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Abstract

This paper concerns the estimation of a function at a point in nonparametric het-
eroscedastic regression models with Gaussian noise or noise having unknown distri-
bution. In those cases an asymptotically efficient kernel estimator is constructed for
the minimax absolute error risk.
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1 Introduction

We consider the problem of estimating a regression function S at a given point
2o €]0; 1] under observations

yr = S(xr) + gz, )&k, ke{l,...,n} (1)

where the regressors zy = k/n are deterministic, & are independent iden-
tically distributed random variables which will firstly be assumed Gaussian
standard then having unknown density. Notice that the variance of the noises
¢* is unknown and depends on the unknown regression function S and the

regressors Ig.
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Heteroscedastic regression models with this type of scale functionals have been
encountered in consumer budget studies utilizing observations on individuals
with diverse incomes, in analysis of investment behavior of firms of different
sizes and more recently in medical research. For example, [Goldfeld and Quand{
(I979) considered polynomial regression models such that y, = o + Bz +
ur, E(ul) = a + bx), + cx?, which is a particular case of our model (1) if
we assume the unknown regression function being like S(z) = o + Sz and

¢*(z,S) = (a — )+ (b — 2%) x+ 6—6252<5L’). Other heteroscedastic regression

models are studied for instance in [Efromovich and Pinskeq ([[999), [Galtchou}
[and Pergamenshchikoy (P005) and [Efromovich (P007).

The problem of Holder regression estimation has been studied by several au-
thors. For a regression function belonging to a quasi-Holder class and esti-
mated at a point with squared error loss, Sacks and Ylvisaker ([981)) showed
that the linear minimax estimator is a kernel estimator. Donoho and Lid ([[991])
further found that this estimator is within 17 percent of asymptotically min-
imax among all procedures and obtained optimal kernels for Holder classes.
For estimating the whole object or its kth derivative with sup-norm global loss

and Holder class, [Korosteley (1993) and Donohd (1994)) proved that a kernel

estimator is asymptotically efficient.

This article deals with nonparametric estimation of a regression function be-
longing to a Holder ball. We work with the absolute error loss and the cor-
responding risk. Our aim is to find an efficient estimator, that is to say an
estimator which achieves the sharp asymptotic behavior of the minimax risk.
To that purpose we use the method developed by [Galtchouk and Pergamen]
[ shchikoy (P00@) who introduce the local weak Holder classes to define the risk
of an estimator. So we use the classes U,, ; which allows an arbitrary large
derivative but has a Holder condition based on a Holder constant tending to
zero (see (2)), then define the risk R.,s(S) of an estimator S of S(z) and
the minimax risk irs{f R.,5(S) (see (11)). In these conditions we prove that a

kernel estimator is asymptotically efficient, it means that the minimax risk
attains the sharp asymptotic constant.

This paper is organized as follows. In section 2 we describe the problem in the
case of Gaussian noise with all assumptions needed and define all necessary
mathematical objects. Our main results of this problem are written in section
3. The case of unknown noise is related in section 4. Theorems are proved in
section 5 and appendix A contains useful results for our proofs.



2 Statement of the problem

Consider model (1) where g : [0;1] x C*([0; 1],R) — R* and S are unknown
functions, S belonging to the class

HP) = U HMK,PB),

M>0,K>0

where = 14 « is known, « €]0; 1], H(M, K, 3) is the Holder class defined as

H(M,K,ﬁ):{SeCl([O;l],R) S s 1SW 5@ SK}7

z,y€(0;1] ‘SL’ - y|a
with || f ||= sup |f(x)|. We suppose that the noises (£x)1<k<n are independent
z€[0;1]

identically distributed A(0, 1).

As mentioned in the introduction, we will work with a minimax risk taken
over the local weak Holder class at the point zy defined, for 0 < § < 1, as

1
U, s — {S e H(B) : |19 < 575k > 0,| [ (S(z0+ hu) - S(zo))du‘ < W}
1

(2)

Notice that

/11 (S(zo + hu) — S(zo))du = /_11 (

/ ) — S’(zo))dt> du, (3)

20

so we have for all S € H(M, K, 3)

‘/ (20 + hu) S(zo))du‘ < 2K ho.

