the expectation for the probability measure P, one has

I n (a, b) ≥ 1 2b b -b EI B d ψ a,n ( S, S ν,u ) g(z 0 , S ν,u ) ̺ n (u)du + δ n (a, b) =: J n (a, b) + δ n (a, b), (14) 
where

B d = {|η n | ≤ d} and d = σ ν (b - √ b), b > 1, ̺ n (u) = exp uσ ν η n - u 2 σ 2 ν 2 , δ n (a, b) = 1 2b b -b EI B d ψ a,n ( S, S ν,u ) g(z 0 , S ν,u ) θ n (u)du, θ n (u) = ρ n (u) -̺ n (u). Note that ρ n (u) L ---→ n→∞ ρ ∞ (u) = exp uσ ν η -u 2 σ 2 ν 2
. We can easily show that Eρ ∞ (u) = 1 and we have also Eρ n (u) = 1 because ρ n (u) is a density. Hence, using theorem 3.6 from [START_REF] Billingsley | Convergence of probability measures[END_REF], {ρ n (u), n ≥ 1} is uniformly integrable. And since ̺ n (u) is bounded on B d , we obtain the uniform integrability of

{I B d ψ a,n ( S, S ν,u )θ n (u), n ≥ 1}. Write θ n (u) = exp uσ ν η n -u 2 σ 2 ν 2
(e rn -1) and notice that exp uσ ν η n -u 2 σ 2 ν 2 is bounded on B d and that e rn -1 P ---→ n→∞ 0. As a consequence one has

I B d ψ a,n ( S, S ν,u ) g(z 0 , S ν,u ) θ n (u) P ---→ n→∞ 0.
It follows that 

I B d ψa,n( S,Sν,u) g(z 0 ,Sν,u) θ n (u) L 1 ---→
J n (a, b) = 1 2b b -b EI B d ζ n v a (u -t n ) g(z 0 , S ν,u ) exp - σ 2 ν 2 (u -ηn ) 2 du = 1 2b b -b ẼI Bd ζ v a (u -t n ) g(z 0 , S ν,u ) exp - σ 2 ν 2 (u -ξ) 2 du = ẼI Bd ζ 1 2b b -b v a (u -t n ) g(z 0 , S ν,u ) exp - σ 2 ν 2 (u -ξ) 2 du.
We have the following limit

ẼI Bd ζ 1 2b b -b v a (u-t n ) exp - σ 2 ν 2 (u -ξ) 2 1 g(z 0 , S ν,u ) - 1 g(z 0 , 0) du ---→ n→∞ 0.
(15) Indeed, using hypothesis ( 6) and ( 7) one obtains

ẼI Bd ζ 1 2b b -b v a (u -t n ) exp - σ 2 ν 2 (u -ξ) 2 1 g(z 0 , S ν,u ) - 1 g(z 0 , 0) du ≤ ẼI Bd ζ 1 2b b -b v a (u -t n ) exp - σ 2 ν 2 (u -ξ) 2 Γ z 0 ,0 (S ν,u ) -L z 0 ,0 (S ν,u ) g 2 ⋆ du ≤ ẼI Bd ζ 1 2b b -b a C 0 S ν,u +|Γ z 0 ,0 (S ν,u )| g 2 ⋆ du.
Since S ν,u tends to zero as n goes to infinity, hypothesis ( 8) and ( 15) allows then us to say that

lim inf n→∞ J n (a, b) = lim inf n→∞ ẼI Bd ζ 1 2b b -b v a (u -t n ) g(z 0 , 0) exp - σ 2 ν 2 (u -ξ) 2 du. But ẼI Bd ζ 1 2b b -b v a (u -t n ) g(z 0 , 0) exp - σ 2 ν 2 (u -ξ) 2 du ≥ ẼI Bd ζ 1 2b √ b - √ b v a (t -t n + ξ) g(z 0 , 0) exp - σ 2 ν 2 t 2 dt ≥ ẼI Bd ζ 1 2b √ b - √ b v a (t) g(z 0 , 0) exp - σ 2 ν 2 t 2 dt,
this last inequality holds thanks to Anderson's lemma (see Ibragimov and Has'minskii, 1981, Chapter II, Lemma 10.1 and Corollary 10.2).

Eventually using the fact that ẼI

Bd ζ = 2σ ν (b - √ b) √ 2π it follows that lim inf a→∞ lim inf n→∞ √ b - √ b |t| g(z 0 , 0) exp - σ 2 ν 2 t 2 dt.
We complete the proof limiting successively b → ∞, ν → 0 and utilizing

σ 2 ν --→ ν→0 2 g 2 (z 0 , 0) .

Proof of theorem 3.2

We begin by rewriting the kernel estimator as Ŝn (z 0 )-S(z 16)

0 ) = B n + 1 √ qn ζ n with B n = 1 q n n k=1 Q x k -z 0 h (S(x k ) -S(z 0 )) (
ζ n = 1 √ q n n k=1 Q x k -z 0 h g(x k , S)ξ k . ( 17 
)
First we take a look at the term

ζ n √ q n . By (17), ζ n is a Gaussian random variable N 0, σ 2 n (S) where σ 2 n (S) = 1 q n n k=1 Q x k -z 0 h g 2 (x k , S). We prove in lemma A.3 that the variance σ 2 n (S) satisfies σ 2 n (S) ---→ n→∞ g 2 (z 0 , S). If ξ ∼ N (0, 1), one has sup S∈U z 0 ,δ 1 g(z 0 , S) E S ϕ n √ q n ζ n = ϕ n √ q n E|ξ| sup S∈U z 0 ,δ σ n (S) g(z 0 , S) ≤ ϕ n √ q n E|ξ| g ⋆   sup S∈U z 0 ,δ |σ n (S) -g(z 0 , S)| + g ⋆   .
According to hypothesis (4) and since

q n ϕ 2 n = q n nh ---→ n→∞ 2, we obtain lim sup n→∞ sup S∈U z 0 ,δ E S ϕ n g(z 0 , S) |ζ n | √ q n ≤ E|ξ| √ 2 . ( 18 
)
Now denote u k =

x kz 0 h , ∆u k = 1 nh and rewrite ( 16) as

B n = ϕ 2 n q n n k=1 Q(u k ) S(z 0 + hu k ) -S(z 0 ) ∆u k (19) = ϕ 2 n q n 1 -1 S(z 0 + hu) -S(z 0 ) du + ϕ 2 n q n R n (20) 
with

R n = n k=1 Q(u k ) S(z 0 + hu k ) -S(z 0 ) ∆u k - 1 -1 S(z 0 + hu) -S(z 0 ) du = k * k=k * u k u k-1 S(z 0 + hu k ) -S(z 0 + hu) du - 1 u k * S(z 0 + hu) -S(z 0 ) du + -1 u k * -1 S(z 0 + hu) -S(z 0 ) du,
where

k * = [n(z 0 + h)] et k * = [n(z 0 -h)] + 1.
We can bound R n as follows:

|R n | ≤ k * k=k * u k u k-1 h(u k -u)δ -1 du + 1 u k * hδ -1 udu + -1 u k * -1 hδ -1 |u|du ≤ hδ -1 k * k=k * (u k -u k-1 ) 1 nh + (1 -u k * ) + 2(-1 -u k * -1 ) ≤ 6δ -1 n . Hence lim sup n→∞ sup S∈U z 0 ,δ E S ϕ n ϕ 2 n q n R n = 0. (21) 
With regard to the term

ϕ 2 n q n 1 -1 S(z 0 + hu) -S(z 0 ) du in (20) one has ϕ 2 n q n 1 -1 S(z 0 + hu) -S(z 0 ) du ≤ ϕ 2 n q n δn -β 2β+1 = δ ϕ n q n .
Then using the definition of U z 0 ,δ we get lim sup

n→∞ sup S∈U z 0 ,δ E S ϕ n ϕ 2 n q n 1 -1 S(z 0 + hu) -S(z 0 ) du ≤ δ 2 . (22) 
Finally ( 18), ( 21) and limiting δ → 0 in (22) yield lim sup

δ→0 lim sup n→∞ R z 0 ,δ ( Ŝn (z 0 )) ≤ E|ξ| √ 2 .

Proof of theorem 4.1

This is a consequence of the theorem 3.1 which gives the sharp lower bound in the case of Gaussian errors having expectation zero and unknown variance which depends on the design point and the regression function. The corresponding risk R z 0 ,δ is less than the risk Rz 0 ,δ because the density of the standard Gaussian random variable belongs to P ε,L . The inequality in theorem 4.1 is then proved.

Proof of theorem 4.2

Writing Ŝn (z 0 ) -S(z 0 ) = B n + ζ n / √ q n , with B n and ζ n defined by ( 16) and ( 17), we remark that B n does not depend on the distributions of the random variables ξ k . That is the reason why ( 21) and ( 22) remain available and provide for any δ ∈]0; 1[: lim sup

n→∞ sup S∈U z 0 ,δ ϕ n |B n | ≤ δ/2.
Hence it suffices to prove that

lim n→∞ sup p∈P ǫ,L sup S∈U z 0 ,δ E S |ζ n | g(z 0 , S) -E|η| = 0, (23) 
with η ∼ N (0, 1).