T BB+1)

That is why the class U,, 5 is called a weak Holder class.
Furthermore (3) implies that H (67,6, 3) C U, s for any 0 < 6 < 1.

Let us give the assumptions needed. Firstly we suppose that

<qn kZlQ( =)o S>>

1
2

lim sup
"0 SEll, 5

—g(z0,5)|:0, <4>

with

qn = Z Q(l‘k ; 20)7 Q — I[[—l;l} and h — nil/(zﬁ‘f’l)_
k=1

Moreover we assume that there exists g, > 0 and ¢g* < oo such that

» < Inf inf z,5) < su su z,8) < g* 5
g _09315601([0;1}&)9( ) ngzlsecl([gu,ﬂ%)g( )= (5)



and that the function g is differentiable in the Frechet sense with respect to
S in C([0;1], R) uniformly over x € [0;1], i.e. for any S, S, € C*([0; 1], R)

g('rv S) = g('rv SO) + LI,SO(S - SO) + FLSo(S - SO>7 <6>

where the linear operator L, g, is bounded on C'([0;1],R) uniformly over
z € [0;1], i.e. for any Sy € C'([0;1],R) there exists some positive constant
Cs, such that

sup sup | Leso (S)/ 11 S [< Csy (7)
2€(031) SEC([031) ), S0

and the residual term I'; g,(S) satisfies the property

lim sup I',5,(5)/ || S|=0. (8)

[IS||—0 z€[0;1]

Remark 2.1
Note that hypothesis (4) is verified when for all € > 0, there exists n > 0 such

that if |x — 20| < m, then  sup  |g(z,S) — g(20,9)| < €.
SeC1([0;1],R)
In particular a function g satisfies this property if it is uniformly continuous

with respect to both variables.

Remark 2.2

Let us give a general example of a function g satisfying hypothesis (4)—(8)
above. Let V : R — Ry and G : [0; 1] xR — R, two differentiable functions
such that

oG
/ _ : [ -
||V ||OO < o0, G* - mE[O,l%}l,fyeR G(l‘,y) > Oa G* - xe[OS;H,pye]R ay (:E,y) < 0.
Define
1
§*(@.9) = Gla,S(@)) + [ V(S ©)

The derivative in the Frechet sense of g is given by

1 oG 1 1
L = "(S(1)) f(t)dt
o) = 5,005 oy B SENI@) + g [ VSO0
so we have
[Les(f)l _ G+ V]
sup sup ’ < .
zef01] Sect (01,8, [0 [|f ][0 2y G,

Writing Taylor’s expansion of functions y — G(z,y) at the point (x,S(z))
and V' at the point S(t) to the first order:



G, S(a) + f(2)) =Gla S(@) + G (& S@)f (@) + f(2)enalF(0)

V(S(t) + () =V(S@) + VI(S@)) (1) + f()és(f(2),
we can easily show that

Ca,s(f)] G/+||V||oo‘
[flloe — i

, S+ f) — ¢*(, S)’

7 (sl + [l (o)

Now if we take G(x,y) = ap + a1z + agsin®y and V(y) = azsin®y for all
(x,y) € [0,1] X R, with ag > 0 and oy, as,az € R, then the function g de-
fined as (9) is uniformly continuous, bounded by \/an and /o + o + s + as.
Moreover by writing explicitly the functions e, 5 and €, g for this case, we can
prove thanks to (10) that g satisfies hypothesis (8). So we have exhibited an
example of function g which satisfies all assumptions needed.

For any estimator S,,(zp) of S(zy) we define the following risk

~ 150 (20) — S(20)]
= R
RZO#S(S?@) 5212/2::,6 Sen g<207 S) 7

(11)

where Eg is the expectation taken with respect to the law Pg in (1) and
On = N

The aim is to attain the sharp constant with this rate ¢,. It is only assumed
that 3 €]1;2] because if 5 > 2 we should use a kernel @ of order [J] i.e. such
that [/ Q(u)du =0for j =1,2,...,[f] and [ Q(u)du < oo, where [a] denotes
the integer part of the number a.

3 Lower and upper bounds

In this section we give the lower bound for the minimax risk and show that
the kernel estimator S, (zy), defined by

-3 ot 1)

is asymptotically efficient as we give the upper bound for its risk.

Theorem 3.1 For any 6 €]0; 1],

~ E
lim inf mf R.ps(S) > ﬂa

min > e N,



where the infimum is taken over all estimators S of S(z).

Theorem 3.2 For the estimator gn(zo) from (12), the following inequality
holds:
E|¢]

lim sup lim sup R, 5(Sn(20)) < £~ N(0,1).

§—0 n—00

S

4 Case of unknown noise distribution

In this section we suppose that the (&) in model (1) are independent identi-
cally distributed with an unknown density p belonging to

“+oo “+o00 2+€
Pe,L:{p:/ d:c—O/ d:c—l/ || )dasz},

with ¢ > 0 and L > 0 sufficiently large to have the density of the standard
Gaussian random variable in P, .
We define the risk corresponding to this case as

- - ~n g
RZO,5<Sn) = sup sup Egp, |S <20> (Zo)| .
PEPe, L Seuzo,ﬁ g<20’ S)

In the following theorems we give the sharp lower bound for the minimax risk
over all estimators and establish the upper bound for the minimax risk for the
kernel estimator S, (zg) of S(zp) defined in (12).

Theorem 4.1 For any ¢ €]0; 1], one has:

hﬂgfmfRZOg(S) \‘/g‘ n~ N(0,1),

where the infimum is taken over all estimators S of S(z0).

Theorem 4.2 The kernel estimator (12) is asymptotically efficient. Indeed it
satisfies the inequality:

lim sup lim sup R, 5(Sn(20)) < n~N(0,1).

0—0 n—oo

SIS



5 Proof of the theorems

5.1 Proof of theorem 3.1

T — 2y

For all v € }O; : {, denote S,(z) = 'V, ( .

defined by:

) , where the function V, is

Vi) == [ Gutut (

vV J—

u—2a

» ) du @u(u) = Tju<i—201 + 20 —2v<jui<1-v}s

and [ is a non-negative function, infinitely differentiable on R, such that for

1
|z| > 1,1(z) = 0and /_1 [(z)dz = 1. One can easily see that for any 0 < v < 1,

1
we have V,(0) = 1 and / V,(z)dx = 2.
-1

T — 2

h

Let v €]0;1[, b > 0 and 6 €]0;1[. Denote S, ,(z) = iV,,(

) , where
Pn

r,u € R.
Thanks to lemma A.1, if |u| < b there exists an integer n,;s > 0 such that
Syu € Uy, 5 for all n > nyp 5. Therefore for n > n, 45, one has:

RZO,(;(S’) > sup

E n g zZo) — Sl/u z
eh 90, Sy) Y [5(20) = Sv.ul20)|

1 b 1 -
> — - . —
- 2b Lb g<ZO7 SV,U>ESV,u’Ua (@n(S(ZO) SV,U(ZO))) du [n<CL, b),

where v,(z) = |z| Aa,a > 0.

Write Pg, , the law of (y,(gl))kzl n, Where y,(:) = Syu(zk) + g(xk, Syu)k, and

P the law of (y,go))kzl n, Where v, = g(xy, S,.)E- These two measures are

.....

equivalent and the corresponding Radon-Nikodym derivative is at the point
(1o Yn):

(o) (YY)



n 2 (xk—zo) 1 n Vl/ (xk—zo)

where ¢ = — and 7, = h .
2 ) =

Under the law P, n, is a standard Gaussian random variable.

We prove in lemma A.2 that

d 2 =: 0. 13
ny%m>/1g g o=t (13)

So we rewrite p,(u) = exp (uaynn — ”22‘73 +Tn), where r, converges in P-
probability to zero.