Denote ζn = ζ n /g(z 0 , S) = n k=1 u k , where u k = 1 √ q n Q x k -z 0 h g(x k , S) g(z 0 , S) ξ k , and rewrite g(x k , S) g(z 0 , S) ξ k = ξ ′ k + ξ ′′ k , where ξ ′ k = g(x k , S) g(z 0 , S) ξ k I |ξ k |≤q 1/4 n - g(x k , S) g(z 0 , S) E ξ 1 I |ξ 1 |≤q 1/4 n , ξ ′′ k = g(x k , S) g(z 0 , S) ξ k I |ξ k |>q 1/4 n - g(x k , S) g(z 0 , S) E ξ 1 I |ξ 1 |>q 1/4 n . Let u ′ k = 1 √ q n Q x k -z 0 h ξ ′ k and u ′′ k = 1 √ q n Q x k -z 0 h ξ ′′ k , then one gets ζn = ζ′ n + ζ′′ n = n k=1 u ′ k + n k=1 u ′′ k . Moreover, (u ′ k ) k≥1 is a martingale difference and for all k ≥ 2, we have |u ′ k | ≤ 2 g ⋆ g⋆ q -1/4 n and E S (u ′ k ) 2 |F k-1 = 1 q n Q x k -z 0 h g 2 (x k , S) g 2 (z 0 , S) V ar ξ 1 I |ξ 1 |≤q 1/4 n . Write n i=1 E S (u ′ i ) 2 |F i-1 = V ar ξ 1 I |ξ 1 |≤q 1/4 n q n n i=1 Q x i -z 0 h g 2 (x i , S) g 2 (z 0 , S) = G n (S) q n a n ,
where

G n (S) = n i=1 Q x i -z 0 h g 2 (x i , S) g 2 (z 0 , S) and a n = V ar ξ 1 I |ξ 1 |≤q 1/4 n . Denoting r n (S) = G n (S)
q n a n and τ n = inf k :

k i=1 E S u ′2 i |F i-1 ≥ r n (S) , we obtain τ n = inf k : k i=1 Q x i -z 0 h ≥ q n and ζ′ n = τn k=1 u ′ k .
Let us show that a n and further r n (S) tend to 1 uniformly in p ∈ P ǫ,L and in S ∈ U z 0 ,δ . Firstly we have:

|a n -1| = |E ξ 2 1 I |ξ 1 |≤q 1/4 n -E ξ 1 I |ξ 1 |≤q 1/4 n 2 -1| ≤ q 1/4 n -q 1/4 n x 2 p(x)dx -1 + q 1/4 n -q 1/4 n xp(x)dx 2 .
The Cauchy-Schwarz inequality brings us:

q 1/4 n -q 1/4 n xp(x)dx 2 ≤ +∞ -∞ x 2 p(x)I |x|>q 1/4 n dx +∞ -∞ p(x)dx ≤ K p (q 1/4 n ).
Nevertheless by the definition of the set P ǫ,L , we get sup

p∈P ǫ,L K p (a) := sup p∈P ǫ,L +∞ -∞ x 2 I |x|>a p(x)dx ---→ a→∞ 0. ( 24 
)
From here it follows that sup

p∈P ǫ,L sup S∈U z 0 ,δ |a n -1| ≤ 2 sup p∈P ǫ,L K p (q 1/4 n ),
so the left term goes to zero as n goes to infinity.

Using assumption (4) and the inequality

|r n (S) -1| ≤ G n (S) q n -1 + G n (S) q n |a n -1|
we get the convergence of r n (S) to 1 uniformly in p and in S.

Applying lemma A.4 shows on the one hand the convergence in distribution of ζ ′ n to N (0, 1) uniformly in p ∈ P ǫ,L and in S ∈ U z 0 ,δ because the function ρ in lemma A.4 does not depend on the law of the martingale difference. In fact, if Φ denotes the standard Gaussian distribution function, one has

P τn k=1 u ′ k ≤ x -Φ(x) ≤ P τn k=1 u ′ k ≤ x -Φ(x/ r n (S)) + Φ(x) -Φ(x/ r n (S)) .
The second term of the right member of this inequality tends toward zero uniformly in p, in Sand in x because r n (S) → 1 uniformly in p and in S and because Φ is uniformly continuous on R.