Denoting ¥ (S, Syu) = Va(©n(Sn(20) — Syu(20))) and E the expectation for
the probability measure PP, one has

/ Eﬂgdwanzs S”;L) n(w)du + 6,(a,b) =: J,(a,b) + d,(a,b),
| (14)

where

By={|n| <d} and d=0,(b—Vb),b>1,

u?o?
on(u) =exp (ua,ﬂ]n — ”) ,

2

- 1 b ¢a,n(§, Su,u)
(et =g [ Blos o =55

0n(1) = pn(u) = on(w).

0, (u)du,

u?o?

5 ”). We can easily show that

Epoo(u) = 1 and we have also Ep,(u) = 1 because p,(u) is a density. Hence,

using theorem 3.6 from Billingsleyt ([999), {pn(u),n > 1} is uniformly inte-
grable. And since g, (u) is bounded on By, we obtain the uniform integrability

of {Ig,Yan(S, Syu)bn(u),n > 1}.

Note that p,(u) ﬁ Poo(U) = exp (ua,,n -

Write 6,,(u) = exp (uaynn — %) (e™ —1) and notice that exp (uaynn - u22‘73)
is bounded on B, and that e™ — 1 % 0. As a consequence one has
I[ a,n S) SV u
LEICIEZ Py ) )
9(20, Su,u) n—0o0
It follows that HBd;’ZEZO”éff)" ’“)Hn(u) niloo 0 and EHBdf(ZO"éif)” ’“)Gn(u) — 0.

Finally bounded convergence yields d,(a, b) ——0in (14).

Now we are interested in the term J,(a,b) in (14).



First rewrite o, (u) = (e~ @ ™)*/2 with ¢, = €™/ and 7, = T Then if

14

€ ~ N(0,1) denote € = é ¢ = e By = {|¢] < d} and E the expectation
for the probability law of S With t, = 0,5 (20), We get

_ 2
Jn(a,b) = 26/ I5,Cn (io’ Stni exp (—%(u — ’fln)2> du

L wa(u—ty) o2 ~
_Q_b/bEHBdcig(zo,Sy,u) exp <—?(u —5)2> du
= Lo (u—t,) 2 ~
—EI[BdCQ—b /_bmeXp <—?<U; —£>2> du

We have the following limit

- 1 b 03 =9 1 1
EHBdQ% /_bva(u—tn)exp (—?(u—f) ) (g(zo,sy,u) — g(zo,0)> du — 0.

Indeed, using hypothesis (6) and (7) one obtains

fr. oL [ 0.z 1 1

‘EHBdCQ—b/ va(u — t,) exp <_7(U — £)2> (9(207 Soa) 9(z0,0)> du
5 ~ FZ() Sl/u - LZ() Syu

<Elj3, Qb/ Va(u exp( %(u—§)2> 0(Sv) 0(Svu)

g?
N T
HgdC%/ e | Svu ll +] zO,o(Su,u)ldu.

du

/\

A

Since || S, || tends to zero as n goes to infinity, hypothesis (8) and (15) allows
then us to say that

va(u —ty,) o2 9
lim inf J,,(a, b) = hmlnfEHBdCzb/ 7exp ——2(u—£)? | du.
ZO)

But

Va(u —t,) o2 ~
EI / ‘17 —Yu=821d
BdCQb 9(7, 0 exp ( 5 (u—§) ) u
'Ua t_t +€) 03 2
I3, Qb/ Zo, exp (— 5 t° ) dt

/f Valt ——th dt,
d 2b \[g Zo, 2

Vv
ﬁz

v
ﬁz




this last inequality holds thanks to Anderson’s lemma (see [bragimov and

Has'minskid, [[981], Chapter II, Lemma 10.1 and Corollary 10.2).