On the other hand one has E| ζ′′ n | → 0 uniformly in p and in S. Indeed one have immediately E( ζ′′2 n ) =

G n (S) q n K p (q 1/4 n ). Then (24) and the Cauchy-Schwarz inequality yield sup

p∈P ǫ,L sup S∈U z 0 ,δ E S | ζ′′ n | → 0.
Using Markov's inequality, we show that ( ζ′′ n ) tends to 0 in probability uniformly in p and in S.

As a consequence ζn = ζ′

n + ζ′′ n converges in distribution to η ∼ N (0, 1) uniformly in p and in S. This immediately implies (23).

A Appendix Lemma A.1 Fix ν ∈]0; 1 4 [ and δ ∈]0; 1[. Then there exists an integer n ν,δ > 0 such that S ν ∈ U z 0 ,δ for all n ≥ n ν,δ .

Proof: First remark that 1 -1 (S ν (z 0 + uh) -S ν (z 0 )) du = 0. Moreover one has |S ′ ν (x)| = 1 ϕ n h V ′ ν x -z 0 h ≤ 2 l ′ ∞ ν 2 n -β+1 2β+1 
For any fixed δ in ]0; 1[, if we choose n ≥ 1 such that

n -β+1 2β+1 2 l ′ ∞ ν 2 ≤ δ -1 i.e. n ≥ 2 l ′ ∞ δ ν 2 2β+1 β-1 , then S ν ∈ U z 0 ,δ .
Therefore we have the desired result.

Lemma A.2 We have the following limit:

ς 2 n ---→ n→∞ 1 -1 V 2 ν (z) g 2 (z 0 , 0)
dz.

Proof: For sufficiently large n we have . Like this (ν n ) n≥1 weakly tends to 2δ z 0 , the Dirac measure at z 0 , when n → ∞. Then we can conclude as we remember that q n ϕ 2 n ---→ n→∞ 2 and that nh = ϕ 2 n .

ς 2 n = 1 nh n k=1 V 2 ν x k -z 0 h g 2 (x k , S ν,u ) = 1 h z 0 +h z 0 -h V 2 ν x-z 0 h g 2 (x, S ν,u ) µ n (dx) = 1 0 V 2 ν x-z 0 h g 2 (x,
Lemma A.4 (Freedman, 1971, pp. 90-91) where Φ is the standard Gaussian distribution function.

  yields δ n (a, b) ---→ n→∞ 0 in (14). Now we are interested in the term J n (a, b) in (14).

First

  rewrite ̺ n (u) = ζ n e -σ 2 ν (u-ηn) 2 /2 with ζ n = e η 2 n /2 and ηn = η n σ ν . Then if ξ ∼ N (0, 1) denote ξ = ξ σ ν , ζ = e ξ 2 /2, Bd = {|ξ| ≤ d} and Ẽ the expectation for the probability law of ξ. With t n = ϕ n Sn (z 0 ), we get

g 4 ⋆

 4 n = and ν n =I [z 0 -h;z 0 +h] h µ n .Using hypothesis (6) and (7) to the function g, we can write for all x ∈ [0L x,0 (S ν,u ) + L 2 x,0 (S ν,u ) + Γ 2 x,0 (S ν,u )+ 2g(x, 0)Γ x,0 (S ν,u ) + 2L x,0 (S ν,u )Γ x,0 (S ν,u )| ≤ 1 2g ⋆ C 0 S ν,u + C 2 0 S ν,u 2 + |Γ x,0 (S ν,u )| 2 + 2g ⋆ |Γ x,0 (S ν,u )| + 2C 0 S ν,u |Γ x,0 (S ν,u )|) . x, S)ν n (dx)with ν n = µnI [z 0 -h;z 0 +h] h

  Let δ ∈]0; 1[ and r > 0. Assume that (u k ) k≥0 is a martingale difference with respect to the filtration(F k ) k≥0 such that |u k | ≤ δ for all k and ∞ k=1 E(u 2 k |F k-1 ) ≥ r. Define τ = inf n : n k=1 E(u 2 k |F k-1 ) ≥ r .Then there exists a function ρ : ]0; +∞[→ [0; 2] not depending on the distribution of the martingale difference, such that lim x→0

As (ν n ) weakly tends to 2δ z 0 when n → ∞, one has

Then taking into account hypothesis (8) and because S ν,u tends to 0 as n → ∞, we obtain on the one hand

On the other hand

Let n goes to ∞ and then we have completed the proof of lemma A.2.

with the measure µ n = 1 n n k=1 δ k/n . We know that (µ n ) n≥1 weakly tends to the uniform measure on [0; 1].