20, (b — /D)
V21

Eventually using the fact that IETI[BdC = it follows that

v b— 2
lim inf lim inf J, (a, b) > 7 \/_ exp v e
a—00  Mm—0oo /92 Vb g 2;0, 2

We complete the proof limiting successively b — oo, v — 0 and utilizing
2
2

—_—. O
v E) 92(207 0)
5.2 Proof of theorem 3.2
We begin by rewriting the kernel estimator as gn(zo)—S(zo) = Bn+\/%§n with

B~ qi 5 ("5 )(S(w) ~ S() (16)
= LAt ) an)

First we take a look at the term —=—. By (17), ¢, is a Gaussian random variable

qn

/\/(0,03(5)) where ¢2(5) = — Z Q(xk Zo)gz(xk, S). We prove in lemma

A.3 that the variance an(S) satlsﬁes o2(S) — 9*(20,9). It € ~ N(0,1), one
has

1 On ©n 0,(S)
su = E
SGU};,& g(ZO7 ) \/ C ’ \/ |£| GUZO(; g(z()aS)

on E|¢|
<——=| sup |on(S)— g(20,5)| + gx | -
Van 9Gx (SEZ/IzO,(;

According to hypothesis (4) and since C]_n =&, 2, we obtain

(pn nh n—oo

limsup sup Eg on_ |Gl E|€|
n—oo  Selzy,d (207 )\/_ f

10



— 1
Now denote uy = h ; ZO, Auy = s and rewrite (16) as
‘gn Z Q(uy, ( 20 + hug) — S(zo))Auk (19)
n k=1
2
_#n / (S(z0 + hu) — S(z0) )du + 2R, (20)
Gn J-1 4n

with

-1

|
—
5=
N
o
+
>
£
|
5=
N
o
N
QU
N
+
5=
N
o
+
>
=
5=
N
N
N
QU

where k* = [n(zo + h)| et k. = [n(z0 — h)] + 1.

We can bound R,, as follows:

|R,| < Z/ h(ug — u)d 1du+/ hé~ udu+/ R |u|du

b=k Uky —1

<hs~ (kz( - )i+(1— )+ 2(—1— )><651
=~ = Uk — Uk—1 h U+ Uk, —1 =",

Hence

limsup sup Egp,|—

n—co  Sel. s

2

1
With regard to the term ﬁ/ (S(zo + hu) — S(zo))du in (20) one has
an /-1

2 1 2 8 "
%/_1 (S(z0 + hu) - S(zo))du‘ < %WW _ 5‘§—n.

Then using the definition of U, s we get

2

% /1 (S(Zo + hu) — S(zo))du‘ <

-1

limsup sup Egsp,

n—oo Seuz()’&

11



Finally (18), (21) and limiting § — 0 in (22) yield

- E
lim sup lim sup R, 5(5x(20)) < ]

d—0 n—oo ’ " o \/é '

5.8 Proof of theorem 4.1

This is a consequence of the theorem 3.1 which gives the sharp lower bound
in the case of Gaussian errors having expectation zero and unknown variance
which depends on the design point and the regression function. The corre-
sponding risk R, s is less than the risk 75,3075 because the density of the stan-
dard Gaussian random variable belongs to P, ;. The inequality in theorem 4.1
is then proved. O

5.4 Proof of theorem 4.2

Writing S, (20) — S(20) = By + Cn/\/@n, With B, and (, defined by (16) and
(17), we remark that B,, does not depend on the distributions of the random
variables &. That is the reason why (21) and (22) remain available and provide
for any ¢ €]0; 1[:

limsup sup ¢,|B,| <d/2.

n—oo Seuz()’&

Hence it suffices to prove that

ESKn|

lim sup sup |——— —E|n||=0, 23
n_)OOPEPEL SEU}:,(S g<2075) ‘n“ ( )
with n ~ N(0,1).
n 1 T — zo> g(xg, S)
D = h =
enote Cn Cn/g Z07 g Uk, WIETre Ug \/q—nQ ( h g(ZO, S) gk?
and rewrite %fk =&, + &, where
/_g<xk75) g<xk75>
&= (o, 5)5 gel<an™ T g2, S) (5 H\£1|<q1/4)
"n__ (SL’k,S> g(l’k,S)
57 (20, 9) 75 Hlentsatt (20, 9) (51 & |>q1/4)'

12



1 Q<xk—z0 1 Q<$Uk—20
Van SN b Vi Nk
=0 + ¢ = > up + > uj. Moreover, (u})g>1 is a martingale difference

k=1 k=1
and for all k > 2, we have |u},| < 23—:q;1/4 and

Let u), = >£/,'C and uj = ) ., then one gets

, 1 Tk — 2 %(z, S
Eg ((uk)2|fk71) _ _Q( k . 0) 92( k )
an
Write

Var (&Hl&l\gq}/ 4)

éEs ((u;)2|}—z‘—1) = i@ <3jZ — z0> g2(z(;, S) = an,

n i—1 h

n 2
o Ti— 20\ 9 ('ri7 S) o
where G, (5) = @-221 Q < . > (7.9 and a, = Var (5111‘515%%/4).
. Gn(S) . - p
Denoting r,,(S) = ———a, and 7, = inf Sk : > Eg (uz |}},1) > rp(S) ¢, we
n =1

k

obtain 7, = inf{/{; Y Q (xl ; ZO) > qn} and ¢, = > uj.
i=1 k=1

Let us show that a, and further r,(S) tend to 1 uniformly in p € P, 1, and in
S € U, 5. Firstly we have:

ja — 1 = [E (S%Hw@}/“) —E (flﬂwsns(z:/“)z —1

1/4 2

qn
+ / L4 Tp(@)da
—dn

qn 9
§/1/4xp(a:)da:—1

The Cauchy-Schwarz inequality brings us:

2

< ([ pn, ) ([ pa)ar) < 50,

—00 " —00

o/
‘/_ql/‘* xp(x)dx

Nevertheless by the definition of the set P, 1, we get

+o0o
sup Kp(a) := sup 2°y)sap(z)dz —— 0. (24)

pEPE,L pEPE,L —o0 a=ee

From here it follows that

sup sup |a, — 1] <2 sup Kp(q}/‘l),
pepe,L Seuzo,é pEPe,L

13



so the left term goes to zero as n goes to infinity.
Using assumption (4) and the inequality

Gn(S)

n

Gn(S)

n

ra(S) — 1] < ’ - 1’ + lan — 1]

we get the convergence of r,(S) to 1 uniformly in p and in S.
Applying lemma A.4 shows on the one hand the convergence in distribution
of ¢/, to N(0,1) uniformly in p € P, and in S € U,, s because the function

p in lemma A.4 does not depend on the law of the martingale difference. In
fact, if & denotes the standard Gaussian distribution function, one has

|IP’ (l:zn up, < :L‘) — ®(x)
< |IP’ (Z i, < x> _ @(x/,/rn(S))| + () - (/3]

The second term of the right member of this inequality tends toward zero
uniformly in p, in Sand in = because 7,(S) — 1 uniformly in p and in S and
because ® is uniformly continuous on R.

On the other hand one has E|¢| — 0 uniformly in p and in S. Indeed one have

G"i(S)Kp(q}L/ ). Then (24) and the Cauchy-Schwarz

n

immediately E(C"?) =
inequality yield

sup sup Eg|¢’| — 0.
PEPe, L SEMZO’(;

Using Markov’s inequality, we show that (57/{) tends to 0 in probability uni-
formly in p and in S.

As a consequence (, = 5{1 + 5{1’ converges in distribution to n ~ N(0,1)
uniformly in p and in S. This immediately implies (23). O

A Appendix

Lemma A.1 Fizv €]0; [ and § €]0; 1[. Then there exists an integer n, s > 0
such that S, € Uy, s for alln > n,s.

1
Proor: First remark that / (Sy(20 +uh) — S,(20)) du = 0. Moreover one
-1

14



has

, 1
Sl = o

For any fixed ¢ in ]0; 1], if we choose n > 1 such that

/ / 26+1
_ A1
nI 2[[7lleo <6 ie n> (Ll ”005> ,

V2 V2

(253 < Mot

v v

then S, € U, 5.

Therefore we have the desired result. O

Lemma A.2 We have the following limit:

n n—oo /1 g ZO)

Proor: For sufficiently large n we have

1 (M) 1 rzo+h V2 (m zo)
e

h
ka)SVu) h z20—h § (xasuu)

with i, = % Z5k/n = and v, = HZO”%W/M

Using hypothesm (6) and (7) to the function g, we can write for all z € [0; 1]

1 1
g¥(x, Spu)  g*(x,0)

‘ — ‘Qg 2,0)La0(Svu) + L2 o(Su) + T2 6(Suu)
+ 29(557 O)Fm,0<5u,u) + 2Lm,0<Su,u)Fm,O<Su,u>|

1 *
S (20" CollSuull + C3 1 Suall® + T 0 (S

*

+ 29702 0(Svu)| + 2C0]|SvullTa0(Svu)l) -

Hence

1 1 1
/0 (gZ(x Syu) B g?(z, O)) Va(dz)

Sy Too(Sya)l
|| ||/ Vn dSL’ 29*00+02H5uu|’+<sup | 70( ) )|> HSl/,u”
ee0;]  ||Svull

‘ mO<Svu)| ‘FmO( VU)|
+Zg*<sup ——— | +2Cy | sup — 55— | [|Svull | -
z€[0;1] HSMuH z€[0;1] HSlauH
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As (v,,) weakly tends to 26,, when n — oo, one has

1 1 ]_ ]_
li n(dr) =2 et i — n(dr) = 0.
A, jy vildD) =2 et i <92<x,0> g?(zO,m)” (d)

Then taking into account hypothesis (8) and because || S, || tends to 0 as
n — 00, we obtain on the one hand

/1 ! - ! I/n(dl’) — 0.
0 92($, Sy7u) g2(ZO’ 0) n—o00

On the other hand

V2 Tr—20 nVZ :Bk Zo
[ECR), - L3 2
0 g2(zo,0) nh 2(

=1 9 ZO? n—ee /19 ZO?

Now, if V* denotes the maximum of V? on R, one has

1 V2 1 VV2 T—20 1 V2 T—20
- / n (2) dz| < / — ( h )un(d:c) — / 7< )un(d:v)
-1 9°(20,0) 0o g%(x,Suu) 0 9%(20,0)
1 Vy2 T—20 1 9
+ Ml/n(dl‘) _/ VI/ (’Z) dz
0 g2<2070) -1 g2(20,0)
1 1 1
<V / - W (d
S R R PO KA
1 Vu2 T—20 1 2
+ / Myn(dx) _/ Mdz
0 g2<2070) -1 g2(20,0)
Let n goes to co and then we have completed the proof of lemma A.2. O

Lemma A.3 The variance 02(S) of ¢, satisfies

o (S) —= 9*(=0., 9).

n—oo

Proor: One has

> Q") g S) = [ e ()

k=1 0

with the measure p,, = %22:1 Ok /n-
We know that (f,,),>1 weakly tends to the uniform measure on [0; 1].
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Moreover for sufficiently large n,

. bnlizg—nzg+n

Like this (v,,)n>1 weakly tends to 24,,, the Dirac measure at zy, when n — oc.

Then we can conclude as we remember that q_z —— 2 and that nh = ¢?. O
(pn n—0o0

Lemma A.4 ([Freedman, [I971, pp. 90-91) Let 6 €]0;1[ and r > 0. Assume
that (ug)k>o is a martingale difference with respect to the filtration (Fi)r>o

such that |ux| <6 for all k and > E(uj|Fe_1) > .

k=1
Define T = inf {n DY E(up| Frer) > r}.

k=1
Then there exists a function p : |0; +oo[— [0;2] not depending on the distri-

bution of the martingale difference, such that lil’r(l] p(x) =0 and

< p(0/Vr),

sup
zeR

P (I; g, < x) — B(x//r)

where @ is the standard Gaussian distribution function.
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